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HARDY SPACES FOR BOUNDARY VALUE

PROBLEMS OF ELLIPTIC SYSTEMS WITH BLOCK

STRUCTURE

PASCAL AUSCHER AND MORITZ EGERT

In the honor of Guido Weiss’ ninetieth birthday

Abstract. We present recent results on elliptic boundary value
problems where the theory of Hardy spaces associated with oper-
ators plays a key role.

1. Introduction

Hardy spaces have a long history in which Guido Weiss, with Elias
Stein, pioneered their extension to Euclidean space based on an ap-
proach using boundary values for a Cauchy–Riemann system related
to harmonic functions [33].

Then real analysis methods took over, first with work of Fefferman
and Stein [26], second with the atomic theory developed by Coifman in
one dimension [18] and Latter in any dimension [29], and third, again
from the impetus of Guido Weiss, this time with Raphy Coifman, by
extending the theory to spaces of homogeneous type [20]. The presence
of a special operator like the Laplacian disappears in these approaches.
Still, in terms of applicability to analysis, Hardy spaces provide a con-
tinuum with the usual Lebesgue spaces Lp, 1 < p < ∞, to the range
0 < p ≤ 1.

Numerous works treated characterizations in terms of maximal func-
tions, atoms, molecules, square functions, Littlewood–Paley type de-
composition, and even wavelet bases descriptions. Nowadays, this pro-
vides a versatile theory for treating boundedness of operators in well-
understood classes, such as Calderón–Zygmund operators.
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However, for operators that have less regularity or different proper-
ties, these spaces may not be useful in all their scale. For this reason,
Hardy spaces associated with operators have been developed.

One possible construction starts with vertical maximal functions for
semigroups and develops an adapted atomic approach. Let us quote the
work of Dziubański and Zienkiewicz [23–25] for Schrödinger operators
with certain potentials. In Auscher and Russ [11], a link is established
between Hardy spaces on domains and Hardy spaces defined via maxi-
mal functions involving semigroups generated by elliptic operators with
boundary conditions, including the Laplacian, using the atomic theory
proposed by Chang et al. [17].

A maximal function definition usually requires strong assumptions
on the underlying operator, such as pointwise heat kernel estimates.
The next best thing is the tent space theory of Coifman et al. [19]
based on conical square function norms. These norms incorporate L2-
averages on balls and therefore it suffices that the operator satisfies
a much weaker form of decay, called L2 off-diagonal estimates. This
machinery was developed systematically in [3,9,27] and inspired many
subsequent works because it yields continuous scales of spaces adapted
to a given operator with a well-behaved functional calculus around
L2, without requiring any Lp-theory. The theory includes atomic or
molecular decompositions with adapted atoms or molecules. Further
abstractions of the atomic theory that include Hardy spaces associated
with operators as a particular example have been proposed by Bernicot
and Zhao [15].

However, one may want to see Hardy spaces associated with opera-
tors not only from an abstract point of view but investigate whether
they can be identified with classical function or distribution spaces. If
this works, then it gives access to operator-valued multiplier results in
limited ranges of exponents within the classical Lebesgue and Hardy
spaces, because the multipliers naturally act boundedly on the adapted
Hardy spaces, which are designed for that purpose.

Identifying a Hardy space associated with an operator to a classi-
cal space also yields a description of the latter in terms of a square
function norm associated with the operator at hand. Such norms are
useful in the treatment of boundary value problems from the harmonic
analysis point of view that started from the pioneer work of Dahlberg
[22]. In other words, one could go back in time and think of Hardy
spaces associated with operators as a key tool box that has to appear
— implicitly or explicitly — in the analysis of boundary value prob-
lems. This is the leitmotif behind the program developed for elliptic
boundary value problems via the first order approach by one of us and
collaborators [1,2,10,12]. It proved useful in and yielded surprising de-
velopments towards boundary value problems for parabolic operators
[5,6] — and becomes manifests in the important work of Rósen [30,31],
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who proves non-tangential limits and establishes the connection to clas-
sical layer potential theory. Let us stress that none of this would have
been possible without the solution of Kato problem in any dimension
[7] and the important Dirac operator approach [14], not to mention all
precursor works.

Here, we wish to announce results on well-posedness of boundary
value problems for elliptic systems in block form (that is, without mixed
tangential and normal derivatives) in the upper half-space with data
in Lebesgue, Hardy, and homogeneous Hölder spaces. These results
essentially close the topic. Prior to that, the situation was fully under-
stood only when the boundary is one-dimensional [13]. The admissible
ranges of boundary spaces can be calculated thanks to the theory of
Hardy spaces associated with a boundary operator. Details together
with more exhaustive references to earlier and related literature will be
presented in our forthcoming monograph [4].

2. Setup

Consider integers n ≥ 1 and m ≥ 1. Let a ∈ L∞(Rn;L(Cm)) satisfy
the strict accretivity condition

Re〈a(x)ξ, ξ〉 ≥ λ|ξ|2 (x ∈ Rn, ξ ∈ Cm)(2.1)

for some λ > 0. Note that a−1 has the same properties. Let d ∈
L∞(Rn;L(Cnm)) satisfy the Gårding inequality,

Re〈d∇xv,∇xv〉 ≥ λ‖∇xv‖
2
2 (v ∈ C∞

0 (Rn;Cm)),(2.2)

which in general is weaker than strict ellipticity. Here, 〈· , ·〉 denotes
the inner product in the respective context. One can then define a
sectorial operator in L2(Rn;Cm) by

L := −a−1 divx d∇x

with maximal domain {u ∈ W1,2(Rn;Cm); divx d∇xu ∈ L2(Rn;Cm)},
where W1,2 denotes the usual L2-Sobolev space of order 1. The sec-
toriality angle can be any number within [0, π), but there is a secto-
rial square root operator L1/2 of angle within [0, π/2) that generates a

Poisson semigroup (e−tL
1/2

)t>0. This family can be seen as a solution
operator for the elliptic system

(2.3) ∂t(a∂tu) + divx(d∇xu) = 0, (t, x) ∈ (0,∞)× Rn =: R1+n
+ .

Hence, the Dirichlet problem for this equation can be solved explicitly,
at least for L2-data. The regularity problem or the Neumann problem
can also be solved formally. It was Kenig [28] who observed that the
interior estimates required in the classical harmonic analysis approach
to these problems are linked to the Kato conjecture for L, that is, the
nowadays known homogeneous estimate

‖aL1/2f‖2 ≃ ‖∇xf‖2,(2.4)
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which identifies the domain of L1/2 as the Sobolev space W1,2(Rn;Cm)
since a is invertible in L∞(Rn;L(Cm)).

Generalizing this approach to other spaces of data and obtaining
existence of solutions via explicit formulæ require further knowledge
about the functional calculus of L. The exact ranges are provided
by Hardy and Hardy–Sobolev spaces associated with L and a related
first order operator. Uniqueness of the solution, on the other hand,
does not depend on Hardy space theory but on other methods relying
on appropriate use of (abstract) layer potentials. Actually, it can be
obtained in a larger range of exponents than the one for existence.

3. Adapted Hardy–Sobolev spaces

For this section, we work on Rn and functions are valued in finite
dimensional complex spaces; we omit this in the notation whenever
the context is clear.

3.1. The construction. Given ω ∈ (0, π), we define the sector S+
ω :=

{z ∈ C \ {0} : | arg z| < ω} and agree on S+
0 := (0,∞). As mentioned

above, L is a sectorial operator in L2, which means that there is an angle
ω ∈ [0, π) such that the spectrum σ(L) is contained in S+

ω (closure in
C) and such that for every µ ∈ (ω, π), we have

ML,µ := sup
z∈C\S+µ

‖z(z − L)−1||L2→L2 <∞.(3.1)

Let ωL denote the smallest angle ω with this property. Sectorial oper-
ators in L2 are densely defined and it can be shown that L is injective
and that it has dense range.

For injective sectorial operators, one can construct a holomorphic
functional calculus to define ψ(L) as a closed operator in L2 in a mean-
ingful way if ψ is holomorphic on a sector of angle larger than ωL and
has at most polynomial growth at |z| = 0 and |z| = ∞. In partic-

ular, ψ(z) = e−tz
1/2

yields ψ(L) = e−tL
1/2

(with the convention that
we take the principal branch) and ϕ(z) = z1/2 yields ϕ(L) = L1/2, the
square root of L. The particular operator L has the additional property
that ψ(L) is bounded if ψ is merely bounded. This so-called bounded
H∞-calculus is a deep result. We describe one approach in Section 3.4
below.

The next ingredient in the construction of Hardy spaces associated
with L is that the resolvent family satisfies L2 off-diagonal estimates.
Let Ω ⊆ C \ {0}. A family (T (z))z∈Ω of bounded linear operators on
L2 satisfies L2 off-diagonal estimates of order γ > 0 if there exists a
constant Cγ such that

‖1FT (z)1Ef‖2 ≤ Cγ

(
1 +

d(E, F )

|z|

)−γ

‖1Ef‖2(3.2)
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for all measurable subsets E, F ⊆ Rn, all z ∈ Ω and all f ∈ L2, where
d(E, F ) denotes the distance between E and F .

The following families satisfy L2 off-diagonal estimates of arbitrarily
large order:

(i) ((1 + z2L)−1)z∈S+µ if µ ∈ (0, (π−ωL)/2),

(ii) (z∇x(1 + z2L)−1)z∈S+µ if µ ∈ (0, (π−ωL)/2).

Now, let ψ be a non-zero holomorphic function on a sector S+
µ with

µ > ωL that satisfies for some σ, τ > 0 the decay condition

|ψ(z)| . (|z|σ ∧ |z|−τ ) (z ∈ S+
µ ).(3.3)

Mimicking the extension to the upper half-space by convolutions in
the definition of the classical Hardy spaces, one associates with ψ the
operator

Qψ,L : R(L) = L2 → L∞(0,∞; L2), (Qψ,Lf)(t) = ψ(t2L)f.(3.4)

Given s ∈ R and p ∈ (0,∞), the space

H
s,p
ψ,L := {f ∈ R(L) : Qψ,Lf ∈ Ts,p}

equipped with the (quasi-)norm

‖f‖Hs,pψ,L := ‖Qψ,Lf‖Ts,p

is called pre-Hardy–Sobolev space of smoothness s and integrability p
adapted to L. The function ψ is called an auxiliary function. The
space Ts,p is the tent space of those functions F ∈ L2

loc(R
1+n
+ ) with

finite quasi-norm

‖F‖Ts,p := ‖S(t−sF )‖p,

where S is the conical square function

(SF )(x) :=

(∫∫

|x−y|<t

|F (t, y)|2
dt dy

t1+n

) 1

2

(x ∈ Rn).(3.5)

Off-diagonal estimates are used to show that all Hs,p
ψ,L (quasi-)norms

are equivalent in a certain range of parameters σ, τ that depends on s, p
and dimension. This provides us with a space that does not depend
of the specific choice of such ψ. Hence, we drop ψ in the notation.
When s and p vary, they form complex interpolation scales. Moreover,
holomorphic bounded functions of L act continuously on such spaces.
We use the suffix pre to emphasize that they might be non complete
spaces and some care is to be taken with respect to that.

3.2. The identification problem. For general sectorial operators,
the above pre-Hardy–Sobolev spaces cannot be related to classical
spaces in the expected way even when p = 2. But in the case of
L, we have up to equivalent norms

H
0,2
L = L2 .(3.6)
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This simple equality is in fact a deep square function estimate that is,
by a fundamental result due to McIntosh, equivalent to the bounded-
ness of the H∞-calculus.

The questions that are relevant with a view on boundary value prob-
lems for (2.3) are

(i) to identify H
s,p
L when s = 0 and s = 1 and

(ii) to find the interval of boundedness for the Riesz transform
RL := ∇xL

−1/2.

The fractional range 0 < s < 1 is relevant for boundary value problems
with data in fractional Sobolev spaces.

We agree that Hp denotes the classical real Hardy space on Rn when
0 < p ≤ 1 and the Lebesgue space Lp when 1 < p < ∞. Similarly,
Ḣ1,p denotes the homogeneous Hardy–Sobolev space when 0 < p ≤ 1
and the homogeneous Sobolev space Ẇ1,p when 1 < p < ∞ with the
natural quasi-norm ‖∇x · ‖Hp. We introduce the two sets that answer
the first question raised above:

H(L) :=
{
p ∈ (1∗,∞) : ‖f‖

H
0,p
L

≃ ‖af‖Hp for all f ∈ L2
}
,

H1(L) :=
{
p ∈ (1∗,∞) : ‖f‖

H
1,p
L

≃ ‖f‖Ḣ1,p for all f ∈ L2
}
.

Here and throughout, we write q∗ :=
nq
n+q

for lower Sobolev conjugates.

Going systematically below p = 1 is a novelty of our approach com-
pared to earlier references. It seems natural from the point of view
of regularity theory to incorporate the possibility of having estimates
in this range, as is the case for instance for operators with real coef-
ficients when m = 1. The limit exponent 1∗ can be understood from
Sobolev embeddings and duality: the best one can hope for in absence
of smoothness of the coefficients is regularity theory in Hölder spaces
of exponents less than 1.

In these regions, we can identify H
0,p
L and H

1,p
L with concrete quasi-

normed spaces of functions, namely

H
0,p
L = a−1(Hp ∩L2),

the image of Hp ∩L2 under multiplication with a−1 equipped with the
image quasi-normed topology ‖ · ‖a−1 Hp := ‖a · ‖Hp, and

H
1,p
L = Ḣ1,p ∩ L2

with equivalent quasi-norm ‖ · ‖Ḣ1,p . If p > 1, then ‖a · ‖Hp and ‖ · ‖Ḣ1,p

can be replaced with ‖ · ‖p and ‖ · ‖Ẇ1,p, respectively.
Likewise, the set corresponding to the second question above on the

Riesz transform is

I(L) :=
{
p ∈ (1∗,∞) : ‖RLa

−1f‖Hp . ‖f‖Hp for all f ∈ Hp ∩L2
}
,

where again the multiplication by a−1 is only relevant when p ≤ 1.
These three sets are intervals, and they contain p = 2, which is the
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deep result mentioned above. Using extended Calderón–Zygmund the-
ory together with functional calculus, one can calculate in a sharp
fashion H(L), I(L) and the upper endpoint of H1(L) as functions of
four critical numbers for L:

Theorem 3.1. One has

(i) H(L) = (p−(L), p+(L)),
(ii) H1(L) ⊇ (q−(L)∗ ∨ 1∗, q+(L)),
(iii) I(L) = (q−(L), q+(L)).

The upper bound in (ii) is sharp and not attained. Moreover, aL1/2

extends to a bounded operator Ḣ1,p → Hp if p ∈ H(L) ∪ H1(L) and is
an isomorphism if and only if p ∈ I(L).

3.3. The critical numbers. The definition of these four numbers is
given in terms of bounds for the resolvents of L and their gradients:

• (p−(L), p+(L)) is the maximal open set within (1∗,∞) for which
the family (a(1 + t2L)−1a−1)t>0 is uniformly bounded on Hp.

• (q−(L), q+(L)) is the maximal open set within (1∗,∞) for which
the family (t∇x(1+ t

2L)−1a−1)t>0 is uniformly bounded on Hp.

It is remarkable that simple boundedness information on the resol-
vent family completely rules the Hardy space theory of L and the
boundedness of its Riesz transform. It can be shown that replacing

the resolvent by the Poisson semigroup (e−tL
1/2

)t>0 in the definition
above leads to the same critical numbers. If the sectoriality angle of L
exceeds π/2, then one has no "heat" semigroup and this is why we have
to deviate from most of the literature on the topic right from the start.

The critical numbers characterize many other boundedness proper-
ties related to L and in fact there are only three of them since one
can show q−(L) = p−(L). Moreover, essentially due to Sobolev embed-
dings, one has p+(L) ≥ q+(L)

∗, where p∗ = np
n−p

if p < n and p∗ = ∞
otherwise. The best general conclusion for the critical numbers is

(p−(L), p+(L)) ⊇





(1
2
,∞) if n = 1

[1,∞) if n = 2

[ 2n
n+2

, 2n
n−2

] if n ≥ 3

and

(q−(L), q+(L)) ⊇

{
(1
2
,∞) if n = 1

[ 2n
n+2

, 2] if n ≥ 2
.

In specific cases, one can say more. If L has constant coefficients,
then q−(L) = p−(L) = 1∗ and q+(L) = p+(L) = ∞. We have the same
numbers for L = −a−1∆x (that is, d is the identity) or when n = 1 with
arbitrary d. If n = 2 or if n ≥ 3 and d is a real valued (n× n)-matrix
(hence, m = 1), then p+(L) = ∞ and q−(L) = p−(L) < 1.
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3.4. The underlying perturbed Dirac operator. The interior con-
trol for the boundary value problems requires us to look at expressions

such as ∇xe
−tL1/2

f , which means that we have to leave the functional
calculus of L. Such expressions can often be handled in a direct way
by specific arguments but they can also be understood in a unified way
within the functional calculus of a perturbed first order Dirac operator
DB, where

D :=

[
0 divx

−∇x 0

]
, B :=

[
a−1 0
0 d

]
.

This operator DB is not sectorial but bisectorial in L2(Rn;Cm×Cmn),
which means that its spectrum is contained in a double sector S+

ωDB
∪

−S+
ωDB

, with ωDB < π/2 and one has resolvent estimates of the form
(3.1) away from it. In particular

(DB)2 =

[
− divx d∇xa

−1 0

0 −∇xa
−1 divx d

]
(3.7)

is a sectorial operator in L2 with angle not exceeding 2ωDB that "con-
tains" an operator similar to L under conjugation with a. The square
root [DB] := ((DB)2)1/2 generates a semigroup that contains in the
same manner a family similar to the Poisson semigroup for L. Then,
for example,

(3.8) DBe−t[DB]

[
af
0

]
= −

[
0

∇xe
−tL1/2

f

]

is a natural object in the calculus for DB and one has an interest in
introducing adapted Hardy–Sobolev spaces H

s,p
ψ,DB.

Indeed, the family ((1 + itDB)−1)t∈R\{0} satisfies L2 off-diagonal es-
timates and this allows us to develop the theory similarly to the one
for L with two main differences. First, as DB is not injective (except
in dimension n = 1), we have to work systematically on the L2-closure
of its range, which is in topological direct sum with its nullspace. Its
range is the same as the one for D, denoted R(D); this independence
with respect to B is a useful fact. Secondly, we use first-order scaling
in t for the extension operators Qψ,DB to make sure that s has the same
meaning as smoothness parameter as for the L-adapted spaces. When
s = 0, let us write H

p
DB for H0,p

ψ,DB.
The equality

H2
DB = R(D)(3.9)

is again a deep square function estimate that is equivalent (by McIn-
tosh’s result) to the boundedness of the H∞-calculus for DB on L2.
The latter implies (2.4) and the boundedness of the H∞-calculus for
(DB)2 on L2, which due to the block structure is equivalent to the
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H∞-calculus for L on both L2 and Ẇ1,2. Thus, it is significantly more
information than (3.6).

For B = I, one can identify H
p
D with Hp ∩R(D) when p ∈ (1∗,∞),

using Fourier multipliers. Hence, there is a natural identification re-
gion, which contains p = 2,

H(DB) :=
{
p ∈ (1∗,∞) : ‖h‖HpDB ≃ ‖h‖Hp for all h ∈ R(D)

}
.

Heuristically, the theory for H
p
DB comprises the theory for L at both

smoothness scales s = 0 and s = 1. On the level of Hardy spaces, this
can be expressed through the identity H(DB) = H(L)∩H1(L), so that

H(DB) = (q−(L), q+(L)).

On the level of boundary value problems, it leads us to the principle
that the DB-adapted theory applies to all boundary value problems of
Neumann and Dirichlet type, whereas the L-adapted theory allows one
to separate issues in the sense that s = 0 corresponds to the Dirichlet
problem and s = 1 corresponds to the regularity problem.

4. The Dirichlet problem

For harmonic functions it is well known from the works of Calderón [16]
and Stein [32] that non-tangential control gives access to almost every-
where convergence at the boundary. In the context of elliptic equations
with real and measurable coefficients, Dahlberg [22] then formulated
the Dirichlet problem with non-tangential maximal estimates in order
to recover almost everywhere boundary limits.

Since weak solutions for general systems might not be regular, we use
the Whitney average variants of the non-tangential maximal function
in order to pose our boundary value problems. When getting back to
systems where solutions have pointwise values, these variants turn out
to be equivalent to the usual pointwise control. More precisely, we let

Ñ∗(F )(x) := sup
t>0

(
−

∫
−

∫

W (t,x)

|F (s, y)|2 ds dy

)1/2

(x ∈ Rn),

where W (t, x) := (t/2, 2t)×B(x, t) is a Whitney region.
For 1 < p < ∞, the Dirichlet problem with non-tangential maximal

control and data f ∈ Lp(Rn;Cm) consists in solving

(D)Lp





∂t(a∂tu) + divx(d∇xu) = 0 (in R1+n
+ ),

Ñ∗(u) ∈ Lp(Rn),

limt→0 −
∫
−
∫
W (t,x)

|u(s, y)− f(x)| ds dy = 0 (a.e. x ∈ Rn).

The problem for p = 1 is formulated analogously with a−1H1 as data
space on the boundary. We note that H1 ⊆ L1 and therefore also the
image a−1H1 is a Banach space that embeds into L1.
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As usual, well-posedness means existence, uniqueness, and continu-
ous dependence on the data. Compatible well-posedness means well-
posedness together with the fact that the solution agrees with the en-
ergy solution when the data f also belong to the trace space Ḣ1/2(Rn;Cm).
The energy solution is constructed in the homogeneous Sobolev space
Ẇ1,2(R1+n

+ ;Cm) via the Lax–Milgram lemma.
The following result, whose range of exponents is likely to be optimal,

summarizes the situation.

Theorem 4.1. Let p ≥ 1 be such that p−(L) < p < p+(L)
∗. Given

f ∈ Lp(Rn;Cm) when p > 1 and f ∈ a−1 H1(Rn;Cm) when p = 1, the
Dirichlet problem (D)Lp is compatibly well-posed. The solution u has
the following additional properties.

(i) There is comparability

‖Ñ∗(u)‖p ≃ ‖af‖Hp ≃ ‖S(t∇u)‖p.

(ii) The non-tangential convergence improves to L2-averages

lim
t→0

−

∫
−

∫

W (t,x)

|u(s, y)− f(x)|2 ds dy = 0 (a.e. x ∈ Rn).

(iii) When p < p+(L), then au is of class1 C0([0,∞); Hp(Rn;Cm))∩
C∞((0,∞); Hp(Rn;Cm)) with au(0, ·) = af and

sup
t>0

‖au(t, ·)‖Hp ≃ ‖af‖Hp.

(iv) When p ≥ p+(L), then for all T > 0 and compact K ⊆ Rn, u
is of class C([0, T ]; L2(K;Cm)) with u(0, ·) = f and there is a
constant c = c(T,K) such that

sup
0<t≤T

‖u(t, ·)‖L2(K) . c‖f‖p.

As expected, the above solution is provided by u(t, x) = e−tL
1/2
f(x)

for f ∈ a−1(Hp ∩L2) and by an extension by density of this expression
in the respective topologies for f ∈ a−1Hp. In the range p < p+(L)
one can use the extension to a proper C0-semigroup on adapted Hardy
spaces, which explains the regularity result (iii) given the identification
range H(L) in Theorem 3.1. However, and this was never observed
before, the range of exponents in the statement exceeds by one Sobolev
exponent the range provided by the semigroup theory. This means
that in this case, u is extended as a function of both variables t and x
simultaneously.

The link to adapted Hardy spaces is seen in the square function
estimates in (i). For p > 2, some specific considerations relying on
off-diagonal estimates are used together with a generic result in Lp-
functional calculus from [21]. The argument for p < 2 is more involved

1As usual, the notation C0([0,∞)) means continuity and limit 0 at infinity.



HARDY SPACES FOR BVP 11

and relies on adapted Hardy spaces. Indeed, note that t∇u has two
components. The first one is t∂tu, so for u(t, ·) = e−tL

1/2
f one must

check that ψ(z) = z1/2e−z
1/2

is an admissible auxiliary function for
H

0,p
L . The other one is t∇xu, in which case one can use (3.8) and the

DB-theory.
Finally, the non-tangential maximal function estimates in (i) can

be obtained from the general theory of L-adapted Hardy spaces when
p ≤ 2. The case p > 2 is more straightforward as the almost everywhere
limit in (ii) furnishes the lower bound.

From the point of view of L-adapted Hardy spaces, the natural
boundary space for the Dirichlet problem is the completion of Hp

L =
a−1(Hp ∩L2) for the quasi-norm ‖a ·‖Hp . Since a is not smooth, there is
no reason to believe that a completion can be realized within the ambi-
ent space of distributions if p < 1 and hence there is no meaningful way
of posing a Dirichlet problem that is compatible with the Lax–Milgram
approach. What remains true though, again thanks to the theory of
adapted Hardy spaces, are the estimates in the theorem above when u
is the Poisson semigroup extension of data in a−1(Hp ∩L2).

Theorem 4.2. Suppose p−(L) < 1 and let p−(L) < p < 1. Given
f ∈ a−1(Hp(Rn;Cm) ∩ L2(Rn;Cm)), the semigroup extension u(t, x) =

e−tL
1/2
f(x) satisfies (i), (ii), (iii) of Theorem 4.1.

5. The Dirichlet problem for Hölder data

One may wonder whether in the case p+(L) > n one can extend the
results for the Dirichlet problem to exponents "beyond ∞", which we
think of corresponding to the homogeneous Hölder spaces Λ̇α(Rn;Cm),

0 ≤ α < 1, with the endpoint case Λ̇0 := BMO. In this case, we choose
the interior control as the Carleson functional

CαF (x) := sup
t>0

1

tα

(
1

tn

∫ t

0

∫

B(x,t)

|F (s, y)|2
dy ds

s

)1/2

.

For α ∈ [0, 1), the Dirichlet problem with data f ∈ Λ̇α(Rn;Cm) consists
in solving

(D)L
Λ̇α





∂t(a∂tu) + divx(d∇xu) = 0 (in R1+n
+ ),

Cα(t∇u) ∈ L∞(Rn),

limt→0 −
∫ 2t

t
|u(s, ·)− f | ds = 0 (in L2

loc(R
n;Cm)).

The choice of Carleson control for the problem with BMO data is com-
pletely natural in view of the Fefferman–Stein characterization of BMO
by the Carleson functional C0 for harmonic functions. Making this
choice for Λ̇α when α > 0 is a convenience in terms of unification of
the presentation. Other choices, which are weaker in terms of interior
control, could be taken; we could use Whitney average convergence at
the boundary and uniform control of Whitney averages for u − f on
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W (t, x) by tα and all results below remain the same. On the other
hand, the BMO Dirichlet problem with Carleson control and Whitney
average convergence at the boundary appears to be out of reach.

For the next statement, L♯ denotes the boundary operator for the
adjoint equation ∂t(a

∗∂tu) + divx(d
∗∇xu) = 0, that is,

L♯ = −(a∗)−1 divx d
∗∇x.

Theorem 5.1. Suppose that p+(L) > n and that 0 ≤ α < 1 − n/p+(L).
Then the Dirichlet problem (D)L

Λ̇α
is compatibly well-posed. Given

f ∈ Λ̇α(Rn;Cm), the unique solution u has the following additional
properties.

(i) There is comparability

‖Cα(t∇u)‖∞ ≃ ‖f‖Λ̇α .

(ii) u is of class C([0, T ]; L2(K;Cm)) with u(0, ·) = f for every
T > 0 and compact K ⊆ Rn.

(iii) If moreover p−(L
♯) < 1 and α < n(1/p−(L♯) − 1), then u is of

class C0([0,∞); Λ̇α
weak

∗(Rn;Cm)) ∩ C∞((0,∞); Λ̇α
weak

∗(Rn;Cm))
and

sup
t>0

‖u(t, ·)‖Λ̇α ≃ ‖f‖Λ̇α.

In addition, u is of class Λ̇α(R1+n
+ ;Cm), with

‖u‖
Λ̇α(R1+n

+
)
. ‖f‖Λ̇α.

Since Λ̇α ∩ L2 is not dense in Λ̇α, we cannot extend the Poisson
semigroup to the boundary space by density. In (iii), Λ̇α is considered
as the dual space of Hp, where α = n(1/p−1), with the weak∗ topology.
The assumption in (iii) implies p+(L) = ∞ and that the solution can be
constructed by duality, using the extension of the Poisson semigroup for
L∗ = a∗L♯(a∗)−1 to Hp. Therefore, the solution keeps the Λ̇α-regularity
in the interior. This construction has appeared earlier.

The construction of the solution under the mere assumption that
p+(L) > n is much more general and we have

u(t, x) = lim
j→∞

e−tL
1/2

(1{| · |<2j}f)(x),

where we have to use the assumption p+(L) > n already to prove
convergence of the right-hand side in L2

loc(R
1+n
+ ;Cm). This opens the

possibility of uniquely solving Dirichlet problems for Hölder continuous
(or BMO) data, while producing solutions that have no reason to be
in the same class in the interior of the domain. To the best of our
knowledge, this phenomenon is observed for the first time. Note also
that p+(L) > n always holds in dimension n ≤ 4, so that in these
dimensions, the BMO Dirichlet problem is compatibly well-posed.
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6. The Regularity problem

For 1∗ < p < ∞ the regularity problem with data f ∈ Ḣ1,p(Rn;Cm)
consists in solving

(R)Lp





∂t(a∂tu) + divx(d∇xu) = 0 (in R1+n
+ ),

Ñ∗(∇u) ∈ Lp(Rn),

limt→0 −
∫
−
∫
W (t,x)

|u(s, y)− f(x)| ds dy = 0 (a.e. x ∈ Rn).

By Hardy–Sobolev embeddings, we have f ∈ L1
loc so that the conver-

gence at the boundary is meaningful.
Our result is as follows, with a range of exponents that corresponds

to H1(L).

Theorem 6.1. Let (q−(L)∗ ∨ 1∗) < p < q+(L). The regularity problem

(R)Lp is compatibly well-posed. Given f ∈ Ḣ1,p(Rn;Cm), the unique
solution u has the following additional properties.

(i) There are estimates

‖Ñ∗(∇u)‖p ≃ ‖S(t∇∂tu)‖p ≃ ‖∇xf‖Hp & ‖g‖Hp

with g := −aL1/2f being the conormal derivative of u, where
the square root extends from Ḣ1,p(Rn;Cm) ∩ W1,2(Rn;Cm) by
density.

(ii) For a.e. x ∈ Rn and all t > 0,

(
−

∫
−

∫

W (t,x)

|u(s, y)− f(x)|2 ds dy

)1

2

. tÑ∗(∇u)(x).

In particular, the non-tangential convergence improves to L2-
averages. Moreover, limt→0 u(t, ·) = f in D′(Rn).

(iii) If p ≥ 1, then for a.e. x ∈ Rn,

lim
t→0

−

∫
−

∫

W (t,x)

∣∣∣∣
[
a∂tu
∇xu

]
−

[
g(x)

∇xf(x)

] ∣∣∣∣
2

ds dy = 0,

where g is as in (i).
(iv) u is of class C0([0,∞); Ḣ1,p(Rn;Cm))∩C∞((0,∞); Ḣ1,p(Rn;Cm))

with

‖∇xf‖Hp ≃ sup
t>0

‖∇xu(t, ·)‖Hp.

If p < n, then up to a constant2 u ∈ C0([0,∞); Lp
∗

(Rn;Cm))∩
C∞((0,∞); Lp

∗

(Rn;Cm)) with u(0, ·) = f and

‖f‖p∗ ≤ sup
t>0

‖u(t, ·)‖p∗ . ‖∇xf‖Hp + ‖f‖p∗.

2The constant is chosen via Hardy–Sobolev embeddings such that f ∈ Lp∗

.
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(v) If p > p−(L), then a∂tu is of class C0([0,∞); Hp(Rn;Cm)) and,
with g as in (i),

‖Ñ∗(∂tu)‖p ≃ sup
t≥0

‖a∂tu(t, ·)‖Hp ≃ ‖g‖Hp ≃ ‖∇xf‖Hp.

As we have p−(L) = q−(L), the range of exponents exceeds the
semigroup range for L by up to one Sobolev exponent below.

Again, the bulk of the result is thanks to the Hardy–Sobolev theory,
this time for H

1,p
L , and also due to the observation that the spatial

gradient intertwines H
1,p
L and H

0,p

M̃
, with M̃ = −∇xa

−1 divx d, via the

formal relation ∇xL = M̃∇x. In fact, M̃ is the lower right corner of
(DB)2 in (3.7). Likewise, the non-tangential maximal estimates and
limits rely on the link between the Poisson semigroup for L and the
semigroup for [DB] via the intertwining property

e−t[DB]

[
−aL1/2f
∇xf

]
=

[
a∂te

−tL1/2
f

∇xe
−tL1/2

f

]
.

7. The Neumann problem

For 1∗ < p < ∞, the Neumann problem with data g ∈ Hp(Rn;Cm)
consists in solving (modulo constants)

(N)Lp





∂t(a∂tu) + divx(d∇xu) = 0, (in R1+n
+ ),

Ñ∗(∇u) ∈ Lp(Rn),

limt→0 a∂tu(t, ·) = g (in D′(Rn;Cm)).

Note that due to the block structure, a∂tu is indeed the (inward) conor-
mal derivative ∂νAu = e0 ·A∇u.

Here, the range of exponents p is the set H(DB) for the identification
of Hp

DB and in our block case, this is same as the range of boundedness
of the Riesz transform.

Theorem 7.1. Let q−(L) < p < q+(L). Then the Neumann problem
(N)Lp is compatibly well-posed (modulo constants). Given a Neumann

data g ∈ Hp(Rn;Cm) and defining f := −(aL1/2)−1g ∈ Ḣ1,p(Rn), all
the properties for the solution listed in Theorem 6.1 hold.

In the case p ≥ 1 one can pose (N)Lp with convergence of Whitney
averages

lim
t→0

−

∫
−

∫

W (t,x)

a∂tu ds dy = g(x) (a.e. x ∈ Rn)

instead of convergence in the sense of distributions at the boundary and
still obtain a compatibly well-posed problem with the same solution as
before.

We use the Hp-boundedness of ∇x(aL
1/2)−1 = RLa

−1 to convert the
Neumann data g into an appropriate regularity data f . In other words,
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we use the ansatz u = −e−tL
1/2

(aL1/2)−1g = e−tL
1/2
f . This is why we

need to stay withing the interval I(L) for the Riesz transform and
obtain immediately the same estimates as in Theorem 6.1.

Compatible well-posedness as above has been obtained in [10] for
elliptic systems, not necessarily in block form, in a certain range IL
of exponents where H

p
DB = H

p
D and certain additional technical condi-

tions hold. The strategy in that paper begins by writing (2.3) in the
equivalent form

∂t

[
a∂tu
∇xu

]
+

[
0 divx

−∇x 0

] [
a−1 0
0 d

] [
a∂tu
∇xu

]
=

[
0
0

]
,

where the second line is a dummy equation and where F := [a∂tu,∇xu]
⊤

is called conormal gradient. Hence, ∂tF +DBF = 0. The main thesis

there is that if p ∈ IL, then any solution u with Ñ∗(∇u) ∈ Lp(Rn) is
obtained by the evolution of the [DB]-semigroup on a vector F0 in the
positive spectral space for DB within the completion of Hp

DB = H
p
D in

Hp. At the boundary we should have F |t=0 = [g, f ]⊤, which yields for
each t > 0 the representation

[
a∂tu
∇xu

]
= e−t[DB]

[
g
f

]
=

[
aL1/2e−tL

1/2
(aL1/2)−1g

−∇xe
−tL1/2

(aL1/2)−1g

]
.

From this, we see that u has to be as in the ansatz.
In view of these results, our new contribution here purely is a theorem

on Hardy spaces: in the block case we identify the range IL in which
all of the above works as the full interval H(DB) = (q−(L), q+(L)).
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