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Abstract

The analytical models used by hot-wire type probes are no longer suitable
for the characterization of insulating materials. This paper proposes a solu-
tion, which is based on a numerical reduced order technique named AROMM
(Amalgamated Reduced Order Modal Method) coupled to an inverse proce-
dure. We demonstrate that a single reduced order model provides precise
results for insulated materials characterized by different thermal properties,
with the advantage of computing 250 times faster than a classical finite ele-
ment modelization. Such model is then tested through multiple scenarios in
order to evaluate the accuracy of the proposed methodology. Results show
the importance of the sensitivity of the measurement regarding the sought
parameters, which later intervene during the identification process. A statis-
tical study allows us to access a satisfying confidence interval for a common
measurement noise. At last, a study on the influence of an eventual thermal
contact resistance is conducted.
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1. INTRODUCTION

Nowadays, environmental constraints are increasing at a fast rate, lead-
ing to the appearance of new materials in the building world, in particular
thermal insulators.

However, their use stays limited due to non-availability of databases in
reference to their intrinsic properties. Moreover, we lack hindsight regard-
ing their sustainability (humidity sensitivity, fluctuation of micro-structure,
fungal growth).

The purpose of this paper is to present a method which enables to identify
on site thermal properties of insulating materials, in order to maintain an
active monitoring of their properties overtime.

In literature, some characterization methods exist :

� The most simple techniques which enable to determine an isotropic
conductivity k [W.m−1K−1] in equilibrium is the hot plate method [1].
Jannot et al. [2] created a three-layer device combined with an in-
verse method aimed at improving the precision on the estimated values
specifically for very low conductivity materials (k < 0.15 W.m−2.K−1).
It is often coupled with a DSC calorimetric technique to determine the
heat capacity Cp [J. kg−1.K−1] or c [J. m−3.K−1].

� Another technique widely used in the laboratory is the flash method
[3, 4, 5]. Initially developed to measure diffusivity a = k

c
[m2/s], the

analytical relations of integral transforms type allow by inverse method
to go back quickly to the two parameters k and c [6, 7, 8]. This exper-
imental principle has also made it possible to use numerical models to
determine non-homogeneous properties: Brouns et al. [9] relied on sur-
face temperature measurements by infrared thermography, paired with
a Finite Element Method (FEM) to evaluate the thermal conductivity
of a specimen and find the presence of a faulty area. Reulet et al. [10]
applied a numerical conduction model linked to the iterative method
of Levenberg-Marquardt to estimate simultaneously the set of thermal
properties {Cp, kxx, kyy,kzz} of an orthotropic sample. Adamczyk et
al. performed several studies ([11, 12]) based on the flash method with
the purpose of measuring thermal conductivities on isotropic and or-
thotropic materials.

� Flat shock probes, of which the best known is the HotDisc®[13, 6], al-
low here again by inverse method the determination of the 2 parameters
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k and c. Raji et al. [14] characterized a wall made of stacked lami-
nated solid-wood planks by implementing a thermal effusivity relation
in the analytical equations of the hot strip method for both directions
of the fiber (perpendicular and parallel). The results pointed out that
thermal properties of wood depend greatly on the water content inside
the wood fiber, as well as the important role that permeability and the
diffusion coefficient could have.
Lagüela et al. [15] provided a theoretical derivation of the hot-disc
method to obtain the thermal diffusivity and conductivity in anisotropic
materials, specifically in their case for wood.

Searching for a easier way to characterize insulating materials, Jan-
not et al. [16] developed a simplified estimation method based on the
hot-plate method by using a 1.2 cm wide hot-strip and a thermocou-
ple. They then deducted simultaneously the effusivity and conductivity
from a temperature recording by using a linear regression of the heat
equation.

A major inconvenience with most of these techniques is that they are es-
sentially used in laboratory : Even if the flash method has been tested in situ
(Kruczek et al. [17]), the difficulties are numerous: the profile of the laser
source that creates the heating must be precisely known. In addition, given
the relatively large and fragile equipment, this technique is not well suited to
frequent travel. Finally, even if recent work proposes to go back to multilayer
characteristics [18], the characterization of a sandwiched insulating material
seems to be difficult. As far as the HotDisc is concerned, its principle is not
adapted to an in situ measurement and moreover, even if its major interest
is its experimental simplicity, a major defect remains: its fragility.

Another technologie it’s the “hot wire or needle probe method”, which
consists of an infinite line source with constant power per unit length, placed
inside an infinite medium, having a thermocouple to record the temperature
transient evolution at an x distance. From the point of view of the experi-
mental protocol, this solution meets the specifications, since the equipment
is light, easily transportable, requiring a moderate measurement time, and
inexpensive.

Initially intended to determine the conductivity from more or less simple
analytical laws (Jeager [19], Blackwell [20]), it has been used in many fields
[21, 22, 23]. For all these models, the resulting plot of the temperature
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evolution against the natural logarithm of time is characterized by a linear
zone, for which the slope gives direct access to the thermal conductivity
value. In addition, the use of inverse techniques also allows, as for the other
techniques, to go back to the 2 parameters simultaneously k and c, always
based on analytical laws [24, 25].

But at the same time, studies are questioning the validity of these models
for materials with low conductivity [26, 27, 28, 29]. For these authors, the
analytical model presents a limitation for the characterization of insulating
materials even if it is used in an inverse procedure. This is due to a strong
simplification because the model does not allow to take into account the
inertia of the probe, the non homogeneity of temperature, and the heat
flows that exist along the sensor. This phenomena, often negligible with
a conductive sample, must be taken into account in the case of insulation.
This is why numerical models have been developed. Given the limits of the
number of degrees of freedom of the numerical models that can be applied
in an inverse method, all models have so far been simulated only in 2D
axisymmetric, considering the probe perfectly homogeneous and dissipating
a uniform power density [28, 30].

In this paper, our goal is to use a numerical model associated to an inverse
procedure, in order to broaden the application of a classical heat-wire type
probe which could be used in situ for an highly insulating materials, in order
to determine their thermal conductivity and thermal volumetric capacity.To
overcome the numerical difficulty caused by the large number of degrees of
freedom of the model, incompatible with the iterative inverse procedure, a
reduced modal model is used instead. The challenge lies then in establishing
one single reduced model suitable to a variety of values of thermal properties
of the insulating materials. Therefore, we seek to show the effectiveness of
such procedure.

The first part of this paper introduces the geometry of an existing hot-
wire probe and the conditions affecting the material to be studied. The
construction of a numerical model is conducted as well. We then move on to
the use of a modal reduction method, where the previously numerical model
is reduced; thus showing the capacity of the method. Section 4 addresses the
inverse procedure. It thoroughly explains each of the stages taken in order
to conduct an identification, and presents the results obtained for the study.
And finally, conclusions and perspectives are discussed.
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2. PHYSICAL PROBLEM

2.1. Studied configuration

Here we consider ΩI as one portion of a slab of insulating material (Figure
1) whose thermal conductivity kI [W.m−1.K−1] and capacity cI [J.m−3.K−1]
are to be determined. This insulator is shaped like a cube, where each side
measures 10 cm.

Figure 1: Studied system

The system uses an existing hot-wire probe ΩP , developped in a lab-
oratory, composed by a heating wire and two thermocouples initially con-
ceived to identify solely thermal conductivities. They are embedded in a
steel needle-like body filled with glue (Figure 2). This probe is particularly
thin, since its diameter is D = 2mm for a length L = 9.3 cm .
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Figure 2: Geometry of the studied system

This probe ΩP is composed of different materials, whose thermal conduc-
tivities (ki) and volumetric thermal capacities (ci) are presented on Table
1.

No. of domain in ΩP kPi
[W.m−1.K−1] cPi

[J.m−3.K−1]

#1 - ΩHW Heating wire 19.5 3.47×106

#2 - ΩHS Heating wire sheath 0.25 2.25×106

#3 - ΩCh Chromel 19 3.81×106

#4 - ΩA Alumel 29.7 4.50×106

#5 - ΩTh Thermocouple 24.35 4.15×106

#6 - ΩThS Thermocouple sheath 0.2 2.25×106

#7 - ΩS Steel 16.3 3.97×106

#8 - ΩG Glue/filling 0.1 3.15×105

#9 - ΩC Copper 390 3.38×106

Table 1: Physical parameters of the hot-wire probe
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The insulating materials (ΩI) will undergo a convective condition on the
side (Γh) where the probe (ΩP ) is inserted and which is characterized by a
convective coefficient h = 10 [W.m−2.K−1] and an environmental temperature
Tenv = 0 [◦C] (temperature elevation). Starting from an uniform initial
temperature T0 = 0 [◦C], the heating wire ΩHW will dissipate a known power
π = 0.06 [W ]. All other surfaces (noted Γ0) are insulated. This thermal
problem is described by the following equations (with Ω = ΩI ∪ ΩP )

∀M ∈ Ω , t > 0 c
∂T

∂t
=
−→
∇(k
−→
∇T ) + Π

∀M ∈ Γh , t > 0 k
−→
∇T.−→n = −hT

∀M ∈ Γ0 , t > 0
−→
∇T.−→n = 0

∀M ∈ Ω , t = 0 T = T0 = 0

(1)

where:

� k and c gather all the values of thermal conductivities and heat capac-
ities, including those regarding the probe and the insulating material,

� and Π is equal to π in the heating wire ΩHW and zero elsewhere.

The main goal will be to seek the values of the thermal properties of
the insulating material, being the thermal conductivity kI and the volumet-
ric heat capacity cI . This is achieved by previously knowing the materials
conforming the probe, as well as the thermal loads that the insulator will
undergo.

2.2. Numerical model

The resolution of the problem defined by Eq.(1) is done from its varia-
tional formulation, in which the test function f ∈ H1(Ω) is defined:

∫
Ω

c
dT

dt
fdΩ =−

∫
Ω

k~∇T · ~∇fdΩ −
∫

Γh

hTfdΓ +

∫
Ω

ΠfdΩ (2)

By expressing each of the preceding volume integrals as a sum of two
terms, on the one hand as the volume of the probe ΩP and on the other hand,
as that of the insulating material ΩI , it is possible to isolate the unknown
sought terms, that is to say, the thermal conductivity kI and the heat capacity
cI of the insulator:
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cI

∫
ΩI

dT

dt
f dΩ +

∫
ΩP

cP
dT

dt
f dΩ = −kI

∫
ΩI

~∇T · ~∇f dΩ

−
∫

ΩP

~∇T · kP ~∇f dΩ−
∫

Γh

hT f dΓ +

∫
ΩHW

π f dΩ

(3)

Once a spatial discretisation is performed by the Finite Element Method
(FEM), considering a linear interpolation law (type P1 elements), we obtain
the following matrix expression (respecting the same order as in Eq.(3)):

(cICI + CP)Ṫ = (kIKI + A)T + U (4)

The size of these matrices are [N , N ], where N = 61, 591 taking into
consideration the degree of precision for the representation of the geometry.

A numerical simulation was executed, using a second-order solver work-
ing at a variable time-step, to evaluate the temperature field of the formerly
discussed insulator. With the same set of thermal characteristics (kI = 0.041
[W.m−1.K−1] and cI = 1.15 × 105 [J.m−3.K−1]). Our simulation has been
validated with the modeling software COMSOL Multiphysics®.

Figure 3 shows the evolution of the temperature at the 2 measuring points
A and B of the probe over time, as well as the results obtained by the Black-
well analytical model. One can thus note the important difference between
these two models. In addition, the inexistence of a linear law as a function of
the logarithm of time in the case of the numerical model. It is thus this one
which must be used in the case of the identification of an insulating material.

Figure 4 shows the numerical temperature profiles at both measuring
points A and B of the probe. Depending on the axis orientation, the tem-
perature profile changes. There is a presence of a notable non-homogeneity
regarding the temperature inside the probe, both radially (concerning the
heating wire), as well as longitudinally (thermal flow along the probe). The
difference in temperature ∆T equals to 0.56 [◦C]. This proves how essential
it is to know the probe’s geometry and thermal properties with precision,
and not just simply consider it as an uniform object englobing all compo-
nents. We note that ∆T could vary according to the insulating material
being tested, and in case of a lower conductivity, the gap in temperature
between both measuring points will become more noticeable.
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Figure 3: Temperature evolution : analytical and numerical models

Figure 4: Temperature profiles at t = 600 [s]
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For the rest of the study, this numerical model called complete model will
be used for 2 things:

� It will make it possible to obtain virtual measurements at the results
obtained at measurement points A and B, by adding Gaussian noise: of
zero mean, constant standard deviation and uncorrelated along time.

� As will be shown in the following, it will serve as a starting point for
the construction of an accurate model for the whole range of insulators
that we wish to characterize with this probe.
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3. Modal reduction

3.1. General principle of modal reduction

The modal reduction method is based on the decomposition of the tem-
perature field into a small number ñ of known spatial functions Ṽi(M) called
eigenmodes. We are then able to approximate the sought temperature T̃ (M, t),
defined as:

T (M, t) ' T̃ (M, t) =
ñ<<N∑
i=1

x̃i(t)Ṽi(M) (5)

where x̃i are the unknown excitation states of the eigenmodes Ṽi(M).
Based on this principle, different techniques exist, such as the Modal

Identification Method (MIM) [31, 32], the Proper Generalized Decomposition
(PGD) [33], and the most well-known the Proper Orthogonal Decomposition
(POD) [34, 35],

For this study, we chose to apply another method called the Amalgam
Reduction Order Modal Model (AROMM) method. Initiated by Neveu et
al. [36], this technique is adapted to problems with variable parameters, and
has so far been used for problems of identification of sources or heat flows
[37, 38, 39, 40]. The main difference between POD and AROMM is the way
in which eigenvectors are obtained Ṽi: Both techniques use several reference
temperature fields, the POD makes a statistical treatment of them by using
a spatial autocorrelation function, while the AROMM method uses the heat
equation to calculate a large generic initial base, which is then reduced from
the reference cases according to a minimization process.

Very few studies have used these different modal reduction techniques
for the identification of the conductivity of materials: Adamczyk [41] uses a
POD type model, et Girault [42] develops the MIM technique.

The following paragraphs specify the different steps in the construction
of the modal reduced base using the AROMM method.

3.2. The complete base of the AROMM method

The complete basis is obtained by the resolution of a particular eigenval-
ues problem which takes up the operators associated with the heat equation
(eq 1) :
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{
∀M ∈ Ω , k0

−→
∇ .(
−→
∇V̂i) = zi c0 V̂i

∀M ∈ Γh , k0
−→
∇V̂i.−→n = −zi ζ V̂i

(6)

The feature of this problem is that the eigenvalues zi are present in the
boundaries condition. The variational form of (6) is written, separating the
domain of the probe ΩP from that of the insulator ΩI :

−
∫

ΩI

~∇Vi · kI0 ~∇f dΩ−
∫

ΩP

~∇Vi · kP0
~∇f dΩ =

zi

(∫
ΩI

Vi cI0 f dΩ +

∫
ΩP

Vi cP0 f dΩ +

∫
Γh

ζ f Vi dΓ

) (7)

The choice of unique values for the different parameters involved in this
eigenvalue problem is as follows:

� The probe domain corresponding to ΩP had every single one of its com-
ponents with a certain well-known thermal property. The properties
kP0 and cP0 of the different elements of the probe correspond to the
known real values (table 1).

� With respect to the insulator for which there is no fixed value in the
heat equation (3) the value of the parameters kI and cI , we opted here
for an arbitrary value, near to the range of the materials being studied:

∀M ∈ ΩI , kI0 = 0.01 [W.m−1.K−1] , cI0 = 10000 [J.m−3.K−1] (8)

� The quantity ζ [J.m−2K−1] is called the Steklov parameter and it is
a simple coefficient that allows to maintain the physical dimensions of
the quantity in the boundaries condition equations. To balance the two
terms linked to the eigenvalue in (eq. 7), an appropriate choice of the
Steklov coefficient ζ is given by:

ζ '

∫
ΩI

cI0 dΩ +

∫
ΩP

cP dΩ∫
Γh

dΓ
= 3528 [J.m−2.K−1] (9)
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The contribution of these Branch vectors is that they form a basis for all
types of thermal problems, whatever the set of values of the thermophysical
characteristic of the isolant kI and cI :

T (M, t)(cI , kI) =
N∑
i=1

xi(t) Vi(M)(cI0 , kI0 , ζ)
(10)

These Branch basis are characterized by the orthogonality property:

∀i, j ∈ N,
∫

Ω

Vi c0 V j dΩ +

∫
Γ

Vi ζ V j dΓ = δij (11)

where δij corresponds to the Kronecker function.

The numerical calculations for this Branch basis are achieved by using the
Arnoldi Method [43], which allows to calculate the first modes characterized
by their smallest value of zi (absolute value). The whole (100%) base is
computed, consisting of 61,591 modes, needing approximately 3 hours and
20 minutes of CPU time on a Dell Precision 7530 with Intel Xeon.

3.3. Basis reduction

The reduction of the complete base calculated in the previous stage can
be easily done by removing some modes, according to a criteria that can
be time-based [44] or energetic [45]. The method chosen for this study is a
more developed technique, known by the name of Amalgam Reduction [46],
that is based on a distribution of the eigenmodes space into ñ subspaces
that are orthogonal to each other. Every subspace is conformed by a main
mode Vj,0 , and ñj minor modes. The latter will provide additional thermal
information to each main mode, by creating a mix of modes, hence the name
of the method.

The core of the technique relies in rebuilding new modes Ṽj by linear
combinations of initial modes Vi, with the particularity that each eigenvector
is used only once, either as a main mode or as a minor mode:

∀j ∈
{

1, ñ
}

Ṽj = Vj,0 +

ñj∑
p=1

αj,p Vj,p (12)

The distribution of initial modes in the sub-spaces of the amalgamated
basis, as well as determining the amalgam coefficients α, are achieved by
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minimizing a criteria JR based on the difference between the temperature
fields obtained respectively by the complete model T and the reduced model
T̃. These calculations are then made from known temperature fields, char-
acteristic of the simulated process.

In the case of the insulating material, since we cannot predict the exact set
of thermal properties, we are forced to take into account a wider spectrum
instead of limiting it to just one set of values. Therefore, we will build a
compound scenario where the reference temperature fields T(Ri), i = [1, ..., 4],
are derived from simulations presenting different sets of thermal properties.
Table 2 presents the selected reference cases for the basis reduction.

No. Reference case kIRef
[ 10−2W.m−1.K−1] cIRef

[104J.m−3.K−1]

R1 1 1.5

R2 1 150

R3 6 1.5

R4 6 150

Table 2: Amalgam reduction reference points

The criteria JR is built in order to take advantage of the orthogonality
properties of the complete base (Eq.(11)). It leads to a fast and sequential
optimization process as a function of the number of modes of the reduced
base.

JR =
4∑
i=1

∫
τ

[∫
Ω

c0

(
T(Ri) − T̃(Ri)

)2

dΩ +

∫
Γ

ζ
(
T(Ri) − T̃(Ri)

)2

dΓ

]
dt (13)

In order to determine the order of the reduced model used afterwards, the
projection of the known temperature fields T on the reduced base Ṽ makes
it possible, thanks to the orthogonality properties, to obtain the states of
excitation of every mode:

x̃i =

∫
Ω

Ṽi c0 TdΩ +

∫
Γ

Ṽ ξ TdΓ (14)

Through Eq.(5) we are able to obtain the states that will allow to de-
termine the integrality of the sought temperature field and then error the
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between the complete model and the reconstructed reduced model. For this
study, only the measurement points A and B will be considered:

P ∈ [A, B], ε(P, t) = T (P, t)−
ñ∑
i=1

x̃i(t) · Ṽi(P ) (15)

The mean and maximum values of these errors at the two measuring
points over the entire duration of the test are then deduced:

P ∈ [A, B], εmax(P ) = max
t

(
ε(P, t)

)
P ∈ [A, B], ε̄(P ) =

1

∆t

∫ ∆t

0

ε(P, t) dt
(16)
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Figure 5: Maximum error at measuring points max
(
εmax(A), εmax(B)

)
for

each reference cases

Figure 5 presents the maximum error between εmax(A) and εmax(B) (Eq.(16))
as a function of the order of the model. We note that according to the order
of reduction chosen, the different reference cases do not have the same be-
haviour. Indeed the optimization of the reduced model (for a given ñ order)
is based on a global criterion (13) at the same time on the whole spatial and
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temporal domain and for the 4 reference cases. It is therefore not possible to
rigorously link this criterion to the punctual errors used thereafter.

We will then choose a model of order 100, which leads to a maximum error
of less than 0.07[◦C]. The temporal evolution of the temperature obtained
by the complete and reduced models for the worst case scenario is shown in
Figure 6. We can see that the maximum error is obtained during the first
instants and it is evident that it will continue to decrease. Error related to
the first instants is typical of model reduction, where the errors will be more
related a priori to fast dynamics (high frequencies). As shown in Table 3, the
mean error is largely lower regarding the maximum error at each measuring
point.

Insulator Point εmax [10−2 ◦C] ε̄ [10−2 ◦C] Tmax [◦C]

R1
A 5.31 1.61 31.50

B 5.28 1.96 33.82

R2
A 6.37 0.76 15.82

B 6.36 1.80 16.10

R3
A 5.50 2.55 7.90

B 5.54 1.22 8.47

R4
A 6.97 2.04 4.54

B 6.92 2.20 4.56

Table 3: Efficacy of the reduced order model of ñ = 100 modes of the reference cases
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Figure 6: Reduced model of ñ = 100 modes : results for Reference n◦4 at point A

3.4. State equation

The modal model is obtained by introducing the modal approximation of
temperature (Eq.(5)) in the heat equation (Eq.(1)). Projecting the discrete
heat equation (Eq.(3)) over this reduced basis by using the test function g
as the basis eigenvectors:

∀j ∈ N,
ñ∑
i=1

(∫
Ω

Ṽj c Ṽi dΩ

)
dx̃i
dt

= −
ñ∑
i=1

(∫
Ω

k
−→
∇Ṽj.

−→
∇Ṽi dΩ +

∫
Γ

Ṽj h Ṽi dΓ

)
x̃i

+

∫
ΩHW

Ṽj Π dΩ

(17)

By making Ṽ the matrix grouping the entire ñ of the reduced modes Ṽi
(expressed under a discrete form), and X̃ being the vector of ñ associated
excitation states x̃i, the reduced model equation corresponding to Eq.(4) is
expressed as:
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(cIṼ
t
CIṼ + Ṽ

t
CPṼ)

˙̃
X = (kIṼ

t
KIṼ + Ṽ

t
AṼ)X̃ + Ṽ

t
U (18)

that becomes under compact form:

(cI LI + LP)
˙̃
X = (kI MI + M)X̃ + N (19)

By solving this problem, it is possible to determine the transient evolution
of the ñ excitation states and also rebuild the temperature field T̃ (M, t)
(Eq.(5)).

This simulation by reduced model is then used for 5 samples of insulating
materials frequently used, which have different thermal properties (see Table
4) from those used to build the reduced model (see Table 2). We note that the
range of thermal properties of these samples is significantly smaller regarding
the wider range used for the reference cases. This choice was made with a
view of conducting experimental validations.

The maximum errors at the two measurement points of these reduced
simulations compared to the results obtained by the complete model are
presented in Table 5. It is worth pointing out that the results present the
same order of error as that obtained by projection for the reference materials
(Table 2).

No. of sample kI [W.m−1.K−1] cI [J.m−3.K−1]

1 0.030 7.2×104

2 0.041 1.15×105

3 0.035 2.6×104

4 0.028 2.2×104

5 0.022 3.5×104

Table 4: Thermal properties of the tested insulators

These results show the capacity of these reduced models obtained by the
AROMM method to be used for a wide range of the insulator’s physical
properties. In terms of computation time, the use of this reduced model
(ñ = 100) compared to a classic finite element type model (N ≈ 62,000),
leads to a gain of 250 times faster. It is this result that justifies the use of
this type of reduced model for an inverse process to identify parameters.
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Sample Point εmax [10−2 ◦C] ε̄ [10−2 ◦C] Tmax [◦C]

S1
A 5.577 0.709 12.06

B 5.541 0.691 12.31

S2
A 5.735 0.543 8.95

B 5.696 0.847 9.05

S3
A 5.465 1.906 11.68

B 5.465 0.527 12.16

S4
A 5.417 2.079 14.18

B 5.413 0.724 14.83

S5
A 5.435 1.195 16.50

B 5.409 1.025 17.12

Table 5: Reduced model of ñ = 100 modes : errors of the samples
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4. Inverse procedure

4.1. Principle

From the temperature field obtained, by using an inverse technique, we
are able to identify the thermal properties (kI and cI) of the targeted insu-
lating material.

Figure 7: Inverse procedure scheme

Figure 7 demonstrates the iterative process aimed at identifying the best
solution. In practice, the inverse approach focuses on Nmes specific points,
through a selection matrix E, that creates an observable vector Ŷ to compute
an approximation of β̂ = [k̂I , ĉI ].

The goal here is to replace the numerical model by a reduced order model
previously built:

Ŷ = ET ≈ EṼX̃ (20)

The iterative identification process is based on the minimization of a
quadratic criterion built on the difference between the measurement Yij at

the measurement points and the result of the simulation Ŷij for the estimated

parameters β̂ at each iteration. Here it is important to note that the mea-
surements Yij are calculated with a complete model with added noise and

the simulation Ŷij is performed by the reduced model.

J (β̂) =
1

2

Nt∑
i=1

Nmes∑
j=1

(
Yij − Ŷij(β̂)

)2

(21)

where Nt is the number of time steps of the simulation.
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As for the optimization algorithm, a series of approaches can be imple-
mented at different degrees of complexity in accordance with the sought
parameters. This will be addressed in Section 4.3.

4.2. Sensitivity study

In order to assess the feasibility of the procedure to identify thermal
properties, we conducted a sensitivity study to ensure the relevance of the
measurements points, since the sensitivity to the variation of parameters is
scaled. They were evaluated by using:

S∗
kI

= kI
∂Y

∂kI
S∗
cI

= cI
∂Y

∂cI
(22)

This study focused on the wide range of thermal properties within the
reference cases and on the more restrained range of thermal properties in the
samples listed for future experimental studies.

First of all, in order to quantify the expected accuracy of this identifi-
cation, the evolution of these sensitivities as a function of time is plotted.
Regarding the reference cases, we noted on Figure 8 a remarkable difference
in magnitude of the sensibility for each parameter according to the refer-
ence cases 1 and 4. Furthermore, both sensitivities for the heat capacity are
considerably smaller than those for the conductivity. Even if the reduced
model allows the reproduction of a wide range of materials by simulation,
the identification could eventually pose a problem.

Figure 9 shows the results regarding the samples. The sensitivities are
enclosed in inside the domain previously obtained by the reference cases,
and their variation for the same parameter are closer. We noticed that the
sensitivity in relation to the heat capacity is once again lower than that of
the conductivity. Thus, we could expect less accurate results during the
identification procedure.

Next, in order to study an eventual correlation between these two pa-
rameters, one traces them one in relation to the other. Figure 10 represents
the evolution of the sensitivity of the capacity as a function of that of the
conductivity. It is chosen here to adimentionnalize these values as a function
of the maximum values obtained, in order to obtain the same scale for the
two reference cases studied R1 and R4. It can thus be noted that none of
these evolutions follows a linear law: there is no correlation between these
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sensitivities and the simultaneous identification of thermal conductivity and
heat capacity is therefore theoretically possible by this hot-wire method.

Figure 8: Sensitivity study for Reference R1 and R4

Figure 9: Sensitivity study for Sample S2 and S5
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Figure 10: Correlation between the adimensionnalised sensivity for
Reference R1 and R4

4.3. Minimization method
There are a variety of methods to carry out a function minimization. In

this study we explored a stochastic method by the name of Particle Swarm
Optimization, that is a population-based stochastic technique inspired by the
social and cognitive behavior of a bird flock [47, 48].

Its principle is based on a random particle population that updates its
positions and velocity at every iteration, looking to converge at the minimum
of the specified function. In our case, being the thermal set of parameters
the targeted value, the algorithm will update the thermal conductivity and
capacity until a minimum is found (See annexe A for details).

The iterative process comes to an end when:

– the functional Eq.(21) stops evolving,
– the maximum number of iterations is achieved,
– the Morozov discrepancy principle is reached [49].

One can appreciate a series of captures of the PSO algorithm for Sample
1 in Figure 11. The first iteration allows to visualize the different initial
values of the particle population, which are randomly chosen in the possible
field of research of the parameters (kI , cI).
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Figure 11: Particles evolution for PSO algorithm for sample No.1

4.4. Identification results

4.4.1. Identification without measurement noise

From virtual measurements obtained by numerical simulations carried
out using a complete model (Eq.(4)), we are seeking the set of thermal char-
acteristics of different materials. On the one hand, those who have been used
for the construction of the reduced model (Table 2) and, on the other hand,
those that are commonly used (Table 4).

For a given parameter βi, we define σβi as the relative error of the average
value, and σtotal as the quadratic error between the measurement and the
temperature built with the parameters identified:
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σβi =
|β̂i − βi|

βi
(23)

σtotal =

√√√√ 1

2 Nt Nmes

Nt∑
i=1

Nmes∑
j=1

(
Yij − Ŷij(β̂)

)2

(24)

The set of results obtained with an absence of measurement noise is pre-
sented on Table 6.

ki k̂I σkI ci ĉI σcI σtotal tcpu

[10−2 W.m−1.K−1] [%] [104 J.m−3.K−1] [%] [◦C] [s]

S1 3.000 3.011 0.4 7.200 6.868 4.6 0.016 220

S2 4.100 4.121 0.5 11.500 10.830 5.8 0.011 189

S3 3.500 3.464 1.0 2.600 2.713 4.4 0.015 192

S4 2.800 2.775 0.9 2.200 2.295 4.3 0.018 204

S5 2.200 2.199 0.1 3.500 2.199 1.5 0.021 198

Table 6: Identification without measurement noise

Regarding the reference materials (Ref.1 - Ref.4), the accuracy in the
results is highly satisfactory since the overall of the identified parameters
show an error under 1%, except for the heat capacity of Reference 4 sample,
for which the error has an order of magnitude of 6%. This result is completely
justified by the low sensitivity observed previously in Figure 8.

With regard to the conventional insulators (samples 1 to 5), it is noted
that the identification errors are globally satisfactory. In terms of the thermal
conductivity, identification error remains under 1%, whereas the error for the
heat capacity reaches 6% at its maximum.

We note that the quadratic error σtotal corresponds to the error found
between the reduced and complete model.

With respect to the calculations time, they are always under 5 minutes.
The benefit of using a reduced model within this iterative procedure, which
needs a large number of simulations, then becomes obvious. As an example,
in the case of Sample 1, it took 200 iterations, and taking into consideration
that the number of particles used in each iteration equals 20, this leads to
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4,000 simulations. By using a simple extrapolation, an identification using a
complete model will take approximately 20 hours of computation time.

4.4.2. Influence of a measurement noise

In this section we studied Sample 1 for which a stochastic noise with zero
mean, and constant standard deviation σB1 = 0.05[◦C], and uncorrelated
along time is added (Gaussian noise). In order to characterize the dispersion
of the results linked to this noise, a large number of identifications are carried
out (nI = 300) which allows to evaluate for every identified magnitude βi:

– the average value defined by:

β̄i =
1

nI

nI∑
j=1

β̂ji (25)

– the standard deviation characterized by the dispersion of the estimation

β̂ji of parameter βi around the expectation of the estimator:

stdβi =

√√√√ 1

nI

nI∑
j=1

(
β̂ji − β̄i

)2

(26)

– the average error:

σ̄βi = |β̄i − βi| (27)

– the confidence interval corresponds to the maximum error made on one
measurement with a probability of 99.7%:

σ̄max = σ̄βi + 3 stdβi (28)

The results dispersion is illustrated in Figures 12 and 13, as well as in
more detail in Table 7.
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Figure 12: Identification of k for a σB = 0.05◦C

Figure 13: Identification of c for a σB = 0.05◦C

27



βi kI [10−2 W.m−1.K−1] cI [104 J.m−3.K−1]

Exact βi 3 7.2

β̄i 3.011 6.871

stdβi 0.004 0.059

σ̄βi 0.011 0.329

σmax 0.023 0.506

Table 7: Statistical study with measurement noise

At first we saw that each of the 300 identifications gave highly satisfying
results. Secondly, for each parameter the average value β̄i of these identifica-
tions corresponds exactly to the values obtained without measurement noise
(see Table 6). Thus, the average error σ̄βi gives insight to the error between
the complete and the reduced model. Moreover, the standard deviation stdβi
remains entirely reasonable compared to the real value βi. The confidence
interval σmax, chosen voluntarily wide, gives 0.8% for the thermal conductiv-
ity and 7% for the heat capacity, respectively. The relative errors σ̄βi/βi are
0.4% for the conductivity and 4.6% for the heat capacity.

It is possible to obtain theoretically standard deviation values without
performing the 300 estimations. It depends on the sensitivities of the mea-
surements at each point A and B, in relation to the parameter to be identified
kI and cI , grouped together in the form of a sensitivity matrix:

S =

[
∂Y

∂βi

]
(29)

To quantify the quality of the estimation procedure, one can calculate the
variance-covariance matrix defined by:

cov
(
β̂
)

= σ2
B

(
STS

)−1
(30)

This covariance matrix has diagonal elements which enables us to approx-
imate the theoretical standard deviation:

stdβi ≈
√
cov(i, i) (31)

In the case of Sample 1 we obtained:
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Sample stdk [10−2W.m−1.K−1] stdc[104J.m−3.K−1]

S1 0.004 0.050

These results are compared to those obtained from the 300 estimations
shown on Table 7. In terms of the thermal conductivity, the approximation
is accurate. As for the heat capacity, there is a difference of 20%, and one
can appreciate that the standard deviation stdc remains smaller regarding
the real value of the heat capacity c.

This technique is applied to approximate the confidence interval σmax
(Eq.(28)), since the average value σ̄βi corresponds to the value without noise
(see Table 6). Table 8 regroups these estimations for all the samples for two
different noises.

Conductivity: σmaxk [%] Heat capacity: σmaxc [%]

Sample σB = 0.05[◦C] σB = 0.1[◦C] σB = 0.05[◦C] σB = 0.1[◦C]

S1 0.70 1.06 6.66 8.73

S2 0.96 1.44 8.70 11.31

S3 1.43 1.71 6.41 8.58

S4 1.32 1.57 5.98 7.87

S5 0.72 0.99 3.12 4.81

Table 8: Estimations of the confidence interval σmax for different measurement noises σB

Overall results for these estimations are satisfactory. As noted before,
the estimation of the heat capacity is less precise when compared to that of
the conductivity. Moreover, a bigger measurement noise σB leads to a slight
increase of the confidence interval σmax.

One single estimation is conducted for each sample for both of the mea-
surement noises. Table 9 presents the corresponding error, which remains
within the confidence interval.
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Conductivity: σk[%] Heat capacity: σc[%]

Sample σB = 0.05[◦C] σB = 0.1[◦C] σB = 0.05[◦C] σB = 0.1[◦C]

S1 0.33 0.10 4.30 1.87

S2 0.40 0.78 5.38 7.28

S3 1.04 1.25 4.23 6.25

S4 0.91 0.64 4.47 2.17

S5 0.06 0.06 1.36 2.03

Table 9: One single identification for different measurement noises σB

4.5. Thermal contact resistance influence

In this section, we address the question of the presence of a thermal
contact resistance (TCR) between the probe ΩP and the insulating material
ΩI . In the reduced model used within the inverse procedure, this TCR was
not taken into account, insofar as we consider that the probe is inserted
in the insulator by breaking through the material, thus creating a perfect
contact. However, in the literature, some authors refer to the existence of
an imperfect contact between the probe and the material: Bording et al [30]
analyzes the influence of TCR over a very broad spectrum (between 10−4

and 3 [K.m2.W−1] ) without experimental justification, and shows that TCR
has little influence on the determination of the conductivity k but leads to
errors on the capacity c. Two authors give TCR values depending on the
material in which the probe is implanted: Wenlong et al [50] displays a TCR
≈ 10−3[K.m2.W−1] for ceramics. Goodhew et al [25] proposes values of TCR
= 5.10−3[K.m2.W−1] in clay straw and TCR = 2.10−3[K.m2.W−1] in Agar.
They do not specify the procedure for implanting the probe in the material
(with or without pre-drilling before introduction of the probe).

In this study, we will evaluate the identification error when an TCR that
appears in reality is not taken into account in the identification procedure.

The use of a numerical model which takes into account a contact resis-
tance between the probe and the insulating material allows to obtain new
virtual measurements from which the identification process is done with the
previously reduced model (see Eq.(19)). This process is conducted without a
measurement noise for the most sensitive sample S2 and for different values
of TCR.

Table 10 shows the identification errors of the two parameters kI and cI
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for different TCR values. The table specifies the correspondence in terms of
equivalent air gap thickness around the probe, taking into account both the
circular geometry of the probe and its very small size (The appendix presents
the model used).

TCR [10−3 K.m2.W−1] e [mm] σkI [%] σcI [%]

0 0 0.51 5.83

0.25 0.015 0.76 9.13

0.50 0.03 0.62 11.82

1.00 0.03 0.39 16.71

1.64 0.10 0.73 22.54

5.00 0.34 2.14 44.98

Table 10: Influence de la TCR sur la precision de l’identification : materiau S2

We can thus see that we find the trends presented in the previous studies
[30]:

On the one hand, the value of the identified thermal conductivity remains
satisfactory whatever the quality of the contact between the probe and the air
gap. Only a strong resistance (TCR = 5 10−3 [K.m2.W−1]) which corresponds
to a pre-drilling a diameter significantly larger than the probe, leads to a
significant error (2 [%]), of the same order of magnitude as the error related
to the measurement noise (according to the table 8, an average measurement
error of 0.1 oC leads to an identification error of 1.44 %).

On the other hand, the results obtained show a very high sensitivity of
the thermal capacity to the quality of the contact between the probe and the
material. The difficulty to manage this parameter greatly degrades the qual-
ity of the identification of this capacity, which already depends significantly
on measurement noise (the table 8 shows that an average measurement error
of 0.1 oC leads to an identification error of about 11 %).

This study brings to light the need of conducting a characterization for
an imperfect contact between the probe and the material. In this case, the
reduced model must then be adapted to take into account the estimated
TCR.
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5. Conclusion

This study evaluates the possibility of taking advantage of recent progress
in reducing thermal models to extend the use of thermal characterization
probes on site such as the hot-wire type. We wanted to be able to use them,
on the one hand on strong insulating materials, which until now were difficult
to characterize by this type of probes, and moreover to carry out a complete
determination of the thermal properties, including the heat capacity.

This characterization requires a large numerical model to be able to per-
form a precise simulation taking into account the integrality of the thermal
phenomena with the complex geometry of the probe. Given the incompati-
bility faced by large models in the face of an iterative process that constitutes
the inverse problem posed, a solution is a reduced model, provided that the
latter can be independent of the intrinsic properties of the model intended
to be identified.

This study examined modal reduced models of the AROMM type. The
advantage of these models is that they are built from complete families of
eigenvectors, that form a base in H1. These modal models are then inde-
pendent of intrinsic parameters, such as the thermal conductivity and heat
capacity. The construction of the reduced model was optimized from ref-
erence cases defining a wide range of insulating materials having a thermal
conductivity varying from 1 to 6 [10−2 W.m−1.K−1] and, a thermal capacity
value ranging from 1.5 to 150 [104 J.m−3.K−1]. Direct simulation tests for
different materials with a single reduced model showed significant reduction
in computation time (250 times) with a maximum error at the measurement
points of less than 0.08 [◦C].

Therefore, the reduced model avoids a prohibitive computation time for
an identification process. In order to estimate the influence of the reduced
model within the inverse procedure, the first tests were carried out with
virtual measurements obtained from a finite element complete model in the
absence of noise. The results were highly satisfactory, even if it appeared
that the low sensitivity of the temperatures measured with respect to the
heat capacity generated an error reaching 6%.

A measurement noise study made it possible to show the feasibility of the
method. The standard deviation, which is a function of the measurement
noise, makes it possible to predict the confidence interval likely to be reached
for a given probability. The tests conducted for all the materials examined
had satisfactory results, with the worst case scenario resulting in 1.5% error
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on thermal conductivity and 8.7% error on heat capacity, thus producing a
total measurement noise of σB = 0.05[◦C].

Furthermore, given the speed of the numerical calculations (< 5 min.)
during the identification process, that employs a reduced model, one can
imagine a continuous process of repeated identifications that overrides the
influence of measurement noise, only to obtain an error solely related to the
use of the reduced model.

Finally, the effect of an eventual imperfect contact between the probe and
the insulating material was addressed by using virtual temperature measure-
ments that took into account a given air gap. It was found that if there
was thermal resistance, it could generate important additional errors for the
heat capacity but acceptable for the thermal conductivity. Additional re-
search will be required to assess this thermal resistance either by analyzing
the state of the insulating material around the probe, or by identifying the
resistance itself. The question then arises how to handle imperfect contact
in the reduced model.

This study has shown the strength of reduced models to simulate complex
thermal phenomena, always getting closer to reality.

This work was conducted for a real hot-wire type probe originally ded-
icated to the determination of the conductivity in an analytical way. This
probe configuration is probably not optimal in terms of measurements sen-
sitivity to the parameters to be identified, particularly to the heat capac-
ity. Hence, the elaboration of a new probe configuration, which would allow
greater sensitivity to heat capacity could generate better results. Regardless
of the design of the probe, the use of the AROMM method in the inverse
procedure would be efficient.

Finally, this technique could be extended to identify the same parameters
for an orthotropic geometry, typical of thermal insulators, by implementing
a new technological tool.
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temperature sensor position in a hot wire probe set up for estimation
of the thermal properties of foods using optimal experimental design,
Journal of Food Engineering 57 (2003) 103 – 110.

[23] N. I. Kömle, E. S. Hütter, W. Macher, E. Kaufmann, G. Kargl, J. Knol-
lenberg, M. Grott, T. Spohn, R. Wawrzaszek, M. Banaszkiewicz, K. Sew-
eryn, A. Hagermann, In situ methods for measuring thermal properties
and heat flux on planetary bodies, Planetary and Space Science 59
(2011) 639 – 660.

[24] S. Nagihara, M. Hedlund, K. Zacny, P. Taylor, Improved data reduc-
tion algorithm for the needle probe method applied to in-situ thermal
conductivity measurements of lunar and planetary regoliths, Planetary
and Space Science 92 (2014) 49–56.

[25] S. Goodhew, R. Griffiths, Analysis of thermal-probe measurements using
an iterative method to give sample conductivity and diffusivity data,
Applied Energy 77 (2004) 205 – 223.

[26] W. Batty, S. Probert, M. Ball, P. O’Callaghan, Use of the thermal-probe
technique for the measurement of the apparent thermal conductivities
of moist materials, Applied Energy 18 (1984) 301 – 317.

[27] B. Pilkington, S. Grove, Thermal conductivity probe length to radius
ratio problem when measuring building insulation materials, Construc-
tion and Building Materials 35 (2012) 531 – 546.

[28] H. Humaish, B. Ruet, L. Marmoret, H. Beji, Assessment of long time ap-
proximation equation to determine thermal conductivity of high porous
materials with NSS probe, Journal of Sustainable Construction Materi-
als and Technologies 1 (2016) 1–15.

36



[29] L. Marmoret, H. Humaish, Limit of validity of the log-linear model
for determining thermal properties of light insulation materials with
cylindrical hot probe, International Journal of Thermal Sciences 117
(2017) 251 – 259.

[30] T. S. Bording, S. B. Nielsen, N. Balling, Determination of thermal
properties of materials by monte carlo inversion of pulsed needle probe
data, International Journal of Heat and Mass Transfer 133 (2019) 154
– 165.

[31] Y. Rouizi, Y. Favennec, J. Ventura, D. Petit, Numerical model reduction
of 2D steady incompressible laminar flows : Application on the flow over
a backward-facing step, Journal of Computational Physics 228 (2009)
2239 – 2255.

[32] Y. Rouizi, M. Girault, Y. Favennec, D. Petit, Model reduction by the
modal identification method in forced convection : Application to a
heated flow over a backward-facing step, International Journal of Ther-
mal Sciences 49 (2010) 1354 – 1368.
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Annexe A : The PSO technique

Algorithm 1: PSO algorithm

Result: [kI ,cI ]
Rand Initialize position β for each particle;
Initialize velocity v = 0 for each particle;
while termination condition is not fullfilled do

foreach particle do
compute velocity v (Eq.32);
compute position β (Eq.33);
if position in feasible space then

evaluate position;
end

end

end

vt+1
i = χ vti + λ1 · rand

t(pBestti − pti) + λ2 · rand
t(gBestt − pti) (32)

βt+1
i = βti + vt+1

i (33)

Eq.(32) allows to update the particle velocities. The first term concerns
the inertia, it makes the particle move in the same direction and with the
same velocity. The second term is linked to the personal influence, it im-
proves the individual by making the particle return to a previous position
better than the current one. And the third term regards the social influence,
meaning that the particle will follow the best neighbors direction.

Eq.(33) moves each particle to their new position where:

– β represents the particle position,
– v the path direction,
– χ the weight of local information, also considered the inertia factor, it

defines the exploration capacity of each particle,
– λ1 and λ2 are the weight of global information, also known as construc-

tion factors,
– pBest is the best position of the particle,
– gBest is the best position of the swarm,
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– rand is a random number between [0,1]

For this study, the PSO parameters are as follows: number of particles
p = 20, χ = 0.7298 and λ1 = λ2 = 1.46618. These parameters were chosen
in order to assure the convergence of the algorithm [51].
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Annexe B : Correspondence
between TCR and equivalent
air gap
We consider here the case of a homogeneous probe that dissipates a power
P uniformly distributed in the volume. Placed in a cylindrical material and
neglecting the ends of the probe, the axial symmetry allows the use of two
analytical models :

� the case of the air gap uniformly surrounding the probe is represented
on Figure 14(a), and a simple power balance allows to write :

ϕ =
T1 − T3

ln
(
D+2e
D

)
2πLkair

+
ln
(
Dtot

D+2e

)
2πLkI

(34)

� the case of an equivalent thermal resistance TCR which imposes a
temperature jump at the interface between the probe and the insulation
leads to (Figure 14(b)) :

ϕ =
T1 − T3

TCR

πDL
+

ln

(
Dtot

D

)
2πLkI

(35)

The equality of the different resistances of the equations (34) and (35)
gives:

ln
(
D+2e
D

)
2πLkair

+
ln
(
Dtot

D+2e

)
2πLkI

=
TCR

πDL
+
ln
(
Dtot

D

)
2πLkI

=
TCR

πDL
+
ln
(
Dtot

D+2e

)
+ ln

(
D+2e
D

)
2πLkI

(36)
or finally

TCR =
D

2
ln
(D + 2e

D

)( 1

kair
− 1

kI

)
(37)
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Figure 14: Contact Resistance Model Configurations

We can see here that the expression of the equivalent contact resistance
is no longer as simple as the TCR = e/kair model used frequently. This
contact resistance depends not only on the cylindrical geometry, but also on
the conductivity of the material in which the probe is inserted.
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