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Leader-following consensus of second-order
multi-agent systems with switching topology and

partial aperiodic sampled data
Syed A. Ajwad, Emmanuel Moulay, Michael Defoort, Tomas Ménard and Patrick Coirault

Abstract— This article focuses on the problem of leader-
following consensus of second-order Multi-Agent Systems
(MAS) with switching topology and partial aperiodic sam-
pled data. MAS are subject to various constraints related to
information exchange among the agents. It is considered
that each agent in the network is able to measure its posi-
tion only and cannot measure either its velocity or accel-
eration (input). Moreover, the position information is sent
to the neighbors at aperiodic and asynchronous sampling
rates. At last, a switching communication topology among
the agents is considered. An observer-based control proto-
col is proposed to achieve leader-following consensus for
MAS with above mentioned constraints. Using an Average
Dwell Time (ADT) approach, sufficient conditions are de-
rived through Lyapunov-based stability analysis to ensure
the leader-following consensus. Numerical examples are
also included to show the effectiveness of the proposed
scheme.

Index Terms— Average dwell time, Continuous-discrete
time observer, Leader-follower consensus, Nonuniform and
asynchronous sampling, Switching graphs

I. INTRODUCTION

THE consensus problem in Multi-Agent Systems (MAS)
has attracted enormous attention of research communities

from various fields like biology, physics, computing, control
engineering and robotics. Broadly speaking, consensus means
that the agents reach an agreement on some common value of
state called the consensus state. In leader-following consensus,
the agents are not only required to reach a common state but
also to track a desired trajectory generated by a leader whose
dynamics is independent of the followers.

Information exchange among the agents is crucial in cooper-
ative control. Advancements in computing and communication
technologies have enabled agents to exchange information
directly with each other without any central system. This
allows researchers to design distributed cooperative controllers
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which provide better efficiency, reliability and scalability as
compared to centralized controllers [1].

The distributed consensus problem for first-order MAS has
been extensively studied, for instance in [2], [3]. However,
the results for first-order MAS cannot be directly applied for
second-order MAS where agents’ dynamics are governed by
position and velocity. Since many physical systems can be
characterized by second-order dynamics, various distributed
control algorithms for second-order MAS have been proposed
in literature to deal with both leaderless and leader-following
consensus problems [4], [5], [6], [7].

It should be noted that most of these results consider that
the communication among the agents is continuous and fixed.
Moreover, it is often assumed that the agents can measure
and transmit both their position and velocity states. However,
these considerations are not valid for real engineering MAS
applications. It is sometimes difficult to measure all states
which are not even desirable due to related cost and compact
sizes of the agents. Moreover, since the communication and
computing equipment are digital, the information exchange
between the agents cannot be continuous. Several control
techniques have been proposed by the research community
to deal with the consensus problem of MAS with discrete
data [8], [9]. Consensus problem with partial available data
is also discussed [10], [11], [12]. In [10], Xu et al. proposed
a discontinuous observer-based leader-following protocol. Yu
et al. introduced a consensus protocol by using current and
previous samples of position data [11]. The authors of [12]
gave necessary and sufficient conditions to achieve consensus
in MAS with sampled position information. However, in these
articles, the sampling period is considered constant. In [13],
[14], consensus algorithms have been investigated for MAS
with stochastic sampling periods. However, in practical appli-
cations, the sampling could be arbitrary non-uniform as well
as asynchronous where each agent has independent sampling
time from the other agents in the network. Moreover, in
MAS with discrete data transmission, the input is mostly kept
constant. However, one can achieve continuous control input
by reconstructing the state in continuous time from the discrete
information. This can be obtained by using continuous-discrete
time observer [15]. In [16] and [17] such observer has been
used to design leaderless and leader-following control proto-
cols respectively. However, in these articles, it is considered
that the communication topology among the agents remains
constant. On the other hand, it is sometimes not feasible for



the agents to maintain a fixed communication topology due
to various reasons like collision avoidance, communication
link failure or communication range limitations etc. Therefore,
in these scenarios, it is mandatory to consider switching
topology. Consensus of MAS with switching topology has
been discussed widely in literature e.g. [18], [19]. However,
these articles do not consider the above mentioned communi-
cation constraints of irregular and asynchronous sampling and
unavailability of velocity state.

Motivated by the above discussion, in this paper, we pro-
pose a distributed leader-following consensus algorithm for
second-order MAS with switching interaction topology and
communication constraints. It is considered that each agent
only transmits its position state to its neighbors with arbitrary
non-uniform and asynchronous sampling periods. The velocity
and acceleration are unavailable. Furthermore, the leader sends
its position information to only a small group of followers
in the network. The communication among the agents is
directed. It must be noted that as compared to [17], where
only fixed communication topology is considered, we assume
that the interaction topology among the agents does not remain
constant and changes with time. Due to the switching topology,
the stability analysis becomes more complex. It should be
noted that the results of [17] cannot be directly applied for the
case of switching topology since switching topology can make
the overall system unstable. In this paper, using an Average
Dwell Time (ADT) approach, sufficient conditions are derived
through Lyapunov-based stability analysis to ensure the leader-
following consensus.

The remaining paper is organized as follows. Preliminaries
on graph theory are provided in Section II followed by the
problem statement in Section III. Main results are presented
in Section IV, Section V contains numerical examples and the
article is concluded in Section VI.

II. RECALLS ON GRAPH THEORY

A directed graph G is a pair (V, E). The set of agents V is
nonempty and finite. The set of edges E ⊆ V × V denotes
ordered pairs of distinct agents. (i, j) ∈ E if agent j can
receive information from agent i. A graph has a directed
spanning tree if there exists a directed path from the root to
all other agents. For a graph G with N agents, the adjacency
matrix A = (aij) ∈ RN×N with aij = 1 if agent i can
receive information from agent j and aij = 0 otherwise;
and the Laplacian matrix L = (lij) ∈ RN×N as lii =∑
j 6=i aij , lij = −aij for i 6= j. Considering the directed

graph combining both the leader and the followers, denoted
by Ḡ, one can define the pinning matrix as the diagonal matrix
B = diag(b1, b2, . . . , bN ) with bj = 1 if follower j can receive
information from the leader and bj = 0 otherwise.

III. PROBLEM STATEMENT

Let us consider a MAS which consists of N followers with
the following dynamics

ẋi(t) = Axi(t) +Bui(t), yi(t) = Cxi(t) (1)

for i = 1, . . . , N , the state is xi(t) = [ri(t)
T , vi(t)

T ]T where
ri(t) ∈ Rm is the position while vi(t) ∈ Rm is the velocity

of agent i. The control input of agent i is ui ∈ Rm. yi ∈
Rm denotes the measured position for agent i. Note that the
position data are transmitted between agents according to the
communication topology in a discrete aperiodic way. A =(

0m Im
0m 0m

)
, B =

(
0m
Im

)
and C =

(
Im 0m

)
are the system

input and output matrices, respectively. The leader agent has
the following dynamics

ẋ0(t) = Ax0(t), y0(t) = Cx0(t) (2)

where x0 is the leader state and y0 is the measured position
for the leader.

Definition 1: The leader-following consensus of MAS (1)–
(2) is achieved if limt→∞ ‖xi(t)− x0(t)‖ = 0, i = 1 . . . N .

It is considered that each agent in the network only transmits
its position ri to its neighbours at aperiodic and asynchronous
time instants. The velocity vi and the input/acceleration ui are
completely unavailable. Let ti,jk be the time instant at which
agent j sends its position data to agent i with i = 1, . . . , N ,
j = 0, . . . , N (j 6= i) and k ∈ N. Moreover, there exist two
constants τm ≥ 0, τM > 0 called minimum and maximum
sampling time respectively such that τm < ti,jk+1 − t

i,j
k < τM .

Denote G= {Ḡ1, Ḡ2, . . . , ḠM} as a finite set of possible
topology graphs and M = {1, 2, . . . ,M} represents the set
of indices. Each graph in G has the same nodes (agents)
but can have different edges. The switching between the
graphs is time dependant and is modelled by a switching
function σ(t) : [0,∞) → M which is a piece-wise constant
function, determining the topology of the dynamic network
at each time instant. In this paper, it is assumed that σ(t) is
generated exogenously and satisfies the minimum dwell time
condition to avoid chattering and Zeno behavior in the network
dynamics. Let 0 = t0 < t1 < t2 . . . be the switching instants
of σ(t). Furthermore, the intervals (tl, tl+1], l = 0, 1, . . .
are bounded and contiguous. Denote the directed switching
graph as Gσ(t) ∈ G with Aσ(t) and Lσ(t) the corresponding
adjacency and Laplacian matrices respectively. Let us denote
the diagonal matrix Bσ(t) = diag(bσ1 (t), . . . , bσN (t)) which
represents the switching interconnection between the leader
and the followers. bσi (t), for i = 1, . . . , N is equal to 1 if agent
i can receive information from the leader and zero otherwise.
The switching communication graph including the followers
and the leader is denoted Ḡσ(t).

Assumption 1: Each switching graph Ḡσ(t) has a directed
spanning tree with the leader as a root.
Let us define matrix

Hσ(t) = Lσ(t) + Bσ(t). (3)

If graph Ḡσ(t) has a directed spanning tree, then Hσ(t) is a
nonsingular M-matrix [20] and there exists a diagonal matrix
Ωσ = diag(ωσ1 , . . . , ω

σ
N ) such that [21]

HσTΩσ + ΩσHσ > 0. (4)

Define the following notations

ωσmax = max{ωσ1 , . . . , ωσN}, (5)
ρσ = λmin(HσTΩσ + ΩσHσ). (6)



where λmin(.) denotes the smallest eigenvalue. The control
objective is to design distributed consensus protocols ui (i =
1, . . . , N ), based on available aperiodic and asynchronous
sampled position data such that leader-following consensus
on switched dynamic network Ḡσ(t) (σ satisfies the minimum
dwell time condition) is achieved according to Definition 1. To
solve this problem, let us recall the following useful definition.

Definition 2 ([22]): For any switching signal σ(t) and t2 >
t1 ≥ t0, let Nσ(t2,t1) describes the number of switching of σ(t)
over the time interval [t1, t2). For any τa > 0 and an integer
N0 ≥ 0, if

Nσ(t2,t1) < N0 +
t2 − t1
τa

(7)

holds, then τa is called the Average Dwell Time (ADT).
Lemma 1: [17] If v1(t) and v2(t) are real valued func-

tions verifying d
dt

(
v21(t) + v22(t)

)
≤ −av21(t) − bv22(t) +

c
∫ t
t−δ v

2
2(s)ds + k for t ≥ 0, where a, b, δ > 0 and c, k ≥ 0.

There exist % > 0 and ᾱ ≥ 0 such that if δ < %, then
v21(t) + v22(t) ≤ ᾱe−σt + k

σ , ∀t ≥ 0 where σ is given by
σ = 1

2 min (a, b).

IV. MAIN RESULTS

The proposed distributed control law is given as follows

ui(t) = −c̄KcΓλ

N∑
j=1

a
σ(t)
ij [x̂i,i(t)− x̂i,j(t)]

−bσ(t)i c̄KcΓλ[x̂i,i(t)− x̂i,0(t)] (8)

for i = 1, . . . , N where aσ(t)ij is the ijth entry of adjacency
matrix Aσ(t), c̄ is the coupling strength, Kc = BTQ =(
Im 2Im

)
with Q the symmetric positive definite matrix

solution of algebraic Lyapunov equation [23]

Q+QA+ATQ = QBBTQ (9)

and Γλ =

(
λ2Im 0m
0m λIm

)
where λ is the controller tuning pa-

rameter. One should note that as compared to the control input
proposed in [17], aσ(t)ij in (8) is not constant but changes with
the communication graph Ḡσ(t). x̂i,j(t) = [r̂Ti,j(t), v̂

T
i,j(t)]

T ,
i = 1, . . . , N , j = 0, . . . , N where r̂i,j(t) and v̂i,j(t) are
the estimation of position and velocity respectively of agent
j estimated by agent i from the available aperiodic and
asynchronous sampled position data. They are computed as
follows:

˙̂xi,j(t) =Ax̂i,j(t)− θ∆−1θ Koe
−2θ(t−κi,j(t))

[
r̂i,j(κi,j(t))

− rj(κi,j(t))
]

(10)

where θ represents the observer tuning parameter while ∆θ =(
Im 0m
0m

1
θ Im

)
and Ko = P−1CT =

[
2Im Im

]T
, with P the

symmetric positive definite matrix solution of the algebraic
Lyapunov equation [24]

P +ATP + PA = CTC (11)

κi,j(t) = max
{
ti,jk | t

i,j
k ≤ t, k ∈ N

}
is the last instant when

agent i receives the position data of agent j. One can note

that observer (10) represents a high-gain continuous-discrete
time observer which estimates the state of an agent and its
neighbors in continuous time from sampled aperiodic and
asynchronous position information. Furthermore, since a time-
varying exponential gain is used and the correcting term in
the observer consists of both continuous and discrete parts,
the observer dynamics (10) is hybrid and nonlinear.

Assumption 2: At each switching instant tl, l = 0, 1, . . . ,
every agent of the MAS sends its own estimated states,
r̂i,i(tl), v̂i,i(tl), with i = 0, . . . , N , to its new neighbors.
The observer updates its value at time t = tl based on the
estimations it receives from the neighbors, i.e. r̂i,j(tl) =
r̂j,j(tl) and v̂i,j(tl) = v̂j,j(tl).

Remark 1: Assumption 2 is important for the convergence
of the observer in the case of switching graphs. It ensures
that once the observer error reaches zero, it will not diverge
due to switching between graphs. Also, other than switching
instants, i.e. when t 6= tl, the observer dynamics are governed
by (10). At last, the same observer can be used by a real
leader to estimate its own states which could be transmitted
to its neighbors at the switching instant.

Theorem 1: Consider the MAS (1)-(2) with control input
(8) and let Assumptions 1 and 2 hold. If the control parameters
θ, λ, c̄ > 0 satisfy the following

θ <
%̄

τM
(12)

λ < ε∗θ (13)

c̄ ≥ maxp∈M{ωpmax}
minp∈M(ρp)

(14)

where %̄ is a positive constant, ε∗ ∈ (0, 1), ωpmax and ρp are
given by (5) and (6) respectively, and if the ADT satisfies the
following inequality

τa >
8 ln (βK)− 1

λ
(15)

with K, β ≥ 1 are constants, then the leader-following
consensus is achieved under switching dynamic network.

Remark 2: The proposed leader-following algorithm is dis-
tributed since it only requires position information of the
neighbors i.e only local information. Moreover, there is no
centralized unit to calculate the the input of the agents.
Instead each agent is computing its own input based on the
discrete information it receives from the neighbors. One may
remark that algorithm requires the position information in the
global frame or the tuning parameters require information of
communication topology. However, these are very common
assumptions in designing of distributed algorithms for MAS,
see for example [25], [26]. Nevertheless, the tuning gains are
tuned beforehand and remain constant for all t ≥ 0 and then
only local information is used to compute the control input.

Proof: The proof of Theorem 1 is divided into three
steps. In the first step, we consider the case of fixed topology
and obtain some useful results. Then in the second step, some
important results are derived for switching topology. Finally in
step 3, all the flows and jumps related to switching topology
are combined using previously obtained results and a condition
of ADT is achieved to ensure the stability of the system.



Step 1: Consider a fixed communication graph Gp (p ∈M).
Let us define the estimation error as

x̃i,j(t) = x̂i,j(t)− xj(t), j = 0, . . . , N (16)

and the tracking error as

ei(t) = xi(t)− x0(t), i = 1, . . . N. (17)

Consider the new coordinates for classical high-gain design
ēi = Γλei and x̄i,j = ∆θx̃i,j . Denoting ηc = [ēT1 . . . ē

T
N ]T ,

ηoi = [(x̄i,1)T . . . (x̄i,N )T ]T for i = 1 . . . N and ηo0 =
[(x̄1,0)T . . . (x̄N,0)T ]. Consider the following candidate Lya-
punov functions

V̄ pc (ηc(t)) = (ηc(t))T [Ωp ⊗Q]ηc(t) (18)
Vo(x̄i,j(t)) = (x̄i,j(t))

TPx̄i,j(t) (19)

V̄o(η
o(t)) =

N∑
i=1

N∑
j=0

Vo(x̄i,j(t)) (20)

Taking the derivative of the above Lyapunov functions and
applying Lemma 1, the following inequality is achieved if
conditions (12)–(14) and Assumption 1 are satisfied (please
see [17] for more details)√

V̄ pc (ηc(t)) + ε
3
2 θ2
√
V̄o(ηo(t)) ≤ ᾱ(t0)e−

λ
8 (t−t0) (21)

where ᾱ(t0) is given as

ᾱ(t0) =
√
V̄ pc (ηc(t0)) + ε

3
2 θ2
√
V̄0(ηo(t0)) + cε

3
2 θ2

×
∫ τM

0

∫ t0

t0−s
evκ(µ−t0+s)

√
V̄0(µ)dµds (22)

where c > 0, v ≥ 0 and κ ≥ 0 (see Lemma 3 of [17] for
details).

It is clear from (21) that the system achieves stability for a
fixed communication topology. However, this does not imply
that the closed-loop system will remain stable in the case of
switching communication topology since switching may lead
to an overall unstable system. Therefore, we need to find out
the stability conditions considering switching topology. We
first need the following results. Considering time interval t ∈
[t0, t1) and using (22), (21) can be written as:√
V̄ pc (ηc(t)) + ε

3
2 θ2
√
V̄0(t) (23)

≤
(√

V̄ pc (ηc(t0)) + ε
3
2 θ2K max

s∈[t0−τM ,t0]

√
V̄o(s)

)
e−

λ
8 (t−t0)

so one can obtain the following√
V̄ pc (ηc(t1)) + ε

3
2 θ2 max

s∈[t1−τM ,t1)

√
V̄0(s)

≤
(√

V̄ pc (ηc(t0)) + ε
3
2 θ2K max

s∈[t0−τM ,t0]

√
V̄o(s)

)
×
(
e
λ
8 τM

)
e−

λ
8 (t1−t0) (24)

with K = max{1, cτ2MevκτM }. V̄ pc satisfies the following
properties [27], [28]:
• Since ωi ⊗ Q is always symmetric positive definite for

any i ∈M, there exists β̄ ≥ 1 such that

V̄ pc ≤ β̄V̄ qc , ∀p, q ∈M (25)

so √
V̄ pc ≤ β

√
V̄ qc , ∀p, q ∈M (26)

where β =
√
β̄;

• Let α1 = minp∈M(λmin(Ωp ⊗ Q)) and α2 =
maxp∈M(λmax(Ωp ⊗Q)), then

α1‖ηc‖2 ≤ V̄ pc ≤ α2‖ηc‖2. (27)

Step 2: Let us now define a piecewise Lyapunov function
for the considered switching communication topology

V̄ σ(t)c (ηc(t)) = (ηc(t))T [Ωσ(t) ⊗Q]ηc(t). (28)

Then, from (26), for any switching instant tl, l = 1, 2, . . . ,
one can get√

V̄
σ(tl)
c (ηc(tl)) ≤ β

√
V̄
σ(t−l )
c (ηc(t−l )). (29)

Furthermore, if Assumption 2 is satisfied, one has

V̄0(ηo(tl)) = V̄0(ηo(t−l )). (30)

Hence, one can obtain(√
V̄
σ(tl)
c (ηc) + ε

3
2 θ2 max

s∈[tl,tl−τM )

√
V̄o(s)

)
(31)

≤ β

(√
V̄
σ(t−l )
c (ηc) + ε

3
2 θ2 max

s∈[t−l ,t
−
l −τM )

√
V̄o(s)

)

Step 3: For t ∈ [tk, tk+1), from (23) and (31), one has√
V̄
σ(t)
c (ηc) + ε

3
2 θ2 max

s∈[t−τM ,t)

√
V̄0(s)

≤ e
λ
8 τM

(√
V̄
σ(tk)
c (ηc)

+ε
3
2 θ2K max

s∈[tk−τM ,tk]

√
V̄o(s)

)
e−

λ
8 (t−tk) (32)

≤ βKe
λ
8 τM

(√
V̄
σ(t−k )
c (ηc)

+ε
3
2 θ2 max

s∈[t−k −τM ,t
−
k ]

√
V̄o(s)

)
e−

λ
8 (t−tk) (33)

≤ βK2e2
λ
8 τM

(√
V̄
σ(t0)
c (ηc(tk−1))

+ε
3
2 θ2 max

s∈[tk−1−τM ,tk−1]

√
V̄o(s)

)
e−

λ
8 (t−tk−1)

≤ βNσ (Ke
λ
8 τM )Nσ+1

(√
V̄
σ(t0)
c (ηc)

+ε
3
2 θ2 max

s∈[t0−τM ,t0]

√
V̄o(s)

)
e−

λ
8 (t−t0)

≤ βN0(Ke
λ
8 τM )N0+1(βK)

t−t0
τa e

t−t0
τa

(√
V̄
σ(t0)
c (ηc)

+ε
3
2 θ2 max

s∈[t0−τM ,t0]

√
V̄o(s)

)
e−

λ
8 (t−t0)



Now, using Definition 2, one has√
V̄
σ(t)
c (ηc) + ε

3
2 θ2 max

s∈[t−τM ,t)

√
V̄0(s)

≤ βN0(Ke
λ
8 τM )N0+1

(√
V̄
σ(t0)
c (ηc) (34)

+ε
3
2 θ2 max

s∈[t0−τM ,t0]

√
V̄o(s)

)
e−(λ8−

ln (βK)−1
τa

)(t−t0)

Hence, if the ADT satisfies condition (15), system (1)-(2)
achieves leader-following consensus under switching dynamic
network. From the original coordinates of tracking error, we
can achieve the following inequality:

N∑
i=1

‖ei‖ ≤ l1

√
V̄
σ(t)
c (ηc) (35)

with l1 = 1
λ

√
N√

λmin(Q)

√
ω
σ(t)
min

. From the over-valuation of (34)

and using (35), we achieve
N∑
i=1

‖ei‖ ≤ l1γ̄e−(λ8−
ln (βK)−1

τa
)(t−t0) (36)

where γ̄ = βN0(Ke
λ
8 τM )N0+1

(√
V̄
σ(t0)
c (ηc) + ε

3
2 θ2

maxs∈[t0−τM ,t0]
√
V̄o(s)

)
. It is clear from (36) that if ADT

satisfies condition (15), the tracking error decays exponen-
tially.

V. SIMULATIONS

We consider a MAS with 4 followers labelled from 1 to
4 and a leader labelled 0 for simulation purposes. Three
possible communication topologies are shown in Figure 1.
The topologies are switching according to the switching signal

Fig. 1: Communication graphs

shown in Figure 2. The minimum dwell time between two
consecutive switchings is chosen to be equal to 1s. Position

Fig. 2: Switching signal

data is transmitted between neighboring agents in an aperiodic

and asynchronous discrete way. The associated minimum
sampling time τm is 0.01s while the maximum sampling time
τM is 0.15s. The initial conditions of the agents are selected
randomly. The control gains are tuned and set as c̄ = 1.2,
λ = 0.8 and θ = 12.

In the first case, the leader is kept stationary. Figure 3-(a)
shows the position consensus while the velocity consensus is
shown in Figure 3-(b). The corresponding errors are depicted
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Fig. 3: Leader following consensus with a stationary leader
(a) position consensus – (b) velocity consensus

in Figure 4. In the second simulation, the leader moves with
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Fig. 4: Tracking errors for consensus with a stationary leader

a velocity of 1.5m.s−1. Figure 5 shows the results for both
position and velocity consensus while the tracking errors
are depicted in Figure 6. An example of sampling instants
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Fig. 5: Leader following consensus with a moving leader (a)
position consensus – (b) velocity consensus

between two agents is given in Figure 7.
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Fig. 6: Tracking errors for consensus with a moving leader
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leader and follower 1

VI. CONCLUSION

In this paper, we study the problem of leader-following
consensus of second-order MAS with switching topology. The
agents cannot measure their velocity and acceleration. They
only share their position state with neighbors in a discrete
aperiodic and asynchronous way. Using an ADT approach,
sufficient conditions are derived through Lyapunov-based sta-
bility analysis to design an observer-based control protocol
which solves the leader-following consensus. The investigation
of the case where individual graphs do not necessarily have
a spanning tree but only a joint-graph containing a spanning
tree in a time period is considered for future work.
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