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Abstract: 
 
An indispensable feature of episodic memory is our ability to temporally piece together different 
elements of an experience into a coherent memory. Hippocampal “time cells” – neurons that 
represent temporal information – may play a critical role in this process. While these cells have 
been repeatedly found in rodents, it is still unclear to what extent similar temporal selectivity 
exists in the human hippocampus. Here we show that temporal context modulates the firing 
activity of human hippocampal neurons during structured temporal experiences. We recorded 
neuronal activity in the human brain while patients learned predictable sequences of pictures. 
We report that human time cells fire at successive moments in this task. Furthermore, time cells 
also signaled inherently changing temporal contexts during empty 10-second gap periods 
between trials, while participants waited for the task to resume. Finally, population activity 
allowed for decoding temporal epoch identity, both during sequence learning and during the gap 
periods. These findings suggest that human hippocampal neurons could play an essential role in 
temporally organizing distinct moments of an experience in episodic memory. 
 
Significance Statement: 
 
Episodic memory refers to our ability to remember the “what, where, and when” of a past 
experience. Representing time is an important component of this form of memory. Here, we 
show that neurons in the human hippocampus represent temporal information. This temporal 
signature was observed both when participants were actively engaged in a memory task, as well 
as during 10s-long gaps when they were asked to wait before performing the task. Furthermore, 
the activity of the population of hippocampal cells allowed for decoding one temporal epoch 
from another. These results suggest a robust representation of time in the human hippocampus. 
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Introduction: 
 
Creating episodic memories requires linking together distinct events of an experience with 
temporal fidelity. The brain must represent the temporal flow and order of events, and glue them 
together in the correct sequential order. “Time cells” in the hippocampus and adjacent structures 
might play an essential role in this temporal organization of memory (Hasselmo, 2009; 
Eichenbaum, 2014; Howard et al., 2014). In rodents, time cells signal changing temporal contexts 
in a variety of paradigms (Manns et al., 2007; Pastalkova et al., 2008; MacDonald et al., 2011; 
Kraus et al., 2013; MacDonald et al., 2013; Kraus et al., 2015). They fire at successive moments 
of time during a fixed interval and the activity of the population of time cells covers the entire 
time interval (Pastalkova et al., 2008). More recently, another class of “ramping cells” in the 
lateral entorhinal cortex has been discovered. Ramping cells show slowly rising or decaying 
activity with time, over a range of time scales. Temporal epoch identity could be decoded from 
the firing activity of the population of cells (Tsao et al., 2018). 
 
Temporal coding has also been observed in neuronal activity patterns in the human 
hippocampus. For instance, neuronal activity in the human medial temporal lobe shows gradual 
changes over time in memory tasks (Howard et al., 2012; Folkerts et al., 2018). The recall of a 
particular item is accompanied by the reinstatement of its initial temporal representation 
(Gelbard-Sagiv et al., 2008; Howard et al., 2012; Folkerts et al., 2018). More recently, single 
neurons have also been shown to be modulated by time, akin to time cells in rodents, during 
encoding and retrieval in a free recall memory task (Umbach et al., 2020).  
 
In the current study, we ask if human hippocampal neurons represent temporal information 
during sequential order learning. A large body of work in animals and humans has shown that 
the hippocampus is essential for remembering the temporal order of sequential events 
(Eichenbaum, 2013).  For example, in humans, the hippocampus is activated when subjects recall 
the order of objects, and conversely, patients with hippocampal damage have trouble in 
temporal order judgements (Spiers et al., 2001; Ekstrom and Bookheimer, 2007). In animals, rats 
with hippocampal damage are impaired at remembering the sequential order of odors (Fortin et 
al., 2002). Given the importance of the hippocampus in sequence order learning and temporal 
order judgements, we tested whether human hippocampal neurons represented temporal 
information while participants learned the order of a sequence of items. We tested for temporal 
modulation of hippocampal activity in two experiments: (1) during sequence learning (Figure 1A), 
and (2) during empty gap periods inserted in the task during which participants passively waited 
for the sequence to resume (Figure 1B). Note that in these gap periods, any potential temporal 
information is not driven by external stimuli or events, but rather represents inherent changes in 
the patients’ moment-to-moment experience. We report that human hippocampal neurons fire 
at successive moments during these structured time periods, both while subjects actively 
monitor a sequence, as well as during empty temporal gaps between events.  
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Materials and Methods: 
 
In this study, human epileptic patients performed two sequence learning tasks, while single 
neuron activity was recorded from microelectrodes implanted in the hippocampus. We 
quantified the influence of time on the firing activity of individual neurons using a stepwise 
general linear model (GLM), as has previously been used in the rodent literature (MacDonald et 
al., 2011; Tsao et al., 2018). In this GLM, a predictor variable is included in the model only if it is 
found to significantly improve the prediction of the response variable (see below). 
 
Patients 
 
Nine patients of either sex participated in the first experiment, and six patients of either sex 
participated in the second experiment. The patients were diagnosed with pharmacologically 
intractable epilepsy, and were undergoing epileptological evaluation at the Amsterdam 
University Medical Center, location VUmc, The Netherlands. Patients were implanted with 
chronic depth electrodes for 7-10 days in order to localize the seizure focus for possible surgical 
resection (Fried et al., 1997; Engel et al., 2005). All surgeries were performed by J.C.B and S.I. The 
Medical Ethics Committee at the VU Medical Center approved the studies. The electrode 
locations were based entirely on clinical criteria and were evaluated based on the pre-surgical 
planned trajectories on the basis of structural MRI scans. The accuracy of the implantation was 
always checked using a CT scan co-registered to the MRI. We only included electrodes that were 
within a 3mm deviation from the target (based on visual confirmation). Each electrode contained 
eight microwires (Behnke-Fried electrodes, Ad-Tech Medical) from which we recorded multi-unit 
activity, and a ninth microwire that served as a local reference. The signal from the microwires 
was recorded using a 64-channel Neuralynx system, filtered between 1 and 9000 Hz, sampled at 
32KHz. On average, each patient was implanted with 34 ± 11.8 microwires (range = [16, 48]). 
Participants sat in their hospital room at the Epilepsy Monitoring Unit, and performed the 
experimental sessions on a laptop computer.  
 
Spike Detection and Sorting 
 
Spike detection and sorting were performed with wave_clus (Quiroga et al., 2004). Briefly (see 
(Reddy et al., 2015) for details), the data were band pass filtered between 300-3000Hz and spikes 
were detected with an automatic amplitude threshold. Spike sorting was performed with a 
wavelet transform that extracted the relevant features of the spike waveform. Clustering was 
performed using a super-paramagnetic clustering algorithm. Clusters were visually reviewed by 
the first-author for 1) the mean spike shape and its variance; 2) the ratio between the spike peak 
value and the noise level; 3) the inter spike interval distribution of each cluster; 4) the presence 
of a refractory period; 5) the similarity of each cluster to other clusters from the same microwire. 
Based on manual inspection of these criteria, clusters were retained, merged or discarded.  
 
Experimental design and statistical analyses 
 
Behavioral Task 
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Experiment 1: Sequence Learning: The patients performed a total of 31 sequence learning (SL) 
sessions (Figure 1A). In each SL session, participants were presented with a sequence of 5-7 
images (image number determined as a function of the difficulty level and the availability of the 
patient). The images were always presented in a pre-determined order such that a given image, 
A, predicted the identity of the next image, B, and so on. Subjects were asked to remember the 
order of the images in the sequence. Each image was presented for 1.5s (“image period”) 
followed by an “inter-stimulus interval period” (ISI) of 0.5s. The sequence was repeated 
continually 60 times resulting in experimental sessions of 10 minutes for 5-image sequences and 
14 minutes for 7-image sequences, not including time spent by the subject to respond on probe 
events. On a random 20% of image periods, the sequence stopped and participants were 
presented with probe events. In these probe events, instead of being presented with the next 
image of the sequence, subjects were shown two images side by side and asked to decide (by 
pressing one of two keys on the keyboard) which of the two was the next image in the sequence. 
After the subjects had responded, the sequence resumed.  
 
From the point of view of the subject, the probe events were salient moments of an otherwise 
repetitive experiment because the probes stopped the sequence and tested subjects on their 
learning of the sequence order. Thus, we considered sequence segments between two 
consecutive probe events as our “trials” of interest: structured, temporal experiences between 
two salient markers. We asked whether hippocampal neurons tracked time in this fixed interval. 
In control analyses described below, we verified these results with respect to other time periods 
in the experiment. 
 
Experiment 2: Sequence learning with temporal gaps (Figure 1B): Six new patients performed 
eight sessions of a second SL experiment. This second experiment followed the design of the first 
SL experiment described above, except for the following modifications: 1) After a fixed number 
of repeats of the sequence, a 10s-long empty gap interval was presented. During these gap 
intervals, participants were presented with a black screen, without any stimulus input. They were 
asked to simply wait until the sequence started again. For three participants these gap intervals 
occurred after every 5 repeats of the sequence (resulting in 6 gap intervals in the experiment), 
while for the remaining three participants these gap intervals occurred after every 2 repeats of 
the sequence (resulting in 15 gap intervals in the experiment). 2) The sequence was repeated 
only 30 times instead of 60 times.  
 
In the nine patients who performed the first experiment, we recorded from 441 neurons in the 
hippocampus, and in the six patients who performed the second experiment, we recorded 96 
hippocampal units. 
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Figure 1. A, B) Experimental Design. In the sequence learning experiments, participants saw a sequence of images in 
a fixed order, and were asked to learn the sequence order. The stimulus sequence consisted of 5-7 image periods 
(image number fixed per session and determined by the availability of the patient) separated by inter-stimulus 
interval (ISI) periods. Each image was presented for 1.5s followed by an ISI of 0.5s. The sequence was repeated for 
60 loops. 20% of the time, a probe event occurred (black squares) during which participants had to decide which of 
two choice images was the correct one at the current position in the sequence. The probe events occurred at random 
positions of the sequence. After the probe event, the sequence resumed. In our main analysis, we consider time 
periods that occurred between two consecutive probe events as the “trials” of interest. As shown, each post-probe 
“trial” consisted of several image and ISI periods (gray squares). B) The design of Experiment 2 was similar to that of 
Experiment 1 except for the insertion of 10-second-long gap periods (black rectangle) during sequence learning. 
These gap periods occurred periodically (see Methods). During the gap periods, the sequence stopped and patients 
were presented with a blank screen. They were asked to simply wait until the sequence resumed. C) Band-pass 
filtered (300-3000Hz) signal from five different channels (left), mean waveforms recorded on these channels 
(middle), and the corresponding distributions of inter-spike intervals (right). The black vertical tick marks on the left 
plots indicate a scale of 30uV. 
 
 
Time Cell Identification with a General Linear Model (Experiment 1) 
 
Time cell identification was performed with a GLM as in previous studies (MacDonald et al., 2011; 
Tsao et al., 2018). The firing activity of each neuron was modelled as a function of time, image 
identity, and whether the temporal period corresponded to an image or ISI period.  
 
For the purposes of the GLM, as described above (Figure 1A), we defined “trials” as segments of 
the sequence between two consecutive probe events (number of sequence segments or “trials” 
between two consecutive probe events across sessions: mean ± s.e.m= 73.6±2.4). We made this 
choice because (i) as explained previously, these probe events were the most salient events of 
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the experiment, and (ii) if we simply consider time=0 as the start of each 5-7 image sequence, 
“time” in the sequence is directly confounded by image identity because the sequence order is 
fixed. By redefining time=0 as the time at which the sequence restarted after the probe events, 
we avoided this confound because time is not confounded with image identity with respect to 
probe events (the sequence segment after the probe is random since the probe events occurred 
at random moments). In control analyses we also considered different temporal intervals for 
determining time cells. 
 
Each of the post-probe “trials” consisted of several image and ISI periods that regularly followed 
each other (Figure 1A). The median number of image and ISI periods in a “trial” was seven, 
corresponding to a median trial length of 6.5 seconds. Thus, each “trial” between probe events 
was a well-structured temporal interval during which the sequence progressed according to its 
fixed order.  
 
In the GLM, the firing activity vector (Y) on each “trial” contained the average firing rates for each 
period of the trial, with no smoothing or additional preprocessing. Y was modelled as a function 
of three variables: image identity in each period, time of the period (i.e., time of the mid-point of 
the period with respect to trial onset/probe offset), and whether the period corresponded to an 
image or an ISI event.  A linear factor for time assumes that time cells either show a ramping up 
or a ramping down of firing activity during the trial. To also include the possibility of cells having 
a preferred time not just at the beginning and end of trials, but also in the middle of trials, we 
included a quadratic time term (i.e., t2, a parabola-shaped function identifying cells that would 
have stronger or weaker activity in the middle of the time window; for this purpose, time was re-
centered to the middle of the trial so that the parabola was centered in the middle of the time 
window).  

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +  ∑ 𝛽𝛽𝑖𝑖𝑆𝑆𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝐼𝐼𝑖𝑖𝑖𝑖 +  𝛽𝛽𝑗𝑗𝑇𝑇𝑆𝑆𝑆𝑆𝐼𝐼 +  𝛽𝛽𝑘𝑘𝑇𝑇𝑆𝑆𝑆𝑆𝐼𝐼 2 (1) 
 
The GLM analysis was performed using the MATLAB stepwiselm function, including the variables 
stim/ISI, imageID, Time and Time2, in a linear model, with a constant term as the baseline model, 
the SSE criterion (PEnter = 0.05), and other default parameters. The variables stim/ISI and 
imageID were entered as categorical variables, and the time variables were continuous variables. 
Stepwise regression systematically tests the variance explained by adding and removing variables 
from a linear model based on their statistical significance in explaining the response variable. 
Note that the order in which regressors are entered into the stepwise linear model does not 
affect its outcome. Time cells were defined as cells for which the time terms (i.e., Time and/or 
Time2) were added by the stepwiselm function (PEnter < 0.05).  
 
As a separate test to confirm our classification of time cells, different from the stepwise 
regression test, we performed a likelihood ratio test to compare the log-likelihood values of a 
restricted linear model which included all terms except the time terms, and a full model which 
also included the two time terms.  
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Time Cell Identification with a General Linear Model (Experiment 2) 
 
The 10s gap intervals of experiment 2 were epoched into 500ms non-overlapping windows and, 
as above, a stepwise regression analysis was performed: the firing activity (Y) in each epoch was 
modelled as a function of time in the epoch (Time and a quadratic time term Time2). All other 
parameters in this analysis were identical to those described for Experiment 1. 
 

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑆𝑆𝑆𝑆𝐼𝐼 +  𝛽𝛽2𝑇𝑇𝑆𝑆𝑆𝑆𝐼𝐼 2 (2) 
 
 
Control analyses for defining trial periods and time cells 
 
In the main analysis of Experiment 1, a “trial” was defined with respect to the probe events (i.e., 
the sequence segment that occurred between two consecutive probe events). We performed 
several additional analyses for identifying time cells. 1) Time cells were identified when the first 
period after the probe event was excluded from the GLM. 2) Time cells were identified when the 
GLM analysis was performed on only the ISI periods. In this control, the Y vector contained the 
firing rates in the ISI periods, and the regressor matrix X consisted of a time factor (time at the 
midpoint of the periods, and a quadratic term Time2) and an image identity factor (the identity 
of the image following the ISI period, to account for image-specific anticipatory responses that 
can be observed in the ISI periods during sequence learning (Reddy et al., 2015)). 3) “Trials” were 
re-defined as sequence segments with respect to the onset of each repetition of the sequence. 
Note that in this case, time selectivity can be confounded by stimulus selectivity (since the same 
stimulus sequence repeats identically in every loop); however, the Matlab stepwiselm function 
that we used for determining time selectivity could disentangle the potential contributions of the 
time and stimulus ID variables since it systematically tests for the addition and removal of each 
variable in significantly explaining the response variable. Nonetheless, to avoid any ambiguity in 
interpretation, we elected to present time selectivity with respect to probe events as our main 
analysis, as it precludes this potential confound. 

Statistical test for the number of time cells 

Statistical significance for the number of time cells identified in the GLM analysis was evaluated 
using a permutation test. For the permutation test, in Experiment 1, surrogate data was created 
by randomly shuffling the image and ISI periods on each trial. For Experiment 2 surrogate data 
was created by randomly shuffling epoch time. The stepwise regression was then performed on 
this surrogate data, on 106 iterations. The proportion of surrogates which had a higher number 
of time cells was p < 10-6 in all analyses (in other words, none of the surrogates ever had a higher 
number of time cells).  

Heatmaps cross-validation and statistical test 

The “original” heatmaps shown in Figures 2B and 4B were constructed by sorting the time cells 
according to the latency of peak firing and using this sorted order to plot the firing rate of each 
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cell over the time interval. However, a heatmap generated from random data, sorted and plotted 
according to the maximum value of each entry, will also show a similar well-organized pattern. 
Thus, to ensure the reliability of these maps, we performed a cross-validation analysis on the real 
heatmaps to verify their reproducibility. 

For the cross-validated heatmaps, the order in which the cells were plotted was determined from 
the latencies on a random half of the data and the firing rates were plotted for the remaining half 
of the data. If the cells had no true temporal preference, the peak latency on the second half 
should be unrelated to the latency measured on the first half, and no meaningful ordering of cells 
should appear. This cross-validation procedure was repeated 1000 times, and the resulting heat 
maps were averaged across cross-validations to generate cross-validated maps. We quantified 
the reliability of the heatmaps by performing a non-parametric permutation test.  We first 
computed the Spearman correlation point-wise between the average cross-validated heatmap 
and the original heatmap, resulting in a correlation measure corrorig,cv. To simulate the null 
hypothesis that the cells do not have a reliable time preference, on each cross-validation iteration 
we generated 105 surrogate heatmaps by randomizing the cell order obtained from the first half 
of the data (instead of determining their order based on peak firing time over the first half), and 
generating a heatmap with this random order for the second half of the data. Each of these 105 
surrogate heatmaps was correlated with the original heatmap (corrorig,surr). After averaging across 
the 1000 cross-validations, none of the 105 surrogates yielded a correlation value corrorig,surr 
higher than the real correlation corrorig,cv, i.e., p<10-5. 

 

Population pattern analysis 
 
For this analysis, the population size was 441 neurons for Experiment 1, and 96 neurons for 
Experiment2. 
 
Experiment 1: Sequence learning: The population pattern analysis for Experiment 1 was 
performed on the image periods. As described above, each “trial” (i.e., the sequence segment 
between two consecutive probe events) consisted of a varying number of image periods (Figure 
1A). In the population pattern analysis our goal was to discriminate temporal period identity (e.g., 
image period 1 vs. image period 2 etc.). Discrimination performance was evaluated for different 
numbers of temporal periods from the start of the trial (ranging from two to five; i.e., 
discriminating between the first two image periods after the probe event, the first three image 
periods and so on). To ensure that performance was not driven by an unequal representation of 
the different images in the different periods, we created a balanced dataset for the population 
pattern analysis. In this balanced dataset we included the subset of trials per cell that assured 
that each image was equally present in each period (Figure 5A). The balanced dataset only 
included cells for which a minimum number of trials had been recorded. The minimum number 
of trials was the smallest number such that at least 300 cells were included in the analysis.  
 
For the 2-way discrimination (period 1 vs. period 2), the balanced dataset required 42 trials, and 
397 cells were included; for a 3-way discrimination (period 1 vs. period 2 vs. period 3) it required 
30 trials, and included 303 cells; for a 4-way discrimination it required 12 trials and included 320 
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cells; and for a 5-way discrimination, it required 6 trials and included 367 cells. Discrimination of 
temporal period identity in this balanced dataset was thus not influenced by an imbalance in the 
number of presentations of each image across temporal periods. Note that the balanced dataset 
did not include the first ISI period after the probe and decoding was thus not influenced by the 
offset of the probe events. As mentioned below, trial selection for creating the balanced dataset 
was repeated on 100 iterations, and the population pattern analysis was performed on each 
iteration. 
 
The population pattern analysis was performed using a split-half approach (Haxby et al., 2001) 
on the firing rates of the balanced dataset (Figure 5B-D). The trials in the balanced dataset were 
randomly split into two halves, and in each half the firing activity of the population of neurons 
was arranged into vectors, per period and per trial (Figure 5B). These vectors were averaged 
across trials, yielding a population pattern vector for each period (“period vectors”) in each half 
of the dataset (Figure 5C). To quantify decoding or discrimination performance, we pairwise 
correlated the period vectors in one half of the dataset with the period vectors in the other half, 
and used the pairwise correlation values to measure the percentage of correct classification 
(Figure 5D). To be more precise, for each period we computed the correlation distance for this 
period across the two halves of the dataset (“within” comparison), and compared it to the 
correlation distance with a different period in the other half of the dataset (“between” 
comparison). Decoding was correct if the distance for the “within” comparison was lower than 
the distance for the “between” comparison (Haxby et al., 2001). This procedure was repeated for 
all pairs of periods, and decoding accuracy was the proportion of correct comparisons. Feature 
normalization was performed on the dataset for this analysis by performing a z-score on the data 
for each cell along the periods dimension. Feature normalization was performed on the whole 
dataset based on the mean and standard deviation measured in the “training” half of the dataset 
(to avoid “leakage” of information from the training half to the test half during the split-half cross-
validation). 
 
Note that in the split-half approach the “training data” (one half of the data) and “testing data” 
(the other half of the data) are independent by construction. 
 
To increase reliability, the population pattern analysis was performed over several iterations: (i) 
trial selection for the balanced dataset was repeated 50 times; (ii) on each of these 50 iterations, 
the dataset was randomly split into two halves 200 times. The reported mean decoding accuracy 
was the average decoding performance across the 50 iterations for creating the balanced 
dataset. The standard deviation was computed across the 50 balanced datasets of the mean 
decoding accuracy across the 200 split halves. Statistical significance was computed with a t-test 
against chance (0.5) across the 50 iterations for creating the balanced dataset (all p < 10-3). 
 
Experiment 2: Sequence learning with temporal gaps: For the population pattern analysis of the 
gap intervals, each gap interval was split into four, five or ten discrete periods and discrimination 
of temporal period identity was performed using a split-half approach (50 iterations). The 
procedure was the same as the one described above for Experiment 1 (Figure 5). Feature 
normalization was performed on the dataset by performing a z-score on the data. Statistical 
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significance was tested using a t-test against chance performance (0.5) across the 50 split-half 
iterations. Since some subjects had 6 gap periods while others had 15 gap periods, on each of the 
50 iterations for splitting the data a random set of 6 gap periods was chosen from the datasets 
which contained 15 gap periods. 
 
Results: 
 
Behavioral task and number of units 
 
To determine whether human hippocampal neurons are modulated by temporal context, we 
recorded from hippocampal neurons in human patients who performed a sequence learning task 
(Figure 1 A, B). We performed two independent sequence learning experiments in two groups of 
patients implanted with intracranial micro-electrodes. In Experiment 1, we recorded the activity 
of 441 hippocampal neurons in nine patients, and in Experiment 2 we recorded from 96 
hippocampal neurons in a new group of six patients.  
 
In both experiments, the patients were presented with a fixed number of images (5-7, depending 
on the patients’ availability) in a pre-defined order (Figure 1 A, B), and asked to learn the 
sequence order (Reddy et al., 2015). The sequence was repeated continually 60 times. 
Experiment 2 was similar to Experiment 1 except for the periodic insertion of 10-second-long gap 
periods during the experiment. During these gap periods, the sequence stopped and the patients 
had to wait until the sequence resumed (Figure 1B). 
 
The duration of each image period in the sequence was 1.5s, and each image period was followed 
by an inter-stimulus interval (ISI) of 0.5s. On a random 20% of image periods, subjects were 
probed on their learning of the image order. During these probe events, the sequence 
momentarily stopped and subjects were presented with two images from the sequence. Their 
task was to report which of the two images was the correct one at the current sequence position. 
The sequence then resumed until the next probe event. Participants rapidly learned the sequence 
order and achieved >90% performance on probe trials within the first six sequence presentations 
(Reddy et al., 2015). From the point of view of the subjects the probe events were salient 
moments of the experiment because they stopped the ongoing sequence and tested learning.  
 
Human hippocampal neurons are modulated by time during sequence learning 
 
Time cells have been characterized as neurons whose activity is modulated by temporal context 
within a well-defined time window. Our experiment design lent itself to identifying time cells 
because the task consisted of a structured image sequence that occurred in a fixed and 
predictable time interval. In the time domain, our experiment involved three distinct timelines: 
(1) experiment time running from the beginning to the end of the experiment, (2) sequence time 
with respect to the start of each iteration of the sequence, and (3) probe time running between 
consecutive probe events. We first focus on probe time since, as described above, the probe 
events were salient moments from the point of view of the participants. Furthermore, focusing 
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on probe time allowed us to decouple time from image identity, since the post-probe trials 
consisted of varying segments of image and ISI periods.  
 
We defined “trials” as segments of the experiment that occurred between two consecutive probe 
events in Experiment 1 (Figure 1A). These trials were of a relatively fixed duration (median trial 
length = 6.5 seconds), and consisted of a sequence of image and ISI periods. To identify time cells, 
we examined whether the firing activity of hippocampal neurons was modulated by time. 
Previous studies have identified time cells using a variety of frameworks such as fitting a Gaussian 
function to firing activity (Park et al., 2014; Salz et al., 2016), a one-way ANOVA of time and firing 
rate (Umbach et al., 2020), or a general linear model (GLM) factoring in the influence of time and 
other experimental factors on firing activity (MacDonald et al., 2011; Tsao et al., 2018). In the 
current study we elected to use the stepwise general linear model (GLM) method established by 
Tsao and colleagues (Tsao et al., 2018), since it allows us to identify time cells while also 
measuring the influence of the other experimental parameters on hippocampal responses (see 
the section Human hippocampal neurons are “multidimensional” below). 
 
In the stepwise GLM framework used here, a predictor variable is included in the model only if it 
is found to significantly improve the prediction of the response variable (firing rate). For each 
neuron, we modelled the firing rate in each image/ISI period of the trial sequence with different 
potential predictors: image identity, period type (i.e., image or ISI period), and two time terms. 
A linear time term was included in the model to identify cells that show a ramping up or ramping 
down of firing activity. A second quadratic term was included to allow for the possibility of cells 
having a preferred time not just at the beginning and end of trials, but also in the middle. Time 
cells were identified as those in which one or both of the time terms was selected for inclusion 
in the stepwise linear model. Statistical significance was evaluated using a permutation test in 
which the image and ISI periods on each trial were randomly shuffled on 106 iterations, and the 
stepwise GLM was performed on each iteration. 
 
We identified a significant number of hippocampal neurons (30%) that were modulated by time 
during sequence learning (132 of 441 neurons; this number was more than expected by chance 
based on a permutation test, p<10-6). Of these, 84 were modulated by the linear time term, 40 
by the quadratic time term, and 8 by both time terms. Individual examples of time cells are shown 
in Figure 2A.  
 
In a separate analysis to confirm our classification of neurons as time cells, we performed a 
likelihood ratio test to compare the log-likelihood values of a restricted linear model which 
included all terms except the time terms, and a full model which also included the time terms. 
96% of the cells classified as time cells based on the stepwise regression method had a 
significantly higher log-likelihood value according to this likelihood ratio test (p<0.05). 
Conversely, only 2% of the cells that were not labelled as time cells based on stepwise regression 
were selected by the likelihood ratio test. 
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Figure 2. A) Hippocampal neurons are modulated by time during sequence learning. Raster plots (top) and post-
stimulus time histograms (bottom) are shown for 8 example time cells. The x-axis corresponds to time of the median 
trial length (6.5s, see Methods). The black line is the average firing activity and the shaded area corresponds to the 
standard error of the mean across trials. Insets show the waveforms for these cells. B) Hippocampal neurons fire at 
successive moments of a temporal interval.  Firing activity of the population of time cells (N=132) identified as being 
significantly modulated by time (i.e., ‘time’ and/or ‘time2’) in the sequence learning experiment. Each row shows the 
firing activity for an individual time cell, averaged across trials. The x-axis corresponds to time of the median trial 
length. The neurons are sorted by the latency of the maximum firing rate. 
 
We conducted a number of control analyses to verify that the temporal modulation of firing rates 
was observed under different analysis parameters (Figure 3A). Time cells were identified when 
the GLM was performed on (1) the firing rates of only the ISI periods (87 cells, permutation test, 
p<10-6), and (2) when excluding the first ISI period after the probe (94 cells, permutation test, 
p<10-6). Time cells were also detected when “trials” were re-defined as sequence segments with 
respect to the onset of each repetition of the sequence (i.e., instead of with respect to the onset 
of the probe events, as in the main analysis). In this analysis, we identified 94 neurons that were 
significantly modulated by the time variables (permutation test, p<10-6). Note that in this case, 
time selectivity can be confounded by stimulus selectivity (since the same stimulus sequence 
repeats identically in every loop); however, the stepwise regression approach could disentangle 
the potential contributions of the time and stimulus identity variables since it systematically tests 
for the addition and removal of each variable in significantly explaining the response variable. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 17, 2020. ; https://doi.org/10.1101/2020.12.17.423193doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.17.423193


13 
 

Nonetheless, to avoid any ambiguity in interpretation, we have elected to present time selectivity 
with respect to probe events as our main analysis, as it precludes this potential confound. 
 
 

 
 
Figure 3. A) Fraction of cells that were modulated by time in the main analysis (i.e., with respect to the offset of the 
probe event), when time cells were identified on only the ISI periods (ISI only), when the first ISI period was excluded 
(excl. 1st ISI), and when time cells were identified with respect to the onset of each iteration of the sequence 
(sequence onset). B) Hippocampal neurons are “multi-dimensional”. Fraction of cells that were exclusively 
modulated by time (Time), modulated by time and another variable (Time mixed, e.g. Time and ImageID), exclusively 
modulated by image type (ImageID), and modulated by image type and another variable (ImageID mixed). The dots 
and vertical lines correspond to the mean and standard error of the mean across recording sessions respectively 
(N=31 sessions). C, D). Examples of two cells that showed mixed selectivity for the factors of ImageID and time. left). 
These two cells were modulated by the factor of ImageID. The raster plots and post-stimulus time histograms are 
aligned to the onset of each image in the sequence. The blue curve is the response to the image in the sequence 
that elicited the highest response (preferred image). The red curve is the mean response to the other images in the 
sequence. The blue shaded area is the standard error of the mean across trials of image presentation. right) The 
same two cells were also modulated by the factor of Time. The raster plots and post-stimulus time histograms are 
now aligned to trial onset (i.e., the offset of the probe events). The format of the panels on the right is the same as 
Figure 2A. For visualization purposes only, and to better disentangle the effects of Time and ImageID, the spikes 
corresponding to the preferred images have been excised from the right panels. 
 
Thus, human hippocampal neurons represent a changing temporal context while participants are 
actively engaged in memorizing the order of a sequence of events. Previous studies have shown 
that when considered at the population level, the firing activity of time cells covers the duration 
of a given temporal epoch (Pastalkova et al., 2008; MacDonald et al., 2011). Likewise, across all 
participants we observed neuronal peak firing at successive moments in time, and when each 
cell was ordered by its preferred moment of firing, population activity spanned the temporal 
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window (Figure 2B). For consistency with previous studies, we illustrate this data as a population 
level heatmap. Although population level heatmaps are primarily used for display purposes, it 
can be informative to test their reliability, since random data sorted by peak value could also 
generate well-organized heat maps. To test the reliability of our heat maps we performed a cross-
validation analysis, in which the preferred time of firing for each cell was determined in one half 
of the data and the consistency of time preference was measured in the second half of the data. 
Statistical significance of the cross-validated heatmaps was evaluated using a permutation 
method (Methods), in which cross-validated and surrogate (randomly permuted) heatmaps were 
correlated with the original heatmap. The proportion of surrogates which had a higher 
correlation than the cross-validated data was p<10-5, supporting the notion that temporal 
preference was reliable in our neuronal population. 
 
Human hippocampal neurons are “multidimensional” 
 
In the rodent hippocampus, time cells are not exclusively modulated by time, just as place cells 
are not exclusively modulated by place. Rather, place cells and time cells appear to be 
“multidimensional” — they can be modulated by various factors, including the spatial, stimulus-
related, and temporal dimensions of an experience (Eichenbaum, 2014).  
 
In the human hippocampus, ~15% of neurons respond to visual stimuli (Quiroga et al., 2005). 
However, it is not yet known whether these neurons are exclusively visual, or if they are 
multidimensional and can be modulated by other factors, such as the temporal context of an 
experience. An advantage of the GLM-based approach used in the present study is that it allowed 
us to tease apart the influence of different experimental factors on the firing activity of 
hippocampal neurons (Figure 3B, C, D). The GLM analysis quantified the influence of stimulus 
presence (i.e., image periods vs. ISI periods), image identity, and time in the trial. A considerable 
number of neurons was modulated exclusively by time (92 out of 441, 17.5%) or image identity 
(56 out of 441, 13.7%), but we also found neurons selective for a combination of these factors 
(40 neurons, 9.9% for time and another factor; 30 neurons, 8.6% for image identity and another 
factor).  
 
Internally generated time selectivity in human hippocampal neurons 
 
The results from Experiment 1 demonstrate that human hippocampal neurons are modulated by 
the temporal context of an explicit task. Do human hippocampal neurons also represent the 
temporal structure of an experience in the absence of external inputs or an overt task?  
 
We performed a second experiment in six new patients who performed a different version of the 
sequence learning task (Figure 1B). In this new task, participants learned the sequence order as 
before, but every so often, the sequence stopped for 10s and participants waited until the 
sequence resumed. The participants had no stimulus input during these 10s gap periods -- they 
were presented with a blank screen. We isolated 96 hippocampal neurons in this second 
experiment, and used a GLM approach to determine whether human hippocampal neurons 
represent temporal information during the gap periods. As before, significance testing was based 
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on a permutation test in which we repeated the GLM 106 times after shuffling the data 
(Methods).  
 
During the gap periods, 33 hippocampal neurons (34% of cells; Figure 4A) were significantly 
modulated by time (more than expected by chance based on a permutation test, p<10-6), 
whereas while the patients were engaged in sequence-learning 18 neurons (19% of cells) were 
time-selective. 8 neurons encoded temporal information during both the task period and the gap 
period, consistent with previous results showing that the recruitment of temporally sensitive cells 
can change with task demands or behavior, and that subsets of cells may overlap in different task 
contexts (Pastalkova et al., 2008; MacDonald et al., 2011; Tsao et al., 2018; Umbach et al., 2020). 
During the gap periods, the time of peak firing in the population occurred at successive moments, 
and population activity spanned the entire 10s interval (Figure 4B). As above, the reliability of the 
heat map was statistically verified with a cross-validation procedure (permutation test p<10-5, 
Methods). As reported in rodents, there was a stronger representation of earlier timepoints (Salz 
et al., 2016). Thus, even in the absence of visual input or an overt task, the firing activity of 
hippocampal neurons is inherently modulated by the changing temporal context.  
 

 
 
Figure 4. A) Hippocampal neurons are modulated by time 
during the gap periods. Raster plots (top) and post-stimulus 
time histograms (bottom) are shown for 6 example time cells. 
The x-axis corresponds to the 10s duration of the gap period. 
Insets show the waveform for these cells. B) Hippocampal 
neurons fire at successive moments of the gap period.  Firing 
activity of time cells in the temporal gap experiment (N=33). 
Each row shows the firing activity for an individual cell, 
averaged across the gap periods. The x-axis corresponds to the 
10s gap period. The neurons are sorted by the latency of the 
maximum firing rate.  
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Hippocampal population activity encodes temporal information. 
 
In the rodent brain, time information is signaled both explicitly in individual neurons, and can 
also be gleaned from population-level dynamics of time-selective and non-time-selective cells 
(Tsao et al., 2018). Is time information also reflected in the population activity of human 
hippocampal neurons? To address this question, we performed a population pattern analysis of 
image period identity in the sequence learning sessions (Figure 5).   
 
In Experiment 1, each trial of the experiment consisted of a sequence of image periods between 
two consecutive probes, and the goal of the population pattern analysis was to determine 
whether hippocampal population dynamics reflected the temporal identity of each image period 
(e.g., discriminate “image period 1” vs. “image period 2”). To ensure that decoding or 
discrimination performance was not driven by an unequal representation of the different images 
in the different image periods, we created a balanced dataset in which accurate decoding of the 
temporal identity of each image period cannot arise from merely decoding spurious image 
information (Figure 5A).  
 
Discrimination performance was evaluated for different numbers of image periods from the start 
of the trial (ranging from two to five; i.e., discriminating between the first two image periods 
after the probe event, the first three image periods and so on). High decoding accuracy for 
temporal period identity was observed for discriminating all image periods (Figure 5E; mean ± 
standard deviation of decoding accuracy for discrimination of the first two periods = 89.9±6.4%, 
t(49) = 44.1, p < 0.001; of the first three periods = 75.7±8.5%, t(49) = 21.4, p < 0.001; of the first 
four periods = 64.0±7.4%, t(49) = 13.4, p < 0.001; of the first five periods = 55.79±8.2%, t(49) = 
4.9, p < 0.001). Decoding errors occurred primarily for neighboring periods (Figure 5G). Decoding 
accuracy could not be biased by the offset of the probe events since the first ISI period after the 
probe event was excluded in the population pattern analysis. Thus, hippocampus population 
dynamics uniquely represented each temporal period. 
 
Temporal epoch information was also present in population-level dynamics during the gap 
periods. A population pattern analysis during these gap periods revealed a significant 
representation of time information at the level of the overall population, and decoding errors 
mainly occurred for neighboring epochs (Figure 5F, H). High decoding accuracy for temporal 
epoch identity was observed for different temporal epoch sizes (mean accuracy ± standard 
deviation for 4-way decoding = 76.0 ± 4.7%, t(49) = 38.9, p < 0.001; for 5-way decoding = 69.6 ± 
4.6%, t(49) = 29.9, p < 0.001; and for 10-way decoding = 65.4 ± 3.1%, t(49) = 36.3, p < 0.001). 
Decoding accuracy during the gap periods could not have been driven by external visual input or 
overt behavior; rather the high decoding accuracy reflects an internally generated temporal 
context signal represented in the population of neurons. 
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Figure 5: Population pattern analysis. In experiment 1, the population pattern analysis was performed on image 
periods (e.g., discriminating image period 1 vs image period 2). In experiment 2, the population pattern analysis was 
performed on the 10s gap interval. A). For experiment 1, a balanced dataset was created by selecting a subset of 
trials so that each image was equally present in each period across trials (see methods). B) Population pattern 
analysis procedure. The trials of the balanced dataset (experiment 1), or the gap intervals (experiment 2) were split 
into two halves (repeated on 100 iterations; see methods). In each half of the dataset, and for each period, the firing 
activity of the population of cells was arranged into a pattern vector for each trial. C). An average pattern vector of 
population firing activity was obtained for each image period by averaging across trials (period vectors). D). Pairwise 
discrimination was performed on the period vectors across the two halves of the dataset. For all pairs of periods, 
the Pearson’s correlation was computed across the two halves, and the same-period comparisons (“within 
comparisons”) were compared to the different-period (“between”) comparisons. Decoding was correct if the 
correlation for the “within” comparison was higher than the correlation for the “between” comparison (Haxby et al., 
2001). E-H). Population pattern analysis accuracies. E). Pairwise decoding accuracy for temporal period identity 
during the sequence learning experiment using the split-half procedure described in A-D (population size=441 
neurons). The x-axis shows the number of image periods that the classifier was tested on (i.e., discrimination 
between the first two image periods, the first three image periods, etc., since the start of the trial). Decoding 
accuracy (mean ± standard deviation) for discriminating the first two periods = 89.9±6.4%, of the first three periods 
= 75.7±8.5%, of the first four periods = 64.0±7.4%, of the first five periods = 55.7±8.2%. The black dots and error bars 
correspond to the mean and standard deviation of decoding performance across the 50 iterations for creating the 
balanced dataset. Asterisks denote significance based on a t-test against chance, (p < 10-3). F). Population pattern 
analysis decoding performance during the temporal gap experiment (population size=96 neurons). The 10s gap 
periods were split into four, five or ten discrete periods and discrimination of temporal period identity was computed 
using the procedure shown in B-D. Decoding performance was significantly above chance for all comparisons (t-test 
against chance (0.5), p < 10-3). Pairwise decoding accuracy, mean ± standard deviation = 76.0 ± 4.7% for 4-way 
decoding, 69.6 ± 4.6% for 5-way decoding, and 65.7 ± 3.1% for 10-way decoding. The black dots and error bars 
correspond to the mean and standard deviation of decoding performance across the 50 iterations of the split-half 
procedure. G, H) Decoding errors mainly occurred for predicting neighboring temporal periods. G) Confusion 
matrices during sequence learning when discriminating the first two temporal periods, the first three temporal 
periods etc. H) Confusion matrix for the gap experiment for different epoch lengths. 
 
Discussion: 
 
In this study we report that human hippocampal neurons represent temporal information as 
subjects progress through a sequence of events, and during empty gap periods in the sequence. 
Different neurons responded successively at different moments of the task, and together, the 
activity of these neurons covered the entire task period. This finding of time cells in the human 
hippocampus extends prior evidence for temporal coding reported in both rodents (Pastalkova 
et al., 2008; MacDonald et al., 2011) and humans (Folkerts et al., 2018; Umbach et al., 2020). 
Perhaps most relevant to the current study are the recent findings of Umbach and colleagues 
who showed time cell activity in the human hippocampus during a free recall memory task 
(Umbach et al., 2020). Similar to that study, we show that hippocampal neurons are modulated 
by time during sequence learning, providing further evidence in support of time cells in the 
human hippocampus. 
 
Temporal information is represented at different time scales in the hippocampus and 
neighboring brain regions. In rodents, hippocampal time cells typically show sharp tuning for 
particular moments of a fixed interval (Pastalkova et al., 2008; MacDonald et al., 2011), whereas 
in the lateral entorhinal cortex, temporally sensitive neurons show a more gradual ramping of 
firing activity (Tsao et al., 2018). In humans, population activity gradually changes over a period 
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of minutes (Folkerts et al., 2018), but single neurons can also show punctuated time-cell-like 
firing patterns as we show here and as previously reported (Umbach et al., 2020). The tuning of 
time cells in the human hippocampus appears to be broader than in rodents, both in the Umbach 
et al., study as well as in our study. Future work should test how the temporal precision of human 
time cells depends on task conditions, for example, in more difficult tasks that probe temporal 
order at finer timescales. Rodent time cells also display a scalar coding of time, such that cells 
that are active later in a time window, fire for longer periods. Further, just like place cells that re-
map, time cells have been observed to “re-time”: cells can change their temporal preferences 
within the same recording session when the temporal structure of the experience is changed 
(MacDonald et al., 2011). These observations in rodent time cells raise intriguing possibilities for 
future investigations of temporal coding in the human hippocampus. 
 
The temporal modulation of time cells in our study was also observed during empty 10s gap 
periods in which patients were not presented with any visual input or required to perform an 
explicit task. Time cells were observed to fire at successive moments in these blank periods. 
Temporal modulation during these gap periods could not have been driven by external events; 
rather they appear to represent an evolving temporal signal as a result of changes in the patients’ 
experience during this time of waiting. Related to this point, temporal coding in the hippocampus 
and the lateral entorhinal cortex has been shown to change with behavior and task demands 
(MacDonald et al., 2013; Tsao et al., 2018). The design of Experiment 2 allowed us to directly 
examine whether cells that were modulated by time during sequence learning were also 
recruited during the gap periods when the patients did not overtly perform a task. We found that 
different subsets of cells were active during these two task periods, with a partial overlap of cells 
that were active in both periods. These results suggest a context-dependent recruitment of cells 
for the representation of temporal information.  
 
In rodents, time cells and place cells do not uniquely represent temporal and spatial information 
respectively. Rather, medial temporal lobe neurons can be influenced by various experimental 
factors, including the stimulus-related, spatial and temporal facets of an experience (Komorowski 
et al., 2009; Tsao et al., 2018). Similarly, we found that human time cells were not exclusively 
modulated by time, but also encoded sensory information about the presence or absence of a 
stimulus, and the identity of the stimulus. Such multi-dimensional representations could play a 
critical role in episodic memory mechanisms in which the “what”, “where”, and “when” elements 
of an experience are bound together into a coherent memory. 
 
The phenomenon of subjective “mental time travel” is a cornerstone of episodic memory 
(Tulving, 2002). Central to our experience of reliving the past is our ability to vividly recall specific 
events that occurred at a specific place and in a specific temporal order. Time cells in rodents and 
humans, and other temporally-sensitive populations of neurons support theoretical frameworks 
that posit that temporal context information plays an important role in memory mechanisms in 
the hippocampus (Howard et al., 2014; Howard et al., 2015). Our results provide further evidence 
that human hippocampal neurons represent the flow of time in an experience.  
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