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Abstract 

 

Sensory Substitution Devices (SSDs) are typically used to restore functionality of a sensory 

modality that has been lost, like vision for the blind, by recruiting another sensory modality 

such as touch or audition. Sensory substitution has given rise to many debates in psychology, 

neuroscience and philosophy regarding the nature of experience when using SSDs. Questions 

first arose as to whether the experience of sensory substitution is represented by the 

substituted information, the substituting information, or a multisensory combination of the 

two. More recently, parallels have been drawn between sensory substitution and 

synaesthesia, a rare condition in which individuals involuntarily experience a percept in one 

sensory or cognitive pathway when another one is stimulated. Here, we explore the efficacy 

of understanding sensory substitution as a form of ‘artificial synaesthesia’. We identify 

several problems with previous suggestions for a link between these two phenomena. 

Furthermore, we find that sensory substitution does not fulfil the essential criteria that 

characterise synaesthesia. We conclude that sensory substitution and synaesthesia are 

independent of each other and thus, the ‘artificial synaesthesia’ view of sensory substitution 

should be rejected. 
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1.  Sensory Substitution: Theories and Mechanisms 

 

1.1. Sensory Substitution Devices 

 

Sensory substitution aims to convey information from one modality (e.g., vision) via another 

modality (e.g., audition or touch) using a device that converts the information with a 

predefined transformation code. Sensory Substitution Devices (SSDs) first record 

information in one modality, typically vision, with a sensor (i.e., a camera), then converts 

certain features of that information (e.g., luminance and spatial location in the vertical and 

horizontal planes) into features of another sensory modality (e.g., auditory amplitude and 

frequency or tactile intensity). Finally the device transmits the newly converted information 

using an auditory or tactile stimulator. These devices were primarily developed to restore 

functionality of a sensory modality that has been lost, for example vision in blind people (for 

reviews see Auvray, 2019; Heimler and Amedi, 2020), but also for perceptual augmentation 

(e.g., Carton and Dunne, 2013). 

Early devices such as the Tactile-Visual Sensory Substitution device (TVSS; Bach-y-

Rita et al.,, 1969) convert visual images obtained from a camera into spatio-temporal patterns 

of tactile stimuli delivered to the skin on an individual’s back. Similarly, the Tongue Display 

Unit (TDU) converts visual images into electro-tactile pulses delivered to the surface of the 

tongue (Kaczmarek, 2011). Visual-to-auditory devices convert visual images into patterns of 

auditory ‘soundscapes’. For instance, the vOICe (Meijer, 1992) maps the x-axis of a visual 

image into the time domain, the y-axis into the frequency domain, and visual brightness into 

auditory amplitude. Numerous studies have shown that in less than 15 hours of training, blind 

or sighted-blindfolded users of SSDs are able to perform object recognition and 

discrimination tasks (Auvray et al., 2007; Bermejo et al., 2015; Brown et al., 2011; Kim and 

Zatorre, 2008; Striem-Amit et al., 2012), visual localisation and reaching tasks (Hanneton et 

al., 2020; Levy-Tzedek et al., 2012; Proulx et al., 2008) navigation and obstacle avoidance 

tasks (Chebat et al., 2011, 2015; Kupers et al., 2010) and even, with additional training, face 

recognition tasks (Striem-Amit et al., 2012). Importantly, recognition has been shown to 

transfer to novel objects not previously presented during training (Auvray et al., 2007; Kim 

and Zatorre, 2008; see also Arnold and Auvray, 2014, 2018, for transfer using visual-to-

tactile SSDs). Thus, the transfer to novel stimuli demonstrates a generalisable perceptual 

learning rather than a mere memorisation of stimulus pairings. Many other visual-to-auditory 

devices were developed varying in their chosen translation codes (e.g., the See ColOr: 

Bologna et al., 2009; the EyeMusic: Levy-Tzedek et al., 2014; Vibe: Hanneton et al, 2010), 

allowing a broad range of perceptual abilities (e.g., see Maidenbaum, Abboud, and Amedi, 

2014). 

 

1.2. Dominance, Deference and Multisensory Views of Sensory Substitution 

 

The mechanisms underlying this remarkable transformation of information from one sensory 

modality to another has been subject to much debate (Bach-y-Rita and Kercel, 2003; Keeley, 

2002; Ptito et al., 2018). Several theories and models attempt to explain how the brain is able 

to exploit intact sensory modalities to perceive information that is normally conveyed 

through another modality. Initially, the debate surrounding sensory substitution concerned in 

which modality the perception of information is represented. In other words, whether the 

percept remains within the substituting modality in which the information is presented (i.e., 

tactile or auditory for the TVSS and vOICe devices, respectively), or whether the percept is 

represented in the substituted modality (i.e., vision). Early pioneers of sensory substitution 

claimed that SSDs would allow blind people to “see with their skin” (White et al., 1970) or 

to “see with their brains” (Bach-y-Rita and Kercel, 2003). These claims encapsulated the 
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view that perceptual experience is deferred from one intact modality to another impaired 

modality, often referred to as ‘cortical deference’ (Hurley and Noë, 2003; O’Regan, 2011). 

However, others instead proposed that perception remains within the substituting modality, a 

view referred to as ‘cortical dominance’ (Block, 2003; Keeley, 2002; Prinz, 2006). Although 

this debate is no longer as prominent in the scientific literature, the cortical deference view 

still often reappears in articles for the general public, in which SSDs have been advertised as, 

for instance, “rewiring brains to see with sound” (Trivedi, 2010) or “helping the blind see 

with their ears” (Jacobson, 2014). 

In the last decade, a view has emerged that proficient SSD users acquire a novel way 

of experiencing the world, the phenomenology of which in part resembles vision and in part 

resembles the substituting modality (see Deroy and Auvray, 2014; Farina 2013; Kiverstein et 

al., 2014). This view suggests that sensory substitution goes beyond representation of either 

the substituting or the substituted modality (Auvray and Myin, 2009; Deroy and Auvray, 

2012, 2014; Farina, 2013; Proulx et al., 2014, 2016). Several recent accounts point toward 

the hypothesis of a novel or multisensory experience. For instance, Humphrey (2006) noted 

that the majority of subjective reports from expert users of SSDs often reflect a “complicated 

dual experience”, rather than a ‘visual’ or tactile/auditory experience. Auvray and Myin 

(2009) also suggest that SSDs may be better compared to ‘mind-enhancing tools’ that expand 

perceptual experience beyond the existing sensory modalities involved. Following Clark’s 

(2003) view, such tools provide means to carry out cognitive functions in ways that would 

have been impossible without them, given the intrinsic properties of the system. Accordingly, 

SSDs provide cognitive extensions to the existing senses, possibly unmasking a latent 

potential in the sensory cortex to process stimuli regardless of its sensory modality. 

One mechanism thought to support sensory substitution is crossmodal plasticity, the 

notion that the neural resources associated with the substituted modality are recruited to 

process the same information using input from other sensory modalities (Bach-y-Rita and 

Kercel, 2003). In the following section the mechanisms of sensory substitution are examined 

using key results from neuroimaging and deprivation studies. 

 

1.3. Key Results from Neuroimaging and Deprivation Studies 

 

The advent of neuroimaging methods significantly changed the direction of the debate 

surrounding sensory substitution. Studies showed that areas of the visual cortex become 

reliably engaged during the use of auditory (Arno et al., 2001; De Volder et al., 1999; 

Merabet et al, 2009; Striem-Amit and Amedi, 2014) and tactile (Ptito et al., 2005) SSDs. 

These remarkable early demonstrations of crossmodal plasticity suggested that a ‘visual’ 

experience may be evoked when using devices designed to compensate vision. However, 

activation of occipital areas in response to nonvisual stimuli does not necessarily mean that 

visual images are formed. For example, Transcranial Magnetic Stimulation (TMS) applied 

over the occipital cortex of blind individuals resulted in somatotopically organised tactile, 

rather than visual, sensations in the fingers of braille readers (Ptito et al., 2008) as well as on 

the tongues of trained users of the TDU (Kupers et al., 2006). Thus, activation of the 

occipital cortex following tactile stimulation may not necessarily reflect a ‘visual’ 

experience. Furthermore, the activation of visual areas during auditory/tactile-to-visual 

sensory substitution could also be due to a top-down influence on visual areas rather than 

bottom-up information processing (Murphy et al., 2016). 

Research on individuals deprived of vision has also been pivotal in changing how the 

brain’s functional organisation is viewed. Early studies showed that deprived sensory cortices 

(i.e., the visual cortex of blind people) are activated by input from other sensory channels 

(Kujala et al., 1992; Sadato et al., 1996). More recently studies have shown that deprived 

cortical regions such as the visual cortex of the blind can maintain many of their functional 
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specialisations (e.g., object recognition) using the input from other sensory modalities (for 

reviews see Dormal and Collignon, 2011; Heimler et al., 2014). Amedi and colleagues 

(2007) found that following auditory-to-visual sensory substitution training using the vOICe, 

participants showed greater BOLD signal activation in the lateral occipital complex (LOC), a 

region thought to be dedicated to visual processing of shape information. However, the LOC 

has also been shown to process shape information in the tactile domain (Peltier et al., 2007; 

Pietrini et al., 2004), and increased functional connectivity between the auditory cortex and 

LOC has been found after training with an auditory-to-visual SSD (Kim and Zatorre, 2008). 

Thus, the LOC likely processes more abstract object–form information regardless of the 

sensory modality of the input. This result suggests that the observed crossmodal recruitment 

of the visual cortex by sensory substitution devices could be due to the unravelling of pre-

existing computations through nonvisual inputs, present prior to using the SSD (e.g., Ptito et 

al., 2005; Striem-Amit et al., 2012; see also Ptito et al. 2018, for a review). Beyond the LOC, 

typically nonauditory areas such as the left precentral sulcus and the right occipital-parietal 

sulcus also show differential activity following sensory substitution training (Striem-Amit et 

al., 2011). Further evidence has shown that following sensory substitution training with the 

vOICe, functional connectivity shifts away from sensory networks towards task-positive 

networks involved in top-down modulations (Murphy et al., 2016; Deen et al., 2015). 

Thus, research is now converging on an understanding of sensory substitution in line 

with notions that the brain functions in a primarily task-selective and sensory-independent 

manner (Chan et al., 2018; Heimler and Amedi, 2020; Reich et al., 2011; Striem-Amit et al., 

2011). In other words, while certain brain regions show a dominance of one sensory 

modality, they are able to perform their specific task if they receive relevant input from other 

sensory channels (Maidenbaum et al., 2014). This provides promise that brain regions are 

able to maintain or regain functionality in a disrupted modality from the organised input of 

other sensory channels. 

In parallel to this task-selective and sensory-independent view, another account of 

sensory substitution has drawn parallels with synaesthesia, suggesting that sensory 

substitution is a form of ‘artificially induced synaesthesia’ (Farina, 2013; Proulx, 2006, 2010; 

Ward and Wright, 2014). In the next section, we evaluate whether sensory substitution can be 

understood as a form of artificial synaesthesia. To meet this aim, we first identify and discuss 

several previous suggestions for a link between synaesthesia and sensory substitution. We 

then consider each of the established core characteristics of synaesthesia and whether these 

apply to sensory substitution. 

 

2. The Artificial Synaesthesia View of Sensory Substitution 

 

Synaesthesia is a condition in which people make unusual associations between various 

sensations. The stimulus triggering the unusual association can be sensory (e.g., the printed 

letter A, see Grossenbacher and Lovelace, 2001), conceptual (e.g., the result of an arithmetic 

operation, see Dixon et al., 2000) or emotional (e.g., Ward, 2004). For example, an 

individual may perceive numerals and letters to be associated with vivid sensations of certain 

colours, referred to as grapheme–colour synaesthesia — one of the most common and 

frequently studied forms of synaesthesia (Jäncke et al., 2009). There is now a broad 

consensus that the condition emerges at an early developmental stage with behavioural 

markers emerging as young as six years old (Simner et al., 2009) and remaining constant 

throughout the lifespan (see Auvray and Deroy, 2015, for a review on synaesthesia). The 

condition also appears to have a genetic basis and runs in families (Asher et al., 2009; Brang 

and Ramachandran, 2011). 

In recent years, the possibility of inducing synaesthetic experiences in 

nonsynaesthetes, typically referred to as ‘artificial synaesthesia’, has become a topic of 
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burgeoning interest. Research has sought to demonstrate synaesthesia-like experiences as a 

result of training (e.g., Bor et al., 2015), post-hypnotic suggestion (e.g., Cohen Kadosh et al., 

2009), psychedelic drug use (e.g., Luke and Terhune, 2013), flavour perception (Stevenson 

and Boakes, 2004; Stevenson and Tomiczek, 2007) and the use of sensory substitution 

devices (e.g., Farina, 2013; Proulx and Stoerig, 2006; Ward and Meijer, 2010). These 

phenomena have each been (in)directly linked to synaesthetic experience because they either 

induce some form of conscious concurrent experience or show patterns of crossmodal 

interference that characterise canonical cases of synaesthesia (such as the Stroop interference 

effect, e.g., Mills, 1999; see Eagleman et al., 2007, for a review of the existing tests). 

Interest in the possibility of inducing artificial synaesthesia broadly attempts to better 

understand the mechanisms underlying synaesthesia itself. However, sometimes this 

endeavour is reversed with research attempting to explain a phenomenon as merely a special, 

or ‘artificial’, form of synaesthesia. This has been the case particularly for sensory 

substitution. Indeed, some have proposed that sensory substitution may be a form of 

artificially induced synaesthesia (Farina, 2013; Proulx, 2006; Proulx, 2010; Ward and 

Wright, 2014). For example, Ward and Meijer (2010) state that “Acquired synaesthesia may 

well be an inevitable consequence of long-term adaptation to a sensory substitution device”. 

Since these claims, many studies continue to refer to synaesthesia as among the existing 

explanations of sensory substitution (e.g., Bermejo et al., 2015; Haigh et al., 2013; Hamilton-

Fletcher et al., 2016; Loomis et al., 2013; Renier and De Volder, 2013; Safran and Sanda, 

2015). For instance, Hamilton-Fletcher et al. (2016) introduce a sensory substitution device 

called ‘The Syneastheatre’ and state “SSDs that co-exist with sight give the potential for 

users to experience colour–sound synaesthesia”. Similarly, Haigh and colleagues (2013) 

state that “Certainly one broad goal for work on sensory substitution is to ultimately provide 

the phenomenological experience of vision in a form of synthetic synaesthesia”. However, the 

purported links between synaesthesia and sensory substitution have not yet undergone 

enough critical appraisal to justify such an explanation. 

 

2.1. Main Claims Made by the Synaesthesia View of Sensory Substitution 

 

The synaesthesia view of sensory substitution posits that (i) experience with SSDs is akin to 

the substituted information (i.e., it is visual in nature if using the vOICe for example), and 

that (ii) both the substituted and substituting information are consciously perceived 

simultaneously. Next, we assess these claims, with a focus on SSDs that compensate for 

vision with either auditory or tactile input. 

 

2.1.1. Is Experience During SSD Use ‘Visual’? 

The synaesthesia view of sensory substitution assumes that the perceptual experience of 

trained users is ‘visual’ in nature. This question of whether users’ perceptual experience is 

‘visual’ has been a topic of considerable debate within the sensory substitution literature 

since the very first devices emerged. As was previously mentioned (see above, section 1 

Sensory Substitution: Theories and Mechanisms), the ‘cortical dominance’ view (e.g., Block, 

2003; Keeley, 2002; Prinz, 2006) proposed that after extensive training with an auditory-

visual SSD perceptual representation remains within the substituting modality (i.e., auditory) 

rather than the substituted modality (i.e., ‘visual’). In contrast, the ‘cortical deference’ view 

(e.g., Hurley and Noë, 2003; Noë, 2004; O’Regan, 2011) proposed that the experience lies in 

the substituted modality, such that perception can be considered as ‘visual’. These early 

views often made their case by emphasising the importance of one (or a combination of 

several) of the criteria traditionally used to distinguish between sensory modalities. This has 

often led to contradictory conclusions regarding the dominance versus deference debate. For 

instance, the dedication criterion, i.e., whether or not the sensory organ was evolutionarily 
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dedicated to process that type of stimulus, is central to Keeley’s (2002) case for cortical 

dominance whereas the sensorimotor equivalence criterion is central to O’Regan’s (2011) 

case for cortical deference. Some authors, reviewing all these criteria, have arrived at 

different conclusions, either in favour of the cortical deference view (Ward and Wright, 

2014) or as an argument to move beyond the dominance vs. deference debate (Auvray and 

Myin, 2009; see also Pacherie, 1997, for a philosophical discussion of the relevance of these 

criteria for sensory substitution). In the last decade, a consensus has arisen that SSD use does 

not constitute a transfer between unisensory modalities (i.e., auditory information is not 

experienced as visual per se in the case of the vOICe), but rather SSD use reflects a complex 

multisensory experience (e.g., Arnold et al., 2017; Cecchetti et al., 2016; Heimler et al., 

2015; Martin and Le Corre, 2015; Proulx et al., 2014, 2016, Stiles and Shimojo, 2015). Thus, 

the first claim for a synaesthesia view of sensory substitution as being visual in nature is not 

in line with the most recent theories in the field. 

Furthermore, behavioural studies have investigated whether SSD use is ‘visual’ or not 

by testing users' sensitivity to illusions that are typically thought to rely on visual 

mechanisms (Renier et al., 2005, 2006). For example, Renier et al (2005) sought to 

determine whether users of a visual–auditory SSD would be sensitive to the Ponzo illusion, 

in which observers perceive two identical horizontal lines as nonidentical when surrounded 

by two converging lines. The converging lines are thought to act as perspective cues, biasing 

the observer to believe that one horizontal line is further away than the other. Due to 

mechanisms of size constancy, the visual system then interprets the ‘further away’ line as 

longer. Renier et al. (2005) found that sighted-blindfolded individuals using the SSD were 

susceptible to the illusion, even though the sensory input they received was auditory. 

However, participants with little to no visual experience (early blind) were not sensitive to 

the illusion. This suggests that early visual experience is necessary for ‘visual-like’ 

experiences during SSD use and is inconsistent with the view that the auditory input is 

represented in itself as ‘visual’. Others have also noted similarly disparate findings when 

sensory substitution is applied to the blind versus blindfolded-sighted populations (for a 

review see Poirier et al., 2007), highlighting that activation of occipital areas in users of 

SSDs may reflect crossmodal plasticity in the blind, but visual imagery in blindfolded-

sighted individuals. Together, this suggests that ‘visual-like’ experiences arising during the 

use of SSDs cannot so far be disentangled from any additional top-down information arising 

from pre-existing visual imagery or visual memory. 

The need to cautiously differentiate the results obtained by blind and blindfolded-

sighted participants applies to many aspects of SSD research. For instance, the translation 

code used by SSDs is often based on research on sighted adults, where a crossmodal 

association has been found (for example high pitch can be associated to an elevating line). 

However, some recent research has not found such crossmodal associations in blind adults 

(Deroy et al., 2016), a population for whom most SSDs are developed. This creates 

fundamental but also practical problems, and highlights that caution is required when 

universally applying translation codes across typical and blind populations. 

Moreover, synaesthesia is often linked to sensory substitution because both 

phenomena involve an atypical perceptual experience elicited by the processing of a 

qualitatively different stimulus to that which would normally give rise to that experience 

(Ward and Wright, 2014). For example, alphanumeric letters do not normally give rise to the 

experience of certain colours for nongrapheme–colour synaesthetes. The synaesthesia view 

of sensory substitution claims that the same holds for trained users of SSDs, such that an 

atypical (‘visual’) perceptual experience, that would not normally occur, is elicited by the 

processing of a qualitatively different (auditory or tactile) stimulus. Indeed, the substituting 

information is qualitatively different from any ‘visual’ experience SSDs users may have, 

even if this entails visual imagery. However, this does not necessarily support the view that 
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sensory substitution is a form of artificial synaesthesia. Indeed, the same could be said for the 

learning and remembering of any relationship between two otherwise unrelated stimuli, yet 

mechanisms of associative learning and memory are not described as ‘artificial synaesthesia’. 

Thus, the fact that both phenomena involve relationships between otherwise unrelated 

percepts is not a strong argument for a synaesthesia view of sensory substitution. 

 

2.1.2. Are the Substituted and Substituting Information both Consciously Perceived? 

Synaesthetic experience first requires a pairing between a triggering stimulus, referred to as 

an ‘inducer’, and a ‘concurrent’, which is the experience of another percept involuntarily 

triggered by the inducer (Grossenbacher and Lovelace, 2001). Synaesthetes often report 

conscious access to both the inducer and the concurrent. Indeed, for grapheme–colour 

synaesthetes, attending to the inducer stimulus (and thus being consciously aware of the 

stimulus) appears to be necessary in order to experience the concurrent (Mattingley, 2009). 

The synaesthesia view of sensory substitution argues that the same holds for the substituted 

and substituting information in trained SSD users. This suggests that the auditory or tactile 

information provided by the device should not be perceptually lost, yet some authors defend 

the idea that in trained SSD users, access to the substituting information appears to fade 

(O’Regan, 2011; O’Regan and Noë, 2001), challenging the view that the substituted and 

substituting information are both consciously perceived. 

Many of the claims equating SSD use and synaesthesia re-occurring in the literature 

refer to the verbal reports from one of the two participants in Ward and Meijer’s (2010) study 

who described her experiences as analogous to a form of “monochrome artificially induced 

synaesthesia”. However, while she describes her experience as being akin to synaesthesia, 

her report also highlights that she switched her attention between the different impressions 

that the sounds give rise to, which is at odds with synaesthetic experiences. This is 

problematic for the synaesthesia view of sensory substitution as there is no substantive 

evidence that both the substituted and substituting information are consciously perceived. 

Initially, SSD users may be acutely aware of the device and the stimulation it provides. 

However, with training they begin to ignore the substituting information provided by the 

device and instead perceive a distal object. This notion of ‘transparency’ describes the 

assimilation of the sensorimotor contingencies that make using the device ‘second nature’ 

(Stewart and Khatchatourov, 2007) and is at odds with the synaesthetic experience of a 

consciously accessible inducer and concurrent. 

Furthermore, concerning the substituted information, SSDs are used in a goal-directed 

manner such that the user almost always seeks to complete a given task with the device, for 

example to localise, identify and interact with an object. A user can either rely on the 

substituting information to complete a task (i.e., actively deduce the required information 

from the pattern of auditory information) or rely on the substituted information to complete 

the same task (e.g., see Siegle and Warren, 2010, for a comparison between these two modes 

with a minimalist SSD). The general understanding is that users transition from the former to 

the latter with increased training and familiarity with the device. However, in trained users, 

there is then a certain amount of redundancy in both of these perceptual experiences reaching 

awareness in order to complete the same task. This may not be the case for synaesthesia, in 

which the experience is not linked to a goal-directed or task-oriented context in the same 

sense. Indeed, it is difficult to see how the involuntary experience of a colour elicited by a 

sound (in sound-to-colour synaesthesia) could aid completion of any task that one is set. 

Thus, there is no redundancy in the content of the different information (i.e., sounds and 

colours) in synaesthesia and therefore no reason for only one to reach perceptual awareness. 

Furthermore, for sensory substitution a redundancy in perceiving both the substituting and 

the substituted information concurrently questions the assumption that they are qualitatively 

different from each other. 
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2.2. Does Sensory Substitution Adhere to the Essential Criteria for Synaesthesia? 

 

The former section questioned two claims central to a synaesthesia view of sensory 

substitution: (i) perception with SSDs is akin to the substituted information (i.e., ‘visual’ in 

nature) and (ii) both the substituted and substituting information are consciously perceived 

simultaneously. Considerable caveats to these central claims were identified. The aim in this 

section is to determine if sensory substitution adheres to the essential criteria that 

characterises synaesthetic experiences. Four fundamental criteria are used to characterise 

synaesthesia: (i) an inducer–concurrent pairing; (ii) the relative idiosyncrasy of the pairings; 

(iii) the automaticity of the process; and (iv) the consistency over time. These criteria have 

been used in the past to evaluate the validity of a synaesthetic view of different processes 

(see details in Auvray and Farina, 2017
1
; Grossenbacher and Lovelace, 2001; Terhune et al., 

2017; see also Deroy and Spence, 2013; Ward, 2013; Ward and Mattingley, 2006). Next, we 

evaluate whether sensory substitution adheres to each of these criteria in order to establish 

whether an ‘artificial synaesthesia’ view of sensory substitution is tenable. Results are 

summarised in Table 1. 

 
Table 1. 

Summary of the criteria characterising synaesthesia (columns) and the fulfilment of those criteria by various 

phenomena (rows), including developmental synaesthesia (upper row), the perceptual experience of sensory 

substitution including the associated phenomenology and additional experiences such as phosphenes (middle 

row) and the substituted information during sensory substitution (lower row). The terms ‘Yes’ and ‘No’ are 

used when the claim is not controversial. ‘Debated’ is added when there are existing data, but their 

interpretation is subject to controversy. ‘Lack of Data’ is used when more empirical data are needed. 

 
 

Cases Inducer–concurrent 

pairing 

Idiosyncrasy Automaticity  Consistency 

Developmental synaesthesia Yes Yes Yes Yes 

Sensory substitution: 

perceptual experience  
Debated 

Yes 

(narrow set) 
Lack of data Lack of data 

Sensory substitution: 

substituted information 
Lack of data No Lack of data Yes 

 

2.2.1. Inducer–Concurrent Pairing 

As mentioned in the previous section, synaesthetic experience first requires a pairing 

between an inducer and a concurrent. The synaesthesia view of sensory substitution suggests 

that the substituting information — the stimulation provided by the device (e.g., auditory 

soundscapes for the vOICe) — is akin to the inducer in synaesthetic experience (e.g., a sound 

that induces the vivid sensation of colour in sound-to-colour synaesthesia, i.e., 

chromaesthesia). The substituted information during SSD use (e.g., ‘visual’ information 

when using the vOICe) is then considered akin to the conscious concurrent in synaesthetic 

experience (e.g., the vivid experience of a colour induced by sound for sound-to-colour 

                                                
1
 Note that Auvray and Farina (2017) provide a critique of the research on transient and artificially induced 

forms of synaesthetic experiences, including but not limited to sensory substitution, in order to determine the 

boundaries of synaesthesia. Here, we focus on sensory substitution and expand on whether or not it should be 

considered as a form of ‘artificial synaesthesia’. 
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synaesthetes). The links between the substituting information and the inducer, as well as the 

substituted information and the concurrent seem rather intuitive, given that in both cases a 

stimulus gives rise to a percept not normally experienced. 

There are some reports suggesting that the associated phenomenology when using a 

SSD could be considered akin to the concurrent in synaesthetic experience. For example 

Ward and Meijer (2010) report descriptions from two individuals who became blind later in 

life and had been using the vOICe for more than 10 years. One of these trained users (PF) 

describes her experiences as analogous to a form of “Monochrome artificially induced 

synaesthesia only in certain frequencies of sound” (Ward and Meijer, 2010, p. 497). 

Subjective reports like these may support the idea that the associated phenomenology of 

using an SSD can be akin to the experience of a concurrent for synaesthetes. However, the 

same user also suggests that her experience is more complex than usual vision per se: 

“Because my mind automatically records it as a visual sound. It has to be in a certain 

vOICe frequency. I understand that now. But you can’t use a high car horn and it 

becomes a vision of a car. But if I hear a car horn, I see it in my mind through the 

‘vOICe sight’. I don’t think of it like I used to ‘see sight’. The vOICe sight, I call it The 

vOICe sight.” (Ward and Meijer, 2010, p. 498) 

Furthermore, the status of these perceptual experiences is rather unclear as they are difficult 

to disentangle from visual mental imagery, or visual memory. Beyond these subjective 

reports, there are no quantitative data so far that link the associated phenomenology of SSD 

use with the experience of a concurrent in synaesthetic experience. 

This interpretation also neglects a critical distinction between the substituted 

information and the content of one's perceptual experience when using an SSD, termed the 

associated phenomenology. First, perception in sensory substitution can be understood at the 

level of information processing, such that it can be inferred from knowledge of the 

translational code (e.g., a visual round, small and bright object might be inferred from a 

soundscape with a particular set of properties). However, perception in sensory substitution 

can also refer to the associated phenomenology. For example, the associated phenomenology 

might be the subjective experience that the apple is seen, heard, or an experience that even 

resembles a sonar-like experience (Auvray et al., 2007). It could also lead to additional 

experiences such as impressions of light (i.e., phosphenes) elicited by the soundscapes, which 

may not necessarily relate directly to the translation code but are nonetheless joined to the 

perceptual experience of using the device. When parallels are drawn between sensory 

substitution and synaesthesia, it is often unclear whether the substituted information or the 

associated phenomenology constitutes the perceptual ‘concurrent’ that is elicited. These 

different views are summarised in Fig. 1, which depicts the synaesthesia view of sensory 

substitution as well as the canonical views of sensory substitution. 

Another important aspect of the inducer–concurrent pairing in synaesthesia is that 

both are consciously accessible. Indeed, for grapheme–colour synaesthetes attending to the 

inducer stimulus (and thus being consciously aware of the stimulus) appears to be necessary 

in order to experience the concurrent (Mattingley, 2009). However, as mentioned earlier, 

some have suggested that access to the substituting information fades in trained users 

(O’Regan, 2011; O’Regan and Noë, 2001). 
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Figure 1. Comparison of different views: (a) Synaesthesia, example of sound-to-colour synaesthesia, where the 

unimodal input, termed the ‘inducer’ (i.e., hearing a sound), elicits an additional experience, termed the 

‘concurrent’ (i.e., experiencing red); leading to the percept of a sound and a colour, that are both consciously 

accessible (denoted by the ‘+’) (b) ‘Synaesthesia view’ of sensory substitution, with the example of an auditory-

to-visual Sensory Substitution Device (SSD), such as the vOICe. The substituting modality (e.g., an auditory 

soundscape), is considered akin to the inducer in synaesthesia, and the substituted modality (i.e., vision) is 

considered akin to the concurrent, leading to the percept of both a sound and a visual object, that are both 

consciously accessible (denoted by the ‘+’). It is clear that this view differs considerably from the canonical 

view of sensory substitution, depicted below. (c) The canonical views of sensory substitution with an auditory-

to-visual SSD, such as the vOICe. Substituted information (e.g., an apple) is captured by a camera and 

converted using a translation code into substituting information (i.e., an auditory soundscape). Depending on the 

different theories, and likely depending on prior knowledge and training with the device, the resulting 

perceptual experience can be either (i) a soundscape alone, (ii) a combination of auditory and ‘visual’ 

information relating to the object (note that the vOICe lacks translation of colour information), or (iii) a ‘visual’ 

object alone without conscious access to the substituting auditory information. 

 

2.2.2. Idiosyncrasy 

Synaesthetes experience something additional when perceiving an inducer stimulus that 

nonsynaesthetes do not. This can also be said for users of SSDs, whose experience is 

similarly not shared by nonusers. However, synaesthesia is also highly idiosyncratic in the 

sense that it manifests itself in a personal way for the same inducer stimulus (Grossenbacher 

and Lovelace, 2001). For example, not all grapheme–colour synaesthetes perceive the same 

letter as being associated with the same colour, even within the same family or between twins 

(Barnett et al., 2008). Some evidence has shown broad patterns of associations across sound–

colour synaesthetes specifically, for example between treble and brighter colours, bass and 

darker colours, loud sounds and large shapes and soothing sounds and small shapes (Ward et 

al., 2006). However, for users of SSDs, the feature pairings are necessarily determined by the 

translational code inherent to the device. For example, all users of the vOICe must associate 

the same properties of a soundscape to the same properties of visual objects. Thus, there is no 

clear idiosyncrasy regarding the processing of the substituted information in sensory 

substitution. In terms of the associated phenomenology, it is difficult to gauge the 
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idiosyncrasy of individuals' experiences with SSDs from the data currently available. Indeed, 

very few instances are reported in which individuals reported experiencing some form of 

colour or light (Ward and Meijer, 2010). For example, Ward and Meijer (2010) report one 

SSD user who experiences colour, although these experiences have emerged very slowly 

over time. The user first described her experiences as  

“black and white and all the little gradients in between”. Then five years later she stated that 

“Before my brain wasn’t seeing the finer detail. Over time my brain seems to have developed, 

and pulled out everything it can from the soundscape and then used my memory to color 

everything” (Ward and Meijer, 2010, p. 487). This last example could suggest that SSD users 

do have relatively idiosyncratic perceptual experiences; however, this is so far the only 

known report. It is noteworthy that the seemingly vast array of possible pairings experienced 

by synaesthetes appears to far outweigh the rather limited set of possible idiosyncrasies 

available for users of SSDs (i.e., colours and light). 

 

2.2.3. Automaticity of the Process 

Synaesthetic experience is considered automatic such that it does not result from a conscious 

decision but is triggered by passive exposure to an inducer stimulus (Dixon et al., 2000), 

although the inducer must be attended to elicit the experience of a concurrent (e.g., Deroy 

and Spence, 2013; Sagiv et al., 2006). Some have suggested that after training, SSD use 

becomes automatic (Stiles and Shimojo, 2015) and that from this moment the device and the 

sensory processing becomes ‘transparent’. Similarly, Farina (2013) suggested that “after 

extensive practice, the device gets increasingly transparent, its boundaries progressively fade 

away, and the perception experienced through the coupling with it becomes involuntary.” (p. 

652). However, quantitative data on the automaticity of ‘visual’ experiences during SSD use 

are lacking. 

Furthermore, if the experience of the substituted information does indeed become 

automatised, this then becomes difficult to reconcile with the notion that the substituting and 

substituted information should both be consciously perceived. Before training, the experience 

may lack automaticity (i.e., the substituted information is cognitively deduced from 

knowledge of the transformation code), whereas after training the experience may lack 

conscious access to the substituting information. Users could conceivably regress to the 

substituting modality, but this may then compromise automaticity. Note that the seemingly 

difficult reconciliation between automaticity and dual-conscious access remains purely 

speculative and such claims do require further empirical investigation. To examine the 

automaticity of sensory substitution, further studies should test for interference effects, for 

example using adapted Stroop tasks (Stroop, 1935). If large interference effects between 

incongruent and congruent/neutral stimuli are observed, this would provide evidence for an 

involuntary and automatic perceptual experience during SSD use. 

A first attempt to disentangle these views was conducted in a recent study in our lab. 

Before and after training with The vOICe (Meijer, 1992), participants were tested to see 

whether auditory stimuli would spontaneously evoke visual images (Pesnot-Lerousseau, 

Arnold, and Auvray, in prep.), using an adapted version of the Stroop paradigm (Stroop, 

1935), consisting of an auditory recognition task combined with the simultaneous 

presentation of visual distractors. Results revealed a stroop-like interference effect only after 

training, suggesting that people visualise auditory stimuli. This could support the notion of 

automaticity following training with an SSD. However, the question of whether the 

interference appears at the visual or at a supramodal level, as well as the influence of visual 

imagery in the processes, remains unclear and requires further investigation. 

 

  



12 

2.2.4. Consistency over Time 

Synaesthesia is also characterised by a high degree of consistency, such that the sensations 

evoked by stimuli do not change over time. Consistency tests are often considered the ‘gold 

standard’ for establishing genuine cases of synaesthesia (Baron-Cohen et al., 1996; Cytowic, 

1989; Rich and Mattingley, 2002). Probable synaesthetes often undergo a surprise re-test 

approximately six months after an initial test in order to establish consistency over time, with 

80% accuracy typically required to be considered a genuine case of synaesthesia. 

Users of SSDs are not typically subjected to consistency tests over time, so, to our 

knowledge, there are no similar quantitative data to confirm or disconfirm the consistency of 

the perceptual experience with sensory substitution. However, assuming the user is able to 

effectively complete tasks with SSDs, it can be assumed that the substituted information is 

consistent. In other words, as the translation code remains the same over time, the same 

object (substituted information) is likely to be translated with the same substituting 

information, suggesting a consistency over time of the substituted information, in line with a 

synaesthesia view. Regarding the associated phenomenology, there is only one verbal report 

suggesting that the user's experience did not change over time (from PF in Ward and Meijer, 

2010). However, even though PF reported consistency over time, she also reported the fact 

that perception of depth and colour emerged after several years of training. This suggests that 

while her shape perception remained stable over time (one of the easiest parameters to be 

trained on), her perceptual experience became richer with time. Thus, more evidence is 

needed to establish whether the associated phenomenology of sensory substitution is 

consistent over time. It is also noteworthy that depending on training and individual 

differences, the perceptual experience while using an SSD may change over time, unlike the 

experience of the concurrent for synaesthetes. 

 

2.3. Conclusions Regarding Sensory Substitution as a Form of Artificial Synaesthesia 

 

First, we have highlighted a number of caveats with the synaesthesia view of sensory 

substitution, which claims that the perceptual experience of using a sensory substitution 

device can be considered as a form of ‘artificial synaesthesia’. In particular, we have 

critically assessed the two underlying assumptions that (i) perceptual experience when using 

SSDs is ‘visual’ and (ii) that both the substituting and substituted information are consciously 

accessible, which are far from being granted. 

Next, we assessed whether sensory substitution adheres to the four essential criteria 

that characterise synaesthesia. Regarding the perceptual experience of using SSDs (i.e., the 

associated phenomenology), there appears to be no clear evidence for an inducer-concurrent 

pairing, automaticity, or consistency over time. Users’ perceptual experience could be 

considered somewhat idiosyncratic, but with a far narrower set (e.g., phosphenes or 

perception of colour) compared to synaesthesia. It should also be noted that the data 

supporting idiosyncrasy of SSD experience are derived from the subjective reports of only 

two documented cases, thus further evidence is required. Regarding the substituted 

information, it does appear to be consistent over time, and an inducer-concurrent pairing 

seems tenable, given the translation code. However, the extent to which both the substituted 

and the substituting information are consciously perceived awaits further empirical data and 

no idiosyncrasy is observed. 

In canonical cases of synaesthesia, only one type of concurrent is elicited by a given 

inducer. For instance, in grapheme–colour synaesthesia exposure to an alphanumeric letter 

may elicit the involuntary experience of a colour. In sound–colour synaesthesia, exposure to 

a sound may similarly elicit the involuntary experience of a colour. For sensory substitution, 

exposure to the substituting information (i.e., soundscapes or tactile stimulation depending on 

the device), can elicit the experience of either the substituted information and/or the 

https://www.sciencedirect.com/science/article/pii/S0010027704002094#bib4
https://www.sciencedirect.com/science/article/pii/S0010027704002094#bib4
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associated phenomenology. Thus, a parallel between synaesthesia and SSD use requires 

specifying the output as either the substituted information or the associated phenomenology. 

Here, we showed that in either case, sensory substitution only adheres to at most two of the 

four essential criteria that characterise synaesthesia. Taken together, one should avoid using 

the analogy between sensory substitution and synaesthesia, as this risks erroneous accounts 

of sensory substitution mechanisms. 

 

3. Beyond the Unisensory Perceptual Assumption: Perspectives and Open Questions 

 

As demonstrated above, synaesthesia may not provide a useful explanatory framework for 

understanding sensory substitution. Sensory substitution is also not the only phenomenon to 

recently be linked to synaesthesia. Indeed other phenomena described as forms of ‘artificial 

synaesthesia’ include experiences elicited from over-training of stimulus pairings (e.g., Bor 

et al., 2015), the use of psychedelic drugs (e.g., Terhune et al., 2016), post-hypnotic 

suggestion (e.g., Cohen Kadosh et al., 2009) and sweetness enhancement in flavour 

perception (Stevenson and Boakes, 2004; Stevenson and Tomiczek, 2007). The extent to 

which these phenomena can and should be described as ‘artificial synaesthesias’ is also 

controversial. Indeed, many of these examples do not meet the essential criteria that 

characterise synaesthesia (for reviews see Auvray and Farina, 2017; Deroy and Spence, 

2013; Luke and Terhune, 2013; Terhune et al., 2016, 2017). The over-generalisation of 

synaesthesia to seemingly related phenomena could risk fundamental misunderstandings of 

the mechanisms underlying these phenomena. Furthermore, treating such a wide range of 

phenomena as genuine or even artificial synaesthetic experiences could undermine the 

understanding of synaesthesia as a unitary concept. Most importantly here, the analogy with 

synaesthesia might lead to erroneous interpretations of data gathered on sensory substitution. 

The synaesthesia view, as well as the earlier cortical dominance and deference views, 

remained within a unisensory perceptual interpretation of sensory substitution. This 

unisensory assumption considers that sensory substitution follows what occurs with 

canonical cases of perception in which specialized unisensory channels transduce external 

information. This assumption has led to a confirmation bias in the interpretation of the results 

(see Deroy and Auvray, 2012). Furthermore, the experimental protocols themselves are built 

with this unisensory assumption in mind which constrains the kind of data gathered. This 

occurred in early studies concerning (i) brain activation, where mostly unisensory brain areas 

were investigated, (ii) phenomenological reports, as SSD users were asked questions 

assuming their experience would be unisensory, (iii) behavioural measures, as participants 

underwent unisensory perceptual tasks. Alternative multisensory models have begun to 

emerge, particularly regarding brain mechanisms; however, multisensory approaches to 

research on the associated phenomenology and behaviour during SSD use are still lacking. 

In line with the view of the functional organisation of the brain as a task-selective and 

sensory-independent machine (Maidenbaum et al., 2014), we highlight that the brain is not 

composed of strictly modality-dependent regions, but should be viewed as a collection of 

densely interconnected networks also comprising many modality-independent regions. Thus, 

sensory substitution likely arises through the reweighting of functional connectivity between 

different sensory and sensory-independent networks. In other words, rather than touch being 

perceived in visual cortical areas, eliciting ‘visual’ percepts, it is more likely that connections 

between somatosensory, visual and sensory-independent structures are reinforced to support 

performance on a task while using a sensory substitution device. 

However, there are still key unanswered questions regarding such task-selective and 

sensory-independent functional brain networks. Some researchers have noted a key 

distinction between what has been referred to as a meta/supramodal account of brain 

organisation (Kupers and Ptito, 2011; Pascual-Leone and Hamilton, 2001; Ricciardi and 
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Pietrini, 2011) and a crossmodal plasticity account (for a review see Proulx et al, 2014. Both 

accounts acknowledge the sensory-independent nature of functional brain organisation, in 

which brain regions are involved in a given form of information processing (e.g., shape 

recognition), regardless of the sensory modality of the input. However, they differ in their 

fundamental assumptions regarding development. While crossmodal plasticity is thought to 

arise through cortical reorganisation following sensory deprivation (i.e., a response to 

developmental perceptual experience), meta/supramodal representations are thought to exist 

independently of developmental experience. These competing accounts may not be mutually 

exclusive as it is also possible that crossmodal plasticity, following from sensory deprivation, 

results from an unmasking of existing meta/supramodal organisation (Kupers and Ptito, 

2011). Further research on the influence of developmental visual experience could help to 

disentangle different accounts of the functional organisation of the brain. 

 

4. Conclusions and Future Research 
 

To summarize, we have emphasized the need to move beyond the synaesthesia analogy and 

the unisensory perceptual account of sensory substitution. This highlighted the need to gather 

new data in order to disentangle the remaining views of sensory substitution. In particular, it 

still remains unknown whether at different timepoints after training with SSDs, both the 

substituted and the substituting information are consciously perceived. Furthermore, 

quantitative data on the automaticity of sensory experiences during SSD use are lacking. One 

way to study this is to use adapted Stroop tasks (Stroop, 1935). As mentioned in section 2.2, 

Does Sensory Substitution Adhere to the Essential Criteria for Synaesthesia?, one recent 

study made a first attempt (Pesnot-Lerousseau, Arnold and Auvray, in prep); however, from 

their results, the question of whether the interference appears at the visual or at a supramodal 

level, as well as the influence of visual imagery, remains unclear and requires further 

investigation. Moreover, gathering additional subjective reports over time with users of SSDs 

could reveal whether participants’ experience resembles more visual, auditory, or cognitive 

processes. Further reports of additional experiences such as phosphenes, beyond the two 

reported so far (Ward and Meijer, 2010), could also shed light on common phenomenological 

experiences with using SSDs. 

In addition, links between the neural mechanisms and the associated phenomenology 

of sensory substitution are relatively unknown. In tactile training experiments (not to be 

confused with sensory substitution experiments), some blind participants spontaneously 

reported experiencing visual qualia and these participants were also found to recruit the 

occipital cortex more than those who did not report visual qualia (e.g., Ortiz et al., 2011). 

Furthermore, none of the sighted-blindfolded participants reported visual experiences as a 

result of training. This approach, of investigating subjective reports alongside neural activity, 

could prove useful for sensory substitution research in establishing relations between the 

associated phenomenology and the neural mechanisms underpinning sensory substitution. 

Furthermore, it highlights the need to consider that those who are more permanently deprived 

of a sense, such as the blind, may have a considerably different subjective experience while 

using SSDs to neurotypical individuals, as a function of their developmental visual 

experience. Thus, the relationship between the neural mechanisms of sensory substitution 

and the associated phenomenology experienced by the user could be a promising avenue for 

future research on the nature of sensory substitution. 
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