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Human hippocampal neurons track moments in a sequence of events. 
 
Abstract: 40 
 
An indispensable feature of episodic memory is our ability to temporally piece together 
different elements of an experience into a coherent memory. Hippocampal “time cells” – 
neurons that represent temporal information – may play a critical role in this process. While 
these cells have been repeatedly found in rodents, it is still unclear to what extent similar 45 
temporal selectivity exists in the human hippocampus. Here we show that temporal context 
modulates the firing activity of human hippocampal neurons during structured temporal 
experiences. We recorded neuronal activity in the human brain while patients of either sex 
learned predictable sequences of pictures. We report that human time cells fire at successive 
moments in this task. Furthermore, time cells also signaled inherently changing temporal 50 
contexts during empty 10-second gap periods between trials, while participants waited for the 
task to resume. Finally, population activity allowed for decoding temporal epoch identity, both 
during sequence learning and during the gap periods. These findings suggest that human 
hippocampal neurons could play an essential role in temporally organizing distinct moments of 
an experience in episodic memory. 55 
 
Significance Statement: 
 
Episodic memory refers to our ability to remember the “what, where, and when” of a past 
experience. Representing time is an important component of this form of memory. Here, we 60 
show that neurons in the human hippocampus represent temporal information. This temporal 
signature was observed both when participants were actively engaged in a memory task, as 
well as during 10s-long gaps when they were asked to wait before performing the task. 
Furthermore, the activity of the population of hippocampal cells allowed for decoding one 
temporal epoch from another. These results suggest a robust representation of time in the 65 
human hippocampus. 
 
Introduction: 
 
Creating episodic memories requires linking together distinct events of an experience with 70 
temporal fidelity. The brain must represent the temporal flow and order of events, and glue 
them together in the correct sequential order. “Time cells” in the hippocampus and adjacent 
structures might play an essential role in this temporal organization of memory (Hasselmo, 
2009; Eichenbaum, 2014; Howard et al., 2014). In rodents, time cells signal changing temporal 
contexts in a variety of paradigms (Manns et al., 2007; Pastalkova et al., 2008; MacDonald et al., 75 
2011; Kraus et al., 2013; MacDonald et al., 2013; Kraus et al., 2015). They fire at successive 
moments of time during a fixed interval and the activity of the population of time cells covers 
the entire time interval (Pastalkova et al., 2008). More recently, another class of “ramping cells” 
in the lateral entorhinal cortex has been discovered. Ramping cells show slowly rising or 
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decaying activity with time, over a range of time scales. Temporal epoch identity could be 80 
decoded from the firing activity of the population of cells (Tsao et al., 2018). 
 
Temporal coding has also been observed in neuronal activity patterns in the human 
hippocampus. For instance, neuronal activity in the human medial temporal lobe shows gradual 
changes over time in memory tasks (Howard et al., 2012; Folkerts et al., 2018). The recall of a 85 
particular item is accompanied by the reinstatement of its initial temporal representation 
(Gelbard-Sagiv et al., 2008; Howard et al., 2012; Folkerts et al., 2018). More recently, single 
neurons have also been shown to be modulated by time, akin to time cells in rodents, during 
encoding and retrieval in a free recall memory task (Umbach et al., 2020).  
 90 
In the current study, we ask if human hippocampal neurons represent temporal information 
during sequential order learning. A large body of work in animals and humans has shown that 
the hippocampus is essential for remembering the temporal order of sequential events 
(Eichenbaum, 2013).  For example, in humans, the hippocampus is activated when subjects 
recall the order of objects, and conversely, patients with hippocampal damage have trouble in 95 
temporal order judgements (Spiers et al., 2001; Ekstrom and Bookheimer, 2007). In animals, 
rats with hippocampal damage are impaired at remembering the sequential order of odors 
(Fortin et al., 2002). Given the importance of the hippocampus in sequence order learning and 
temporal order judgements, we tested whether human hippocampal neurons represented 
temporal information while participants learned the order of a sequence of items. We tested 100 
for temporal modulation of hippocampal activity in two experiments: (1) during sequence 
learning (Figure 1A), and (2) during empty gap periods inserted in the task during which 
participants passively waited for the sequence to resume (Figure 1B). Note that in these gap 
periods, any potential temporal information is not driven by external stimuli or events, but 
rather represents inherent changes in the patients’ moment-to-moment experience. We report 105 
that human hippocampal neurons fire at successive moments during these structured time 
periods, both while subjects actively monitor a sequence, as well as during empty temporal 
gaps between events.  
 

 110 
 
Figure 1. Experimental Design. A). In the sequence learning experiments, participants saw a sequence of images in 
a fixed order, and were asked to learn the sequence order. The stimulus sequence consisted of 5-7 image periods 
(image number fixed per session and determined by the availability of the patient) separated by inter-stimulus 
interval (ISI) periods. Each image was presented for 1.5s followed by an ISI of 0.5s. The sequence was repeated for 115 
60 loops. 20% of the time, a probe event occurred (black squares) during which participants had to decide which of 
two choice images was the correct one at the current position in the sequence. The probe events occurred at 
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random positions of the sequence. After the probe event, the sequence resumed. In our main analysis, we 
consider time periods that occurred between two consecutive probe events as the “trials” of interest. As shown, 
each post-probe “trial” consisted of several image and ISI periods (gray squares). B) The design of Experiment 2 120 
was similar to that of Experiment 1 except for the insertion of 10-second-long gap periods (black rectangle) during 
sequence learning. These gap periods occurred periodically (see Methods). During the gap periods, the sequence 
stopped and patients were presented with a blank screen. They were asked to simply wait until the sequence 
resumed. 

 125 
Materials and Methods: 
 
In this study, human epileptic patients performed two sequence learning tasks, while single 
neuron activity was recorded from microelectrodes implanted in the hippocampus (Figure 2). 
We quantified the influence of time on the firing activity of individual neurons using a stepwise 130 
general linear model (GLM), as has previously been used in the rodent literature (MacDonald et 
al., 2011; Tsao et al., 2018). In this GLM, a predictor variable is included in the model only if it is 
found to significantly improve the prediction of the response variable (see below). 
 
Patients 135 
 
Nine patients of either sex participated in the first experiment, and six patients of either sex 
participated in the second experiment. The patients were diagnosed with pharmacologically 
intractable epilepsy, and were undergoing epileptological evaluation at the Amsterdam 
University Medical Center, location VUmc, The Netherlands. Patients were implanted with 140 
chronic depth electrodes for 7-10 days in order to localize the seizure focus for possible surgical 
resection (Fried et al., 1997; Engel et al., 2005). All surgeries were performed by J.C.B and S.I. 
The Medical Ethics Committee at the VU Medical Center approved the studies. The electrode 
locations were based entirely on clinical criteria and were evaluated based on the pre-surgical 
planned trajectories on the basis of structural MRI scans. For each electrode the planned 145 
trajectory was adjusted to ensure that the tip of the macroelectrode was at least 3mm within 
the body of the hippocampus. The clinical team aimed for microwires that extended 
approximately 2-3mm from the tip of the macroelectrode. The accuracy of the implantation 
was always checked using a CT scan co-registered to the MRI. We only included electrodes that 
were within a 3mm deviation from the target (based on visual confirmation). Each electrode 150 
contained eight microwires (Behnke-Fried electrodes, Ad-Tech Medical) from which we 
recorded multi-unit activity, and a ninth microwire that served as a local reference. The signal 
from the microwires was recorded using a 64-channel Neuralynx system, filtered between 1 
and 9000 Hz, sampled at 32KHz. On average, each patient was implanted with 34 ± 11.8 
microwires (range = [16, 48]). Participants sat in their hospital room at the Epilepsy Monitoring 155 
Unit, and performed the experimental sessions on a laptop computer.  
 
Spike Detection and Sorting 
 
Spike detection and sorting were performed with wave_clus (Quiroga et al., 2004). Briefly (see 160 
(Reddy et al., 2015) for details), the data were band pass filtered between 300-3000Hz and 
spikes were detected with an automatic amplitude threshold. Spike sorting was performed with 
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a wavelet transform that extracted the relevant features of the spike waveform. Clustering was 
performed using a super-paramagnetic clustering algorithm. Clusters were visually reviewed by 
the first-author for 1) the mean spike shape and its variance; 2) the ratio between the spike 165 
peak value and the noise level; 3) the inter spike interval distribution of each cluster; 4) the 
presence of a refractory period; 5) the similarity of each cluster to other clusters from the same 
microwire. Based on manual inspection of these criteria, clusters were retained, merged or 
discarded.  
 170 

 
Figure 2. A). Electrode locations shown on a sagittal slice of the average MRI of patients registered to the MNI 
brain template. B). Band-pass filtered (300-3000Hz) signal from five different channels (left), mean waveforms 
recorded on these channels (middle), and the corresponding distributions of inter-spike intervals (right). The black 
vertical tick marks on the left plots indicate a scale of 30uV. 175 
 
Experimental design and statistical analyses 
 
Behavioral Task 
 180 
Experiment 1: Sequence Learning: The patients performed a total of 31 sequence learning (SL) 
sessions (Figure 1A). In each SL session, participants were presented with a sequence of 5-7 
images (image number determined as a function of the difficulty level and the availability of the 
patient). The images were always presented in a pre-determined order such that a given image, 
A, predicted the identity of the next image, B, and so on. Subjects were asked to remember the 185 
order of the images in the sequence. Each image was presented for 1.5s (“image period”) 
followed by an “inter-stimulus interval period” (ISI) of 0.5s. The sequence was repeated 
continually 60 times resulting in experimental sessions of 10 minutes for 5-image sequences 
and 14 minutes for 7-image sequences, not including time spent by the subject to respond on 
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probe events. On a random 20% of image periods, the sequence stopped and participants were 190 
presented with probe events. In these probe events, instead of being presented with the next 
image of the sequence, subjects were shown two images side by side and asked to decide (by 
pressing one of two keys on the keyboard) which of the two was the next image in the 
sequence. After the subjects had responded, the sequence resumed.  
From the point of view of the subject, the probe events were salient moments of an otherwise 195 
repetitive experiment because the probes stopped the sequence and tested subjects on their 
learning of the sequence order. Thus, we considered sequence segments between two 
consecutive probe events as our “trials” of interest: structured, temporal experiences between 
two salient markers. We asked whether hippocampal neurons tracked time in this interval. In 
control analyses described below, we verified these results with respect to other time periods 200 
in the experiment. 
 
Experiment 2: Sequence learning with temporal gaps (Figure 1B): Six new patients performed 
eight sessions of a second SL experiment. This second experiment followed the design of the 
first SL experiment described above, except for the following modifications: 1) After a fixed 205 
number of repeats of the sequence, a 10s-long empty gap interval was presented. During these 
gap intervals, participants were presented with a black screen, without any stimulus input. They 
were asked to simply wait until the sequence started again. For three participants these gap 
intervals occurred after every 5 repeats of the sequence (resulting in 6 gap intervals in the 
experiment), while for the remaining three participants these gap intervals occurred after every 210 
2 repeats of the sequence (resulting in 15 gap intervals in the experiment). 2) The sequence 
was repeated only 30 times instead of 60 times.  
 
In the nine patients who performed the first experiment, we recorded from 429 neurons in the 
hippocampus, and in the six patients who performed the second experiment, we recorded 96 215 
hippocampal units. 
 
Time Cell Identification with a General Linear Model (Experiment 1) 
 
Time cell identification was performed with a GLM as in previous studies (MacDonald et al., 220 
2011; Tsao et al., 2018). The firing activity of each neuron was modelled as a function of time, 
image identity, and whether the temporal period corresponded to an image or ISI period.  
 
For the purposes of the GLM, as described above (Figure 1A), we defined “trials” as segments of 
the sequence between two consecutive probe events (number of sequence segments or “trials” 225 
between two consecutive probe events across sessions: mean ± s.e.m= 73.6±2.4). We made this 
choice because (i) as explained previously, these probe events were the most salient events of 
the experiment, and (ii) if we simply consider time=0 as the start of each 5-7 image sequence, 
“time” in the sequence is directly confounded by image identity because the sequence order is 
fixed. By redefining time=0 as the time at which the sequence restarted after the probe events, 230 
we avoided this confound because time is not confounded with image identity with respect to 
probe events (the sequence segment after the probe is random since the probe events 
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occurred at random moments). In control analyses we also considered different temporal 
intervals for determining time cells. 
 235 
Each of the post-probe “trials” consisted of several image and ISI periods that regularly 
followed each other (Figure 1A). The median number of image and ISI periods in a “trial” was 
seven, corresponding to a median trial length of 6.5 seconds. For all subsequent analyses, only 
the first 6.5s of each trial were included in the GLM (i.e., trials shorter than this duration were 
excluded from the GLM). Thus, each “trial” between probe events was a well-structured 240 
temporal interval during which the sequence progressed according to its fixed order. The 
average number of trials included in the GLM was 49.7 ± 0.8 (mean ± standard deviation, range 
= [25,64]). 
 
In the GLM, the firing activity vector (Y) on each “trial” contained the average firing rates for 245 
each period of the trial, with no smoothing or additional preprocessing. Y was modelled as a 
function of three variables: image identity in each period, time of the period (i.e., time of the 
mid-point of the period with respect to trial onset/probe offset; time varied between [0 6.5s]), 
and whether the period corresponded to an image or an ISI event.  A linear factor for time 
assumes that time cells either show a ramping up or a ramping down of firing activity during 250 
the trial. To also include the possibility of cells having a preferred time not just at the beginning 
and end of trials, but also at intermediate points, we included a quadratic time term (i.e., t2, a 
parabola-shaped function; for this purpose, time was re-centered to the middle of the trial and 
thus varied between [-3.25 3.25s]). Note that a linear combination of a linear and quadratic 
term allows for detecting maximal/minimal firing at any point of the time window of interest.  255 
 

𝑌 = 𝛽0 +  𝛽1𝐼𝑚𝑎𝑔𝑒𝑂𝑟𝐼𝑆𝐼 +  ∑ 𝛽𝑖𝐼𝑚𝑎𝑔𝑒𝐼𝐷𝑖𝑖 +  𝛽𝑗𝑇𝑖𝑚𝑒 + 𝛽𝑘𝑇𝑖𝑚𝑒 2 (1) 

 
The GLM analysis was performed using the MATLAB stepwiselm function, including the 
variables image/ISI, imageID, Time and Time2, in a linear model, with a constant term as the 260 
baseline model, the SSE criterion (PEnter = 0.05), and other default parameters. The variables 
image/ISI and imageID were entered as categorical variables, and the time variables were 
continuous variables. Stepwise regression systematically tests the variance explained by adding 
and removing variables from a linear model based on their statistical significance in explaining 
the response variable. Note that the order in which regressors are entered into the stepwise 265 
linear model does not affect its outcome. Time cells were defined as cells for which the time 
terms (i.e., Time and/or Time2) were added by the stepwiselm function (PEnter < 0.05).  
 
Statistical testing was performed for each time cell with permutation testing in which the firing 
rates were shuffled with respect to the task design, and the stepwise regression repeated. This 270 
procedure was repeated 1000 times per cell. For each cell, pactual was the p-value returned by 
the regression analysis for the real data. pactual was compared to the distribution of p-values 
returned from the shuffling procedure. For cells where both the time and time2 terms were 
significant the p value corresponded to the smaller of the corresponding p-values. We defined 
pshuffle as the proportion of shuffles that produced a smaller p value than pactual. Only cells with 275 
pshuffle < 0.05 were ultimately considered time cells in this analysis (Umbach et al., 2020). 
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As a separate test to confirm our classification of time cells, different from the stepwise 
regression test, we performed a likelihood ratio test to compare the log-likelihood values of a 
restricted linear model which included all terms except the time terms, and a full model which 280 
also included the two time terms.  
 
Time Cell Identification with a General Linear Model (Experiment 2) 
 
The 10s gap intervals of experiment 2 were epoched into 500ms non-overlapping windows and, 285 
as above, a stepwise regression analysis was performed: the firing activity (Y) in each epoch was 
modelled as a function of time in the epoch (Time and a quadratic time term Time2). All other 
parameters in this analysis were identical to those described for Experiment 1. Statistical 
testing was performed for each time cell with the permutation method described above. 
 290 

𝑌 = 𝛽0 +  𝛽1𝑇𝑖𝑚𝑒 +  𝛽2𝑇𝑖𝑚𝑒 2 (2) 
 
 
Control analyses for defining trial periods and time cells 
 295 
In the main analysis of Experiment 1, a “trial” was defined with respect to the probe events 
(i.e., the sequence segment that occurred between two consecutive probe events). We 
performed several additional analyses for identifying time cells; in each case permutation 
testing was performed for each time cell as described above. The results of the control analyses 
are summarized in Table 1.  300 
 
1) Time cells were identified when the first period after the probe event was excluded from the 
GLM. 2) Time cells were identified when the GLM analysis was performed on only the ISI 
periods. In this control, the Y vector contained the firing rates in the ISI periods, and the 
regressor matrix X consisted of the time factors  and an image identity factor (i.e., the identity 305 
of the image following the ISI period, to account for image-specific anticipatory responses that 
can be observed in the ISI periods during sequence learning (Reddy et al., 2015)). 3) “Trials” 
were re-defined as sequence segments with respect to the onset of each repetition of the 
sequence. Note that in this case, time selectivity can be confounded by image selectivity (since 
the same stimulus sequence repeats identically in every loop); however, the Matlab stepwiselm 310 
function that we used for determining time selectivity could disentangle the potential 
contributions of the time and image ID variables since it systematically tests for the addition 
and removal of each variable in significantly explaining the response variable. Nonetheless, to 
avoid any ambiguity in interpretation, we elected to present time selectivity with respect to 
probe events as our main analysis, as it precludes this potential confound. 4) Time cells were 315 
also identified in a control analysis that used an N-way ANOVA to test for an interaction 
between firing rates and time, as in Umbach et al., 2020. For each trial we computed the firing 
rate within each ISI and image period. We tested for temporal modulation of firing activity with 
predictors time bin, image identity and image/ISI. As in Umbach et al., 2020, cells with a 
significant main effect of time (i.e., pactual < 0.05) from this procedure were passed on for 320 
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statistical testing. Statistical testing was performed with permutation testing in which the firing 
rates were shuffled with respect to the task design, and the ANOVA was repeated on the 
shuffled data. This procedure was repeated 1000 times for each cell. pactual was compared with 
the distribution of p-values obtained from the shuffling procedure. We defined pshuffle as the 
proportion of shuffles that produced a smaller p value than pactual. Only potential time cells with 325 
pshuffle < 0.05 were ultimately considered time cells in this analysis. 5) To identify ramping cells 
(Tsao et al., 2018), we repeated the stepwise GLM approach as in the main analysis but with the 
exclusion of the quadratic time term. A summary of the control analyses is found in Table 1. 
 
 330 

Control Analysis Number of time cells 
identified (% overlap with 
time cells from the main 
analysis) 

Concern 

Likelihood ratio test 138 (84.7%) Identification of time cells is 
method-dependent. 

Stepwise GLM on ISI 
periods only 

106 (76.4%) Identification of time cells is 
dependent on image information. 

Stepwise GLM excluding 
1st ISI 

65 (81.5%) Identification of time cells is 
dependent on the probe events. 

Stepwise GLM w.r.t 
sequence onset 

69 (30.4%) Identification of time cells is 
dependent on the temporal 
interval. 

N-way ANOVA 101(88.1%) Identification of time cells is 
method-dependent. 

Stepwise GLM excluding 
the quadratic time term 

114 (88.7%) Identification of “ramping” cells. 

 
 
Table 1: The number of time cells identified in the control analyses and the overlap between time cells identified in 
the main analysis and the control analyses. 

Statistical test for the number of time cells 335 

Statistical significance for the number of time cells identified by the GLM analysis was evaluated 
using a permutation test. For the permutation test, in Experiment 1, surrogate data was created 
by randomly shuffling the image and ISI periods on each trial. For Experiment 2 surrogate data 
was created by randomly shuffling epoch time. The stepwise regression was then performed on 
this surrogate data, on 106 iterations. The proportion of surrogates which had a higher number 340 
of time cells was p < 10-6 in all analyses (in other words, none of the surrogates ever had a 
higher number of time cells).  

Heatmaps cross-validation and statistical test 



 

10 
 

The “original” heatmaps shown in Figures 3B and 5B were constructed by sorting the time cells 
according to the latency of peak firing and using this sorted order to plot the firing rate of each 345 
cell over the time interval. However, a heatmap generated from random data, sorted and 
plotted according to the maximum value of each entry, will also show a similar well-organized 
pattern. Thus, to ensure the reliability of these maps, we performed a cross-validation analysis 
on the real heatmaps to verify their reproducibility. 

For the cross-validated heatmaps, the order in which the cells were plotted was determined 350 
from the latencies on a random half of the data and the firing rates were plotted for the 
remaining half of the data. If the cells had no true temporal preference, the peak latency on the 
second half should be unrelated to the latency measured on the first half, and no meaningful 
ordering of cells should appear. This cross-validation procedure was repeated 1000 times, and 
the resulting heat maps were averaged across cross-validations to generate cross-validated 355 
maps. We quantified the reliability of the heatmaps by performing a non-parametric 
permutation test.  We first computed the Spearman correlation point-wise between the 
average cross-validated heatmap and the original heatmap, resulting in a correlation measure 
corrorig,cv. To simulate the null hypothesis that the cells do not have a reliable time preference, 
on each cross-validation iteration we generated 105 surrogate heatmaps by randomizing the 360 
cell order obtained from the first half of the data (instead of determining their order based on 
peak firing time over the first half), and generating a heatmap with this random order for the 
second half of the data. Each of these 105 surrogate heatmaps was correlated with the original 
heatmap (corrorig,surr). After averaging across the 1000 cross-validations, none of the 105 
surrogates yielded a correlation value corrorig,surr higher than the real correlation corrorig,cv, i.e., 365 
p<10-5

. 

 

Population pattern analysis 
 
For this analysis, the population size was 429 neurons for Experiment 1, and 96 neurons for 370 
Experiment2. 
 
Experiment 1: Sequence learning: The population pattern analysis for Experiment 1 was 
performed on the image periods. The population pattern analysis was based on a pairwise 
comparison of image periods, thus chance performance for all analyses described below is 50%. 375 
 
As mentioned above, each “trial” (i.e., the sequence segment between two consecutive probe 
events) consisted of a varying number of image periods (Figure 1A). In the population pattern 
analysis our goal was to discriminate temporal period identity (e.g., image period 1 vs. image 
period 2 etc.). Pairwise discrimination performance was evaluated for different numbers of 380 
temporal periods from the start of the trial (ranging from two to five; i.e., discriminating 
between the first two image periods after the probe event, the first three image periods and so 
on). To ensure that performance was not driven by an unequal representation of the different 
images in the different periods, we created a balanced dataset for the population pattern 
analysis. In this balanced dataset we included the subset of trials per cell that assured that each 385 
image was equally present in each period (Figure 6A). The balanced dataset only included cells 
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for which a minimum number of trials had been recorded. The minimum number of trials was 
the smallest number such that at least 300 cells were included in the analysis.  
 
For the 2-way discrimination (period 1 vs. period 2), the balanced dataset required 42 trials, 390 
and 397 cells were included; for a 3-way discrimination (period 1 vs. period 2 vs. period 3) it 
required 30 trials, and included 303 cells; for a 4-way discrimination it required 12 trials and 
included 320 cells; and for a 5-way discrimination, it required 6 trials and included 367 cells. 
Discrimination of temporal period identity in this balanced dataset was thus not influenced by 
an imbalance in the number of presentations of each image across temporal periods. Note that 395 
the balanced dataset did not include the first ISI period after the probe and decoding was thus 
not influenced by the offset of the probe events. As mentioned below, trial selection for 
creating the balanced dataset was repeated on 50 iterations, and the population pattern 
analysis was performed on each iteration. 
 400 
The population pattern analysis was performed using a split-half approach (Haxby et al., 2011; 
Pereira et al., 2018) on the firing rates of the balanced dataset (Figure 6B-D). The trials in the 
balanced dataset were randomly split into two halves, and in each half the firing activity of the 
population of neurons was arranged into vectors, per period and per trial (Figure 6B). These 
vectors were averaged across trials, yielding a population pattern vector for each period 405 
(“period vectors”) in each half of the dataset (Figure 6C). To quantify decoding or discrimination 
performance, we pairwise correlated the period vectors in one half of the dataset with the 
period vectors in the other half, and used the pairwise correlation values to measure the 
percentage of correct classification (Figure 6D). To be more precise, for each period we 
computed the correlation for this period across the two halves of the dataset (“within” 410 
comparison, rwithin), and compared it to the correlation with a different period in the other half 
of the dataset (“between” comparison, rbetween). Decoding was correct if the “within” 
comparison was larger than the “between” comparison (Figure 6G), (Haxby et al., 2001). This 
procedure was repeated for all pairs of periods, and pairwise decoding accuracy was the 
proportion of correct comparisons. Since this procedure was based on pairwise comparisons, 415 
chance performance was 50% for all analyses. Feature normalization was performed on the 
dataset for this analysis by performing a z-score on the data for each cell along the periods 
dimension. Feature normalization was performed on the whole dataset based on the mean and 
standard deviation measured in the “training” half of the dataset (to avoid “leakage” of 
information from the training half to the test half during the split-half cross-validation). 420 
 
Note that in the split-half approach the “training data” (one half of the data) and “testing data” 
(the other half of the data) are independent by construction. 
 
To increase reliability, the population pattern analysis was performed over several iterations: (i) 425 
trial selection for the balanced dataset was repeated 50 times; (ii) on each of these 50 
iterations, the dataset was randomly split into two halves 200 times. The reported mean 
decoding accuracy was the average decoding performance across the 50 iterations for creating 
the balanced dataset. The standard deviation was computed across the 50 balanced datasets of 
the mean decoding accuracy across the 200 split halves. Statistical significance was computed 430 
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with a t-test against chance (0.5) across the 50 iterations for creating the balanced dataset (all p 
< 10-3). 
 
To compare decoding performance for time cells and non-time cells (“other cells”), and to 
determine how population size affects decoding accuracy, we performed the pairwise pattern 435 
analysis separately for time cells and other cells, and for different population sizes. Size-
matched populations were generated by randomly subsampling the population of cells. For 
each population size, the same procedure described above was repeated on 20 balanced 
datasets and 50 split halves. 
 440 
Experiment 2: Sequence learning with temporal gaps: For the population pattern analysis of the 
gap intervals, each gap interval was split into four, five or ten discrete periods and 
discrimination of temporal period identity was performed using a split-half approach (50 
iterations). The procedure was the same as the one described above for Experiment 1 (Figure 
6), and as above, chance performance was 50% since the method was based on pairwise 445 
comparisons. Feature normalization was performed on the dataset by performing a z-score on 
the data. Statistical significance was tested using a t-test against chance performance (0.5) 
across the 50 split-half iterations. Since some subjects had 6 gap periods while others had 15 
gap periods, on each of the 50 iterations for splitting the data a random set of 6 gap periods 
was chosen from the datasets which contained 15 gap periods. 450 
 
Results: 
 
Behavioral task and number of units 
 455 
To determine whether human hippocampal neurons are modulated by temporal context, we 
recorded from hippocampal neurons in human patients who performed a sequence learning 
task (Figure 1 A, B). We performed two independent sequence learning experiments in two 
groups of patients implanted with intracranial micro-electrodes. In Experiment 1, we recorded 
the activity of 429 hippocampal neurons in nine patients, and in Experiment 2 we recorded 460 
from 96 hippocampal neurons in a new group of six patients.  
 
In both experiments, the patients were presented with a fixed number of images (5-7, 
depending on the patients’ availability) in a pre-defined order (Figure 1 A, B), and asked to learn 
the sequence order (Reddy et al., 2015). The sequence was repeated continually 60 times. 465 
Experiment 2 was similar to Experiment 1 except for the periodic insertion of 10-second-long 
gap periods during the experiment. During these gap periods, the sequence stopped and the 
patients had to wait until the sequence resumed (Figure 1B). 
 
The duration of each image period in the sequence was 1.5s, and each image period was 470 
followed by an inter-stimulus interval (ISI) of 0.5s. On a random 20% of image periods, subjects 
were probed on their learning of the image order. During these probe events, the sequence 
momentarily stopped and subjects were presented with two images from the sequence. Their 
task was to report which of the two images was the correct one at the current sequence 
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position. The sequence then resumed until the next probe event. Participants rapidly learned 475 
the sequence order and achieved >90% performance on probe trials within the first six 
sequence presentations (Reddy et al., 2015). From the point of view of the subjects the probe 
events were salient moments of the experiment because they stopped the ongoing sequence 
and tested learning.  
 480 
Human hippocampal neurons are modulated by time during sequence learning 
 
Time cells have been characterized as neurons whose activity is modulated by temporal context 
within a well-defined time window. Our experiment design lent itself to identifying time cells 
because the task consisted of a structured image sequence that occurred in a fixed and 485 
predictable time interval. In the time domain, our experiment involved three distinct timelines: 
(1) experiment time running from the beginning to the end of the experiment, (2) sequence 
time with respect to the start of each iteration of the sequence, and (3) probe time running 
between consecutive probe events. We first focus on probe time since, as described above, the 
probe events were salient moments from the point of view of the participants. Furthermore, 490 
focusing on probe time allowed us to decouple time from image identity, since the post-probe 
trials consisted of varying segments of image and ISI periods.  
 
We defined “trials” as segments of the experiment that occurred between two consecutive 
probe events in Experiment 1 (Figure 1A). These trials were of a relatively fixed duration 495 
(median trial length = 6.5 seconds), and consisted of a sequence of image and ISI periods. To 
identify time cells, we examined whether the firing activity of hippocampal neurons was 
modulated by time. Previous studies have identified time cells using a variety of frameworks 
such as fitting a Gaussian function to firing activity (Park et al., 2014; Salz et al., 2016), a one-
way ANOVA of time and firing rate (Umbach et al., 2020), or a general linear model (GLM) 500 
factoring in the influence of time and other experimental factors on firing activity (MacDonald 
et al., 2011; Tsao et al., 2018). In the current study we elected to use the stepwise general 
linear model (GLM) method established by Tsao and colleagues (Tsao et al., 2018), since it 
allows us to identify time cells while also measuring the influence of the other experimental 
parameters on hippocampal responses. 505 
 
In the stepwise GLM framework used here, a predictor variable is included in the model only if 
it is found to significantly improve the prediction of the response variable (firing rate). For each 
neuron, we modelled the firing rate in each image/ISI period of the trial sequence with different 
potential predictors: image identity, period type (i.e., image or ISI period), and two time terms 510 
(a linear and a quadratic time term). A linear combination of the linear and quadratic terms 
allowed for detecting maximal/minimal firing at all points in the time window of interest. Time 
cells were identified as those in which one or both of the time terms was selected for inclusion 
in the stepwise linear model. To determine how likely it is that the temporal modulation of 
firing rates exhibited by each time cell arose due to chance, we performed a shuffling 515 
procedure. Separately, statistical significance for the number of time cells was evaluated using a 
permutation test in which the image and ISI periods on each trial were randomly shuffled on 
106 iterations, and the stepwise GLM was performed on each iteration (Methods). 
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We identified a significant number of hippocampal neurons (30%) that were modulated by time 520 
during sequence learning (128 of 429 neurons passed the shuffling test, and this number was 
more than expected by chance based on a permutation test, p<10-6; 106 of these neurons were 
located in the anterior hippocampus and 22 in the posterior hippocampus). Individual examples 
of time cells are shown in Figure 3A. The reliability of time cells was evaluated by comparing the 
regressor values for the time variables on odd/even trials, or the first half/second half of trials 525 
(Figure 4A, B). 107 time cells were modulated by the linear time term, 62 by the quadratic time 
term, and 41 by both time terms. Of the linearly modulated cells, 32.7% decreased their firing 
rates and 67.3% increased their firing rates (Figure 4F). To test for the presence of “ramping 
cells” (Tsao et al., 2018), we reran the analysis with a model that excluded the quadratic time 
term. In this analysis, 27% of hippocampal neurons (114/429) were significantly modulated by 530 
the linear time term, with a 94% overlap with the linearly modulated cells identified by the full 
model. This proportion of ramping cells is similar to a previous report by Umbach and 
colleagues, who reported 34.5% of ramping cells in the human hippocampus (Umbach et al., 
2020). 
 535 
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Figure 3. A) Hippocampal neurons are modulated by time during sequence learning. Raster plots (top) and post-
stimulus time histograms (bottom) are shown for 8 example time cells. The x-axis corresponds to time of the 540 
median trial length (6.5s, see Methods). The black line is the average firing activity and the shaded area 
corresponds to the standard error of the mean across trials. The gray lines show the model fit (solid gray line for 
cells that were classified as time cells according to the inclusion of the linear and quadratic terms, dashed gray line 
for cells classified based on the linear term alone, and stippled gray line for cells classified based on the quadratic 
term alone). The insets show the waveforms and the R2 of the model for each cell. B) Hippocampal neurons fire at 545 
successive moments of a temporal interval.  Firing activity of the population of time cells (N=128) identified as 
being significantly modulated by time (i.e., ‘time’ and/or ‘time2’) in the sequence learning experiment. Each row 
shows the firing activity for an individual time cell, averaged across trials. The x-axis corresponds to time of the 
median trial length. The neurons are sorted by the latency of the maximum firing rate. 

 550 
In a separate analysis to confirm our classification of neurons as time cells, we performed a 
likelihood ratio test to compare the log-likelihood values of a restricted linear model which 
included all terms except the time terms, and a full model which also included the time terms. 
Time cells were identified as cells which had a significantly higher log-likelihood value according 
to the likelihood ratio test (p<0.05; 138 cells identified). 85% of cells based on this method 555 
overlapped with the population identified by the stepwise regression method (Table 1). 
 
We conducted a number of control analyses to verify that the temporal modulation of firing 
rates was observed under different analysis parameters (Table 1 and Figure 4D). Time cells 
were identified when the GLM was performed on the firing rates of only the ISI periods (106 560 
cells, permutation test, p<10-6), and when excluding the first ISI period after the probe (65 cells, 
permutation test, p<10-6). Time cells were also detected when “trials” were re-defined as 
sequence segments with respect to the onset of each repetition of the sequence (i.e., instead of 
with respect to the onset of the probe events, as in the main analysis). In this analysis, we 
identified 69 neurons that were significantly modulated by the time variables (permutation 565 
test, p<10-6). Finally, time cells were also detected based on an ANOVA (101 cells) as in 
(Umbach et al., 2020). 
 
Thus, human hippocampal neurons represent a changing temporal context while participants 
are actively engaged in memorizing the order of a sequence of events. Previous studies have 570 
shown that when considered at the population level, the firing activity of time cells covers the 
duration of a given temporal epoch (Pastalkova et al., 2008; MacDonald et al., 2011). Likewise, 
across all participants we observed neuronal peak firing at successive moments in time, and 
when each cell was ordered by its preferred moment of firing, population activity spanned the 
temporal window (Figure 3B). For consistency with previous studies, we illustrate this data as a 575 
population level heatmap. Although population level heatmaps are primarily used for display 
purposes, it can be informative to test their reliability, since random data sorted by peak value 
could also generate well-organized heat maps. To test the reliability of our heat maps we 
performed a cross-validation analysis, in which the preferred time of firing for each cell was 
determined in one half of the data and the consistency of time preference was measured in the 580 
second half of the data. Statistical significance of the cross-validated heatmaps was evaluated 
using a permutation method (Methods), in which cross-validated and surrogate (randomly 
permuted) heatmaps were correlated with the original heatmap. The proportion of surrogates 
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which had a higher correlation than the cross-validated data was p<10-5, supporting the notion 
that temporal preference was reliable in our neuronal population. 585 
 
An advantage of the GLM-based approach used in the present study is that it allowed us to 
tease apart the influence of different experimental factors on the firing activity of hippocampal 
neurons (Figure 4C, E, G, H). The GLM analysis quantified the influence of stimulus presence 
(i.e., image periods vs. ISI periods), image identity, and time in the trial. A considerable number 590 
of neurons was modulated exclusively by time (111 cells) or image identity (50 cells), but we 
also found neurons selective for a combination of these factors (17 neurons for time and 
another factor; 17 neurons for image identity and another factor).  
 
 595 

 
 
Figure 4. Stability of time cells (A, B) and image responsive cells (C) across trials. The trials were split into odd/even 
trials, or first half/second half of trials. The beta coefficients for the time and time2 regressors are plotted for the 
time cells (A, B), and for the imageID regressor for the image responsive cells (C), in each subset of trials. D) 600 
Fraction of cells that were modulated by time in the main analysis (i.e., with respect to the offset of the probe 
event), when time cells were identified on only the ISI periods (ISI only), when the first ISI period was excluded 
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(excl. 1st ISI), when time cells were identified with respect to the onset of each iteration of the sequence (sequence 
onset), and with an N-way ANOVA. E) Fraction of cells that were exclusively modulated by time (Time), modulated 
by time and another variable (Time mixed, e.g. Time and ImageID), exclusively modulated by image type (ImageID), 605 
and modulated by image type and another variable (ImageID mixed). The dots and vertical lines correspond to the 
mean and standard error of the mean across recording sessions respectively (N=31 sessions). F) Distribution of 
beta coefficients for the linear and quadratic time terms, and R2 values, for cells with significant time predictors. G, 
H). Examples of two cells that showed mixed selectivity for the factors of ImageID and time. left). These two cells 
were modulated by the factor of ImageID. The raster plots and post-stimulus time histograms are aligned to the 610 
onset of each image in the sequence. The blue curve is the response to the image in the sequence that elicited the 
highest response (preferred image). The red curve is the mean response to the other images in the sequence. The 
blue shaded area is the standard error of the mean across trials of image presentation. right) The same two cells 
were also modulated by the factor of Time. The raster plots and post-stimulus time histograms are now aligned to 
trial onset (i.e., the offset of the probe events). The format of the panels on the right is the same as Figure 3A. For 615 
visualization purposes only, and to better disentangle the effects of Time and ImageID, the spikes corresponding to 
the preferred images have been excised from the middle panels. The gray lines show the model fit (these cells 
were classified as time cells based on the linear term). 

 
 620 
Internally generated time selectivity in human hippocampal neurons 
 
The results from Experiment 1 demonstrate that human hippocampal neurons are modulated 
by the temporal context of an explicit task. Do human hippocampal neurons also represent the 
temporal structure of an experience in the absence of external inputs or an overt task?  625 
 
We performed a second experiment in six new patients who performed a different version of 
the sequence learning task (Figure 1B). In this new task, participants learned the sequence 
order as before, but every so often, the sequence stopped for 10s and participants waited until 
the sequence resumed. The participants had no stimulus input during these 10s gap periods -- 630 
they were presented with a blank screen. We isolated 96 hippocampal neurons in this second 
experiment, and used a GLM approach to determine whether human hippocampal neurons 
represent temporal information during the gap periods. As before, significance testing was 
based on a permutation test in which we repeated the GLM 106 times after shuffling the data 
(Methods).  635 
 
During the gap periods, 26 hippocampal neurons (27% of cells; Figure 5A) were significantly 
modulated by time (more than expected by chance based on a permutation test, p<10-6), 
whereas while the patients were engaged in sequence-learning 13 neurons were time-selective. 
Only 3 neurons encoded temporal information during both the task period and the gap period, 640 
suggesting that the recruitment of temporally sensitive cells can change with task demands or 
behavior (Pastalkova et al., 2008; MacDonald et al., 2011; Tsao et al., 2018; Umbach et al., 
2020). During the gap periods, the time of peak firing in the population occurred at successive 
moments, and population activity spanned the entire 10s interval (Figure 5B). As above, the 
reliability of the heat map was statistically verified with a cross-validation procedure 645 
(permutation test p<10-5, Methods). As reported in rodents, there was a stronger 
representation of earlier timepoints (Salz et al., 2016). To summarize, even in the absence of 
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visual input or an overt task, the firing activity of hippocampal neurons is inherently modulated 
by a changing temporal context.  
 650 

 
 
Figure 5. A) Hippocampal neurons are modulated by time during the gap periods. Raster plots (top) and post-
stimulus time histograms (bottom) are shown for 6 example time cells. The x-axis corresponds to the 10s duration 
of the gap period. The gray lines show the model fit (solid gray line for cells that were classified as time cells 655 
according to the inclusion of the linear and quadratic terms, dashed gray line for cells classified based on the linear 
term alone, and stippled gray line for cells classified based on the quadratic term alone). The insets show the 
waveforms and the R2 of the model for each cell. B) Hippocampal neurons fire at successive moments of the gap 
period.  Firing activity of time cells in the temporal gap experiment (N=26). Each row shows the firing activity for an 
individual cell, averaged across the gap periods. The x-axis corresponds to the 10s gap period. The neurons are 660 
sorted by the latency of the maximum firing rate.  

 
Hippocampal population activity encodes temporal information. 
 
In the rodent brain, time information is signaled both explicitly in individual neurons, and can 665 
also be gleaned from population-level dynamics of time-selective and non-time-selective cells 
(Tsao et al., 2018). Is time information also reflected in the population activity of human 
hippocampal neurons? To address this question, we performed a population pattern analysis of 
image period identity in the sequence learning sessions (Figure 6).   
 670 



 

19 
 

In Experiment 1, each trial of the experiment consisted of a sequence of image periods 
between two consecutive probes, and the goal of the population pattern analysis was to 
determine whether hippocampal population dynamics reflected the temporal identity of each 
image period (e.g., discriminate “image period 1” vs. “image period 2”). To ensure that 
decoding or discrimination performance was not driven by an unequal representation of the 675 
different images in the different image periods, we created a balanced dataset in which 
accurate decoding of the temporal identity of each image period cannot arise from merely 
decoding spurious image information (Figure 6A). Decoding performance was based on a 
pairwise comparison method (Figure 6 B-D) as in (Haxby et al., 2001; Pereira et al., 2018); hence 
chance performance was 50% for all comparisons. 680 
 
Discrimination performance was evaluated for different numbers of image periods from the 
start of the trial (ranging from two to five; i.e., discriminating between the first two image 
periods after the probe event, the first three image periods and so on). High decoding accuracy 
for temporal period identity was observed for discriminating all image periods (Figure 6E; mean 685 
± standard deviation of decoding accuracy for discrimination of the first two periods = 88.4±8%, 
t(49) = 34.8, p < 0.001; of the first three periods = 72.7±8%, t(49) = 20.1, p < 0.001; of the first 
four periods = 63.5±6%, t(49) = 14.9, p < 0.001; of the first five periods = 57.3±9%, t(49) = 5.6, p 
< 0.001). Decoding errors occurred primarily for neighboring periods (Figure 6F). Decoding 
accuracy could not be biased by the offset of the probe events since the first ISI period after the 690 
probe event was excluded in the population pattern analysis. Thus, hippocampus population 
dynamics uniquely represented each temporal period. 
 
To compare how temporal information is represented for time cells vs. non-time cells (“other 
cells”), and to determine how population size affects decoding accuracy, we performed the 695 
pairwise pattern analysis separately for time cells and other cells, and for size-matched cell 
populations. As expected, decoding performance was consistently higher for time cells, but 
non-time cells also showed significant decoding suggesting that these cells encode temporal 
information, but possibly in a form that is not detected when modelled with a combination of 
linear and quadratic time terms, or only present in the population code (Figure 6, H). 700 
 
Temporal epoch information was also present in population-level dynamics during the gap 
periods. A population pattern analysis during these gap periods revealed a significant 
representation of time information at the level of the overall population, and decoding errors 
mainly occurred for neighboring epochs (Figure 6I, J). High decoding accuracy for temporal 705 
epoch identity was observed for different temporal epoch sizes (mean accuracy ± standard 
deviation for 4-way decoding = 76.0 ± 4.7%, t(49) = 38.9, p < 0.001; for 5-way decoding = 69.6 ± 
4.6%, t(49) = 29.9, p < 0.001; and for 10-way decoding = 65.4 ± 3.1%, t(49) = 36.3, p < 0.001). 
Decoding accuracy during the gap periods could not have been driven by external visual input 
or overt behavior; rather the high decoding accuracy reflects an internally generated temporal 710 
context signal represented in the population of neurons. 
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 715 
Figure 6: Population pattern analysis. In experiment 1, the population pattern analysis was performed on image 
periods (e.g., discriminating image period 1 vs image period 2). In experiment 2, the population pattern analysis 
was performed on the 10s gap interval. Since this decoding method was based on pairwise comparisons, chance 
performance is always 50%.  A). For experiment 1, a balanced dataset was created by selecting a subset of trials so 
that each image was equally present in each period across trials (see methods). B) Population pattern analysis 720 
procedure. The trials of the balanced dataset (experiment 1), or the gap intervals (experiment 2) were split into 
two halves (repeated on 200 iterations; see methods). In each half of the dataset, and for each period, the firing 
activity of the population of cells was arranged into a pattern vector for each trial. C). An average pattern vector of 
population firing activity was obtained for each image period by averaging across trials (period vectors). D). 
Pairwise discrimination was performed on the period vectors across the two halves of the dataset. For all pairs of 725 
periods, the Pearson’s correlation was computed across the two halves, and the same-period comparisons (“within 
comparisons”) were compared to the different-period (“between”) comparisons. Pairwise accuracy was the 
proportion of within comparison correlations (rwithin) that were higher than the between comparison correlations 
(rbetween) (Haxby et al., 2001; Pereira et al., 2018). E). Population pattern analysis accuracies. Pairwise accuracy for 
temporal period identity during the sequence learning experiment using the split-half procedure described in A-D 730 
(population size=429 neurons). The x-axis shows the number of image periods that the classifier was tested on 
(i.e., discrimination between the first two image periods, the first three image periods, etc., since the start of the 
trial). Pairwise accuracy (mean ± standard deviation) for discriminating the first two periods = 88.4±8%, of the first 
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three periods = 72.7±8%, of the first four periods = 63.5±6%, of the first five periods = 57.3±9%. The black dots 
correspond to the mean accuracy across the 50 iterations for creating the balanced dataset, and the gray dots 735 
show the distribution of accuracies obtained across iterations. Asterisks denote significance based on a t-test 
against chance, (p < 10-3). Since the analysis is based on pairwise comparisons, chance performance is always 50%.  
F) Decoding errors mainly occurred for predicting neighboring temporal periods. Confusion matrices during 
sequence learning when discriminating the first two temporal periods, the first three temporal periods etc.  G). 
Distributions of the difference of (rwithin) and (rbetween) for decoding of the first two image periods, the first three 740 
image periods etc. The solid gray line corresponds to the mean of the distribution. H). Pairwise accuracy for size 
matched populations of time cells (in red) and other (non-time) cells (in blue), for decoding of the first two image 
periods, the first three image periods etc. The dashed lines correspond to a linear fit through the data. The 
horizontal gray line corresponds to chance performance (50%). I). Population pattern analysis performance during 
the temporal gap experiment (population size=96 neurons). The 10s gap periods were split into four, five or ten 745 
discrete periods and discrimination of temporal period identity was computed using the procedure shown in B-D. 
Pairwise accuracy was significantly above chance for all comparisons (t-test against chance (0.5), p < 10-3). Pairwise 
accuracy, mean ± standard deviation = 76.0 ± 4.7% for 4-way decoding, 69.6 ± 4.6% for 5-way decoding, and 65.7 ± 
3.1% for 10-way decoding. The black dots correspond to the mean accuracy across the 50 iterations for creating 
the balanced dataset, and the gray dots show the distribution of accuracies obtained across iterations. Asterisks 750 
denote significance based on a t-test against chance, (p < 10-3). Since the analysis is based on pairwise 
comparisons, chance performance is always 50%. J) Confusion matrix for the gap experiment for different epoch 
lengths. 

 
Discussion: 755 
 
In this study we report that human hippocampal neurons represent temporal information as 
subjects progress through a sequence of events, and during empty gap periods in the sequence. 
Time cells responded successively at different moments of the task, and together, the activity 
of these neurons covered the entire task period. Population level activity allowed for successful 760 
decoding of temporal epoch identity.  
 
Temporal information is represented at different time scales in the hippocampus and 
neighboring brain regions. In rodents, hippocampal time cells typically show sharp tuning for 
particular moments of a fixed interval (Pastalkova et al., 2008; MacDonald et al., 2011), 765 
whereas in the lateral entorhinal cortex, temporally sensitive neurons show a more gradual 
ramping of firing activity (Tsao et al., 2018). In humans, population activity gradually drifts over 
a period of minutes (Folkerts et al., 2018), but single neurons can also show punctuated time-
cell-like firing patterns as we show here and as previously reported (Umbach et al., 2020). The 
relationship between a gradually changing temporal context versus a more precise 770 
representation of time in the human hippocampus remains an open question for future work. 
Task demands such as free recall versus precise temporal order judgments, and the resolution 
at which temporal information is relevant at the behavioral level may influence the temporal 
precision of human time cells.  
  775 
Rodent time cells display flexibility in temporal coding. For instance, they exhibit scalar coding 
of time, such that cells that are active later in a time window fire for longer periods. Further, 
just like place cells re-map, time cells have been observed to “re-time”: cells can change their 
temporal preferences within the same recording session when the temporal structure of the 
experience is changed (MacDonald et al., 2011). For our patients, the image sequence was 780 
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generally fixed across sessions and patients typically performed only one experimental session 
per day. We were thus unable to test whether temporal preferences change when the image 
order of the sequence changes or when the same sequence is repeated after a short interval. 
Observations of re-timing in rodent time cells raise intriguing possibilities for future 
investigations of temporal coding in the human hippocampus. 785 
 
Perhaps most relevant to the current study are recent findings of Umbach and colleagues 
(Umbach et al., 2020). That study reported time cell activity in the human medial temporal lobe 
during a free recall memory task. Hippocampal neurons encoded temporal information during 
the task, and entorhinal cortex neurons showed ramping activity. Unlike our task design which 790 
consisted of a structured and predictable sequence of items that repeated continually for 10-15 
minutes, the free recall task in Umbach et al., consisted of two distinct phases, one in which 
words were presented in a structured list, and another that consisted of a period of free recall. 
Both studies report a significant number of time cells, although we report a higher proportion 
(30%) compared to the Umbach et al., study (15%). This difference cannot solely be due to the 795 
different methodology used in the two studies for detecting time cells (stepwise regression vs. 
a one-way ANOVA), since we identified ~24% of time cells when using an ANOVA as our model. 
Instead, it seems likely that the different proportions of time cells could arise from differences 
in task structure or behavioral requirements. For instance, the hippocampus is essential for 
remembering the temporal order of sequential events (Eichenbaum, 2013), and it is possible 800 
that temporal order learning engages a larger population of cells for representing time 
information. The study by Umbach and colleagues also showed that time cell activity was 
relevant to subsequent performance on a memory test. Our study did not directly test for the 
relationship between time cell firing and behavioral performance since the task was expressly 
designed to be easy for patients to perform. As such, we did not have enough error trials to 805 
correlate time cell activity with performance on the sequence memory task. Nevertheless, 
despite these differences in task design and methodology, both the study by Umbach et al., and 
our study report a significant proportion of hippocampal neurons that are modulated by time, 
suggesting that a temporal code may be a general property of the human hippocampus 
network. 810 
 
The temporal modulation of time cells in our study was also observed during empty 10s gap 
periods in which patients were not presented with any visual input or required to perform an 
explicit task. Time cells were observed to fire at successive moments in these blank periods. 
Temporal modulation during these gap periods could not have been driven by external events; 815 
rather they appear to represent an evolving temporal signal as a result of changes in the 
patients’ experience during this time of waiting. Related to this point, temporal coding in the 
hippocampus and the lateral entorhinal cortex has been shown to change with behavior and 
task demands (MacDonald et al., 2013; Tsao et al., 2018). The design of Experiment 2 allowed 
us to directly examine whether cells that were modulated by time during sequence learning 820 
were also recruited during the gap periods when the patients did not overtly perform a task. 
We found that different subsets of cells were active during these two task periods, with a small 
overlap of cells that were active in both periods. These results suggest a context-dependent 
recruitment of cells for the representation of temporal information, and raise interesting 
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questions for future research of how the encoding of temporal information in single cells and at 825 
the population level is affected when switching between tasks or experiences.  
We found evidence for time modulation in various control analyses that considered the trial 
structure (i.e., sequence time vs. probe time), trial duration (trials of a fixed duration (median 
length) vs. all trials), or trial contents (e.g., with or without image information). Interestingly, 
we found that excluding the first ISI period of each trial from the analysis resulted in an 830 
important difference in the number of time cells identified (Table 1). This finding, along with 
the heatmaps shown in Figures 3B and 5B, suggests that a large number of cells show firing rate 
changes shortly after the probe, similar to reports in rodents and humans of a stronger 
representation of temporal information early in the trial (Salz et al., 2016; Umbach et al., 2020). 
Importantly however, this early representation of temporal information did not compromise 835 
population-level representations of elapsed time since our decoding analyses, performed on 
image periods only, showed robust temporal information at the population level. 
 
In rodents, time cells and place cells do not uniquely represent temporal and spatial 
information respectively. Rather, medial temporal lobe neurons can be influenced by various 840 
experimental factors, including the stimulus-related, spatial and temporal facets of an 
experience (Komorowski et al., 2009; Tsao et al., 2018). For example, in rodents it has been 
reported that place cells can code for distance, time, or visual cues (Ravassard et al., 2013; 
Eichenbaum, 2014; Acharya et al., 2016), and time cells can encode spatial or stimulus 
information (Eichenbaum, 2014; Tsao et al., 2018). Similarly, we found that human time cells 845 
also encoded sensory information about the presence or absence of a stimulus, and the identity 
of the stimulus. Such multi-dimensional representations could play a critical role in episodic 
memory mechanisms in which the “what”, “where”, and “when” elements of an experience are 
bound together into a coherent memory. 
 850 
The phenomenon of subjective “mental time travel” is a cornerstone of episodic memory 
(Tulving, 2002). Central to our experience of reliving the past is our ability to vividly recall 
specific events that occurred at a specific place and in a specific temporal order. Time cells in 
rodents and humans, and other temporally-sensitive populations of neurons support 
theoretical frameworks that posit that temporal context information plays an important role in 855 
memory mechanisms in the hippocampus (Howard et al., 2014; Howard et al., 2015). Our 
results provide further evidence that human hippocampal neurons represent the flow of time in 
an experience.  
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