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Can control of external flows improve the efficiency of 
vehicles, airplanes or wind-power plants? 


We address this question by designing controllers 
that could possibly improve the behaviour of fluid 
mechanics system [3], in several conditions


• Laminar to turbulent transition

• Separation zone

• Transonic buffet 

• Fluid structure interaction

• …


To this end, we test a Deep Reinforcement Learning 
(DRL) algorithm by applying it for the control of a non-
linear, chaotic system governed by the Kuramoto-
Sivashinsky (KS) equation [1]. 


DRL uses reinforcement learning principles for the 
determination of optimal control solutions and deep 
Neural Networks for approximating the value function 
and the control policy [1,2].
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We tested Deep reinforcement learning for the 
optimal non-linear control of a chaotic system [1], 
using an actor-critic algorithm, the Deep Deterministic 
Policy Gradient.


• Full knowledge of the system is not required.


• In principle, the policy is a global optimum if the 
cost function is solution of the Bellman equation.


• Current work: 2D numerical cavity flow and 3D 
experimental counterpart (fig. 5).

The critical parameter for the KS equation is the 
domain extent; we choose , corresponding to 
a chaotic regime. The equation reads 





and it is numerically solved in a periodic domain. This 
regime is characterised by 4 equilibria (Fig. 2). 


The controller is designed by solely relying on the 
measurements taken from 8 localised sensors (Fig. 3); 
the controller acts introducing a forcing ( ) on the 
system by means of 4 localised actuators.


The entire control design is meant to be as realistic as 
possible for mimicking realistic conditions (i.e. 
localised actuations and measurements).
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Three policies are designed, each of which 
minimising the distance between the current state 
and the target state, represented by one of the non-
trivial equilibria (Fig. 2). 

The reward is defined using the 2-norm and reads


           


with the discount factor equals .


The training of the control policies takes on average 
one hour of computation on a standard CPU.


In Fig. 4 we show how in each of the three cases the 
policies are capable at driving and stabilising the 
dynamics around the unstable points. The polices are 
robust with respect of the initial conditions as shown 
in [1].


r(t) = −∥x(t) − Ei∥

γ = 0.99

Reinforcement learning (RL) is based on the 
approximation of the Hamilton-Jacobi-Bellman 
(HJB) equation





 is the value function,  the reward,  the 
system,  the control action, and  is the 
discount factor. The discrete version, the Bellman 
equation leads to different approaches.


Actor-only: one policy  is tested on a long-time 
trajectory


.


The solution satisfies the Pontryagin maximum 
principle, a necessary solution of optimality. 

 is related to the discount factor.


Critic-only: the problem is decomposed in local 
problems, each associated with a policy/action 


.

ρ𝒥(x(t), t) = max
u

{r(x, u) + ∇𝒥(x(t), t)f(x, u)}

𝒥 r f
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π

𝒥π(xn) = r(x, u) + γ𝒥π(xn+1)

γ = e−ρt

u

Q(xn, un) = r(x, u) + γQ(xn+1, un+1)

The function is the value function when is function of the state  and the action . In this case the Bellman 
principle is satisfied, which is a necessary and sufficient condition for the optimality.

We use the Deep Determinist Policy Gradient (DDPG) combining the actor and critic strategies (Fig. 3). The 
control policy  and the function are approximated by using Neural Networks (NN).


The optimisation of the NN is done by stochastic gradient descent with adaptive moments (ADAM) and the 
partial-observed Markov Decision Process (PO-MDP) is iteratively stacked in memory and used to reduce the 
temporal difference .
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Fig. 3 - In the RL framework, an agent interacts with an environment by 
making observations and performing actions . In return, the agent 
receives a reward that depends directly on the changes of the 
environment induced by the action. The control policy  and the 
temporal difference  are approximated by means of neural networks.
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Fig. 1 - Efficient aerodynamic surfaces can have a deep impact for 
the design of vehicles, airplanes or wind-power plants. 
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Fig. 5 - Cavity flow, experimental setup at LIMSI.

Fig. 2 - Dynamics of the Kuramoto-Sivashinsky (KS) equation, for 
the domain extent . The null equilibrium and the three non-

trivial solutions are shown at  (leftmost in the insets).
L = 22

t = 0 Fig. 4 - Control of the KS system by means of RL.
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