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Abstract

Finite time stability is investigated for continuous system ẋ = f(x) which satisfies
uniqueness of solutions in forward time. A necessary and sufficient condition for
finite time stability is given for this class of systems using Lyapunov functions.
Then, a necessary and sufficient condition is developed for finite time stabilization
of class CLk−affine systems ẋ = f (x) + g (x) u involving a class CL0−settling-time
function for the closed-loop system. Finally an explicit feedback control is addressed
by using a control Lyapunov function verifying a certain inequality.

Key words: Finite time stability, Lyapunov functions, finite time stabilization,
control Lyapunov function.

1 Introduction

Researchers have studied the asymptotic stability since its emergence at the
end of the 19th and the beginning of the 20th century with the fundamental
theorem of Lyapunov in [1]. But there is a problem which concerns a partic-
ular property of asymptotic stability: finite time stability, i.e. the solutions of
an asymptotic system reach the equilibrium point. This problem and more
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precisely the time required for solutions to reach the equilibrium (which is
called the settling-time) concern engineers. For example, such property is use-
ful to design higher order sliding controller (see [2] or [3]). The knowledge of
the settling-time function and its regularity property allow to characterize the
finite time stability by using Lyapunov functions.

This paper deals with the finite time stability of systems with the unique-
ness of solutions in forward time and the finite time stabilization problem of
affine systems. The aim is to provide a necessary and sufficient condition for fi-
nite time stability and finite time stabilization. Lyapunov-like techniques have
been successfully used to solve these problems. Finite time stability and sta-
bilization have often been a subject of research. Thus, Haimo gives a sufficient
condition for finite time stability of continuous systems

ẋ = f(x), x ∈ Rn (1)

in [4]. Bhat and Bernstein provided an important contribution in [5] by prov-
ing that there is a necessary and sufficient condition for finite time stability
involving the continuity of the settling-time function at the origin. A part of
our results is based on [5] (the reader can find some additional and useful
results in this paper). In general (without the continuity of the settling-time
function at the origin) such necessary and sufficient conditions have not been
discussed in the literature.

Our first main goal is to give such a necessary and sufficient condition for the
finite time stability of systems involving the uniqueness of solutions in forward
time without supposing the continuity of the settling-time function at the ori-
gin. As in the seminal result [4, Fact 1], our approach is to split the finite time
stability into the asymptotic stability and the finite time convergence. The
existence of the Lyapunov function is equivalent to the asymptotic stability
and we add an integral property to the Lyapunov function which is equivalent
to the finite time convergence. So, the first main result of this article is that,
under certain mild assumption on f (uniqueness of solutions in forward time),
there exists a necessary and sufficient condition for finite time stability. The
uniqueness of solutions in forward time of a system is an intermediate prop-
erty between existence of solutions and uniqueness of solutions. Then, we may
deduce a corollary that gives a sufficient condition for the continuity of the
settling-time function. These general results involve a Lyapunov function and
the system flow. Nevertheless, if we want to only use a Lyapunov function it is
necessary to assume the continuity of the settling-time function at the origin.

Finite time stability allows to solve the finite time stabilization problem. This
finite time stabilization was developed in [6–8] for particular systems, as for
example the n−order integrator. In this paper, we further develop some re-
sults which appear in [5], in order to study the regularity of the settling-time
function outside the origin. This leads to an intermediate result which shows
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that with a more regular system (class CLk−system) the finite time stability
involving a continuous settling-time function at the origin is equivalent to the
existence of a more regular Lyapunov function (class CL∞−function) satisfy-
ing the classical differential inequality V̇ (x) ≤ −c(V (x))α with 0 < α < 1.
This result allows us to investigate the finite time stabilization problem of
class CLk−affine systems by using control Lyapunov functions. So, the sec-
ond main result of this article is that the finite time stabilization of class
CLk−affine systems involving the continuity of the settling-time function at
the origin for the closed-loop system is equivalent to the existence of a class
CL∞−control Lyapunov function satisfying a certain differential inequality.
The last result concerns the construction of an explicit feedback control by
using an extension of the Sontag control given in [9].

The paper is organized as follows. After some notations in section 2, section 3
states a general necessary and sufficient condition for the finite time stability
using the properties of the settling-time function. Then a necessary and suffi-
cient condition of finite time stabilization using the control Lyapunov function
is addressed in section 4. Based on this result, an explicit feedback control is
given under some less restrictive sufficient conditions.

2 Notations

Let us introduce some notations and definitions that will be useful later.

Notation 1 Let E and F be two vector spaces and k ≥ 1, we denote by
CL0 (E ,F) (respectively CLk (E ,F)) the set of continuous functions on E, lo-
cally Lipschitz on E \ {0} with value in F (respectively the set of continuous
functions on E, Ck on E \ {0} with value in F).

Throughout this paper, V will be a non empty neighborhood of the origin in
Rn, Bn the open unit ball in Rn. As usually, a function V : V → R is proper if
for every compact set K ⊂ R, V −1(K) is compact. System (1) possesses unique
solutions in forward time on U ⊂ Rn if for all x0 ∈ U and two right maximally
defined solutions of (1): φx0 : [0, Tφ[ → Rn and ψx0 : [0, Tψ[ → Rn, there exists
0 < Tx0 ≤ min {Tφ, Tψ} such that φx0 (t) = ψx0(t) for all t ∈ [0, Tx0 [. We may
assume that for each x0 ∈ U , Tx0 is chosen to be the largest in R≥0. In the
following, φx0 (t) denotes a solution of system (1) starting from x0 ∈ Rn at
t = 0. Various sufficient conditions for forward uniqueness can be found in
[10], [11, Chapter 10] or [12].

Now, let us recall some concepts of non-smooth analysis. Let [a, b] ⊂ R, the
upper Dini derivative of a function f : [a, b] ⊂ R → R is the function D+f :
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[a, b] → R defined by:

D+f (x) = lim sup
h→0+

f (x + h)− f (x)

h
.

If V : V → R is a continuous function, V̇ is the upper-right Dini derivative
of V along the solutions of (1), that is V̇ (x) = D+ (V ◦ φx) (0). If V is locally
Lipschitz at x ∈ V , then

V̇ (x) = lim sup
h→0+

V (x + hf(x))− V (x)

h

and if V is continuously differentiable at x ∈ V , then V̇ (x) = 〈∇V (x), f(x)〉.
As it is customary in control theory, a Lyapunov function V for the system
(1) is a continuous positive definite function such that V̇ is negative definite.
The Lie derivative of V : Rn → R along f : Rn → Rn is defined by:

LfV : Rn → R, LfV (x) = 〈∇V (x), f(x)〉 .

In section 4, we need some concept on set-valued functions. A set-valued func-
tion Φ from X to Y is a function that maps x ∈ X to a set Φ (x) ⊂ Y . Let X
and Y be two vector spaces and Φ : X → Y a set-valued function, Φ is lower
semi-continuous if {x ∈ X : Φ (x) ∩O 6= ∅} is open in X for every open set
O ⊂ Y .

Φ is locally Lipschitz if for any x0 ∈ X , there exists a neighborhood N (x0) ⊂
X and a constant l ≥ 0 such that for all x, x′ ∈ N (x0),

Φ(x) ⊂ Φ(x′) + l ‖x− x′‖X BY

where BY is the unit ball in Y .

3 Finite time stability of systems with the uniqueness of solutions
in forward time

Let us consider the system (1) where f ∈ C0 (Rn), f(0) = 0 and when f
possesses the property of uniqueness of solutions in forward time. Let us recall
the asymptotic stability which is a local property. The origin is asymptotically
stable for the system (1) if:

(1) the origin is stable for the system (1),
(2) the origin of the system (1) is attractive: for all ε > 0, there exists δ (ε) > 0

such that each solution starting from x0 ∈ δ (ε)Bn tends to the origin as
t tends to infinity.
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Now, we may recall the notion of finite time stability involving the
settling-time function (see [5, Definition 2.2])

Definition 2 The origin is finite time stable for the system (1) if there exists
a non empty neighborhood of the origin V in Rn such that:

(1) there exists a function T : V \ {0} → R≥0 such that if x0 ∈ V \ {0} then
φx0(t) is defined (and particularly unique) on [0, T (x0)[, φx0(t) ∈ V \ {0}
for all t ∈ [0, T (x0)[ and lim

t→T (x0)
φx0(t) = 0. T is called the settling-time

of the system (1).
(2) for all ε > 0, there exists δ (ε) > 0, for every x0 ∈ (δ (ε)Bn \ {0}) ∩ V,

φx0(t) ∈ εBn for all t ∈ [0, T (x0)[.

Remark 3 First, note that if the origin of system (1) is finite time stable,
then f cannot possess uniqueness in backward time at the origin, in particular
f cannot be locally Lipschitz at the origin.

Then, if system (1) is finite time stable, Lyapunov asymptotic stability implies
that φ0 ≡ 0 is the unique solution starting from x0 = 0. So, the settling-time
function T may be extended at the origin by T (0) = 0. We will also call this
extension the settling-time of the system (1).

The following result is given in [5, Proposition 2.3].

Lemma 4 Suppose that the origin is finite time stable for the system (1)
with the settling-time function T : V → R≥0, then for all x ∈ V the flow
Φ(t, x) = φx (t) of the system (1) is defined and continuous on R≥0 × V and
Φ(t, x) = 0 for all t ≥ T (x).

This result shows that the finite time stability of system (1) implies:

• the uniqueness in forward time of solutions starting from V ,
• the asymptotic stability,
• the existence of a continuous flow.

Finally, T (x) is the time for the solution φx to reach the origin, and as the
system is autonomous, the Lyapunov stability ensures that the solution stays
at the origin for any time longer than T (x). Then, the equality is as follows

T (x) = inf {t ∈ R≥0 : Φ(t, x) = 0} . (2)

Let us recall the fundamental theorem of Kurzweil which is in [13, Theorem
7].

Theorem 5 (of Kurzweil) Let us consider the system (1) such that f is
continuous, the system (1) is asymptotically stable if and only if there exists
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a smooth Lyapunov function for the system (1).

Here, the theorem 5 of Kurzweil is of importance because we cannot have the
Lipschitz continuity at the origin of the right-hand side of the system (1).
Let us give the main result of this section which is a general necessary and
sufficient condition for finite time stability.

Theorem 6 Let us consider the system (1) with uniqueness of solutions in
forward time outside the origin, the following properties are equivalent:

(i) the origin of the system (1) is finite time stable on V,
(ii) there exists a smooth Lyapunov function V : V → R≥0 for the system (1)

satisfying for all x ∈ V
∫ 0

V (x)

ds

V̇ (Φ (θx (s) , x))
< +∞ (3)

where θx is the inverse of t 7→ V (Φ (t, x)),

Moreover, if (i) or (ii) is checked, all smooth Lyapunov functions V : V → R≥0

for the system (1) satisfy for all x ∈ V
∫ 0

V (x)

ds

V̇ (Φ (θx (s) , x))
< +∞

and

T (x) =
∫ 0

V (x)

ds

V̇ (Φ (θx (s) , x))
.

Proof. (i) ⇒ (ii) If the system (1) is finite time stable with the settling-
time function T : V → R≥0, then, there exists a smooth Lyapunov function
V : V → Rn for the system (1) given by the theorem 5 of Kurzweil. So,
the well defined application [0, T (x)[ → ]0, V (x)], t 7→ V (Φ (t, x)) is strictly
decreasing and differentiable, so its inverse ]0, V (x)] → [0, T (x)[, s 7→ θx (s)
is differentiable and satisfies for all s ∈ ]0, V (x)],

θ′x (s) =
1

V̇ (Φ (θx (s) , x))
.

The use of the change of variables s = V (Φ (t, x)) leads to the following
equalities

T (x) =
∫ T (x)

0
dt =

∫ 0

V (x)
θ′x (s) ds =

∫ V (x)

0

ds

−V̇ (Φ (θx (s) , x))
< +∞. (4)

(ii) ⇒ (i) As there exists a Lyapunov function for the system (1), the theorem
of Lyapunov (see [14]) ensures that the origin of the system (1) is asymptoti-
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cally stable. The equalities (4) imply the finite time convergence.

If (i) or (ii) is checked, the set of smooth Lyapunov functions for the system
(1) SL is non empty. Let V ∈ SL, then by using the same argument as before,
we deduce that V satisfies (3).

Remark 7 If the Lyapunov function V is defined on Rn, proper, and if the
condition (ii) is globally held, then, the origin of the system (1) is globally
finite time stable.

Even if theorem 6 is a theoretical result, we may give a simple example.

Example 8 Let us consider the Cauchy problem





ẋ = −x

x (0) = 1

and the smooth Lyapunov function V (x) = x2

2
. Then, V (φ (t)) = e−2t, θ (s) =

−1
2
ln (s) and φ (θ (s)) =

√
s lead to V̇ (φ (θ (s))) = −s where s > 0. We have

T (1) =
∫ 1

2

0

ds

s
= +∞.

Theorem (6) ensures that the system ẋ = −x is not finite time stable.

In general, the settling-time function is not continuous at the origin. Let us
recall the fundamental example given in [5, Example 2.2] which shows that the
settling-time function of a finite time stable system is generally non continuous
at the origin.
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Example 9 Consider the function f : R2 → R2 defined by




ṙ = −√r cos θ

θ̇ = −√θ
on QI = {x ∈ R2 \ {0} : x1 ≥ 0, x2 ≥ 0} ,





ṙ = 0

θ̇ = r cos θ −
√

π
2

sin θ
on QII = {x ∈ R2 \ {0} : x1 < 0, x2 ≥ 0} ,





ṙ = 0

θ̇ = −r
on QIII = {x ∈ R2 \ {0} : x1 ≤ 0, x2 < 0} ,





ẋ1 = −√x1 − x2
2

ẋ2 = 0
on QIV = {x ∈ R2 \ {0} : x1 > 0, x2 < 0} .

as shown on Figure 1 with f(0) = 0, r > 0, θ ∈ [0, 2π[ and x = (x1, x2) =
(r cos (θ) , r sin (θ)).

 
Fig. 1.

• (Uniqueness of solutions in forward time) The system is locally Lipschitz
on R2 except on the positive x1−axis X+

1 and the negative x2−axis X−
2 . It

follows from [12, Proposition 2.2] and [11, Ch 10, lemma 2] that the system
defined on figure (1) possesses a unique solution in forward time on X−

2 . On
X+

1 , f is simply given by ẋ1 = −√x1, ẋ2 = 0 which ensures the uniqueness of
solutions for the initial conditions in X+

1 . So the system has the uniqueness
of solutions in forward time for every condition in R2 \ {(0, 0)}.
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• (Stability) V (x1, x2) = x2
1 + x2

2 is a Lyapunov function for the system.
• (Finite time convergence) To show the global finite time convergence, Bhat

and Bernstein show, in [5, Example 2.2], that the solutions starting in QIV

and QIII ∪ QII enter QIII and QI respectively, in a finite amount of time,
while the solutions starting in QI converge to the origin in finite time.

• (Discontinuity at the origin) Bhat and Bernstein consider, in [5, Example

2.2], the sequence {xm}m∈N where xm = (xm1, xm2) =
(
0,− 1

m

)
and they

show that
T (xm) ≥ mπ

2
→

m→+∞ +∞,

which implies the discontinuity at the origin.

Now, we may give a corollary to theorem 6 which gives a sufficient condition
for a continuous (or class CL0) settling-time function.

Corollary 10 Let us consider the system (1) with the uniqueness of solutions
in forward time outside the origin. Let us assume that there exists a smooth
Lyapunov function V : V → R≥0 for the system (1) and g ∈ L1 ([0, supx∈V V (x)])
such that for all x ∈ V \ {0}, and all s ∈ [0, V (x)]

−1

V̇ (Φ (θx (s) , x))
≤ g (s)

then the system (1) is finite time stable with a continuous settling-time func-
tion.

Proof. If there exists a smooth Lyapunov function V : V → R≥0 for the
system and a function g ∈ L1 ([0, supx∈V V (x)]) such that for all x ∈ V \ {0},
and all t ∈ [0, V (x)]

−1

V̇ (Φ (θx (s) , x))
≤ g (s)

then
∫ V (x)
0

−ds
V̇ (Φ(θx(s),x))

≤ ∫ V (x)
0 g (s) ds < +∞ for all x ∈ V \ {0}. As T (0) = 0,

we may deduce that the system (1) is finite time stable. Moreover, lim
‖x‖→0

T (x) ≤
lim
‖x‖→0

∫ V (x)
0 g (t) dt = 0, so the settling-time function is continuous at the ori-

gin. To conclude, we may invoke the following result [5, Proposition 2.4.] which
shows that T is continuous at the origin if and only if T is continuous on its
domain of definition V .

Theorem 6 is quite general. Nevertheless, its application is not easy because
the flow is generally unknown. In order to study the stabilization problem,
we prefer to restrict the problem to the case of a continuous settling-time
function at the origin. We could refer to a result given in [5] in order to use a
necessary and sufficient condition involving a Lyapunov function only. We may
be inclined to use a more regular settling-time function in order to find a more
regular Lyapunov function. This is important for the problem of stabilization
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in section 4 when using the control Lyapunov functions. For this, we might
need the following lemma which is similar to a result given in [15, Lemma 5.1],
and [16, Lemma 16].

Lemma 11 Let O be a non empty open subset of Rn, and β : O → R,
µ, ν : O → R>0 three continuous functions. Suppose V : O → R is locally
Lipschitz on O. If for almost all x ∈ O,

〈∇V (x), f(x)〉 ≤ β(x)

then there exists a smooth function V̂ : O → R such that, for all x ∈ O,
∣∣∣V (x)− V̂ (x)

∣∣∣ ≤ µ(x)
〈
∇V̂ (x), f(x)

〉
≤ β(x) + ν(x).

Let us recall a result which can be found in [5, Theorem 4.2] for the sufficient
condition of finite time stability and [5, Theorem 4.3] for the necessary one.

Proposition 12 Consider the system (1) with the uniqueness of solutions in
forward time outside the origin, the following properties are equivalent:

(1) the origin of the system (1) is finite time stable with a continuous settling-
time function at the origin,

(2) there exists a real number c > 0, α ∈ ]0, 1[ and a Lyapunov function
V : V → R≥0 satisfying

V̇ (x) ≤ −c(V (x))α (5)

for all x ∈ V.

The construction of the Lyapunov function, in the proof given in [5, Theo-
rem 4.3], involved the settling-time function in the following sense: V (x) =

T (x)
1

1−α with α ∈ ]0, 1[ ( 1
1−α

> 1). As a Lyapunov function is at least continu-
ous, it involves the continuity of the settling-time function at the origin which
is equivalent to the continuity of the settling-time function on its domain of
definition (see [5, Proposition 2.4.]).

Now, we may give a variant of this result dedicated to the class CLk−systems
by using the fact that the class of systems with the uniqueness of solutions in
forward time is included in the class CLk−systems for all k ≥ 0.

Proposition 13 Let k ≥ 0, if f belongs to the class CLk then the following
properties are equivalent:

(1) the origin of the system (1) is finite time stable with a class CL0 settling-
time function,
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(2) there exists a real number c > 0, α ∈ ]0, 1[ and a class CL∞−Lyapunov
function V : V → R≥0 satisfying the condition (5).

Moreover, if V is a Lyapunov function satisfying the condition (5) then for all
x ∈ V,

T (x) ≤ V (x)1−α

c(1− α)
.

Proof. Suppose that 2) is verified. We can find in [5, Theorem 4.2] that the ex-
istence of the class CL∞−Lyapunov function V satisfying condition (5) implies

the finite time stability. Moreover, as x 7→ V (x)1−α

c(1−α)
is a class CL∞−function,

we deduce that T belongs to the class CL0.

Conversely, let us suppose that the origin of the system (1) is finite time stable
with a class CL0−settling-time function. By using the proof of proposition 12

which can be found in [5, Theorem 4.3], we know that V (x) = T (x)
1

1−α with
0 < α < 1 belongs to the class CL0 (V) and is a Lyapunov function for the
system (1) satisfying condition (5). Let 0 < k < c, we apply the lemma 11
with the open set V\{0}, and β(x) = −cV (x)α, µ(x) = 1

2
V (x), ν(x) = kV (x)α

to obtain a class CL∞−Lyapunov function V̂ such that,

1

2
V (x) ≤ V̂ (x) ≤ 3

2
V (x), x ∈ V ,

〈
∇V̂ (x), f(x)

〉
≤ −c′V̂ (x)α, x ∈ V \ {0} ,

with c′ = c− k > 0.

As it is shown in the next two examples, the Lyapunov function satisfying
condition (5) may be smooth everywhere.

Example 14 (scalar system) Let α ∈ ]0, 1[ and k > 0, it is easy to see that
the basic system

ẋ = −k |x|α sgn(x), x ∈ R
is finite time stable using the smooth Lyapunov function V (x) = x2

2
with the

well known class CL∞−settling-time function

T (x) =
|x|1−α

k (1− α)
.

Indeed, we have for all x ∈ R

V̇ (x) = −k |x|1−α = −2
1+α

2 k V (x)
1+α

2

11



with 1+α
2
∈ ]0, 1[. For this basic example, the solutions are explicit

φx0 (t) =





(
|x0|1−α − k(1− α)t

) 1
1−α sgn(x0) if 0 ≤ t ≤ |x0|1−α

k(1−α)
,

0 if t > |x0|1−α

k(1−α)

,

so we do not need a Lyapunov function. As it is recalled in the introduction,
the settling-time function is given by T (x) =

∫ 0
x

dy
f(y)

for finite time stable scalar

systems (see [4] and [17] for a proof of this basic result).

Example 15 (two dimensional system) Let us consider the system:





ẋ1 = − |x1|α sgn(x1)− x3
1 + x2

ẋ2 = − |x2|α sgn(x2)− x3
2 − x1

.

Taking V (x) = ‖x‖2
2

, we obtain V̇ (x1, x2) = − 2∑
i=1

(x4
i + |xi|α+1) ≤ 0. V is a

Lyapunov function for the system satisfying V̇ (x1, x2) ≤ −2
α+1

2 V (x1, x2)
α+1

2 .

Indeed,
2∑

i=1
(x4

i + |xi|α+1) ≥ (x2
1 + x2

2)
α+1

2 = ‖x‖α+1. Thus the origin is finite

time stable with a continuous settling-time function verifying T (x) ≤ 2‖x‖1−α

1−α
.

4 Finite time stabilization of the class CLk−affine systems

Let k ≥ 0, and consider the following affine system

ẋ = f0(x) +
m∑

i=1

fi(x)ui, x ∈ Rn and u ∈ Rm (6)

where fi ∈ CLk (Rn,Rn) for all 0 ≤ i ≤ m and f0(0) = 0 and the closed-loop
system

ẋ = f0(x) +
m∑

i=1

fi(x)ui(x), x ∈ Rn. (7)

Let us recall the definitions of the stabilization and the finite time stabilization.
We will restrict our study to the case of a class CL0−settling-time function for
the finite time stabilization. The control system (6) is stabilizable (respectively
finite time stabilizable) if there exists a non empty neighborhood of the origin
V in Rn and a feedback control law u ∈ C0 (V \ {0} ,Rm) such that:

(1) u (0) = 0,
(2) the origin of the system (7) is asymptotically stable (respectively finite

time stable with a class CL0−settling-time function).
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Here, we give a necessary and sufficient condition for the finite time stabiliza-
tion of the system (6) involving the continuity of the settling-time function at
the origin for the closed-loop system (7). We add a condition to the concept of
control Lyapunov function first defined in [18], which leads to the finite time
stabilization.

We are going to recall some usual definitions. A positive definite function
V ∈ CL∞ (V ,R≥0) is a control Lyapunov function for the system (6) if for all
x ∈ V \ {0},

inf
u∈Rm

(a (x) + 〈B (x) , u〉) < 0.

where a (x) = Lf0V (x), B (x) = (b1 (x) , ..., bm (x)) with bi (x) = Lfi
V (x) for

1 ≤ i ≤ m.

To obtain the finite time stabilization, we have to bring in the control Lya-
punov function V the following condition which holds for all x ∈ V \ {0} and
for a real number α ∈ ]0, 1[

inf
u∈Rm

(a (x) + 〈B (x) , u〉) ≤ −c (V (x))α . (8)

As usual, such a control Lyapunov function satisfies the small control property
if for each ε > 0, there exists δ > 0 such that, if x ∈ δBn, then there exists
some u ∈ εBm such that

a (x) + 〈B (x) , u〉 < 0.

Remark 16 If m = 1, the small control property is equivalent to

lim sup
‖x‖n→0

a(x)

|B (x)| ≤ 0.

The limit may very well be −∞.

We set b (x) = ‖B (x)‖2. The theorem 17 of Mickael given in [20] will help us
to show our main result on finite time stabilization. The version on Lipschitz
selection is given in [19, theorem 9.4.3].

Theorem 17 (of Mickael) Let X and Y be two metric spaces, for every
lower semi-continuous (respectively locally Lipschitz) set-valued function Φ :
X → 2Y , x 7→ Φ(x) where 2Y will denote the family of non-empty, closed,
convex subsets of Y it is possible to extract a continuous (respectively locally
Lipschitz) function f such that f (x) ∈ Φ(x) for all x ∈ X .

Theorem 18 The system (6) is finite time stabilizable under a class CL0−feedback
control if and only if there exists a control Lyapunov function for the system
(6) which satisfies the condition (8) for a real number α ∈ ]0, 1[ and the small
control property.
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Proof. If the control system (6) is finite time stabilizable, then the closed-
loop system (7) is finite time stable with a class CL0−settling-time function.
By using proposition 13, there exists a class CL∞−Lyapunov function V for
the closed-loop system (7) satisfying the condition (5) which implies that (8)
is valid. Moreover, by using the feedback control u(x) and its continuity, it
is easy to see that the control Lyapunov function satisfies the small control
property.
Conversely, if there exists a control Lyapunov function V : V → R≥0 for the
system (6) satisfying condition (8), then we introduce the set valued function
Φ defined for x ∈ V\ {0} by

Φ(x) = {v ∈ Rm : a (x) + 〈B (x) , v〉 ≤ −c(V (x))α} .

As v 7→ a(x) + 〈B (x) , v〉 is affine, it implies that for all x ∈ V\ {0}, Φ(x)
belongs to the family of non-empty closed convex subsets of Rm. As fi belongs
to the class CLk for all 0 ≤ i ≤ m and V ∈ CL∞ (V ,R≥0), a (x) + 〈B (x) , v〉+
c(V (x))α is locally Lipschitz for all x ∈ V \ {0}. Thus, we may deduce that Φ
is locally Lipschitz on V \ {0}. As V satisfies the small control property, it is
shown in [18, Theorem 4.3] that we may extend Φ on V by Φ(0) = {0} such
that Φ now is lower semi-continuous on V . We may apply the theorem 17 of
Mickael to find a selection u ∈ CL0 (V ,Rm). Then V is a class CL∞−Lyapunov
function for the closed loop system (7) satisfying condition 5. Thus, by using
proposition 13 we deduce that the system (6) is finite time stabilizable.

Theorem 18 provides a tool for the finite time stabilization with a class
CL0−settling-time function.

In practical terms, the resolution of the finite time stabilization is a delicate
task which has generally been studied for homogeneous systems of negative
degree with respect to a flow of a complete vector field. Indeed, for this kind
of systems, finite time stability is equivalent to asymptotic stability (see [21,6]
for more details). Nevertheless, if we want to use a control Lyapunov function
to obtain a constructive feedback control for finite time stabilization, we can
use a modified version of the Sontag feedback control given in [9].

Lemma 19 If there exists a continuously differentiable control Lyapunov func-
tion V : V → R≥0 for the control system (6), then it is stabilizable under the
feedback control u (x) = (u1 (x) , . . . , um (x)) defined by

ui (x) =




−bi (x)

a(x)+ p
√

a(x)p+b(x)q

b(x)
if x ∈ V\ {0}

0 if x = 0
(9)

where p, q ≥ 2 are even integers. If furthermore V satisfies the small control
property, then the feedback control (9) is also continuous at the origin.
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Proof. Suppose there exists a smooth control Lyapunov function V : V →
R≥0. Let

E =
{
(x, y) ∈ R2 : x < 0 or y > 0

}

and ϕ a function defined on E by

ϕ (x, y) =





x + p
√

xp + yq

y
if y 6= 0

0 if y = 0

.

As

lim
y→0

x + p
√

xp + yq

y
= lim

y→0

x + |x| p

√
1 + yq

xp

y

= lim
y→0

−yq−1

pxp−1
= 0,

ϕ is continuous on E. As V is a control Lyapunov function, then we know
that (a(x), b (x)) ∈ E for all x ∈ V\ {0}. Thus, we define the feedback control
by ui (x) = −bi (x) ϕ (a(x), b (x)). u (x) is continuous on V\ {0} and we obtain
for all x ∈ V\ {0}

〈
∇V (x) , f0 (x) +

∑m

i=1
fi(x)ui(x)

〉
= − p

√
a(x)p + b (x)q < 0.

So, V is a Lyapunov function for the closed-loop system (7), and by using the
Lyapunov theorem we know that the origin of the closed loop system (7) is
asymptotically stable.

The proof concerning the stabilization under the small control property is
similar to the one given in [9, Theorem 1].

Proposition 20 If there exists a continuously differentiable control Lyapunov
function V : V → R≥0 for the control system (6) verifying the small control
property and for all x ∈ V,

p

√
a(x)p + b (x)q ≥ cV (x)α

where p, q ≥ 2 are even integers, and where c > 0 and 0 < α < 1 then the
system (6) is finite time stabilizable under the continuous feedback control (9).

Proof. The asymptotic stability is proved using Lemma 19. It is shown in [9,
Theorem 1] that if V satisfies the small control property, the feedback control
(9) is continuous at the origin. The inequality

〈
∇V (x), f0(x) +

∑m

i=1
fi(x)ui(x)

〉
= − p

√
a(x)p + b (x)q

≤ −cV (x)α

ensures the finite time convergence by using proposition 12.
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Remark 21 Proposition 20 is also true for an only continuous control system
(6). The proof of the finite time convergence can be given by using a result of
Haimo in [4, Proposition 1].

Example 22 Let 0 < β, γ < 1 such that 4 (β + γ) < β + 1 (for example
β = γ = 1

8
) and consider the system





ẋ1 = − |x1|γ sgn(x1)− x2

ẋ2 = |x1|β sgn(x1) |x2|1−β + |x2|γ u
.

Using the class C1−function V (x) = |x1|β+1 + |x2|β+1, we obtain

a (x) = − (β + 1) |x1|β+γ

B (x) = (β + 1) |x2|β+γ sgn(x2)

b (x) = (β + 1)2 |x2|2(β+γ) .

As inf
u∈R

(a (x) + B (x) u) < 0 for x 6= 0, V is a control Lyapunov function for

the system. The fact that

a (x)

|B (x)| =
− |x1|β+γ

|x2|β+γ ≤ 0

and remark 16 implies that V satisfies the small control property. Now, by
using the feedback control (9) with (p, q) = (4, 2), we obtain

a (x)4 + b (x)2 = (β + 1)4
(
|x1|4(β+γ) + |x2|4(β+γ)

)

≥ (β + 1)4
(
|x1|β+1 + |x2|β+1

) 4(β+γ)
β+1 , 0 < 4(β+γ)

β+1
< 1

≥ (β + 1)4 V (x)
4(β+γ)

β+1 .

Thus 4
√

a(x)4 + b (x)2 ≥ (β + 1) V (x)α with α = β+γ
β+1

< 1, by using proposi-

tion (20) we know that the control system is finite time stabilizable under the
continuous feedback control

u (x) =
|x1|β+γ − 4

√
|x1|4(β+γ) + |x2|4(β+γ)

|x2|β+γ sgn(x2)
.

5 Concluding remarks

The problem of finite time stability of systems with the uniqueness of solutions
in forward time is solved for differential equations by giving a necessary and
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sufficient condition for the finite time stability involving a Lyapunov function.
Our results bring an answer to the question asked by Bhat and Bernstein
in the conclusion of their paper [5] concerning a stronger converse result for
finite time stability. Moreover, by using their results on finite time stability
involving continuity of the settling-time function at the origin, we have suc-
ceeded to solve the problem of the finite time stabilization of class CLk−affine
systems involving a class CL0−settling-time function. The universal controller
given by Sontag in [9] is extended to design a feedback control for the finite
time stabilization. Nevertheless, our paper raises certain questions that are
important from the point of view of the stabilization theory, in particular
the construction of a universal finite time feedback control using a control
Lyapunov function satisfying condition (8).
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