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Abstract

5d iridium oxides are of huge interest due to the potential for new quantum states driven by

strong spin-orbit coupling. The strontium iridate Sr2IrO4 is particularly in the spotlight because

of the so-called jeff = 1/2 state consisting of a quantum superposition of the three local t2g orbitals

with – in its most simple version – nearly equal population, which stabilizes an unconventional Mott

insulating state. Here, we report an anisotropic and aspherical magnetization density distribution

measured by polarized neutron diffraction in a magnetic field up to 5 T at 4 K, which strongly

deviates from a local jeff = 1/2 picture even when distortion-induced deviations from the equal

weights of the orbital populations are taken into account. Once reconstructed by the maximum

entropy method and multipole expansion model refinement, the magnetization density shows cross-

shaped positive four lobes along the crystallographic tetragonal axes with a large spatial extent,

showing that the xy orbital contribution is dominant. The analogy to the superconducting copper

oxide systems might then be weaker than commonly thought.
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Sr2IrO4 possesses a tetragonal structure with I41/acd space group, in which the IrO6

octahedra are rotated by ≈11◦ around the c-axis with an opposite phase for the neighboring

Ir ions and it orders antiferromagnetically below TN ≈ 230 K [1–5]. Strong spin-orbit cou-

pling (SOC) stabilizes an unconventional Mott insulating ground state, which is commonly

described by a spin-orbital product state within a so-called jeff = 1/2 model [2, 6–8]. In the

most simple version of this model, 5d electrons at the Ir4+ (5d5) ions occupy the t2g states

with an effective angular momentum leff = 1, which are split by the relatively large SOC

into a jeff = 1/2 doublet and a jeff = 3/2 quartet. The Coulomb repulsion induces a gap in

the narrow half-filled jeff = 1/2 band, and stabilizes the Mott insulating state with the pseu-

dospin jeff = 1/2 [2, 7], which consists of three equally populated spin-orbital components

in the t2g band (Fig. 1a):

∣∣∣∣jeff =
1

2
,±1

2

〉
=

1√
3

(|xy,±σ〉 ± |yz,∓σ〉+ i |xz,∓σ〉) . (1)

where ±σ denotes the spin of the electrons.

While resonant and inelastic X-ray scattering [6, 9] gave credit to a description in terms

of these jeff = 1/2 states [10], the simple description with equal weights for the orbital

populations has been questioned owing to the tetragonal distortion that is not negligible [11–

13]. Indeed, the most simple model with equal weights is realized only for a perfect cubic

symmetry, while any lattice distortions (compression, elongation or tilting of the octahedra

around the c-axis) split the t2g orbitals into three non-degenerate Kramers doublets [7, 11,

13–16], driving the lowest energy state away from the equal weight case of Eq. (1). In the

following we adopt the nomenclature common to the field and still refer to the states that

diagonalize the local Hamiltonian in the presence of the distortions present in Sr2IrO4 as

jeff = 1/2 and jeff = 3/2 states. Fig. 1a compares the electron and spin density distributions

corresponding to the perfectly cubic and the distorted cases.

In addition, a strong hybridization between Ir 5d and O 2p orbitals, which seems to be

natural for a large spatial extent of 5d orbitals, has been proposed to account for a large re-

duction of the ordered magnetic moment [2] as well as for antiferromagnetic (AFM) exchange

interactions between the nearest-neighboring Ir ions and for the canted magnetic moments

following the octahedral rotations [7, 15]. The strong hybridization of the d-orbitals with the

p-orbitals of the ligand oxygen is reminiscent of K2IrCl6 [17] and the isostructural ruthenate

Ca1.5Sr0.5RuO4 [18], where similar covalency effects have been reported. In Sr2IrO4, recent
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FIG. 1: The jeff = 1/2 states and uniform magnetization of Sr2IrO4. (a) Illustration of

the electron and spin density distributions for the ideal (distorted) jeff = 1/2,mj = 1/2 state,

which consists of three (nearly) equally populated t2g orbitals with mixed spin states. The red

and blue colors represent spin-up and spin-down states, respectively. (b) The magnetization vs

temperature curve under H = 1 T (H//[110]). It exhibits a weak ferromagnetic moment inherited

from the AF-II order transition [3] at ≈235 K. The inset shows the crystal and magnetic structure

of Sr2IrO4 for an applied magnetic field along H//[110].

muon spin relaxation measurements have suggested the formation of oxygen moments [19],

and charge redistribution between adjacent IrO2 and SrO layers has been revealed using

electron spin resonance measurement [20]. Further, unusual magnetic multipoles have been

proposed to be observed by neutron diffraction [21] and recently a hidden magnetic order

having the same symmetry as a loop-current state has been observed by polarized neutron

diffraction [22].

The magnetic moments of Ir ions are confined in the ab-plane and track the staggered

octahedral rotation in an − + +− sequence along the c-axis in the unit cell [3]. Owing

to this canted AFM structure, each IrO2 layer has a weak ferromagnetic (WFM) moment

along the principal crystallographic axis in the ab-plane at zero magnetic field. This WFM

is compensated due to the − + +− stacking sequence whereas, in a magnetic field higher

than Hc ≈ 0.3 T applied in the ab-plane [2, 3], a net homogeneous WFM moment appears

in the plane (inset of Fig. 1b) above the metamagnetic transition. Remarkably, this WFM

moment follows the direction of applied magnetic field in the ab-plane [23–25] and attains a

saturation value of ≈0.08µB/Ir in the field of 1 T [23]. In the current experiment, a uniform
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magnetic field (H) up to 5 T has been applied along the vertical direction (Fig. 2a). The IrO6

octahedral rotation generates two additional magnetic terms in the simple Heisenberg-type

Hamiltonian [25]: Jz and Dzyaloshinskii-Moriya terms, which restrict the angle between

adjacent pseudospins to π + 2α with the octahedral rotation angle α [7]. However, it does

not break the in-plane rotational symmetry as the pseudospins are free to rotate in the plane

while keeping the same canting angle between them (the situation is shown in the inset of

Fig. 1b for a field applied along the [110] direction). Therefore, under the applied magnetic

field, the WFM moment does not interlock with the rotation of IrO6 octahedra in contrast

with the AFM staggered moment at zero field.

The existence of this WFM allows us to probe the magnetization density distribution in

crystals by polarized neutron diffraction (PND). This technique is unique because it provides

direct information about the 3-dimensional distribution of the magnetization throughout the

unit cell, which in turn allows for a determination of the symmetry of occupied orbitals. This

method has been successfully used in the study of ferromagnetic ruthenate Ca1.5Sr0.5RuO4,

isostructural to Sr2IrO4, where an anomalously high spin density at the oxygen site and the

xy character of the Ru d-orbitals have been reported [18].

The typical experimental setup for PND, shown in Fig. 2a, consists of a neutron polarizer,

a flipping device that reverses the incident neutron polarization, a magnet and a detector.

The sample is magnetized by a magnetic field applied along the vertical axis and scattering

intensities of Bragg reflections for the two opposite states (spin-up and spin-down) of the

incident polarization are measured. They are used to calculate the so-called flipping ratio,

allowing access to the Fourier components of the magnetization density, as

RPND =
I↑
I↓

=
F 2
N + 2p sin2 αFNFM + sin2 αFM

2

F 2
N − 2pe sin2 αFNFM + sin2 αFM

2 , (2)

where FN is the nuclear structure factor and FM is the magnetic structure factor. p and e

are the polarization efficiency of the polarizer and flipper, respectively, and α is the angle

between the scattering vector and the magnetization [26]. The flipping ratios RPND of

more than 280 (hkl) reflections were measured in the weakly ferromagnetic state above the

metamagnetic transition at 2 K for two magnetic field orientations, H‖[010] and H‖[1̄10]

(well above the critical fieldHc ≈ 0.3 T [6, 25]). The measured intensities for two orientations

were averaged [26]. As shown in Fig. 2b, the magnetic structure factors FM were directly

obtained from the measured flipping ratios by using Eq. (2) and known nuclear structure

5



(a) (b)

sample
detector

flipperpolarizer

𝐼↑~ 𝐹𝑁 + 𝐹𝑀
2

off

on

𝐼↓~ 𝐹𝑁 − 𝐹𝑀
2

𝐌𝒛

𝐤𝑖 𝐐 = 𝐤𝑖 − 𝐤𝑓

𝐻 ∥ 𝑧

𝐤𝑓

Neutron spin

(c) (d)

FIG. 2: Polarized neutron diffraction setup and measured neutron magnetic structure

factor of Sr2IrO4. (a) The experimental setup for a polarized neutron diffraction experiment.

The arrows at the bottom denote a spin polarization of neutrons. The vertical direction corresponds

to either the [010] or [1̄10] crystallographic direction for each sample orientation [26]. (b) The

magnetic structure factor of all measured momentum transfer Q with the theoretical radial integrals

〈jn〉 for isolated Ir4+ ions. A series of reflections along the (0, 0, l) are highlighted: (0, 0, 4n) in blue

squares, (2, 0, 4n) in green diamonds, (1, 1, 4n+2) in red up-triangles, (2, 1, 2n+1) in purple down-

triangles, and (2, 2, 4n) in black left-triangles. The (4, 0, 0), (4, 2, 0) and (4, 4, 0) are also presented

in black right-triangles, and the rest in grey circles. Measured and fitted magnetic structure factors

|FM (Q)| for (c) the optimized MEM result and (d) optimized multipole expansion result.

factors FN . For convenience, the amplitudes are given in Bohr magnetons, normalized by the

number of Ir atoms (8) in the unit cell, and taken in absolute values to remove alternating

signs of the phase factor. The amplitude, FM(0), is imposed in agreement with the saturation

moment (0.08µB/Ir) given by the uniform magnetization measurement [23].

In the dipole approximation, i.e. at low momentum transfer, FM(Q) is usually described
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by a smooth decreasing function of Q, called the magnetic form factor, corresponding to a

linear combination of radial integrals calculated from the electronic radial wave function.

Instead in Fig. 2b, one observes a large distribution of the measured structure factor indi-

cating unusually large anisotropy. That large anisotropy is explained by a predominance

of xy-orbital as shown below using the reconstruction of the magnetization density in real

space. The theoretical radial integrals 〈jn〉 for an isolated Ir4+ ion [27] are also shown in

Fig. 2b for comparison. We recall that 〈j2〉,〈j4〉 and higher-order integrals are needed to

describe the departures from spherical symmetry. As seen from Fig. 2 except for the (0, 0, l)

reflections, decreasing gradually with increasing Q, the majority of reflections strongly devi-

ate from any expected smooth curve. Moreover, while the (0, 0, 4n), (2, 0, 4n) and (2, 2, 4n)

reflections are close to the 〈j0〉 curve in a small Q region, the (1, 1, 4n+ 2) and (2, 1, 2n+ 1)

reflections deviate from it quite strongly. This indicates an aspherical magnetization density,

which is typical of ions with one or two unpaired electrons in the d-orbitals [17, 28, 29]. In

addition, one can see that high-Q reflections like the (4, 0, 0), (4, 2, 0) and (4, 4, 0) ones show

anomalously large values.

Next, a real space visualization has been performed by a reconstruction of the magne-

tization density, using two different very well-established and widely used approaches; a

model-free maximum entropy method (MEM) [30] and a quantitative refinement using the

multipole expansion of the density function [31]. Both techniques have advantages and lim-

its and should be employed where they are the most efficient. Typically, no assumption

is made for the initial magnetization distribution in MEM whereas the d-orbitals shape is

constrained in the multipole expansion.

Since the crystal structure is centrosymmetric, the magnetization density can be directly

reconstructed from the measured magnetic structure factors by MEM [30]. Fig. 3a-d, shows

the 3-dimensional magnetization density reconstructed by using a conventional flat density

prior. A positive magnetization density in red color denotes a magnetic moment density

parallel to the applied magnetic field and a negative one in blue is antiparallel. There are

three key features to be noted in the figure. First, the magnetization density at Ir sites has

four positive density lobes directed along the a, b axes, corresponding to a dominant pos-

itive magnetization density of dxy orbital symmetry (Fig. 3b). The two other components

of the effective jeff = 1/2 state model, dyz and dxz, which would form an axially symmetric

doughnut-shaped density above and below the xy plane (see Fig. 1a), does not appear as

7



seen in Fig. 3c,d. Thus the WFM density originates predominantly from the xy orbital (a

schematic illustration of the magnetic components in this situation is given in the Supple-

mental file (Fig. S4) [26], in contrast with the local jeff = 1/2 picture). Second, positive

density lobes are very strongly elongated, in such a way that some magnetization density is

delocalized well beyond of the IrO6 octahedra. Third, contrary to the expectation of strong

iridium oxygen ligand hybridization, no visible induced magnetization density appears at

the oxygen sites. Actually, no significative polarization dependence has been found in any of

dozens measured (2, 1, 2n+1) reflections where oxygen atoms contribute. This is in contrast

with the isostructural 4d compound Ca1.5Sr0.5RuO4, where ∼20% of the magnetic moment

is transferred to the in-plane O sites [18]. However, one can notice the presence of a negative

magnetic density mostly along the Ir-O direction existing between the large positive lobes.

In fact, a significant negative magnetization density as large as half of the net moment is

essential for a better description in the MEM analysis [26].

To confirm the symmetry found by MEM, multipole expansion was performed for an

alternative refinement of the WFM density [31, 32]. It is composed of radial and angular

parts: Slater-type radial wave functions and real spherical harmonic density functions [26].

In Fig. 3e-h, the magnetization density distribution with the best refinement is shown. The

main positive magnetization density lobes located between the local x- and y-axis appear

clearly, which corresponds to the dxy symmetry. Therefore, the multipole expansion model

fully confirms the dxy symmetry found by MEM. A benefit of the multipole method is to

determine the contribution of all five d-orbitals to the magnetization. Using the orbital-

multipole relations [31], the magnetic moments on each orbitals were obtained as: +0.48,

−0.051, −0.035 and −0.314µB/Ir for dxy, dyz/xz, dz2 and dx2−y2 , respectively. Thus a positive

dxy and to a lesser extent a negative dx2−y2 orbital are dominant in the refinement (the

latter effect is minor in the MEM method), while the dyz/xz orbitals are barely populated.

Interestingly, the admixture of dx2−y2 character to the jeff = 1/2 orbital also has been found

in first principles simulations [33].

It is obvious that the refinement of multipoles with a single radial exponent cannot fit

the widely delocalized density. Therefore, we introduce in the refinement a second radial

exponent to describe the delocalized Ir density. Such a model shows a considerably better

agreement factor (Rw ∼ 0.09) compared to the model with a single radial exponent (Rw ∼
0.18) (see Supplemental section V[26]). It confirms the anomalously large spatial extent of

8



(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 3: Magnetization density distribution reconstructed by MEM and multipole ex-

pansion refinement. 3D magnetization density distribution on the z = c/8 layer reconstructed

by (a) the MEM and (e) multipole expansion model refinement. Isosurfaces encompassing 30%,

50% and 70% of the volume density are plotted with a desceding opacitiy according to their iso-

values. Red and blue surfaces denote positive and negative magnetizations, repectively. The solid

square and dotted lines denote the unit cell and Ir-O bonds, respectively. Sliced density contour

maps at (b,f) (x, y, c/8), (c,g) (x, a/4, z) and (d,h) (a/4 + x, x, z) are also shown for both meth-

ods. The contour step is 0.04 and 0.08µB/Å
3 for (b-d) and (f-h), respectively. The black arrows

correspond to the Ir-O bonding directions.

the magnetization density of Ir found by the MEM analysis. To appreciate the relevance

of the obtained magnetization maps, we calculate the magnetic structure factors from the

optimized MEM and multipoles results. By plotting them along with the measured ones in

Fig. 2c (for MEM) and Fig. 2d (for multipoles), one sees that the calculated densities with

MEM reproduce better the experimental data.

While the standard modeling of layered iridates by means of an anisotropic super-

exchange Hamiltonian within the effective local jeff = 1/2 picture correctly captures the

WFM moment of the ground state and explains the most salient magnetic properties of

Sr2IrO4 [7, 10, 15, 16, 34], this local jeff = 1/2 model is at odds with the present findings: its

simplified version with equal orbital weights would suggest a homogeneous magnetization
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density, while taking into account distortions would – even worse – enhance the xz and yz

orbital weight of the hole and thus of the WFM (see Fig. 1a).

These considerations give an additional twist to the exotic properties of Sr2IrO4 and

the possibilities of modeling them as well as to the relationship to superconducting copper

oxides. Recently, our PND results has been interpreted in terms of spin anapole [35], pointing

towards the existence of multipole correlations that goes beyond the local jeff = 1/2 picture.

An alternative interpretation based on a momentum-dependent composition of the orbital

carrying the hole in terms of atomic t2g states will be published elsewhere [36]. In this type

of model, the hole resides in an orbital that results from a non-local, that is a k-dependent

superposition of Wannier functions of t2g character. In this light, it is less surprising that

neither the simplified jeff = 1/2 picture discussed above nor the state that takes into account

the structural distortions but remains restricted to a local superposition of atomic orbitals

describes our present experimental findings.

In summary, using PND we have evidenced a magnetization density distribution in

Sr2IrO4 that is inconsistent with the local jeff = 1/2 picture. The measured magnetic struc-

ture factor shows a strong axial anisotropy and anomalous values at large Q, which indicate

an aspherical magnetization density distribution with a significant orbital contribution. Real

space visualization exhibits a dominant dxy orbital character with highly elongated lobes of

Ir magnetization densities towards the next Ir atoms. Although a strong d-p hybridiza-

tion is expected in Sr2IrO4, the magnetization density at the ligand oxygen sites is barely

present. Our results elucidate that the ground state of Sr2IrO4 substantially deviates from

the commonly accepted local jeff = 1/2 state.
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3Centre de Physique Théorique, Ecole Polytechnique, CNRS UMR7644,

Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France

4IMPMC , Sorbonne Université, CNRS , MNHN ,
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I. SAMPLE PREPARATION AND CHARACTERIZATION

High-quality single crystals of Sr2IrO4 were grown at Laboratoire de Physique des Solides

at Orsay using a self-flux method in the platinum crucibles. The temperature dependence

of the uniform magnetization was measured using a SQUID under a magnetic field of H =

1 T along the [110] direction (Fig. S1a). Sr2IrO4 undergoes a canted antiferromagnetic

(AFM) transition. The ordered AFM moment is found to be about 0.21 µB/Ir1 or about

0.36 µB/Ir2 by single crystal neutron diffraction. We here discussed the weak in-plane

ferromagnetic moment due to the moment canting (see Fig 1.b in the main text). In presence

of the magnetic field above H > 0.2 T, the system exhibits a ferromagnetic component at

T ≈ 235 K, where the derivative dM/dT diverges. The saturation weak ferromagnetic

(WFM) moment is ≈0.08µB/Ir at T = 10 K. It is well consistent with the reported value

for single crystals grown under the best conditions3. For the polarized neutron diffraction

measurements, which require a large amount of the sample, 50 single crystals of a small size

(typically < 2× 1× 0.2 mm3) were coaligned within a diameter of 10 mm on an aluminum

plate (Fig. S1b).

3
 m

m

110
001

(a)
(b)

FIG. S1. (a) Temperature dependence of the uniform magnetization and its derivative measured

by a SQUID. (b) Coaligned 50 single crystals on an aluminum plate.
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II. POLARIZED NEUTRON DIFFRACTION

Polarized neutron diffraction (PND) measurements were performed on three different po-

larized neutron diffractometers, 5C1 and 6T2 at the ORPHÉE reactor (LLB CEA Saclay)4,5,

and POLI at FRM-II (Maier-Leibnitz Zentrum Garching). Thermal and hot polarized neu-

tron wavelengths were used with λ=1.4 Å (6T2), 1.15 Å (POLI) and 0.84 Å (5C1). A

vertical uniform magnetic field of 5 T on 5C1/6T2 at LLB and 2.2 T on POLI at FRMII

has been applied at the sample position. As the weak ferromagnetic component saturates

above ∼ 1 T, that difference between the applied fields is not significant. The temperature

was set at 4 K in the antiferromagnetic state of Sr2IrO4.

Incoming neutrons were polarized by a Heusler alloy monochromator, a supermirror ben-

der or a 3He filter. The direction of incident neutron polarization – spin-up or spin-down

– was chosen by a polarization flipper. The incident spin-polarized neutrons are scattered

by the nuclei and by the local magnetization, which are denoted by nuclear and magnetic

scattering, respectively. The total neutron cross section for a non-chiral system is given by

σ = FNF
∗
N + M⊥ ·M∗

⊥ + Pi · (M⊥F
∗
N + M∗

⊥FN) , (S1)

where FN is the nuclear structure factor, M⊥ is the magnetic interaction vector and Pi

is the incident neutron polarization vector. The magnetic interaction vector is given as

M⊥ = Q̂ × FM(Q) × Q̂ with the scattering vector Q and FM(Q) the magnetic structure

factor, i.e., the Fourier transform of the magnetic moment distribution. Therefore, only

magnetic components perpendicular to the scattering vector participate in the magnetic

scattering. The last magnetic-nuclear interference term appears only for a polarized beam

(|Pi| > 0), and it contributes to the scattering for a mixed nuclear-magnetic Bragg reflection

with propagation vector q = 0. It corresponds to the magnetic response at the Brillouin

zone center, Γ, point that would differ from the magnetic response at the aniferromagnetic

propagation wave vector. In all the manuscript, we are only speaking about the weak fer-

romagnetic component of the moment. This method is well established for paramagnetic

and ferromagnetic (FM) systems. It gave access, e.g., to the 3d-orbital population in fer-

romagnetic insulator YTiO3
6. While in conventional spin density studies either a positive

or a negative spin component can be present at a given ion, in the iridates thanks to the

spin-orbit coupling both positive and negative densities can coexist at the same Ir site (Fig.

1a of the manuscript)7. To access this intra-atomic variation of magnetization density high
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resolution polarized hot neutron diffraction data are needed. Here we have performed PND

(i) to establish the symmetry of the Ir 5d orbitals occupied by unpaired electrons and (ii)

to check the presence of unpaired electron density on the oxygen ligand.

In case of PND where incoming neutron polarization is directed parallel or antiparallel to

an external magnetic field, one measures the intensity of the scattered neutrons for the two

states of the flipper. We note that no final polarization analysis is performed. Therefore,

the measured intensity, obtained for each state of the flipper, is written as a function of the

real structure factors,

I↑ = F 2
N +M⊥

2 + 2PiFNM
z
⊥

I↓ = F 2
N +M⊥

2 − 2P ′iFNM
z
⊥,

(S2)

where M⊥ is now the projection of the magnetic interaction vector M⊥ along the polariza-

tion vector Pi with Pi and P ′i being the incident polarization for spin-up and spin-down,

respectively. The PND measurement is thus only sensitive to the uniform magnetization

along the applied magnetic field, which is the vertical z-direction in our case. Using Pi = p,

P ′i = pe, M⊥ = sinαFM and M z
⊥ = sin2 αFM where α is the angle between the magnetic

interaction vector and the scattering vector, the flipping ratio is given as Eq. (2) in the

main text with the polarization efficiency p of the polarizer and the flipping efficiency e of

the flipper. We give here the incident polarization characteristics of the three diffraction

instruments which have been used:

• On 5C1, we used a Heussler polarizer with incident polarization p=0.91, and a cry-

oflipper with efficiency e=0.995(6).

• On 6T2, polarizing bender and adiabatic radiofrequency flipper with p=0.981(7) and

e >0.99.

• On POLI, 3He polarizer was used with varying polarization efficiency 0.90> p >0.75,

monitored with time by measuring the 3He polarization and adiabatic flipping.

The flipping ratio technique is less sensitive to imperfections of a polarizer, as compared

to the experiment with neutron polarization analysis. This is due to the fact that, as seen

from Eq. (2) in the main text, the magnetic structure factor is roughly proportional to p

and not to the flipping ratio Ri = 1−p
1+p

of the polarizer. So, the systematic errors due to

polarizer imperfections will remain within error bar according to our estimations.
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It is well known that extinction effects might have a crucial influence in the polarized

neutron data treatment procedure. Therefore, the Becker-Coppens model was used to treat

for the extinction in our refinement. We found that the introduction of extinction corrections

had no beneficial effect on the refinement. This is likely due to the very small thickness of

the crystallites constituting the sample and the rather short neutron wavelengths, 0.84 -1.4

Å, used in the experiment. The same last argument is also valid for the multiple scattering.

Next, absorption can introduce error in the flipping ratios only in combination with strong

extinction. In the absence of extinction, the flipping ratios do not depend on the absorption.

Since in our measurements the extinction was found equal to zero, the absorption correction

is not relevant here.

Moreover we have performed in total 7 different experiments with two sample orientations,

using three different wavelengths 0.84, 1.18 and 1.4 Å. Hence in each of the experiments the

multiple scattering contributions was different. However, the extracted magnetic structures

amplitudes were found in agreement within error bars after merging equivalents with the

redundancy factor 5.

III. DATA TREATMENT WITH TWO MAGNETIC FIELD ORIENTATIONS

The flipping ratios were measured at a number of Bragg reflections with two different

sample orientations with respect to the applied magnetic field: H‖[010] and H‖[1̄10]. The

magnetic structure factors at common reflections such as (0, 0, l), (2, 0, l) and (2, 2, l) are

shown for each orientation in Fig. S2. At large Q, Bragg reflection (4,0,0) was measured

only with H‖[010] while (4,2,0) and (4,4,0) only with H‖[1̄10].

It is important to notice that the scaling for both orientations is the same and it is

consistent to macroscopic SQUID measurements, which show the same saturation magnetic

moment for a magnetic field along the two directions. It also supports an isotropic WFM

moment, which follows the applied magnetic field8–10. We therefore have combined and

taken an average of two data sets without an additional scaling.
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a b

FIG. S2. Measured magnetic structure factors with a magnetic field along (a) H‖[010] and (b)

H‖[1̄10].

IV. ANALYSIS USING THE MAXIMUM ENTROPY METHOD

We have tested the maximum entropy method (MEM) by changing the initial positive

and negative magnetic moments. The resulting positive and negative magnetic moments are

limited by the initial values, thus they are starting points for fitting and also serve as upper

bounds. The difference between positive and negative moments was set to the net unit cell

magnetic moment, 0.64µB/u.c. (8 times 0.08µB/Ir). As seen in Fig. S3a, the agreement

factor defined by Rw =
∑

(|Fobs − Fcalc| /σF ) /
∑

(|Fobs|/σF ) is poor (≈ 15%) for only a

small negative moment being allowed. It decreases rapidly as the initial negative moment

increases, and it is saturated with twice better Rw ≈ 8% for a significant negative moment

above 0.25µB. Initial values larger than 0.3µB, however, do not improve the agreement

factor any more and the resulting negative moment does not follow the initial value either.

Instead, the both positive and negative densities spread out so the density distribution is only

dispersed while the spatial features are unchanged as shown in Fig. S3d,g. Therefore, we

have chosen +0.94µB and −0.30µB as optimized initial positive and negative moments, and

the resulting moments are +0.93µB (+0.116µB/Ir) and −0.29µB (−0.036µB/Ir), respectively.

In the figure 3a and 3b of the manuscript, the WFM density originates predominantly

from the xy orbital, at variance with the standard local jeff = 1/2 picture. This effect cannot

be explained by distortion-induced deviations from the naive equal-weight jeff = 1/2 state.

Indeed, the contribution of the xy-orbital to the hole is rather reduced by the distortions
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present in the crystal structure11,12. Therefore the jeff = 1/2 description of the hole state

cannot account for the present findings, even in its most refined version13. We show in Fig.

S4 a schematic illustration of the magnetization for both the local jeff=1/2 model and a

predominant xy orbital for the WFM moment. One also remark that positive density lobes

are very strongly elongated, in such a way that some magnetization density is delocalized

well beyond of the IrO6 octahedra. This is consistent with the very large spatial extent of

the t2g orbitals (reaching the nearest neighbouring Ir atoms) found by core-to-core RIXS and

ab initio calculation14. It also could give a support to a direct Ir-Ir exchange mechanism,

via electron hopping between the neighboring ions.

V. ANALYSIS USING A MULTIPOLE EXPANSION MODEL

The magnetization density can be modeled by a superposition of spherical harmonic

density functions, known as the multipolar expansion15,16:

m(r) =
∑

atoms

∞∑

l=0

R2
n(r)

l∑

m=−l
pl,myl,m(θ, φ), (S3)

where Rn(r) are radial wave functions, yl,m(θ, φ) are angular density functions, and pl,m are

population coefficients. Simple normalized, Slater-type nodeless radial wave functions Rn(r)

are defined as:

Rn(r) =

√
(2ζ)2n+1

(2n)!
rn−1 exp(−ζr),

with n = 5 chosen for the 5d-orbitals. The angular density functions yl,m(θ, φ) are the

real-valued spherical harmonic functions:

yl,m(θ, φ) = Nl,mP
|m|
l (cos θ)





cosmφ for m > 0

sin |m|φ for m < 0,

where Pm
l are the associated Legendre polynomials and Nl,m are the normalization factors17

satisfying

∫
|yl,m| dΩ =





1 for l = 0

2 for l > 0.

Note that these angular density functions are distinct from the angular wave functions, Y m
l ,

which are complex-valued and have a different normalization condition,
∫
|Y m

l |2 dΩ = 1.
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(b) (d)

(f)

(c)

(e)

(a)

FIG. S3. (a) Agreement factor Rw and resulting negative moment per unit cell versus the initial

value for negative moment for the MEM analysis. (b-d) The 3D magnetization density distribution

on the z = c/8 layer reconstructed by the MEM analysis with the initial negative moment (b)

−0.01, (c) −0.30, and (d) −0.70µB per unit cell. Isosurfaces encompassing 30%, 50% and 70%

of the volume density are plotted with a descending opacity according to their isovalues. Red

and blue surfaces denote positive and negative magnetizations, respectively. The solid square and

dotted lines denote the unit cell and Ir-O bonds, respectively. (e-g) Sliced density contour maps

at (x, y, c/8) for the given initial negative moments. The contour step is 0.04µB/Å
3. The blacks

arrow correspond to the Ir-O bonding directions tilted by 11◦ from the crystallogaphic tetragonal

axes.

The magnetic form factors corresponding to the model magnetization density in Eq. (S3)
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(b)(a)

Direction of in-plane
magnetic moment

H H

xy

yz/xz

xy

yz/xz

HH

FIG. S4. (a) Magnetization density distribution for the local jeff=1/2 picture. The xy, yz and

xz magnetic components have the same pseudospin moment (black arrows) at each Ir site. The

magnetic moments at adjacent sites are aligned antiferromagnetically, perpendicular to the applied

magentic field H, and the canted FM moment (orange arrows) along H appears in both xy and

yz/xz components. (b) Magnetization density distribution for the proposed k-dependent jeff=1/2

picture. The magnetic moment in the xy component is aligned along H, while one in the yz/xz

component is perfectly antiparallel and perpendicular to H. The WFM moment solely comes from

the xy component.

become

f(Q) =
∞∑

l=0

φl(Q)
l∑

m=−l
pl,myl,m(θk, φk)

with

φl(Q) = 4πil
∫ ∞

0

R2
n(r)jl(Qr)r

2dr,

where jl is a spherical Bessel function of order l. Then the least-squares refinement with the

measured FM was done using the mplsq program18. For the refinement, the total magnetic

moment is constrained: µIr + 2µO1 + 2µO2 = 0.08µB/Ir.

The multipole expansion in general can describe any atomic magnetization or charge

density when all l and m values are allowed in the expansion. However, we used a limited

number of harmonic functions (d00, d20, d40, d44+) that can describe the d-orbital density

and are allowed by the site symmetry, D4h. There is also a direct relation matrix between

multipole functions and orbital populations. The multipole density functions allowed by
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(a)

(b)

FIG. S5. (a) Multipole density functions allowed by 4/mmm symmetry. Red and blue surface

denote positive and negative density, respectively. (b) Density distribution of d orbitals constructed

by a linear combination of multipole density functions.

the point group D4h (4/mmm) are shown in Fig. S5a. Because the spherical harmonic

functions constitute a complete set in the spherical harmonic point group, the orbital density

distribution given by a square of wave function |Y m
l |2 must be a linear combination of

spherical harmonic density functions yl,m
16. The orbital-multipole relations for the point

group D4h are defined as pml |Y m
l |2 = pi,jyi,j with




p0
2

p±1
2

p2
2

p−2
2




=




0.200 1.039 1.396 0.000

0.200 0.520 −0.931 0.000

0.200 −1.039 0.233 1.570

0.200 −1.039 0.233 −1.570







p0,0

p2,0

p4,0

p4,4



.

The d orbital densities reconstructed using the spherical density functions are also shown in

Fig. S5b. Using this orbital-multipole relations, the orbital populations were obtained from

the fitted density function populations.

In order to describe the large spatial extent of the positive magnetization density, the

radial wave function was also examined. It is clear as shown in Fig. S6f that the theoretical

radial function with the radial exponent ζ = 3.74 is not fit well (Rw ≈ 22%) with the

measured magnetic structure factor and also not able to describe the wide spatial extent
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(f) (g) (h)

(a) (b)

FIG. S6. (a) Agreement factor Rw versus the radial exponent ζ for the multipole expansion model

with a single radial exponent. The agreement factor decreases by ∼20% at ζ ' 2.7 compared with

the theoretical radial exponent ζ0 = 3.74. (b) Agreement factor Rw with two radial exponents

ζ1 and ζ2. Radial wave functions R(r) and radial distribution functions r2R2(r) with (c) the

theoretical radial exponent for isolated Ir atoms, (d) an optimized single radial exponent, and (e)

double radial exponents. (f-h) Reconstructed magnetization density distributions with different

radial wave functions in (c-e).

found by the MEM analysis. The best value ζ = 2.7 for a single radial exponent was also

refined, but the agreement factor was not improved significantly (Rw ≈ 18%) as shown in

Fig. S6a. Therefore, we introduced an additional radial exponent. The radial wave function

with two radial exponents provides significantly better agreement (Rw ≈ 9%) with measured

magnetization density and describes the large extent of observed magnetization density as
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(a) (b)

FIG. S7. Magnetization density distribution obtained by orbital density model fit with (a) all five

d orbitals and (b) only three t2g orbitals.

shown in Fig. S6h.

Further, between the positive lobes, negative density lobes occurs as well which are more

pronounced in the multipole refinement than in the MEM results (see the Fig. 3 of the main

mansucript). They are about 60% of positive ones and surprisingly have dx2−y2 symmetry,

requiring an admixing of the eg orbital to the ground state. Ii is worth to remind that the

MEM method is model-free whereas in the multipole expansion method, we have necessarily

to start with certain multipoles corresponding to the d-orbitals. The dx2−y2 contribution

could be overestimated due to insufficient modeling in the multipole description. However,

the main result in the MEM - dominant xy and no yz/xz character - is well reproduced

by the multipole expansion method. We tried various models (see Fig. S6), and the given

result is still the best fit.

In order to examine a possible magnetization density expected from a strong d-p hy-

bridization at the oxygen site, the refinements with a spherical magnetization density at
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the O1 and O2 sites were also performed, but contrary to expectations, no evidence for the

existence of the oxygen moment was found. The agreement factor did not become better

and also the refined magnetization density at the O sites is statistically negligible.

We have also examined to fit the data with actual orbital density functions instead of

multipole density functions. When all possible 5d orbitals are allowed, it obviously gives

the same result (Rw ≈ 9%) with similar population of each orbitals as shown in Fig. S7a.

In addition, as it is known to consist mostly of t2g orbitals, the model fit allowing only

dxy, dyz, dxz orbitals was also performed. As shown in Fig. S7b, the negative magnetic

density with dx2−y2 symmetry disappears as expected, but the agreement becomes twice

worse (Rw ≈ 17%). Therefore, we conclude that the observed magnetic octapolar shape,

mainly from y44+ angular density function, is essential to describe our measured data.
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