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COMPACT COMPLEX NON-KÄHLER MANIFOLDS ASSOCIATED WITH
TOTALLY REAL RECIPROCAL UNITS

CHRISTIAN MIEBACH AND KARL OELJEKLAUS

Abstract. Using the theory of totally real number fields we construct a new class of com-
pact complex non-Kähler manifolds in every even complex dimension and study their analytic
and geometric properties.

1. Introduction

In this paper we construct a new class of compact complex non-Kähler manifolds in every
complex dimension n = 2d, d > 1, and investigate complex analytic and topological properties.

Using totally real number fields we construct first 4d-dimensional real solvable Lie groups
G admitting irreducible cocompact discrete subgroups Γ. This method works in general to
produce real solv-manifolds. Next we show that these Lie groups admit left invariant complex
structures. The left quotient X := Γ\G is then a compact complex manifold. In the case
d = 1, one recovers the Inoue surfaces noted S(+)

N in the famous paper [4].
In the following sections we prove that the identity component of the holomorphic automor-

phism group Aut0(X) is isomorphic to (C∗)d and that the whole group Aut(X) has infinitely
many components if d > 2.

The action of (C∗)d is free, induces a holomorphic foliation F which is transversely hyper-
bolic, and is preserved by the whole automorphism group. If d = 2, the restriction of certain
automorphisms of X to the tangent bundle TF has an Anosov property in the sense that this
bundle splits transversely into a stable and an unstable subbundle.

Furthermore we determine some topological invariants, prove that X is non-Kähler and
show that the algebraic dimension is zero.

Open questions are whether some of the here constructed manifolds are locally conformally
Kähler, whether they admit proper complex subvarieties, as well as whether they admit
Anosov diffeomorphisms relative to F also for d > 3.

2. The construction

In this section we explain in detail the construction of a new class of compact complex
manifolds. In the first two subsections we collect for the reader’s convenience a number of
well-known facts about simply-connected nilpotent Lie groups, their rational structures and
cocompact discrete subgroups, and the free 2-step nilpotent Lie algebra. In Section 2.3 we
shall see how particular totally real number fields K allow the construction of irreducible
rational structures on the d-fold product N of the three-dimensional real Heisenberg group.
Then we extend N by an Abelian group in such a way that the corresponding solvable group
possesses a cocompact discrete subgroup associated with the group of algebraic units in K, see
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2 CHRISTIAN MIEBACH AND KARL OELJEKLAUS

Section 2.4. Finally, we show that the so obtained solv-manifolds carry a complex structure,
which completes our construction.

2.1. Cocompact discrete subgroups of nilpotent Lie groups. In this section we recall
some facts related to cocompact discrete subgroups of simply-connected nilpotent Lie groups.
For proofs and more details we refer the reader to [6, Chapter II].

Let N be a simply-connected nilpotent real Lie group with Lie algebra n. A rational
structure on N consists of a rational subalgebra nQ of n such that nQ⊗QR ∼= n. Equivalently,
a rational structure on N is given by a basis B = (ξ1, . . . , ξn) of n such that for all 1 6 k < l 6 n
the coordinates of [ξk, ξl] with respect to B, i.e., the structure constants of n with respect to
B, are rational.

Two rational structures on N are called isomorphic if the corresponding rational Lie algebras
are isomorphic. A rational structure on N is called irreducible if nQ is not isomorphic to the
direct sum of two non-trivial ideals.

Remark. There are simply-connected nilpotent Lie groups N that do not admit any rational
structure. It is also possible that N possesses several non-isomorphic rational structures,
see [6, Remarks 2.14 and 2.15].

In order to explain how a rational structure on N yields cocompact discrete subgroups of N ,
we restate [6, Theorem 2.12] for the reader’s convenience. Let Λ ⊂ n be any lattice of maximal
rank contained in nQ. Then the group Γ generated by exp(Λ) in N is a cocompact discrete
subgroup of N . Any two discrete subgroups associated with the same rational structure are
commensurable. Conversely, if Γ ⊂ N is a cocompact discrete subgroup, then the Z-span of
exp−1(Γ) in n is a lattice of maximal rank in n and any basis of n contained in this lattice

defines a rational structure on N . If Γ̃ is commensurable with Γ, then the associated rational
structures are isomorphic.

Remark. It follows from the preceding considerations that the rational structure on N is irre-
ducible, if and only if the associated cocompact discrete subgroup of N is not commensurable
to the direct product of two non-trivial normal subgroups.

2.2. The free 2-step nilpotent Lie algebra. Let V be a 2d-dimensional real vector space
and let

∧2 V denote its exterior algebra. On the vector space V ⊕
∧2 V we define a Lie bracket

by [
(v, α), (w, β)

]
:= (0, v ∧ w).

The resulting Lie algebra is the free 2-step nilpotent Lie algebra f2d of dimension 2d+
(
2d
2

)
=

2d2 + d. We have

W :=

2∧
V = f′2d = Z(f2d),

where Z(f2d) denotes the center of f2d.
Let F2d be the simply-connected nilpotent Lie group with Lie algebra f2d.

Example. The Lie algebra f2 is isomorphic to the 3-dimensional Heisenberg algebra h3. An
explicit isomorphism is given by

h3 → f2,



0 x z
0 0 y
0 0 0


 7→ (xe1 + ye2, ze1 ∧ e2) ∈ R2 ⊕

2∧
R2.

On the group level, one can realize the 3-dimensional Heisenberg group as

H3 :=







1 x z
0 1 y
0 0 1


 ; x, y, z ∈ R



 .
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The map 

1 x z
0 1 y
0 0 1


 7→

(
x, y, z −

xy

2

)

yields an explicit isomorphism with the realization of the Heisenberg group as the free nilpotent
group F2, with group structure given by

(x, y, z)(x̃, ỹ, z̃) =

(
x+ x̃, y + ỹ, z + z̃ +

1

2
(xỹ − x̃y)

)
.

We shall therefore use in the sequel H3 as a model for F2.

The choice of any basis of V leads to a rational structure on F2d as follows. Let (e1, . . . , e2d)
be a basis of V and put fk,l := [ek, el]. Then

(e1, . . . , e2d, f1,2, f1,3, . . . , f2d−1,2d)

is a basis of f2d with respect to which the structure constants of f2d are rational. As explained
above, this procedure yields cocompact discrete subgroups of F2d.

2.3. Rational structures associated with totally real number fields. Let Q ⊂ K be a
field extension of degree 2d, d > 1, and let OK ⊂ K be its ring of algebraic integers. Choose
elements ω1, . . . , ω2d ∈ OK such that

OK
∼= Zω1 ⊕ · · · ⊕ Zω2d

as Z-modules.
We suppose that K is totally real, i.e., that all 2d embeddings σ1, . . . , σ2d : K → R ⊂ C are

real and consider the map σ : K → V := R2d given by σ(x) =
(
σ1(x), . . . , σ2d(x)

)
. It follows

that ΛK := σ(OK) ⊂ V is a lattice of maximal rank generated by ek := σ(ωk) for 1 6 k 6 2d.
Now, as mentioned above, the basis B =

(
e1, . . . , e2d

)
of V yields the basis

B̃ = (e1, . . . , e2d, f1,2, f1,3, . . . , f2d−1,2d)

of f2d and induces therefore a rational structure on F2d. In the following, (f2d)Q always denotes
the corresponding rational Lie algebra.

Let O∗
K be the (multiplicative) group of units in OK . We say that a unit u ∈ O∗

K is totally

positive if σj(u) > 0 for all 1 6 j 6 2d, and we write O∗,+
K for the group of totally positive

units. Due to Dirichlet’s theorem, the group O∗,+
K is isomorphic to Z2d−1.

The group O∗,+
K acts on ΛK as a group of Z-module automorphisms via

u · σ(x) := σ(ux).

Extending σ(x) 7→ σ(ux) to an R-linear map ρ(u) : V → V we obtain a representation

ρ : O∗,+
K → SL(V ).

Note that we have det ρ(u) = 1 for all u ∈ O∗,+
K since the eigenvalues of ρ(u) are the conjugates

λk = σk(u), k = 1, . . . , 2d, of u and thus all positive.

Remark. Every element of GL(V ) extends uniquely to an automorphism of the Lie algebra
f2d. If the matrix of ϕ ∈ GL(V ) with respect to B has rational coefficients, we obtain an
automorphism of (f2d)Q.

Note that by construction the matrix of ρ(u) with respect to B lies in SL(2d,Z) for every

u ∈ O∗,+
K . Hence, ρ(O∗,+

K ) is a discrete subgroup of SL(V ). Furthermore, ρ(u) induces an
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automorphism of f2d that leaves (f2d)Q invariant. We will denote this automorphism of f2d as
well as its restriction to (f2d)Q by ρ̂(u). Clearly, ρ̂(u) respects the decomposition

(f2d)Q = VQ ⊕WQ

and the eigenvalues of the restriction of ρ̂(u) to WQ are the products σk(u)σl(u) = λkλl,
1 6 k < l 6 2d.

We formulate the following lemma in our setting, but it remains also valid in a more general
form. Its proof is a slight adaptation of the proof of [1, Proposition 2.1.4].

Lemma 2.1. The set of all endomorphisms ρ(u) of VQ, u ∈ O∗
K is simultaneously diagonal-

izable over the Galois closure L of K.

Proof. Since the number field K is totally real, there is a primitive unit u0 ∈ O∗,+, see e.g.
[8, Theorem 1.4]. Note that VQ and K are isomorphic as rational vector spaces and that
ρ(u0) corresponds to multiplication by u0. It follows that the characteristic polynomial of
ρ(u0) coincides with the minimal polynomial of u0. Hence, ρ(u0) is diagonalizable over L and
each of its eigenvalues has multiplicity 1. Since the group O∗,+ is Abelian, it stabilizes every
eigenspace, which proves the claim. �

In order to proceed with the construction, we need the following lemma which was com-
municated to us with proof by Professor A. Dubickas. Recall that a unit u ∈ O∗,+

K is called
reciprocal if u and u−1 are conjugate, i.e., have the same minimal polynomial, which then is
palindromic. Moreover, u is primitive if K = Q(u).

Lemma 2.2. For every d > 1 there exist totally real number fields of degree 2d which admit

primitive reciprocal units.

Proof. Let α be a totally real algebraic integer of degree d and denote its minimal polynomial
by P (X). Let L be an integer so large that for each of the d roots αj, j = 1, . . . , d, of P (X)

we have L+αj > 2. Consider then the polynomial Q(X) = P (X+ 1
X
−L)Xd. It is clear that

Q is a monic palindromic polynomial of degree 2d with 2d real roots, since (L + αj)
2 > 4,

j = 1, . . . , d. Furthermore, for a generic choice of L, the polynomial Q is irreducible and its
roots are totally real reciprocal units of degree 2d. �

From now on we suppose that there exists a primitive reciprocal unit u0 ∈ O∗,+
K . In other

words, we suppose that u0 and u−1
0 are conjugate, as well as K = Q(u0).

Proposition 2.3. Let u0 ∈ O∗,+
K be a primitive reciprocal unit. Then there exists a ρ̂(u0)-

invariant rational decomposition

WQ = (W1)Q ⊕ (W2)Q

where W1 is the d-dimensional subspace of ρ̂(u0)-fixed points in W .

Proof. Since the characteristic polynomial of ρ(u0) is palindromic, we can arrange the eigen-
values λ1, . . . , λ2d of ρ(u0) such that λ2k = λ−1

2k−1 for all 1 6 k 6 d. Since the restriction of
ρ̂(u0) to W is diagonalizable with eigenvalues λkλl for 1 6 k < l 6 2d, we see that the sub-
space W1 of ρ̂(u0)-fixed points is of dimension d. Moreover, it follows that the characteristic
polynomial of ρ̂(u0)|W is divisible by (x − 1)d in Z[x]. This gives the desired decomposition
of WQ into two ρ̂(u0)-stable rational subspaces, see [5, Theorem XI.4.1]. �

Let us consider the rational Lie algebra

nQ := (f2d)Q/(W2)Q.

In the following we will view nQ as VQ ⊕
(
WQ/(W2)Q

)
. Note that WQ/(W2)Q coincides with

the center of nQ.
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Proposition 2.4. We have n := nQ⊗R ∼= hd3, i.e., the construction yields a rational structure

on N := Hd
3 . Moreover, this rational structure on N is irreducible.

Proof. Let (v1, . . . , v2d) be a basis of V such that ρ(u0)v2j−1 = λjv2j−1 and ρ(u0)v2j = λ−1
j v2j

for all 1 6 j 6 d. Set wj := [v2j−1, v2j ], j = 1, . . . , d. Then

Rv2j−1 ⊕ Rv2j ⊕ Rwj , j = 1, . . . , d,

is a subalgebra of f2d isomorphic to h3 which intersects W2 trivially. Using the decomposition
established in Proposition 2.3, one sees that these subalgebras commute pairwise modulo W2,
which proves the first claim.

In order to show that the rational structure on N is irreducible, suppose that we have a
decomposition nQ = aQ ⊕ bQ where aQ and bQ are non-trivial ideals of nQ. Then we have
n = hd3 = a⊕ b for a = aQ ⊗Q R and b = bQ ⊗Q R.

If an ideal of n contains an element of the form

ξ =
d∑

j=1

(
κjv2j−1 + µjv2j + νjwj

)

with (κj0 , µj0) 6= (0, 0), then this ideal contains also wj0 . Define

Ja :=



1 6 j0 6 d; ∃ ξ =

d∑

j=1

(
κjv2j−1 + µjv2j + νjwj

)
∈ a with (κj0 , µj0) 6= (0, 0)





and similarly Jb. Since n = a⊕ b, the preceding observation implies that Ja ∪ Jb = {1, . . . , d}
and that this union is disjoint. Therefore, we can suppose that Ja = {1, . . . , k} and hence get

π(a) =
k⊕

j=1

(Rv2j−1 ⊕ Rv2j) and π(b) =
d⊕

j=k+1

(Rv2j−1 ⊕ Rv2j),

where π : hd3 → V is the projection along the center of hd3.
Since π(a) and π(b) are invariant under ρ(u0) and since π is defined over Q, we obtain the

corresponding rational decomposition VQ = π(aQ) ⊕ π(bQ) into two rational ρ(u0)-invariant
subspaces. Now the claim follows from the fact that the characteristic polynomial of ρ(u0) is
irreducible over Q. �

As explained in Section 2.1 we can now define a cocompact discrete subgroup of N as
follows.

Definition 2.5. Let Λ̂K ⊂ V ⊕W/W2 be the full lattice generated by σ(ωk) ∈ V for 1 6 k 6

2d and the images of fkl =
[
σ(ωk), σ(ωl)

]
, k < l in WQ/(W2)Q for 1 6 k < l 6 2d. We define

ΓN to be the discrete cocompact subgroup generated by exp(Λ̂K) ⊂ N .

Remark. Due to Proposition 2.4, the group ΓN is not commensurable to the product of two
proper normal subgroups.

2.4. Solv-manifolds associated with totally real number fields. In this subsection, we
construct an extension of N by an Abelian group which admits a cocompact discrete subgroup
containing ΓN .

Recall that O∗,+
K can be considered as a discrete Abelian subgroup of SL(2d,R) which leaves

the lattice ΛK ⊂ VQ invariant. Moreover, its action extends to V ⊕W leaving WQ invariant.
Now we have

Proposition 2.6. The group O∗,+
K respects the decomposition WQ = (W1)Q ⊕ (W2)Q. Con-

sequently, every u ∈ O∗,+
K acts on nQ by an automorphism ρn(u).
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Proof. Due to Lemma 2.1, the transformations ρ(u) ∈ End(V ) with u ∈ O∗,+
K are simultane-

ously diagonalizable. Thus the same holds for the transformations ρ̂(u) ∈ GL(V ⊕W ). The
claim follows from the fact that W1 and W2 are direct sums of eigenspaces for ρ̂(u0). In fact,
W1 is the eigenspace corresponding to the eigenvalue 1 and W2 is a direct sum of eigenspaces
with eigenvalues not equal to 1. �

Since O∗,+
K acts on nQ by automorphisms, it respects the decomposition nQ = VQ ⊕Z(nQ)

where Z(nQ) ∼= (W1)Q as rational vector spaces. Consider the homomorphism

ϕ : O∗,+
K → SL

(
Z(nQ)

)
, ϕ(u) := ρn(u)|Z(nQ).

We define ΓA := ker(ϕ) ⊂ O∗,+
K . By construction, we have u0 ∈ ΓA.

Proposition 2.7. The subgroup ΓA ⊂ O∗,+
K has rank d, hence is isomorphic to Zd, and

consists of reciprocal units in O∗,+
K .

Proof. We note A the group of diagonal matrices in SL(2d,R) and consider O∗,+
K as a discrete

subgroup of A, see Lemma 2.1. Let a ∈ A be the matrix having eigenvalues t1, . . . , t2d. The
induced linear transformation on W1 is again diagonal with eigenvalues (t1t2, t3t4, . . . , t2d−1t2d)
and this yields a homomorphism ϕ̂ : A → SL(d,R) which extends ϕ.

Due to Dirichlet’s theorem, we can view ϕ as a homomorphism from Z2d−1 to SL(d,Z)
whose image consists of matrices that are simultaneously diagonalizable over R, hence as a
homomorphism ϕ : Z2d−1 → Zd−1. This implies that the rank of ΓA is at least d.

The Lie algebra a of A is the set of trace zero diagonal matrices, hence a ∼= R2d−1. The
derivative of ϕ̂ : A → SL(d,R) can be identified with the map R2d−1 → Rd−1 given by

(x1, . . . , x2d) 7→ (x1 + x2, x3 + x4, . . . , x2d−1 + x2d),

where we suppose that x1+ · · ·+x2d = 0. Since this map is surjective, its kernel is isomorphic
to Rd, which implies that the discrete subgroup ΓA ⊂ A is of rank at most d. �

Let us summarize our construction. We have seen that we can view O∗,+
K

∼= Z2d−1 as a
discrete subgroup of SL(2d,R) that normalizes ΓN . The identity component of its real Zariski

closure is Ã ∼= (R>0)2d−1 in SL(2,R), the elements of which are simultaneously diagonalizable.

Moreover, there is a subgroup ΓA
∼= Zd of O∗,+

K and the identity component of its real Zariski
closure is

A ∼=
{
(a1, b1, . . . , ad, bd) ∈ (R>0)2d; a1b1 = · · · = adbd = 1

}
∼= (R>0)d.

Consequently, ΓA acts on ΓN and we obtain the solvable discrete subgroup Γ := ΓA ⋉ ΓN

which is cocompact in A⋉N ∼= (R>0)d ⋉N and Zariski dense in (R∗)d ⋉N .
Since for a, b ∈ R>0 and x, y, z ∈ R we have



ab 0 0
0 b 0
0 0 1






1 x z
0 1 y
0 0 1






a−1b−1 0 0

0 b−1 0
0 0 1


 =



1 ax abz
0 1 by
0 0 1


 ,

one can realise the Lie group G̃ := Ã⋉N ∼= (R>0)2d−1 ⋉N as a matrix group isomorphic to







M1 0 · · · 0
0 M2 · · · 0
...

...
. . .

...
0 0 · · · Md




∣∣∣∣∣∣∣∣∣
Mi =



aibi xi zi
0 bi yi
0 0 1


 , ai, bi ∈ R>0, xi, yi, zi ∈ R, i = 1, . . . , d





.
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Under this isomorphism the group O∗,+
K corresponds to








D1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...
0 0 · · · Dd




∣∣∣∣∣∣∣∣∣
Di =



σ2i−1(u)σ2i(u) 0 0

0 σ2i(u) 0
0 0 1


 , i = 1, . . . , d, u ∈ O∗,+

K





.

Furthermore G := A⋉N ∼= (R>0)d⋉N is the subgroup of G̃ := Ã⋉N given by the equations

aibi = 1, i = 1, . . . , d and the subgroup ΓA ⊂ O∗,+
K corresponds to








D1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...
0 0 · · · Dd




∣∣∣∣∣∣∣∣∣
Di =



1 0 0
0 σ2i(u) 0
0 0 1


 , i = 1, . . . , d, u ∈ A





.

2.5. Left-invariant complex structure on G. The matrix group

S := R>0 ⋉H3 =







1 x v
0 b y
0 0 1



∣∣∣∣∣∣
b ∈ R>0, x, y, v ∈ R





acts linearly on C3. The affine hyperplane C2 × {1} of C3 is invariant under S. A direct
calculation shows that the orbit through the point z = (0, i, 1) is open, has trivial isotropy
and coincides with C×H+ × {1} where H+ ⊂ C is the upper half plane.

This proves the following result.

Proposition 2.8. The solvable real Lie group S admits a left-invariant complex structure

with respect to which it is biholomorphic to C×H+.

Consider now the natural action of G̃ on C3d. The orbit of the subgroup G through the
point (0, i, 1, 0, i, 1, . . . , 0, i, 1) ∈ C3d has trivial isotropy group, is biholomorphic to (C×H+)d

and hence gives a left-invariant complex structure on the real Lie group G.
Therefore, the left quotient X := Γ\G is a compact complex manifold.

2.6. A density property of ΓN . We continue to consider N ∼= Hd
3 and G ∼= Sd as matrix

groups consisting of block diagonal matrices as written down in the closing of Section 2.4.
Let

H :=








M1 0 · · · 0
0 M2 · · · 0
...

...
. . .

...
0 0 · · · Md




∣∣∣∣∣∣∣∣∣
Mi =



1 xi zi
0 1 0
0 0 1


 , xi, vi ∈ R, i = 1, . . . , d





.

Proposition 2.9. The subgroup ΓNH is topologically dense in the Lie group N .

Proof. Let K := (ΓNH
top

)0 be the identity component of the topological closure of ΓNH in
N . Since ΓNH is invariant under conjugation by elements of ΓA, we see that the same is true
for the subgroup K which has also the property that (K ∩ ΓN )\K is compact. Therefore the
Lie algebra k of K is compatible with the rational structure of n and the projection V ′ of k
along the center z(n) onto the vector space V has the same property. Furthermore, V ′ ⊂ V
is a u0-invariant non-trivial subspace compatible with the rational structure and this implies
that V ′ = V , see also the proof of Proposition 2.4. The proposition is proven. �
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3. Properties of the quotient manifolds

Let G = A ⋉ N = (R>0 ⋉ H3)
d = Sd be the solvable Lie group equipped with the left-

invariant complex structure such that G ∼= (C×H)d and let Γ = ΓA ⋉ ΓN be the cocompact
discrete subgroup constructed above. In this section we establish a number of topological and
complex geometric properties of the compact complex manifold X = Γ\G.

3.1. The CR-fibration with Levi-flat fibers, the transversally hyperbolic foliation
F and the Kodaira dimension. Let Z denote the center of G, which is also the center of N .
We first remark that X considered as a real solv-manifold admits the following commutative
diagram of equivariant fibrations, see [6, Proposition 2.17, Theorem 3.3, and Corollary 3.5]:

Z · Γ\G

p : X = Γ\G N · Γ\G ∼= (S1)
d

(S1)2d(S1)d

ΓN\N

The group Cd acts on G ∼= (C × H)d by translation in the C-factors. One shows directly
that this action commutes with the left multiplication by G and hence induces a holomorphic
action of Cd on X. The ineffectivity of this action is Γ∩Z and therefore we obtain an inclusion
(C∗)d →֒ Aut(X). The orbits of this (C∗)d are exactily the images of the Cd-factors in the
universal covering of X. As a consequence, we see that the action of (C∗)d on X induces a
transversally hyperbolic holomorphic foliation F of X.

Since the lift of p to the universal covering G of X coincides with the quotient map G →
G/N ∼= Rd, we see that p is (C∗)d-invariant. Moreover, the construction of the left-invariant
complex structure on G shows that the N -orbits are generic CR-submanifolds of real dimension
3d and CR-dimension d in G. Since the complex tangent space to the N -orbits contains the
N ′-orbit, they are Levi-flat. It follows that p is a CR-map having Levi-flat fibers.

We determine the topological closure of the orbits of this (C∗)d-action in the following

Proposition 3.1. Let x = Γg ∈ Γ\G = X. The topological closure of (C∗)d ·x in X coincides

the fiber of the projection p passing through the point x and is therefore isomorphic to the CR-

nilmanifold ΓN\N . In particular, X does not contain any proper (C∗)d-invariant analytic

subset.

Proof. For the proof, it suffices to remark that the (C∗)d-orbits are exactly the right orbits in
Γ\G = X of the normal subgroup H and to apply Proposition 2.9. �

Corollary 3.2. Every holomorphic function on ΓN\G is constant.

Proof. This follows from Proposition 3.1, since ΓN\N is a generic CR-submanifold of ΓN\G.
�

This corollary implies the following

Corollary 3.3. The Kodaira dimension of X is −∞.

Proof. Since Γ acts by affine-linear transformations on (C×H)d, the tangent bundle of X and
all its induced vector bundles are flat. In particular, the canonical bundle of X and all its
powers are flat, i.e., given by representations of Γ in C∗. This implies that the canonical bundle
of a finite covering of ΓN\G is holomorphically trivial, since for the commutator group one has
Γ′ ⊂ ΓN . Since every holomorphic function on ΓN\G is constant, we see that H0(X,Kn

X ) = 0
for all n > 0. Hence, kodX = −∞. �
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3.2. The identity component of Aut(X) and the non-Kähler property. In order to
determine explicitely the holomorphic vector fields on X, let us give the action G = A ⋉ N

on each factor of (C×H+)d explicitely. For g =
(

1 a c
0 t b
0 0 1

)
∈ R>0 ⋉H3 and (z, w) ∈ C×H+ we

have 

1 a c
0 t b
0 0 1


 · (z, w) = (z + aw + c, tw + b).

Let π : G → Aut
(
(H+)d

)
be the natural projection. It follows from Proposition 2.9 that π(ΓN )

is a countable, topologically dense subgroup of the unipotent radical of the Borel subgroup
of affine transformations in Aut

(
(H+)d

)
. This observation allows us to carry over the proof

of [4, Proposition 3(ii)] in order to obtain the following.

Proposition 3.4. We have H0(X,Θ) = Cd ∼= 〈 ∂
∂z1

, . . . , ∂
∂zd

〉C and therefore Aut0(X) ∼=

(C∗)d.

Corollary 3.5. The manifold X is not Kähler.

Proof. If X was Kähler, then due to [3] the group Aut0(X) would act meromorphically on X
and consequently its orbits would be locally closed, which is not the case. �

3.3. Infinitely many connected components for d > 2. In this subsection we show
that the whole group Aut(X) has infinitely many components for d > 2. Note that the
automorphism groups of Inoue surfaces S(+)

N , (this is the case d = 1) have only finitely many
components.

First we note that the group Ã ∼= (R>0)2d−1 acts as a group of holomorphic transformations
on (C×H+)d by

(λ1, µ1, . . . , λd, µd) · (z1, w1, . . . , zd, wd) := (λ1µ1z1, µ1w1, . . . , λdµdzd, µdwd),

where we suppose λ1µ1 · · ·λdµd = 1.

This action extends the A-action on (C×H+)d where A is embedded in Ã by

(µ1, . . . , µd) 7→ (µ−1
1 , µ1, . . . , µ

−1
d , µd).

In the next step we show that the Ã-action normalizes the simply transitive G-action on
(C×H+)d. Writing G = A⋉N as the d-fold product of the matrix group

S =







1 a c
0 α b
0 0 1


 ; α ∈ R>0, a, b, c ∈ R



 ,

and defining ϕλ,µ(z, w) := (λµz, µw) for λ, µ > 0 and (z, w) ∈ C×H+, we obtain

ϕλ,µ

(
g · ϕ−1

λ,µ(z, w)
)
= (z + λaw + λµc, αw + µb).

Consequently, the induced action of Ã on G coincides with the conjugation of Ã on the normal

subgroup A⋉N in Ã⋉N .

It therefore follows that the action of the subgroup O∗,+
K of Ã on (C × H+)d normalizes

Γ = ΓA ⋉ ΓN . This implies that the action of O∗,+
K descends holomorphically to the compact

quotient X = Γ\G.
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3.4. An Anosov property of the foliation F in the case d = 2. As we have seen in the
previous subsection, the group O∗,+

K /ΓA embeds into Aut(X). It is clear that this discrete
group of automorphisms stabilizes the foliation F of X. In this subsection we shall see that
for d = 2 non-trivial elements ϕ of O∗,+

K /ΓA have an Anosov property relative to F , i.e. that
the bundle map ϕ∗ is Anosov when restricted to the involutive subbundle TF ⊂ TX.

Suppose first that d is arbitrary and consider the bundle map ϕ∗ : TX → TX given by the
push-forward of tangent vectors. We shall trivialize first TG via left-invariant vector fields
which trivialize then TX as well. Concretely, let g ∈ G and consider ϕ∗ : TgG → Tϕ(g)G.
Since TgG = (ℓg)∗g, we are led to consider

(
ℓ−1
ϕ(g) ◦ ϕ ◦ ℓg

)
∗
: g → g.

The map G → GL(g) given by g 7→
(
ℓ−1
ϕ(g)◦ϕ◦ℓg

)
∗

encodes the action of ϕ∗ on TG. Moreover,

since ϕ normalizes the action of Γ by left multiplication on G, it follows that we obtain a
well-defined map

ρϕ : X = Γ\G → GL(g)

that encodes the action of ϕ∗ on TX. In particular, for ϕ = ℓγ with γ ∈ Γ we have ρϕ(x) = Idg
for all x ∈ X.

Since the above defined matrix group S is an open subset of an affine subspace of R3×3,
we have global coordinates on G = Sd with respect to which we can explicitely calculate the
map Sd → GL(g). For ϕ : Sd → Sd given by

ϕ



1 xi zi
0 ai yi
0 0 1


 =



1 λiµixi λiµizi
0 µiai µyi
0 0 1


 , i = 1, . . . , d,

and ξi =
( 0 pi ri

0 ti qi
0 0 0

)
∈ s we obtain

(
ℓ−1
ϕ(g) ◦ ϕ ◦ ℓg

)
∗
ξi =



0 λiµipi λiµiri
0 ti qi
0 0 0


 .

This shows that for all ϕ ∈ O∗,+
K /ΓA the action of ϕ on the bundle TF is given by multipli-

cation with the λiµi in the coordiante ∂
∂zi

for i = 1, . . . , d.

If d = 2, let ϕ ∈ O∗,+
K /ΓA be a non-trivial element and let λ1, µ1, λ2, µ2 > 0 be the factors

corresponding to ϕ. We have
∏2

i=1 λiµi = 1. If one of the products λiµi was equal to 1, the
other one would also be equal to 1. Then ϕ would be an element of ΓA and, considered as an
element of Aut(X), would be the identity, a contradiction. Therefore the bundle TF enjoys
the mentioned Anosov property with respect to ϕ.

For d > 3 it seems to be an interesting number theoretic question if there always exists an
automorphism having this Anosov property with respect to the foliation F .

3.5. Topological structure of X. Since G is simply-connected solvable and since the adjoint
operators of A are diagonalizable over R, the real cohomology of X may be computed via the
Lie algebra cohomology of g.

Since G = A⋉N is the identity component of the real-algebraic Lie group (R∗)d ⋉N and
since Γ is Zariski-dense in (R∗)d ⋉N , we may apply [6, Corollary 7.29] in order to determine
the deRham cohomology of X.
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Proposition 3.6. We have Hk(X,R) ∼= Hk(g) for all k > 0. Moreover, we have

Hk(g) =
⊕

k1+···+kd=k

(
Hk1(R ⊕ h3)⊗ · · · ⊗Hkd(R⊗ h3)

)
,

where H0(R⊗ h3) ∼= H4(R⊗ h3) ∼= R, H1(R⊗ h3) ∼= H3(R⊗ h3) ∼= R, and H2(R⊗ h3) = {0}.

Remark. The above result shows that the topological Euler characteristic of X is zero. This
can also be directly deduced from the fact that X is diffeomorphic to a tower of torus bundles
over (S1)d. More precisely, the projection G = A ⋉ N → A induces a real fiber bundle
X → ΓA\A ∼= (S1)d with typical fiber ΓN\N which in turn has the structure of a smooth
fiber bundle over (S1)d with fiber (S1)2d, cf. the diagram in Section 3.1.

3.6. Closed holomorphic 1-forms on X. In this subsection we give a second proof of the
fact that X is not Kähler.

Proposition 3.7. There is no non-zero closed holomorphic 1-form on X. In particular, X
is not Kähler.

Proof. Let ω be a closed holomorphic 1-form on X and let ξ be a holomorphic vector field on
X induced by the (C∗)d-action. Then we have

Lξ(ω) = ιξdω + dιξω = 0.

Hence, every closed holomorphic 1-form on X must be (C∗)d-invariant. Pulling it back we
get a Γ-invariant closed holomorphic 1-form ω on (C ×H)d which must be of the form

ω =
d∑

j=1

λjdzj +
d∑

j=1

fj(w1, . . . , wd)dwj .

Since an element of N acts on dzj by dzj 7→ dzj + adwj , we conclude that in fact

ω =

d∑

j=1

fj(w1, . . . , wd)dwj .

Now the claim follows from the fact that π(Γ) contains a dense subgroup of the unipotent
radical of the Borel subgroup of affine transformations in Aut

(
(H+)d

)
, see Proposition 2.9. �

3.7. The algebraic dimension of X. We conclude by determining the algebraic dimension
of X.

Theorem 3.8. Every meromorphic function on X is constant, i.e., X has algebraic dimension

zero.

Proof. Due to [2, Example 2], there exists a projective complex space Y arednd a holomor-
phic map π : X → Y such that every holomorphic map from X to any projective complex
space factorizes through π. Consequently, (C∗)d acts holomorphically on Y such that π is
equivariant.

We claim that the induced action of (C∗)d on Alb(Y ) is trivial. If this was not the case,
the composed map X → Y → Alb(Y ) would not be constant and hence we would obtain a
non-zero closed holomorphic 1-form on X, contradicting Proposition 3.7.

Since (C∗)d acts trivially on Alb(Y ), it has a fixed point in Y due to [7]; the π-fiber over this
fixed point is a (C∗)d-invariant analytic subset of X, hence X itself due to Proposition 3.1. It
follows that Y is a point, i.e., every holomorphic map from X to a projective complex space
is constant.
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Now let us consider the algebraic reduction a : X 99K Z which is a priori only a meromorphic
map. Since there are no proper (C∗)d-invariant analytic subsets of X, we obtain a holomorphic
map X → PN by adding sufficiently many meromorphic functions. As we have seen above,
this map must be constant, which proves the claim. �

References

[1] R. B. Ash, A course in algebraic number theory, Dover Publications, Inc., Mineola, New York, 2010.
[2] H. Cartan, Quotients of complex analytic spaces, Contributions to function theory (Internat. Colloq.

Function Theory, Bombay, 1960), pp. 1–15, Tata Institute of Fundamental Research, Bombay, 1960.
[3] A. Fujiki, On automorphism groups of compact Kähler manifolds, Invent. Math. 44 (1978), no. 3,

225–258.
[4] Ma. Inoue, On surfaces of class V II0, Invent. Math. 24, 269–310, 1974.
[5] S. Lang, Linear algebra, third edition, Undergraduate Texts in Mathematics, Springer-Verlag, New

York, 1987.
[6] M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenz-

gebiete 68, Springer, New York-Heidelberg, 1972.
[7] A. J. Sommese, Extension theorems for reductive group actions on compact Kaehler manifolds, Math.

Ann. 218, no. 2, 107–116, 1975.
[8] T. Zaïmi, M. J. Bertin, A. M. Aljouiee, On Number Fields without a unit primitive element, Bull.

Aust. Math. Soc. 93, 420–432, 2016.

Univ. Littoral Côte d’Opale, UR 2597, LMPA, Laboratoire de Mathématiques Pures et

Appliquées Joseph Liouville, F-62100 Calais, France

Email address: christian.miebach@univ-littoral.fr

Aix-Marseille Univ, CNRS, Centrale Marseille, I2M, UMR 7373, CMI, 39, rue F. Joliot-

Curie, 13453 Marseille Cedex 13, France

Email address: karl.oeljeklaus@univ-amu.fr


