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Note that these bias reduced estimators are proposed in the R package Expectrem.

Introduction Expectile estimation
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Simulation study and real data example Quantiles [START_REF] Koenker | Regression quantiles[END_REF] have been recently criticized [START_REF] Acerbi | Spectral measures of risk: A coherent representation of subjective risk aversion[END_REF], [START_REF] Artzner | Coherent measures of risk[END_REF] for not being a coherent risk measure.

q(α) ∈ arg min

t∈R E [ρ α (Y -t) -ρ α (Y )] ,
where ρ α (y ) = |α -1 {y ≤0} | |y |. Some authors thus proposed expectiles [START_REF] Newey | Asymmetric least squares estimation and testing[END_REF] as an alternative :

e(α) = arg min t∈R E [η α (Y -t) -η α (Y )] ,
where η α (y ) = |α -1 {y ≤0} | y 2 .

Figure: Quantile (red) and expectile (blue) loss functions for α = 0.05, 0.5 and 0.95.

• According to [START_REF] Jones | Expectiles and M-quantiles are quantiles[END_REF], e(α) is solution of

E (y ) = E (Y -y )1 {Y >y } 2E (Y -y )1 {Y >y } + (y -E[Y ]) = 1 -α.
• According to [START_REF] Bellini | Generalized quantiles as risk measures[END_REF], if F (y ) = y -1/γ (y ), then

lim α→1 F (e(α)) 1 -α = γ -1 -1 ; lim α→1 e(α) q(α) = γ -1 -1 -γ , for γ < 1.
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Y 1 , . . . , Y n are i.i.d. realizations of Y . If α n << 1 -1/n (or equivalently n(1 -α n ) → ∞ as n → ∞
) is an intermediate sequence, two approaches have been considered for expectile estimation:

• The first one, used in [START_REF] Daouia | Estimation of tail risk based on extreme expectiles[END_REF], directly derives from the definition of expectiles:

e n (α n ) = arg min θ∈R n i=1
η αn (Y i -θ).

• The second one, introduced in [START_REF] Girard | Nonparametric extreme conditional expectile estimation[END_REF], uses the property of [START_REF] Jones | Expectiles and M-quantiles are quantiles[END_REF]:

e n (α n ) = inf y ∈ R | E n (y ) ≤ 1 -α n , with E n (y ) = n i=1 (Y i -y )1 {Y i >y } n i=1 |Y i -y | .

Extreme expectiles estimation

Let us assume lim t→∞ F (ty )

F (t) = y -1/γ .
In this context, extreme quantiles may be estimated using the Weissman estimator. If

β n >> 1 -1/n and α n << 1 -1/n, q(β n ) q(α n ) ≈ 1 -β n 1 -α n -γ ⇒ q * n (β n ) = q n (α n ) 1 -β n 1 -α n -γ
.

Since quantiles and expectiles are asymptotically proportional, the same approximation holds for extreme expectiles, and [START_REF] Daouia | Estimation of tail risk based on extreme expectiles[END_REF]] introduced

e * n (β n ) = e n (α n ) 1 -β n 1 -α n -γ or e * n (β n ) = q * n (β n ) γ -1 -1 -γ .

Tail index estimation

Let us consider the second order assumption (C 2 ):

∀y > 0, lim t→∞ 1 A(1/F (t)) F (ty ) F (t) -y -1/γ = y -1/γ y ρ/γ -1 γρ .
The most widespread estimator of the tail index γ is the Hill estimator:

γ H kn = 1 k n kn i=1 log Y n-i+1,n Y n-kn,n ,
where

k n → ∞ and k n /n → 0 as n → ∞. Under (C 2 ), and if √ k n A(n/k n ) → λ ∈ R, then k n γ H kn -γ → N λ 1 -ρ , γ 2 .
Using the asymptotic relationship between quantiles and expectiles, we can introduce the following tail index estimator (see [START_REF] Girard | Nonparametric extreme conditional expectile estimation[END_REF]):

γ E kn = 1 + n F n ( e n (1 -k n /n)) k n -1
. Why so much bias ?

Under (C 2 ) with 0 < γ < 1/2, and if √ k n A(n/k n ) → λ 1 ∈ R and √ k n q(1 -k n /n) -1 → λ 2 ∈ R, then √ kn γ E kn -γ → N γ γ -1 -1 1-ρ 1 -ρ -γ λ1 + γ 2 γ -1 -1 γ+1 E[Y ]λ2, γ 3 (1 -γ) 1 -2γ .
By doing the assumption that A(t) = bγt ρ , the following bias-reduced version of γ H kn is proposed in [START_REF] Gomes | Asymptotically unbiased" estimators of the tail index based on external estimation of the second order parameter[END_REF]:

γ H kn = γ H kn 1 - b 1 -ρ n k n ρ .
We thus propose a similar approach for γ E kn . For that purpose, we notice

F (e(α))/(1 -α) = γ -1 -1 (1 + r (α)), where 1 + r (α) = 1 - E[Y ] e(α) 1 2α -1 1 + A 1 F (e(α)) 1 γ(1 -γ -ρ) (1 + o(1)) -1 as α ↑ 1.
We thus introduce the following bias-reduced estimator:

γ E kn = 1 + n F n ( e n (1 -k n /n)) k n 1 1 + r (1 -k n /n) -1 , where 1 + r (1 -k n /n) = 1 - Y n e n (1 -k n /n) 1 1 -2k n /n 1 + b[ F n ( e n (1 -k n /n))] -ρ 1 -γ -ρ -1
.

Under some conditions concerning ρ and b, we can prove

k n γ E kn -γ → N 0, γ 3 (1 -γ) 1 -2γ .
We can find some bias reduction approaches for extreme quantile estimators (see for instance [START_REF] Gomes | A sturdy reduced-bias extreme quantile (VaR) estimator[END_REF]). The second order condition C 2 giving

q(βn) = q 1 - kn n n(1 -βn) kn -γ   1 + n(1-βn) kn -ρ -1 ρ A n kn (1 + o(1))    ,
we easily deduce, with

A(t) = bγt ρ , q * ,RB n (β n ) = q * n (β n ) 1 + [n(1 -β n )/k n ] -ρ -1 ρ bγ(n/k n ) ρ .
The bias reduction of extreme expectiles is less obvious, and 3 bias terms have to be eliminated, hence

e * ,RB n (β n ) = e * n (β n )(1 + B 1,n )(1 + B 2,n )(1 + B 3,n ) e * ,RB n (β n ) = e * n (β n )(1 + B 1,n )(1 + B 3,n )
, where

             1 + B 1,n = 1 + [n(1-βn)/kn] -ρ -1 ρ bγ(n/k n ) ρ 1 + B 2,n = 1 + r 1 -kn n γ 1 + (γ -1 -1) -ρ (1+r (1-kn n )) -ρ -1 ρ bγ( n kn ) ρ -1 1 + B 3,n = (1 + r (β n )) -γ 1 + (γ -1 -1) -ρ (1+r (βn)) -ρ -1
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For the Hill based estimators, we choose the k n which minimizes the following AMSE with A(t) = bγt ρ :

A n kn 2 (1 -ρ) 2 + γ 2 k n hence k H n =     (1 -ρ) 2 -2ρb 2 1/(1-2ρ) n -2ρ/(1-2ρ)     .
For γ E kn , we minimize the following Partial AMSE: If Y is heavy-tailed and g (1/.) regularly varying with index δ < -γ, then

γ(γ -1 -1) 1-ρ 1 -γ -ρ A(n/k n ) 2 + γ 3 (1 -γ) 1 -2γ × 1 k n , hence k E n = min       (γ -1 -1) 2ρ-1 (1 -γ -ρ) 2 -2ρb 2 (1 -2γ) 1/(1-2ρ) n -2ρ/(1-2ρ)     , n 2 -1   .
lim β↑1 Π g (e(β)) e(β) g (1 -β) = (γ -1 -1) -δ -δ/γ -1 ,
by taking an extreme expectile as retention level. We thus use our expectile estimators to approximate the reinsurance premium, and compare our results with those obtained with the data set secura in [START_REF] Vandewalle | On univariate extreme value statistics and the estimation of reinsurance premiums[END_REF], with two distortion functions: ). The premiums are estimated using γ H kn (solid blue curve), γ E kn (solid red curve) and the naïve estimator (dotted blue curve). The black curve is constructed by linear interpolation using the estimates found in [START_REF] Vandewalle | On univariate extreme value statistics and the estimation of reinsurance premiums[END_REF]. κ = 1.366.

g (x) = x (Net premium principle) g (x) = 1 -(1 -x)
• R package Expectrem, available at https://github.com/AntoineUC/Expectrem. • Girard, S., Stupfler, G. and Usseglio-Carleve, A. (2020) On automatic bias reduction for extreme expectile estimation, preprint.
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 :: Figure: Asymptotic variances of γ Hkn (black curve) and γ E kn (red curve) as functions of γ ∈ (0, 1).

Figure

  Figure: Π g (R) as function of R = e(β) for β ranging from 1 -10/n ≈ 0.973 to 1 -1/(8n) ≈ 0.9997 (here n = 370). The premiums are estimated using γ H kn (solid blue curve), γ E kn (solid red curve) and the naïve estimator (dotted blue curve). The black curve is constructed by linear interpolation using the estimates found in[START_REF] Vandewalle | On univariate extreme value statistics and the estimation of reinsurance premiums[END_REF]. κ = 1.366.

• We simulate n = 1, 000 independent realizations Y 1 , . . . , Y n of a Burr distribution:

• We consider ρ = -5, -1 and -0.5, and γ = 0.1, 0.2, 0.3 and 0.4.

• For each case, we estimate the expectile of level

Let Y be a claim amount, and R a retention level.

• Insurer pays min(Y , R).

• Reinsurer pays max(Y -R, 0).

The reinsurance premium Π(R) may be calculated using the distortion principle:

where g : [0, 1] → [0, 1] is a nondecreasing concave function.