
HAL Id: hal-03086820
https://hal.science/hal-03086820v1

Submitted on 23 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Persistent homology of the cosmic web – I. Hierarchical
topology in ΛCDM cosmologies

Georg Wilding, Keimpe Nevenzeel, Rien van de Weygaert, Gert Vegter,
Pratyush Pranav, Bernard J.T. Jones, Konstantinos Efstathiou, Job

Feldbrugge

To cite this version:
Georg Wilding, Keimpe Nevenzeel, Rien van de Weygaert, Gert Vegter, Pratyush Pranav, et al..
Persistent homology of the cosmic web – I. Hierarchical topology in ΛCDM cosmologies. Monthly
Notices of the Royal Astronomical Society, 2021, 507 (2), pp.2968-2990. �10.1093/mnras/stab2326�.
�hal-03086820�

https://hal.science/hal-03086820v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


MNRAS 507, 2968–2990 (2021) https://doi.org/10.1093/mnras/stab2326 
Advance Access publication 2021 August 17 

Persistent homology of the cosmic web – I. Hierarchical topology in 

� CDM cosmologies 

Georg Wilding , 1 , 2 , 3 ‹ Keimpe Nevenzeel, 1 Rien van de Weygaert, 1 , 3 Gert Vegter, 2 , 3 

Pratyush Pranav , 1 , 4 , 5 Bernard J. T. Jones , 1 Konstantinos Efstathiou 

2 , 3 , 6 and Job Feldbrugge 

7 , 8 

1 Kapteyn Astronomical Institute, University of Groningen, PO Box 800, NL-9700 AV Groningen, the Netherlands 
2 Bernoulli Institute for Mathematics, Computer Science and Artificial Intellig ence , Univer sity of Groning en, PO Box 800, NL-9700 AV Groning en, the 
Netherlands 
3 Centre for Data Science and Systems Complexity, University of Groningen, PO Box 800, NL-9700 AV Groningen, the Netherlands 
4 Univ Lyon, ENS de Lyon, CNRS, Centre de Rec herc he Astrophysique de Lyon UMR5574, F-69007 Lyon, France 
5 Technion – Israel Institute of Technology, Haifa 32000, Israel 
6 Division of Natural and Applied Sciences and Zu Chongzhi Center for Mathematics and Computational Science, Duke Kunshan University, No. 8 Duke 
Avenue, Kunshan 215316, Jiangsu Province, China 
7 Perimeter Institute, 31 Caroline St N, Waterloo, ON N2L 2Y5, Canada 
8 Department of Physics, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15217, USA 

Accepted 2021 August 6. Received 2021 August 6; in original form 2021 April 23 

A B S T R A C T 

Using a set of Lambda cold dark matter simulations of cosmic structure formation, we study the evolving connectivity and 

changing topological structure of the cosmic web using state-of-the-art tools of multiscale topological data analysis (TDA). We 
follow the development of the cosmic web topology in terms of the evolution of Betti number curves and feature persistence 
diagrams of the three (topological) classes of structural features: matter concentrations, filaments and tunnels, and voids. The 
Betti curves specify the prominence of features as a function of density level, and their evolution with cosmic epoch reflects the 
changing network connections between these structural features. The persistence diagrams quantify the longevity and stability of 
topological features. In this study, we establish, for the first time, the link between persistence diagrams, the features they show, 
and the gravitationally driven cosmic structure formation process. By following the diagrams’ development over cosmic time, the 
link between the multiscale topology of the cosmic web and the hierarchical buildup of cosmic structure is established. The sharp 

ape x es in the diagrams are intimately related to key transitions in the structure formation process. The apex in the matter concen- 
tration diagrams coincides with the density level at which, typically, they detach from the Hubble expansion and begin to collapse. 
At that level many individual islands merge to form the network of the cosmic web and a large number of filaments and tunnels 
emerge to establish its connecting bridges. The location trends of the apex possess a self-similar character that can be related to 

the cosmic web’s hierarchical buildup. We find that persistence diagrams provide a significantly higher and more profound level 
of information on the structure formation process than more global summary statistics like Euler characteristic or Betti numbers. 

Key words: methods: data analysis – large-scale structure of Universe. 
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 I N T RO D U C T I O N  

n this study, we analyse the topological structure and connectivity
f the cosmic web (Bond, Kofman & Pogosyan 1996 ; van de
eygaert & Bond 2008 ) in terms of the multiscale topological

ormalism of persistence and Betti numbers. These state-of-the-
rt tools of topological data analysis (TDA) represent measures
f structural aspects of the cosmic web (Sousbie 2011 ; van de
eygaert et al. 2011 ; Nevenzeel 2013 ; Shi v ashankar et al. 2016 ;

ranav et al. 2017 ; Xu et al. 2019 ; Biagetti, Cole & Shiu 2021 ).
ith a solid mathematical foundation in the context of algebraic and

omputational topology (Edelsbrunner & Harer 2010 ), they offer an
ntricate quantitative description of how the structural components
 E-mail: georg.wilding@gmail.com (GW); weygaert@astro.rug.nl (RVDW) 
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f the cosmic web are assembled and organized within its complex
etwork. The principal intentions of this study are (1) to assess
nd quantify the connectivity of the cosmic web in terms of the
evels at which its various structural components get joined into the
 v erall web-lik e netw ork, (2) establish the relationship between the
haracteristics of the Betti number curves and persistence diagrams
nd the gravitationally driven cosmic structure formation process,
3) to explore the sensitivity of the structure and topology of the
osmic web to the underlying cosmology, and (4) to assess the extent
o which the topological measures are able to extract cosmological
nformation. This concerns aspects such as the nature of dark matter,
ark energy, possible deviations from standard gravity, and/or non-
aussian initial conditions. 
The use of persistence diagrams as a tool of topological analysis

ill pro v e valuable, as it enables us to measure non-linear features
n the large-scale structure. In line with using it to differentiate
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etween cosmologies, we aim to turn this manner of analysing 
ersistence into a new probe for fundamental cosmology and physics 
n general. Ultimately, we will apply this probe also to observational 
ata, with the aim of differentiating between models and providing 
onstraints on the nature of dark matter, dark energy and other global
osmologically rele v ant factors. 

.1 Cosmic web: connectivity 

he matter and galaxy distribution on scales of a few up to a hundred
egaparsec defines an intricate multiscale network, characterized 

y a complex connectivity, that is known as the cosmic web (Bond
t al. 1996 ). Dark matter, interg alactic g as and g alaxies have arranged
hemselves in a salient, wispy pattern dominated by elongated fila- 

ents that intersect at compact cluster nodes and that are embedded 
n tenuous sheet-like walls that form the boundary of large near- 
mpty void regions (van de Weygaert & Bond 2008 ). Maps of the
earby cosmos produced by large galaxy redshift surv e ys such as
he 2dFGRS, the SDSS, and the 2MASS redshift surv e ys (Colless
t al. 2003 ; Tegmark et al. 2004 ; Huchra et al. 2012 ), as well
s by recently produced maps of the galaxy distribution at larger 
osmic depths such as VIPERS (Guzzo & VIPERS Team 2013 ) 
nd GAMA (Driver et al. 2009 ), have revealed the existence of
his structure. Filaments are the most visually outstanding features 
f the Megaparsec Universe, in which around 50 per cent of the 
ass and galaxies in the Universe reside. On the other hand, almost

0 per cent of the cosmic volume belongs to the interior of voids (see
.g. Cautun et al. 2014 ; Ganeshaiah Veena et al. 2018 ). Together, they
efine a complex spatial pattern of intricately connected structures, 
isplaying a rich geometry with multiple morphologies and shapes. 
his complexity is considerably enhanced by its intrinsic multiscale 
ature, including objects o v er a considerable range of spatial scales
nd densities. For a recent up-to-date report on a wide range of
ele v ant aspects of the cosmic web, we refer to the volume by van de

eygaert et al. ( 2016 ). 
The organization of this network in an ordered web – in which 

oids are surrounded by walls and filaments, connecting at high- 
ensity compact clusters at the nodes evidently – is a characteristic 
hat is in need of a systematic and quantifiable characterization. 
ilaments appear at the edges of the walls in the mass distribution.
he way in which the various features connect into the web-like 
attern pervading space includes local as well as global aspects. 
ocally, it concerns questions like the dependence of the number 
f connecting filaments on the properties of a (cluster) node, or the
onnection between walls and surrounding or embedding filaments. 
lobally, it pertains to issues of percolation, i.e. how fast and at what

e vel the v arious structural elements are connecting up in a network
hat permeates an entire volume. 

The study by Arag ́on-Calvo, van de Weygaert & Jones ( 2010a )
as amongst the first to address this question systematically, and 

stablished that the number of connecting filaments is linearly 
ncreasing with the mass of the node and is typically of the order of
–5 filaments per node. Recent work by Codis, Pogosyan & Pichon 
 2018 ) on the basis of a topological analysis has confirmed this trend.

The more global aspect of connectedness concerns the o v erall per-
olation properties of the web-like network, focusing on how the var- 
ous structural features connect up into the final permeating network. 
arly studies within the context of percolation theory by Zeldovich 
nd cow ork ers (Zeldovich, Einasto & Shandarin 1982 ; Shandarin 
983 ; Klypin & Shandarin 1993 ; Colombi, Pogosyan & Souradeep 
000 ), and others (Dekel & West 1985 ; Sahni, Sathyaprakash &
handarin 1997 ), explored the spatial connectedness of galaxies as a 
unction of linking length, assessing the length at which all galaxies
ould link up and comparing this with the expectation for different

osmologies. For the connectedness of the structural components 
f the cosmic web – nodes, filaments, walls, and voids – a similar
pproach may be pursued by using the criterion or physical quantity
ccording to which they are identified. 

In this study, we restrict ourselves to using the density field for
dentification of structures affiliated to the cosmic web. The levels 
 v er which filaments and walls exist in the density field establish the
onnection of the different components. By following the changing 
attern and population of components at different density levels, one 
ay study how the structural elements have connected into a volume

ervading network. Rather than using density, a more sophisticated 
nalysis would use a physical influence that is more rele v ant for
istinguishing cosmic web identities. An example of this is the 
idal force field or the closely related deformation field. The recent
nalytical formulation of the caustic skeleton of the cosmic web 
n the basis of the eigenvalues and eigenvectors of the deformation
eld (Feldbrugge et al. 2019 ) will therefore yield a more detailed
nd profound quantitative characterization of the global cosmic web 
onnectedness. 

Following this procedure defines a sophisticated multiscale anal- 
sis of the connectivity of the cosmic web. The mathematical 
ormalism for this we find in topology, more specifically within 
omology theory. 

.2 Topology: Betti numbers and persistence 

opology is the branch of mathematics that addresses the connectiv- 
ty of this multitude of features, as well as their occurrence in various
imensions and shapes. The study of the topology of the cosmic mass
istribution started out with the e v aluation of the Euler characteristic
nd the genus of its iso-density surfaces. Gott and collaborators (Gott,
elott & Dickinson 1986 ; Hamilton, Gott & Weinberg 1986 ) studied

he genus as function of density threshold. Later, further and more
iscriminative information on the topology became available with 
he introduction of Minkowski functionals (Mecke, Buchert & 

agner 1994 ; Schmalzing & Gorski 1998 ). Ho we ver, most of these
tudies had a largely heuristic character and represented a global 
tatistical assessment of the cosmic mass distribution. The first study 
ocusing on the connectivity of distinct morphological elements in the 
ass distribution is the SURFGEN formalism developed by Sahni, 
athyaprakash & Shandarin ( 1998 ). It uses Minkowski functionals 

o define shapefinders , allowing the identification of morphological 
eatures of different geometric shapes, and carry out a systematic 
ssessment of their embedding within the o v erall cosmic mass
istribution (Sheth et al. 2003 ; Shandarin, Sheth & Sahni 2004 ;
heth & Sahni 2005 ). 
Van de Weygaert and collaborators (van de Weygaert et al. 2010 ,

011 ) introduced the concept of homology, Betti numbers (Poincar ́e
892 ) and persistence (Edelsbrunner, Letscher & Zomorodian 2002 ; 
delsbrunner & Harer 2010 ), in a cosmological context. These 
re homology measures, concepts of algebraic and computational 
opology, describing in a quantitative manner how features in a 

anifold are connected through their boundaries (Munkres 1984 ). 
hese early studies assessed Betti number systematics in a range 
f web-like spatial mass and galaxy distributions, for which they 
rovide a summary of information on the topology of the cosmic
ass distribution. This was followed up by recent studies that invoked

omology in a cosmological context along more systematic and 
ormalized lines (Sousbie 2011 ; van de Weygaert et al. 2011 ; Park
t al. 2013 ; Pranav et al. 2017 , 2019a ; Feldbrugge et al. 2019 ). 
MNRAS 507, 2968–2990 (2021) 
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Betti numbers are topological invariants that formalize the topolog-
cal information content of the cosmic mass distribution in terms of
he population of topological features (Edelsbrunner & M ̈ucke 1994 ;
omorodian & Carlsson 2005 ; Robins 2006 ; Edelsbrunner & Harer
010 ; Wasserman 2018 ). The zeroth Betti number counts the number
f connected components, the first Betti number is the number of
ndependent loops, while the second Betti number is the number
f independent shells enclosing troughs. Within the context of the
patial pattern of the cosmic web, tunnels are intimately related
o loops of filamentary bridges of the cosmic web connecting the
 v erdense clusters. It is important to appreciate that the homological
easures are fundamentally non-local . While homology and the Betti

umbers do not fully quantify the topology of a manifold, they
xtend the information beyond conventional cosmological studies
f topology in terms of genus and Euler characteristics. 
The profound significance of Betti numbers is underlined by their

ntimate relationship to the singularity structure of the cosmic density
eld (Morse 1925 ; Milnor 1963 ). According to Morse theory the

opology of a field is coupled to the presence, location and nature of
he singularities. It reflects the notion that the topology of a manifold
hanges once a singularity is added, or remo v ed, upon variation of
he level set. As a result, the existence of and connectivity between
opological features is completely determined by the location and
ature of the critical points in a density field. The importance and
rominence of topological features is characterized through their
ersistence (Edelsbrunner et al. 2002 ; Edelsbrunner & Harer 2010 ). 
Persistence facilitates the assessment of the multiscale nature of

he topology of the Megaparsec cosmic mass distribution. Of key
ignificance is the ability to assess its structural nested hierarchy,
.e. the possibility to study how the structural elements of the
eb-lik e netw ork connect up upon v ariation of the le vel set. The

orresponding change in topology represents a highly informative
nd versatile description of the connectivity of the cosmic web
etwork (Edelsbrunner et al. 2002 ; Edelsbrunner & Harer 2010 ).
ersistence relates the creation or birth of topological features
e.g. holes) that constitute the mass distribution with that of their
nnihilation or death upon variation of the level set. 

.3 This study: persistent topology of the cosmic web 

n recent years, we have seen a large increase in the popularity
f persistent topology and TDA in general (for a recent re vie ws,
ee Wasserman 2018 ). Persistent topology finds application in a
iverse range of fields, ranging from brain research (Petri et al.
014 ; Reimann et al. 2017 ) and materials science (Hiraoka et al.
016 ) to cosmology and astrophysics. Sousbie ( 2011 ), Sousbie,
ichon & Kawahara ( 2011 ), Shi v ashankar et al. ( 2016 ), and Pranav
t al. ( 2017 ) invoke persistence to identify and characterize the
tructure and connectivity of the spine of the cosmic web (Bond
t al. 1996 ; van de Weygaert & Bond 2008 ; Arag ́on-Calvo et al.
010a ; Cautun et al. 2014 ; Libeskind et al. 2018 ). Persistence-based
dentification of features of the cosmic web is also the aim of Xu et al.
 2019 ), with a focus on identifying filaments and voids in heuristic
odels of the matter distribution (also see Shi v ashankar et al. 2016 ),
hile Kimura & Imai ( 2017 ) determined persistence diagrams for

small) volume-limited samples of the DR12 release of the SDSS
alaxy redshift surv e y. Kono et al. ( 2020 ) applied TDA towards
tudying baryonic acoustic oscillations in the galaxy distribution,
hile Biagetti et al. ( 2021 ) studied persistence properties of the

arge-scale matter distribution in cosmologies with non-Gaussian
rimordial conditions (also see Feldbrugge et al. 2019 ). The explicit
pplication of homology measures in the study of the primordial
NRAS 507, 2968–2990 (2021) 
emperature perturbations in the cosmic microwave background are
eported in Pranav et al. ( 2019b ) and Adler, Agami & Pranav ( 2017 ).

A fundamental aspect of the connectivity of the cosmic web
oncerns the number of filaments connecting to nodes. Arag ́on-
alvo et al. ( 2010b ) addressed this on the basis of the MMF

ormalism (Arag ́on-Calvo et al. 2007 ). In a more thorough and
rofound analysis, the persistence-based study by Codis et al. ( 2018 )
onfirmed the dependence of the node-filament connectivity on the
ass of the cluster nodes. The use of persistence and Betti numbers is

lso a natural way of tracing the evolving topology of the reionization
ubble network (Elbers & van de Weygaert 2019 ). In an astrophysical
onte xt, the y were also applied as descriptors of the topological
tructure of interstellar magnetic fields (Makarenko et al. 2018 ). 

Following the work laid out in van de Weygaert et al.
 2011 ), Nevenzeel ( 2013 ), Pranav et al. ( 2017 , 2019a , b ), and Feld-
rugge et al. ( 2019 ) in this study, we extend the topological analysis
f the cosmic web to the analysis of the redshift evolution of structure
n simulations within the Lambda cold dark matter ( � CDM) cos-
ology. In Section 2 , we first describe the simulation of structure

ormation in � CDM cosmology that we used in this study, as well
s the tools, methods and implementation of persistent topology.
he Betti numbers and persistence of the dark matter distribution at

edshift z = 0 is discussed in Section 3 , with the purpose of identify-
ng the topological characteristics of the web-like mass distribution.
he systematic development of these characteristics in the evolving
ass distribution in � CDM cosmologies follows in Section 4 . We

onclude with the summary and conclusions in Section 5 . 

 SIMULATIONS,  TOOLS,  A N D  M E T H O D S  

ur analysis concentrates on the dark matter distribution in a
 CDM cosmology. The gas, halo, and galaxy distribution in this

osmology possess similar topological characteristics, although the
etails display significant and systematic differences. We will address
he topological characteristic of, for example, the dark matter halo
istribution in accompanying studies (see e.g. Bermejo, Wilding, van
e Weygaert & Jones, in preparation). 

.1 Simulation and density field 

e analyse the simulated evolving dark matter distribution in a set of
 CDM simulations of cosmic structure formation. The simulations
ere performed with Gadget 3 (Dolag et al. 2004 ; Springel 2005 ). We
se five runs, each with 256 3 particles of mass 0.443 × 10 10 h −1 M �
n a box of 300 h −1 Mpc, using periodic boundary conditions. The
osmological parameters are based on the WMAP3 data (see Bos
t al. 2012 , for a detailed discussion of the simulations). 

The dark matter particle distribution produced by the Gadget
imulations is transformed into a density field by means of the
elaunay Tessellation Field Estimator ( DTFE ; Schaap & van de
eygaert 2000 ; van de Weygaert & Schaap 2009 ; Cautun & van de
 eygaert 2011 ). T o this end, the Delaunay tessellation (Delone 1934 ;
kabe et al. 2000 ) of the N -body particle distribution is determined,

nd the densities at each v erte x of the tessellation computed from
he inverse of the volume of the star of the v erte x, the union of
ll Delaunay tetrahedra incident to the v erte x. The densities at the
ertices (which correspond to the particles in the simulation) are then
inearly interpolated to a regular grid. This impro v es the sampling of
nderdense regions, at the expense of losing some resolution in the
ensity peaks. By using the density and shape adaptive properties of
he Delaunay tessellation (see van de Weygaert & Schaap 2009 ), DTFE

ptimally retains the multiscale, geometric and topological nature of
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Figure 1. Cosmic web evolution in � CDM cosmology. We show the evolution at four redshifts, starting at z = 3.8 at the left and proceeding clockwise. The 
slices show a 150 by 150 h −1 Mpc as a projection from a 24 h −1 Mpc thick region around a height of 117 h −1 Mpc. 
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he underlying mass distribution that the N -body particle distribution 
s supposed to sample. The density values are specified in terms of
he density contrast δ( x , t ) 

( x , t) = 

ρ( x , t) − ρu ( t) 

ρu ( t) 
, (1) 

ith ρ the densities from the DTFE , and ρu ( t ) the global density value
t the appropriate cosmic epoch. As δ ranges from −1 to ∞ , in our
lots we usually use δ + 1, in order to enable logarithmic scale plots
by a v oiding ne gativ e values). 

For the topological analysis, we use eight different snapshots of 
he simulation. These correspond to the redshifts z = 3.8, 2.98, 2.05,
.00, 0.51, 0.25, 0.1, and 0.00. To get an impression of the resulting
patial pattern in the matter distribution, Fig. 1 shows the particle 
istribution in a 300 × 300 × 24 h −1 Mpc slice around a height of
17 h −1 Mpc. The evolution of the web-like structure is followed 
hrough four snapshots, from z = 3.8 down to the current epoch at
 = 0. The four panels sho w ho w the relati vely lo w contrast mass
istribution at high redshift evolves in the prominent and complex 
eb-like pattern that pervades the entire box and attains scales in the
rder of dozens of Megaparsec. 

.2 Cosmic web evolution and topology 

.2.1 Density field dynamics 

t all snapshots we see the web-like pattern characteristic of the 
uasi-linear mass distribution that evolves from the initial linear 
ravitational growth to more advanced non-linear stages (Bond et al. 
996 ; van de Weygaert & Bond 2008 ; Arag ́on-Calvo et al. 2010a ;
autun et al. 2014 ). The set of panels reveal how gravitational
ontraction and collapse manifests itself into increasing density 
ontrasts and gradual contraction of o v erdensities into more compact 
lump-like, filamentary and wall-like features, and ever emptier 
oid regions. 

The hierarchical buildup of structure in the � CDM scenarios 
nvolves the emergence of ever larger complexes or islands, the 
ierarchical development of large near-empty void regions that 
manate from the merging of smaller scale troughs (see Sheth & 

an de Weygaert 2004 ; Aragon-Calvo & Szalay 2013 ) and the
stablishment of major filamentary arteries as the transport channels 
long which mass flows through the universe, connecting all mass 
oncentrations throughout it. We first see the emergence of web-like 
tructures at small scales, which through gravitational interactions 
ubsequently grow and merge into larger structures. While this 
appens, the evolution of structure also establishes new or more 
ronounced connections. Towards the current cosmic epoch at z = 

, it yields the characteristic web-like pattern dominated by filaments 
nd voids on scales of tens to even hundreds of Megaparsec. 

The left-most panel in Fig. 1 shows the mild density contrast at a
edshift z = 3.8. By z = 2.05, we see that the mass distribution has
volved into one marked by a substantially higher density contrast. 
he mild density enhancements at z = 3.8 have contracted into steep
ensity ridges and comple x es, within which we observe compact
lumps of high-density and moderately dense elongated filaments. 
hese island comple x es appear to be connected by lower contrast
lamentary and w all-lik e bridges. We see that the regions of lower
ensity have grown in size and contrast, into large near-empty 
roughs. It is the result of the continuation of gravitational contraction
nd collapse, manifesting itself into increasing density contrasts and 
radual contraction of o v erdensities into more compact clump-like, 
lamentary, and w all-lik e features, and ever emptier void regions. 

.2.2 The topological point of view 

or a visual appreciation of the effects of these dynamical and
ierarchical processes on the changing topology of the cosmic 
ass distribution, Fig. 2 follows the cosmic web patterns at three

if ferent structural le vels. The figure sho ws these patterns in terms
f the density superlevel sets at three density thresholds, and follows
heir evolution at three redshifts, z = 3.8, z = 1.0, and z = 0.
he three threshold levels have been carefully chosen such that 

he superlevel sets are typically representing the presence for three 
tructural components of the cosmic web (see Section 4.3 for their
efinition). An immediate visual impression of the evolving structure 
rom redshift z = 3.8 to 0 is the increasing sharpness of the
orphological features in the mass distribution. It is most outstanding 

n the development of the intricate filamentary network (middle row) 
nd the pronounced topology marked by void cavities (bottom row). 

The top row shows the structures at the highest threshold, at which
ev el we observ e the presence of high-density peaks and islands –
heir immediate surroundings – which congregate near the nodes of 
he cosmic web. Following their evolution, from top left to top right,
e observe two processes. Existing peaks and islands merge into 
igher density compact clumps. Also, we see the emergence of new
eaks and islands that have gravitationally grown o v er the threshold
evel. The latter occurs abundantly from z = 1.0 to z = 0, to such
n extent that at z = 0 we start to see that the clumps delineate large
MNRAS 507, 2968–2990 (2021) 
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Figure 2. Density superlevel sets of the � CDM mass distrib ution. Ev olution of structure for three redshifts ( z = 3.8, 1, and 0, from left to right), in a 24 h −1 Mpc 
slice around a height of 117 h −1 Mpc. The structure is depicted as superlevel sets with three different thresholds to outline the disjoint nodes of the cosmic web 
(top row), its filamentary structure (middle row), and the walls enclosing the cosmic voids (for the calculation of the thresholds see Section 4.3 ). The evolution 
of structure and the emergence of the increasingly geometric and organized web is particularly visible in the middle row, where noisy, short, and disjoint (but 
already elongated) clumps connect up to form a network of long and more massive filaments that (in three dimensions) fills the whole volume. 
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longated features, the superclusters that trace the most prominent
laments and walls of the cosmic web. 
At the intermediate le vel, the superle vel pattern is shown in the

entral row of Fig. 2 . At this level, filaments and walls – and
he tunnels that go along with them – manifest themselves as the
ominant structure visible. Going from z = 3.8 to z = 0, we also
ote that these features are generally smaller at the earlier epochs,
NRAS 507, 2968–2990 (2021) 
nd that we see them connect up into ever larger and more massive
eatures and agglomerates. It demonstrates the hierarchical buildup
f the filamentary and w all-lik e backbone of the cosmic web (see
autun et al. 2014 ). It is also interesting that the features at z = 0 are
ore sharply outlined than their peers at z = 3.8, which are shorter

nd stubby, as a result of their gravitational contraction into more
ronounced and compact configurations. 
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1 This assumes a decreasing threshold of the superlevel set, leading to birth 
densities being higher than death densities. 
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At the lowest threshold, represented by the panels in the bottom 

ow, nearly all structure has percolated into a foam-like network 
hat permeates the entire cosmic volume. This is certainly the case 
or the z = 0.0 cosmic web, while at earlier epochs we still find
isconnected parts: at the smoothing scale of the density field, the 
niverse is not yet permeated by a percolating cosmic web. Also the
oid population is evolving characteristically, from a large number of 
mallish underdense regions at z = 3.8, to one of a considerably lower
umber of much larger void regions. It illustrates the hierarchical 
ature of void evolution, akin to a soapsud of bubbles which merge
nto ever larger ones (see Sheth & van de Weygaert 2004 ; Aragon-
alvo & Szalay 2013 ). 
The final pattern and topology of the resulting hierarchically 

volving mass distribution is determined by the relative dynamical 
ime-scales at the different spatial scales of the mass distribution. 
or the Gaussian initial conditions in the early Universe, this is
ully determined by the primordial power spectrum of density and 
elocity fluctuations. Processes in the early Universe, as well as 
mportant factors such as the nature of dark matter, arrange the 
ower spectrum. It therefore determines in how far we are dealing 
ith a clumpy distribution of objects arranged in larger scale web- 

ike configurations, or one in which the structures on the scale 
ominating at that epoch have a more coherent appearance. The 
onnectivity of these patterns will be radically different. It translates 
nto fundamental differences in the multiscale – and hence persistent 
topology, representing the global phenomenon of connectivity that 

annot be described by power spectra or correlation functions. 
This study is based on the realization that the visually appreciable 

hange in multiscale topology as we proceed from the panel in Fig. 1
t z = 3.8 up to the panel at the current cosmic epoch at z = 0 should
llow us to determine with considerable precision the underlying 
osmology. 

.3 Persistent homology: background and implementation 

t is useful to summarize the terminology rele v ant to this study.
echnical details can be found in many of the previously cited 
apers (e.g. Edelsbrunner et al. 2002 ; Edelsbrunner & Harer 2010 ;
asserman 2018 ), while a more detailed summary than can be given

ere is to be found in Pranav et al. ( 2017 ). 
When describing the structural elements of the cosmic web, 

e loosely talk in terms of ‘clusters, filaments, and voids’. In
opology, we speak descriptively of ‘islands, loops, and shells’ or of
components, tunnels, and cavities’. More precisely, these structures 
re referred to as k -c ycles: 0-c ycles (a connected component), 1-
ycles (loops surrounding tunnels), and 2-cycles (shells enclosing 
oids). Formally defined in terms of homology groups , the number 
f independent structures, and the size of these groups, are the 
etti numbers βk . The topology of structures in three dimensions 

s characterized through a triple of Betti numbers: β0 , β1 , β2 . 
At any instant in a cosmological simulation, the character of the 

opology of the superlevel density field (outlined by structures abo v e
 threshold density) changes with the value of the threshold (see 
ig. 2 ). With the topology tied to the three Betti numbers, we will
btain three curves determining the Betti numbers as a function 
f the threshold. The curves will vary with cosmic epoch, and at
ach characterize the structure. Topology addresses the identity and 
hape of each superlevel set and the spatial connectivity of features 
ike islands, tunnels, and cavities or voids. Islands in a superlevel 
et are the regions with a mass density in excess of a specific
hreshold. One may study the connections with different thresholds, 
nd with decreasing threshold determine how many tunnels percolate 
heir interior, compute the number of cavities they encompass, and 
onsider a range of additional questions of interest (e.g. the shape
r orientation of either of the rele v ant components). One of the
ost important notions in this context is the fundamentally non-local 

haracter of the topological measures. 
On a more detailed level than that of the Betti curves, and focusing

n particular on the multiscale nature and interactions of these 
eatures, we can depict them in so-called persistence diagrams. In 
hese diagrams, features are represented as points in two dimensions, 
ith the coordinates being the threshold values at which they appear

n the superlevel density field (they are born ) and at which they
isappear again (they die ). Accordingly, these values of the threshold
ensity are referred to as birth density and death density. Persistence
iagrams show features at all densities, as opposed to Betti curves
hich show only features ‘alive’ at specific densities. The relation 
etween a Betti curve and a persistence diagram is outlined in
ig. 3 . We show a mock persistence diagram (bottom panel) and

he straightforward connection to the corresponding Betti curve (top 
anel). At each density, the Betti curve shows the number of existing
eatures, i.e. features that have been born before (at higher birth
ensities) and will die later (at lower death densities). 1 This can be
magined as ‘counting’ the number of features in the persistence 
iagram that are to the left and abo v e of the point on the diagonal
ith the chosen threshold density. In Fig. 3 , we illustrate this with

hree examples, at threshold densities of 0.2, 0.5, and 0.7, leading to
espective Betti numbers of 5, 35, and 14. 

Fig. 3 also illustrates the concept of persistence and topological 
oise. Persistence refers to the stability and lifetime of a feature. It
s simply the difference between the birth and the death densities,
nd thus quantifies a density range at which it exists in the field.
eatures with high persistence are long-lived, stable and prominent 
e.g. an isolated high-density island), whereas a low-persistence 
alue indicates features that are short-lived or transient, and can 
ometimes be mere noise. In Fig. 3 , the blue shaded region close
o the diagonal indicates this topological noise, and the red shaded
egion in the upper part of the diagram marks several points of high
ersistence. In particular, the high-persistence points are of great 
ele v ance for this study, as they trace the most prominent features of
he cosmic web (clusters, filaments, and voids). 

The persistence calculation is done on the basis of decreasing 
uperlevel sets of the DTFE density contrast (equation 1 ). Essentially,
he simplices of the Delaunay triangulation are sorted according 
o their density value. The nested hierarchy of superlevel sets of
he density field are generated by gradually decreasing the density 
hreshold. It is therefore not necessary to recalculate the underlying 
elaunay triangulation at each threshold. The homology of these 
ested superlevel sets is calculated using the Persistent Homology 
lgorithms Toolbox ( PHAT ) by Bauer, Kerber & Reininghaus ( 2014 )

nd Bauer et al. ( 2017 ). For all calculations in this study we used
he ‘chunck’ algorithm of PHAT version 1.2.1. It offers a significant
peed-up with respect to earlier algorithms. 

PHAT uses a boundary matrix as an input. This matrix stores the
elation of all sorted simplices to each other, i.e. it specifies whether
 specific simplex belongs to the boundary of another simplex. A
ore detailed description concerning the boundary matrix can be 

ound in Pranav et al. ( 2017 ). Subsequently, the PHAT algorithm
educes this matrix and returns a list of independent features with
ssociated dimension, birth density and death density. In order to 
MNRAS 507, 2968–2990 (2021) 
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Figure 3. A mock persistence diagram and Betti curve. In the lower panel, 
we show 60 randomly generated persistence points (blue dots), with birth and 
death densities between 0 and 1. The points signify k -dimensional features that 
are, respectively, born and destroyed at these densities. All points lie abo v e 
the diagonal (grey dashed line). Points with low persistence (i.e. horizontal 
distance to the diagonal) have a small distance to the diagonal, indicated by 
the blue shaded region adjacent to the diagonal. The red shaded region in the 
upper part of the panel co v ers an area with several points of high persistence. 
The Betti curve in the top panel can be calculated from the diagram below by 
‘sliding’ a rectangular region along the diagonal and counting the persistence 
points that lie in it. This is shown for three densities: 0.2 with 5 features (in 
red), 0.5 with 35 features (in yellow), and 0.7 with 14 features (in blue). 
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2 The zero-dimensional Betti curves actually fall off to one, resulting in one 
connected component after the lowest threshold is reached, with a theoretical 
death density of −∞ . As this is al w ays the case (regardless of redshift) and 
to allow the presentation of persistence diagrams on logarithmic scales, we 
ignore this single point. The behaviour of Betti curves at the lowest thresholds 
becomes more rele v ant when treating observational data with non-periodic 
behaviour. Research in this direction is currently being finished and prepared 
for publication (Wilding et al., in preparation). 
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acilitate the homology computation by PHAT , the computation of
he Delaunay triangulation is done on a slightly dithered version
f a completely regular grid, with slightly perturbed positions of
he completely regular grid (see Bendich, Edelsbrunner & Kerber
010 ). This a v oids degenerate point constellations and the resulting
on-unique structures. 
Due to the computational requirements of the DTFE and PHAT

odes, we restricted our calculations to a set of simulations with 256 3 

articles. In upcoming related research projects, we are switching
NRAS 507, 2968–2990 (2021) 
o the more recent optimized code for persistence computations
UDHI (The GUDHI Project 2021 ). A notable example will be by
ermejo, Wilding, van de Weygaert & Jones (in preparation),
hich includes the topological analysis of the much larger Planck-
illennium simulation (Baugh et al. 2019 ). 

.4 Persistence visualization 

epictions of persistence diagrams include one more simplification:
nstead of plotting the persistence points as points, we provide a
ersistence histogram, showing the density of points per h 3 Mpc −3 at
 certain birth/death densities. Due to the large number of persistence
oints (more than 200 000), depicting them as points is problematic,
s separate points would be impossible to discern, hence the mo v e
o indicate the density of points instead. Due to the wide range of
irth/death densities o v er which structures are present at this stage,
his wide range is also present in the persistence diagram. With
he hierarchical process of structure formation, there is also a very
arge number of small-scale structures, as opposed to much fewer
arge-scale (persistent) structures. In the persistence diagram, this
opological noise occurs with many more persistence points being
ocated close to the diagonal (where birth- and death densities are
imilar) than further away (in the region of high persistence). The
rders of magnitude difference makes logarithmic scales both in the
xes and the colour bar necessary. This behaviour, as well as the
oughly triangular shape, is similar in all three dimensions. 

 H O M O L O G Y  O F  T H E  COSMI C  W E B  IN  

 C D M  C O S M O L O G Y:  z = 0 

he topology of the � CDM cosmic web at z = 0 is used as base
eference for the other snapshots. We first discuss the o v erall topology
f the � CDM mass distribution in terms of the one-dimensional Betti
urves β i [at superlevel density threshold log ( δ + 1)]. Subsequently,
e turn towards the persistence diagrams for a detailed investigation
f the multiscale structure and connectivity of the cosmic web.
t allows us to identify and establish the relationship between
he physics of the structure formation process and the topological
haracteristics of the cosmic web. 

.1 Betti cur v es: global homology of the cosmic web 

n the third row of Fig. 4 , we present the redshift z = 0 Betti curves
or dimensions zero, one, and two (left to right). The three panels
hare the same density axis to facilitate comparison between the
ifferent Betti curv es. F or all three topological elements, islands
dimension zero), loops of filaments/tunnels (dimension one), and
oids (dimension two), we find a comparable behaviour. For all
imensions, the Betti curves are peaked functions centred around a
aximum, indicating the density at which the (superlevel) density
eld contains the highest number of independent topological features
omponents. The Betti curves fall off towards zero towards both
ower and higher density thresholds. 2 The decrease at the high-
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Figure 4. Redshift z = 0 persistence and Betti curves. In the top row from left to right, we depict the logarithmic persistence point density for topological 
features of dimensions zero, one, and two (in red, yellow, and blue) for one of the five independent runs. The birth and death densities on the axes also follow 

a logarithmic scale. The centre ro w sho ws the SD of the persistence diagrams of the five runs (note that darker shading indicates higher agreement, i.e. lower 
SD). The bottom row shows the corresponding Betti curves, also with logarithmic density scale. 
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ensity wing indicates that the corresponding features become 
ncreasingly rare towards higher density levels. As we proceed 
o e ven lo wer density le vels, dif ferent components start to merge
nto ever larger agglomerates. Ultimately all components merge 
nto one percolating structure, and all individual features disappear 
ntirely. 

While the Betti curves display the same generic behaviour, 
he density ranges differ considerably. The two-dimensional void 
opulation reaches significance only at density le vels belo w the 
verage density, δ = 0. By contrast, a distinct presence of zero- 
imensional islands is seen to characterize the density field o v er
ore than two orders of magnitude: we find islands at δ ≈ 100 −1000,
hereas their numbers are skewed strongly towards higher density 

evels. None the less, we even find some at δ ≈ −0.5. The highest
umber of individual objects is that of the tunnels and filaments. 
t  
hey dominate the density field around the average density, with a
light skew towards lower density levels. 

Fig. 5 has superimposed the curves β0 (red, dash–dotted), β1 

yellow, solid), and β2 (blue, dashed) in order to better appreciate 
he systematic differences between the Betti curves. The overlap 
anges of the different curv es pro vide substantial information on the
ormation process that has produced the density field. For a more
etailed discussion, it is helpful to infer quantitative information on 
he Betti curves. Towards this end, we parametrize the curves by a
kew normal distribution. 

.1.1 Betti curve parametrization 

he Betti curves in Fig. 4 appear to be largely symmetric in terms of
he logarithm of the density field contrast δ, be it with some moderate
MNRAS 507, 2968–2990 (2021) 
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Figure 5. Betti curve comparison at redshift z = 0. The Betti curves of 
dimension zero, one, and two (red, yellow, and blue lines), in logarithmic 
scale (top), superimposed. The crosses indicate the Betti number at specific 
filtration densities that were used as a basis for the parameter estimation 
(Table 1 ). Bottom panel: Residuals of the Betti curve skew normal fits, with 
the RMSD given in the legend. 
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e vel of ske wness (Prana v 2015 ; Prana v et al., in preparation). The
oderate skewness in terms of the logarithmic density contrast

s related to the o v erall near lognormal density distribution of
he evolved non-linear cosmic mass distribution (Coles & Jones
991 ). Within this context, the skewness of each of the Betti
urves can be understood from the realization that it is the evolved
anifestation of the symmetric lognormal density distribution for

ach of the structural components (i.e. of the matter concentrations,
laments, and voids). Based on this observation, we use the first-
rder term of the normal distribution expansion, the skew normal
istribution (O’hagan & Leonard 1976 ; Azzalini 1985 ). The function
s the product of the standard normal distribution function φ and its
umulative distribution function (CDF) � . 

 ( x| ξ, ω, α, c) = 

2 c 

ω 

φ

(
x − ξ

ω 

)
� 

(
α

x − ξ

ω 

)
. (2) 

n this expression, x is the filtration density δ. ξ is the location
arameter and ω the scale factor of the distribution, while c is a
ormalization constant. The value of α parametrizes the shape of the
urve and relates directly to the skewness of the distribution: when α
 0 the curve is right skewed, when α < 0 it is left skewed. For the
tting routine ( scipy.optimize.curve fit ), we use Python’s

mplementation of the normal distribution from scipy.stats .
he uncertainty in the value of the parameters is estimated from the
ariation between the five different realizations. 

Following the above, we fit a skew normal distribution to the Betti
urves, yielding four characteristic parameters. The fit works very
ell, as evidenced by the residuals in the bottom panel of Fig. 5 and

he low root-mean-square deviation (RMSD). 
Among the parameters of the skew normal distribution, the mean
and standard deviation (SD) σ can be inferred directly from the

dentities 

= ξ + ωμz , and (3) 
NRAS 507, 2968–2990 (2021) 
= 

√ 

ω 

2 

(
1 − 2 δ2 

π

)
, (4) 

n which 

z = 

√ 

2 

π
δ , δ = 

α√ 

1 + α2 
. (5) 

.1.2 Betti curves and structural connectivity 

 fe w observ ations with respect to the Betti curves in Fig. 5 bear
irectly on the connectivity of the various topological features. 
The first observation is that there are clearly distinguishable

ensity regimes over which the topology is almost exclusively
ominated by only one of the topological features. The regions
av e substantial o v erlap, in which we can distinguish two or more
ifferent topological features in the superlevel density field. The most
ubstantial o v erlap re gimes concern those between the islands and
lamentary loops, i.e. between β0 and β1 , and those between the
laments and voids, i.e. between β1 and β2 . There is a narrow range,
round the average density δ = 0, at which we see a significant
resence of all three feature classes. 
There is a large density range o v er which the topology is almost

 xclusiv ely dominated by zero-dimensional features, i.e. by density
slands. The mass distribution for δ � 5 is mainly that of disconnected
sland clusters. It is interesting to note that this is approximately the
ensity contrast corresponding to density enhancements undergoing
ravitational contraction (Gunn & Gott 1972 ). On the low-density
ide, we find a similar behaviour with respect to the β2 curve
haracterizing the presence of voids: below δ ≈ −0.8 voids are
he sole topological features in the density field. Also this we may
elate to the dynamics of the structure formation process: voids in
he cosmic mass distribution mature and stand out as individual
ow-density basins as they have decreased their density to δ ≈

0.8 (Blumenthal et al. 1992 ; Sheth & van de Weygaert 2004 ). 
F or the comple x geometry and topology of the cosmic web, the
ost interesting regime is that where we see a substantial o v erlap

etween the Betti curves, most prominently between β0 and β1 .
tarting from the maximum of β0 at δ = 3.4 (see Table 1 ), which

s indeed close to the theoretically expected value of δ � 5 for
ravitational contraction (and only lower because noisy features at
ower densities are considered as well), we see that the number of
ndividual islands/clusters rapidly decreases towards lower density
hresholds, while at the meantime noticing from the β2 curve a quick
ise in the number of tunnels/filaments. 

The latter reflects the fact that while individual island clusters
erge into ever larger agglomerations, the number of tunnels and
laments connecting these is increasing at an even higher rate.
t is the topological signature of the emergence of structure from
erturbations (Doroshkevich 1970 ), in particular that of the cosmic
eb (Zeldovich 1970 ; Bond et al. 1996 ; van de Weygaert & Bond
008 ): high-density ridges get connected into an increasingly per-
olating structure characterized by filamentary bridges. Ultimately,
t the near universal density δ = 0, all islands are connected into a
ingle percolating and volume pervading structure, the cosmic web . 

The o v erlap between the β2 and β1 curves differs slightly from that
etween islands and filaments, in the sense that the corresponding
eatures co-e xist o v er a larger density range (from the perspective
f the voids). Physically, it entails the transition from a situation in
hich the superlevel set at higher density thresholds consists mostly
f filamentary bridges to one in which these filaments are absorbed
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Table 1. Betti peak positions in � CDM simulations. The filtration densities are based on δ + 1 for redshifts 
z = 0, 1, and 3.8 in columns 2 to 4 from the left, and compared to a Gaussian random field based on 
ν = 

δ
σ

(transformed to mean-zero densities, see equation 8 ) after smoothing on a scale of 2 h −1 Mpc. This is 
discussed in more detail later in Section 4.2 . The uncertainties are the combined uncertainties from the five 
runs, and calculated from the bin size of the Betti curves. 

Dim δ + 1 δ
σ

z = 0 z = 1 z = 3.8 � CDM GRF 

0 4.4 ± 0.2 4.1 ± 0.2 1.90 ± 0.05 2.0 ± 0.1 
√ 

3 ≈ 1 . 7321 
1 0.64 ± 0.02 0.85 ± 0.02 0.93 ± 0.03 − 0.10 ± 0.03 0 
2 0.181 ± 0.005 0.297 ± 0.009 0.53 ± 0.02 − 1.23 ± 0.02 −√ 

3 ≈ −1 . 7321 
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nto slabs that fill in the boundaries of underdense void basins. We
otice there still is a substantial number of filamentary loops while 
he superlevel set has attained a near maximum number of fully
nclosed voids. Only towards the voids with the lowest densities, we 
ee a rapid decrease of filamentary loops as they get absorbed into
heir boundary shells. 

.2 Persistence analysis: multiscale structure and connections 
n the � CDM cosmic web 

hile the Betti curves provide information on the global topological 
tructure of a density field, insight into the detailed multiscale 
tructure, and the corresponding hierarchical evolution of the field, 
an only be obtained from the far richer information content of the
ersistence diagrams. 
The persistence diagrams in Fig. 4 reveal the multiscale nature of

opological features of various dimensions. We show them in the top 
ow, together with the SD for each bin of the persistence diagrams
f the five independent runs (centre row). The points (associated 
ith pairs of birth–death densities) in all three diagrams display a 

haracteristics triangular shaped morphology. They have a firm and 
road diagonal base, at which we find the vast majority of detected
oints, which correspond to lo w-significance short-li ved features. 
he more interesting region of the diagrams concerns the triangular 

egion. In all dimensions, the hierarchical process of structure 
ormation leads to the convergence of the (birth and death) density 
anges towards (for the respective dimension) characteristic values, 
roducing the distinct triangular shape. Typically, it is bounded by the 
iagonal and two concave edges, with the latter meeting at a sharply
efined apex. The (birth, death) pair density along the diagonal is
p to four orders of magnitude higher than in the interior of the
riangular region. The diagonal points represent topological noise, 
oisy features that are annihilated shortly after they are born. The 
etter agreement (indicated by the lower SD) for the regions closer to
he diagonals is largely due to the high number of persistence points
ocated there. While the SD increases towards the more relevant apex, 
t is still moderate, although shot-noise starts to appear in regions with
xceptionally few persistence points. 

Reflecting the behaviour of the Betti curves, there is a substantial 
ifference in the density range o v er which the zero-, one-, and two-
imensional features – in the triangular shaped region of significant 
eatures – are found in the persistence diagrams. High-density islands 
xpand a density range of more than two orders of magnitude, while
laments and tunnels are found in a much narrower density range of
lightly more than one order of magnitude around δ ≈ 1. Voids, the 
wo-dimensional features, are mostly confined to an even narrower 
ensity range of less than one order of magnitude near δ ≈ −0.8. 
The interior and concave boundaries of the triangular regions in the 

ersistence diagrams contain a wealth of information on the structure 
nd topology of the corresponding features. This concerns both the 
 v erall global distribution of these features, as well as the detailed
ultiscale structure emanating from the hierarchical evolution of 

he dark matter distribution. For all three persistence diagrams, we 
nd that one concave boundary tends to have a sharper outline,
hile the other is more curved and tends to have a more fuzzy and

lowly fading outline. Apart from this similarity, we observe telling 
ifferences between the diagrams that reflect interesting differences 
n the multiscale nature and connectivity of peaks and islands, 
unnels and filaments and voids. One such difference is visible in
he zero-dimensional diagram, where the left-hand wing appears 
oncave at the lowest densities while, separated by an inflection 
oint, exhibiting an almost convex behaviour when approaching the 
pex. In general, these differences reflect the different density ranges 
 v er which the corresponding structural features are born, exist, and
ie – global information that is also found in the corresponding 
etti curves. In addition, the differences in shape and morphology 
f the persistence diagrams reflect more profound differences in 
he multiscale structure and hierarchical evolution of the structural 
omponents of the cosmic web. 

In terms of their morphology, the most outstanding aspect of the
iagrams is the presence of an ape x. The e xistence of such distinct,
iscontinuous features suggests the presence of a sharp ‘phase’ 
ransition in the multiscale embedding of topological features. Also, 
e find that such a transition works out differently for islands,

unnels, and voids. 

.2.1 Cosmic web formation: island and filament persistence 

n the case of the zero-dimensional islands (Fig. 4 , top left-hand
anel), the apex of the persistence diagram marks the location of the
eatures with the most extreme birth density. They are the islands
hat have gravitationally formed in and around the highest density 
eaks in the initial Gaussian field of density fluctuations and which
volved into prominent high-density clusters. These objects reflect 
he steep Gaussian tail of density peaks (see Adler 1981 ; Bardeen
t al. 1986 ). The fact that they are found at such a narrowly defined
pex suggests they all disappear at almost the same death density.
t is as if these islands get joined – along with a large number
f entities created at more moderate density levels – into a large
gglomerate (or agglomerates) at one particular critical density, δ

5. Interestingly, this is around the density value where matter 
nhancements decouple from the Hubble expansion and gravitational 
ontraction sets in (Gunn & Gott 1972 ). 

Turning to the corresponding one-dimensional persistence dia- 
ram, we gain more insight into the fate of the disappearing islands
n the zero-dimensional diagram. Here, we observe that the triangle 
ontaining most features has an almost horizontal fuzzy edge. It 
uggests that there are not many filaments and tunnels that are born
MNRAS 507, 2968–2990 (2021) 
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bo v e δ � 5.0, almost at the same level where we find the apex in
he one-dimensional diagram. 

While the sharp transition marked by the persistence ape x es
epresents the principal process of cosmic web formation, it may
ot be surprising that the process is marked by a more varied and
icher evolutionary history. We also recognize the imprint of these
n the zero-dimensional persistence diagram (Fig. 4 ). We see that on
oth sides of the apex, the zero-dimensional persistence diagrams
idens. On the low-density side, we find a substantial fraction of
ensity islands that merge and disappear at a lower density than that
arking the emergence of the cosmic web at δ ≈ 5.0. Individual

ensity islands remain in existence even while the major share of
ass resides in the cosmic web, to get absorbed into the o v erall
eb-lik e netw ork at a lower density. At the high-density side, the
ersistence diagram is marked by a fuzzy edge. This marks objects
hat get absorbed by surrounding agglomerations relatively fast after
heir birth, before these got incorporated in the cosmic web. 

The observed transitions in the zero- and one-dimensional per-
istence diagrams represent a telling illustration of the birth of the
osmic web . W ith δ ≈ 5.0 marking the level where we notice a
haracteristic transition in which islands get connected into per-
olating mass agglomerations, we also observe the birth of many
laments and tunnels. It suggests that the assembly of the merging

slands proceeds via the establishment of filamentary connections,
long with corresponding tunnels. The zero-dimensional persistence
iagram apex indicates that the density concentrations that join into
he percolating network of the cosmic web are the ones that decouple
rom the Hubble expansion and undergo gravitational contraction. 

.2.2 Void hier arc hy: two-dimensional persistence and the void 
opulation 

n the low-density side of the matter field, we turn towards the
wo-dimensional persistence diagram. Its shape differs to that of
he zero- and one-dimensional diagrams. It has a sharp apex that

arks a narrow ridge of void birth densities around δ ≈ −0.8.
his is indeed the characteristic density for voids in the galaxy and
atter distribution (see e.g. Blumenthal et al. 1992 ; Sheth & van de
eygaert 2004 ; van de Weygaert & Platen 2011 ; van de Weygaert

016 ). Comparison between the zero- and two-dimensional diagrams
herefore reveals that whereas cluster peaks and conglomerates
ossess a high diversity of densities, voids tend to have a largely
imilar underdensity. 

A particularly outstanding aspect of the two-dimensional diagram
s the sharp apex. It delineates an indentation to wards lo wer birth
ensity levels. It is a reflection of the fact that individual deep
oids are non-existent. More towards the right, we encounter voids
t such low densities. They tend to be the deepest pits in a larger void
omplex of a more moderate average density . Evidently , soon after
hey appear as individual topological features they disappear as they
ll up with decreasing density threshold. Also some shallower voids
an be discerned, emerging at density levels δ > −0.7. However,
hese tend to be substantially closer to the diagram’s diagonal. Most
f these are small shallow void regions near the boundary of large
oid regions (see e.g. Sheth & van de Weygaert 2004 ; Hidding, van
e Weygaert & Shandarin 2016 ). 
In summary, the abo v e rev eals that at any one cosmic epoch, most

ignificant – topologically identified – voids are the ones that show
p at a density threshold δ ≈ −0.8. At a higher density level, most
f these individual voids are embedded and connected in a larger
NRAS 507, 2968–2990 (2021) 
nderdense depression, a percolating region that grows in extent
owards the higher density levels that demarcate these regions. 

It is highly interesting to realize that the two-dimensional mul-
iscale topological structure that we just described is a reflection
f the known hierarchical evolution of the void population. The
haracteristic density ridge in the persistence diagram at δ ≈ −0.8
s a reflection of the fact that voids become truly non-linear as
hey undergo shell crossing, i.e. when their interior mass elements
 v ertake the outer layers (Blumenthal et al. 1992 ; Sheth & van de
eygaert 2004 ). 3 Blumenthal et al. ( 1992 ) pointed out that it is

hese matured voids that are the ones found in the matter and galaxy
istribution, which Sheth & van de Weygaert ( 2004 ) translated into
 theory for the hierarchically evolving void population (see also
ubinski et al. 1993 ). 

.2.3 Filaments and tunnels: the one-dimensional persistence 
iagram 

rmed with the insight provided by the zero-dimensional diagram
n islands and the two-dimensional one on voids, we are equipped
o establish the relation with the role of filaments and tunnels in the
 v erall mass distribution. These exist at intermediate densities, where
he one-dimensional persistence diagram traces the one-dimensional
lamentary network (Fig. 4 , middle column). 
The one-dimensional persistence diagram also displays several

istinctive features. It has a rather symmetric shape, it also has an
pex, although it is a rather broad one at the tip of slightly concave
dges and whose location differs substantially from that of the zero-
nd two-dimensional diagrams. The apex is located at a formation
ensity of δ ≈ 5 and elimination density δ ≈ −0.7 
For our focus on the cosmic web, we may argue that the upper

dge of the one-dimensional diagram, the nearly horizontal fuzzy
order that slopes slightly upward, is of central importance. In
 sense, it demarcates the formation of the cosmic web in the
orm of a percolating network. From our discussion of the zero-
imensional diagram, we already learned that it coincides with a
harp topological transition. To better investigate this transition, we
ighlight the connected structure in Fig. 6 by enlarging a region of the
ensity field shown earlier (cf. Figs 1 and 2 ). The comparison of the
lamentary structure (centre panel) with the DM particle distribution
left-hand panel) shows that the careful selection of the threshold
see Section 2.4 for the details) allows the enhancing of a particular
omponent of the cosmic web. This also holds for the depiction of
osmic walls (right-hand panel), although the visualization using
lices can suffer due to the fact that walls intersecting the slice would
ppear similar to (less dense) filaments. The actual filaments in the
entre panel are shown at a critical threshold (which depends on the
umber of filamentary loops), where a large number of prominent
laments have already connected up while forming tunnels. These
laments and tunnels are born in the narrow density range of δ

5 in which individual high-density islands get merged into one
erv asi ve network. The corresponding connections are established
ia the filamentary bridges that we see emerging at this narrow range
f density levels in the one-dimensional diagram. 
We also find that the web-like network is quite fragile and transient.

s we proceed to lower density thresholds the network starts to fill
p and incorporate walls, filling loops of filaments and turning them
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Figure 6. The filamentary cosmic web – zoom. We show an enlarged region of the density field from Fig. 1 . To highlight the connecting structure, we compare a 
slice through the DM particle distribution (left-hand panel) with slices through the density field of the filamentary structure (centre panel), and the wall structure 
(right-hand panel). 

Figure 7. Redshift z = 0 marginal death CDF. We show the marginal CDF of persistence points for a set of constant birth densities and for increasing death 
densities [left-hand panel, the log ( δ + 1) birth densities are indicated in the legend]. The right-hand panel shows the corresponding persistence diagram, with the 
birth densities of the CDFs indicated in the same colour as in the left-hand panel. Highlighted (with lines in bold in both panels) are the regions where the CDFs 
intersect the boundary of the persistence diagram, which is mirrored in a steep rise of the distribution functions, after which they level off. This levelling-off is 
perceptibly stronger for the curves at high birth densities. 
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nto sheets. Once these are joined into a shell, an isolated cavity
plits off and is born as a fully enclosed void. This process relates
o the left-hand edge of the one-dimensional persistence diagram –
t is the transition marking the formation of voids. From the diagram
e infer that it also occurs in a comparatively narrow density range,

orresponding to the steep, nearly vertical, edge on the left-hand side 
f the two-dimensional apex. It delineates the narrow boundary – at 
 density of δ ≈ −0.7 – below which nearly all filaments and tunnels 
ie. At that level, we are actually dealing with the remaining tenuous
endrils and interstices in underdense re gions. The y are the last
 estiges and representativ es of the filamentary bridges and tunnels 
hat mark the connections between the largest mass concentrations 
n the cosmic web. 
t

.2.4 Persistence and cosmic structure formation 

ersistence diagrams open up a significantly higher and more 
rofound level of information on the structure formation process 
han possible with the more global summary statistics like Euler 
haracteristic or Betti numbers. They are unique in their ability to
nco v er the nature of structural transitions, such as the sharp ‘phase’
ransitions we found and discussed in the previous paragraphs. While 
ome of these relate to known physical effects, others – such as the
harp connectivity transition producing the cosmic web – are in need 
f further investigation. 
As an illustration of furthering the exploration of the information 

ontent of persistence diagrams, Fig. 7 provides more details on 
he (birth, death) process of topological features, by focusing on 
MNRAS 507, 2968–2990 (2021) 
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M

Figure 8. Evolution of � CDM homology, Betti curves. Betti curves of dimensions zero, one, and two (left to right) for all redshifts, in linear (top row) and 
logarithmic scale (bottom row). To illustrate the time evolution, the curve corresponding to the earliest snapshot (redshift z = 3.8) is the darkest (black) and 
brightness increases when progressing towards lower redshift, until the curve for redshift z = 0 is red, yellow, or blue, according to the respective dimension of 
zero, one, and two. We see a clear shift in the position of the curve maxima, as well as in their height. 
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heir marginal CDF. The diagram reveals the density levels at which
eatures born at one particular density threshold finally disappear.

e obtain this by assessing the distribution along horizontal lines
n the persistence diagrams (see right-hand panel of Fig. 7 ). In all
ases, we find a steep rise, coinciding with a density level at which
hese features enter the left-hand edge of the persistence diagram
left-hand panel, Fig. 7 ). In the interior of the persistence diagram,
here is a near uniform distribution of densities at which features
isappear, translating into a near linear increase of the CDF. This
ituation changes only near the diagonal, as we get to deal with noisy
tructure. 

From the left-hand panel of Fig. 7 , we also see the systematic shift
f death densities as we proceed from high filament and tunnel birth
ensities to the lowest birth densities: the last vestiges of filaments
nd tunnels, that go along with the formation of low-density basins,
re of a different nature than the prominent filamentary bridges and
unnels that are born as the percolating network of the cosmic web
stablished itself at a density level δ ≈ 5.0. Turning to the low-density
ide, in the marginal CDF we see that below birth density δ = −0.76,
he filaments/tunnels are hardly significant: they disappear almost
t the same level as they are born. Thus, at the level where we see
he formation of individual voids, there are no longer filamentary
endrils bridging along these regions. 
NRAS 507, 2968–2990 (2021) 

t

 � C D M  COSMI C  W E B  H O M O L O G Y:  
VO L U T I O N  

ollowing the detailed analysis of the topology of the � CDM mass
istribution at redshift z = 0, we address the evolution of that
opology in terms of the development of the Betti curves and the
ersistence diagrams. 
To assess the evolution of the cosmic web topology in � CDM,

e analyse the � CDM mass distribution at 8 redshifts, z = 3.8,
.98, 2.05, 1.00, 0.51, 0.25, 0.1, and 0.0. We use five different
imulation runs to obtain estimates of the variance and uncertainty
n the resulting mass distribution at each of the redshifts. 

.1 Betti cur v es: ev olving global cosmic web homology 

ig. 8 presents the evolving Betti curves for the three topological
eatures – islands (dimension zero), filamentary loops (dimension
ne), and voids (dimension two). In each of the panels, we super-
mpose the Betti curves of the corresponding dimension for each of
he probed redshifts. The top row panels list the Betti curves with
he x - and y -axis both in linear scale, and the corresponding log–log
iagrams are lined up in the bottom row. The evolving topology of
he mass distribution can be most straightforwardly appreciated from
he log–log plots. They provide the following observations: 

art/stab2326_f8.eps


Cosmic web homology for � CDM cosmologies 2981 

Figure 9. Betti curve evolution: parameters. Fit parameters location ξ (top left), scale ω (top middle), skew α (bottom left), and scaling constant c (bottom 

middle) of the Betti curves and their evolution at eight different redshifts, calculated as the mean of five simulation runs. The uncertainties are the combined 
uncertainties as provided from the fitting routing. Except for the skew α, the uncertainties are too small to be visible. Clear trends are apparent, but more 
meaningful descriptive parameters can be calculated in an additional step and are shown in the right column: the mean μ (top right) and the mode (bottom right). 
The mean and the corresponding uncertainty is calculated directly from the fitting parameters. The mode is measured from the Betti curves, with uncertainties 
as the SD of the five measurements. We point out that uncertainties are al w ays known but only discernible for the zero-dimensional mode). 
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(i) The zero- and one-dimensional Betti curves are systematically 
roadening as the mass distribution evolves. Both the low-density and 
igh-density wings are widening, around a maximum that is shifting 
nly relatively weakly. Also the two-dimensional Betti curve is 
roadening, but only moderately, accompanied by a large systematic 
hift of the peak towards lower densities. 

(ii) The height of the one- and two-dimensional Betti curves 
ho ws a do wnward trend. By contrast, the zero-dimensional sho ws
n upward trend. 

(iii) The maximum of all three Betti curves at early times and 
igh-redshift centres around the mean density, i.e. δ + 1 = 1. As
he mass distribution evolves, the maximum of all three curves shifts
way from the mean density. The maximum of the zero-dimensional 
urves shifts towards higher densities. The maximum for the one- 
imensional curve shifts to slightly lower densities, while the peak 
f the two-dimensional Betti curve shows a large systematic shift 
o wards lo wer densities. 

.1.1 Betti curve evolution: quantitative analysis 

o quantify the systematic changes of the Betti curves we assess the
volution of the parameters of the fitting skew normal curves (see 
quation 2 ). As discussed in Section 3.1.1 , the skew normal curves
re fully specified by four parameters, a location ξ , scale factor ω 

nd shape α, together with a normalization constant c . We determine
he values of these four fitting parameters for each of the three Betti
urves, at each of the eight analysed snapshots. 
Fig. 9 shows the development of these parameters (left and 
iddle column) as function of redshift z. A few systematic trends

mmediately stand out: 

(i) For dimensions one and two, the location parameter ξ ( z) (top
eft) displays a monotonic decrease from high redshift to z = 0.
ver nearly the entire redshift range we see an increase for the zero-
imensional location parameter ξ 0 ( z), nearing a plateau or minor 
ecrease from z = 0.5 to z = 0. 
(ii) All Betti curves are monotonically broadening. The width 
 0 ( z) for dimension zero is most steeply increasing, while the width
 2 ( z) of the two-dimensional Betti curves reveals a moderate growth.
(iii) The evolution of the shape parameter α( z) is not uniform.

or dimension two, we see a monotonic increase of the shape
arameter α2 ( z). It indicates a continuous increase of the skewness
f the void Betti curve towards higher densities, as it shifts from
he initial near Gaussian phase towards an ever more stronger non-
aussian distribution. The shape of the zero- and one-dimensional 
etti curves does not reveal major systematic changes, although 

hey both show deviant values at and around z = 2.0, with a
harp minimum for dimension zero and a maximum for dimension 
ne. 
(iv) Also the normalization constant c ( z) reveals characteristic 

ehaviour. While the scaling parameter shows a monotonic and steep 
ncrease for the zero-dimensional Betti curve, c 2 ( z) retains an almost
onstant value. The Betti curve for loops of filaments reveals a mild
ncrease towards z = 0.0. 
MNRAS 507, 2968–2990 (2021) 
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M

Figure 10. Betti curv es: � CDM v ersus Gaussian random field. For dimensions zero, one, and two, we show the Betti curves of the � CDM cosmic web 
at redshift z = 3.8 (averaged over the five runs) on the left and of a Gaussian random field in the middle. In particular, the position centred at zero of the 
one-dimensional Betti curve is similar, as well as the positions of the peaks of the zero- and two-dimensional Betti curves to the right and left, at roughly ±√ 

3 . 
The right-hand panel shows the Euler characteristic for the Gaussian random field and that for the evolved web-like distribution at redshift z = 3.8. 
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The evolution of one inferred parameter [the mean μd ( z)] is plotted
n Fig. 9 (top right-hand panel). It provides a more direct view of
he evolving Betti curv es: the dev elopment of the mean μd directly
eveals the shift of the peak maximum. This is also borne out by the
ode, 4 which we show in the bottom right-hand panel of Fig. 9 . Both

anels show a clear increase of the mean and mode of the peak of
he zero-dimensional Betti curve, along with a monotonic decrease
f that for the two-dimensional Betti curves. The one-dimensional
etti curves indicate a filamentary network that appears to evolve
ore strongly after z = 1.5, from which epoch onward we notice a

radual decrease of its characteristic density. 

.2 The � CDM cosmic web and Gaussian initial random field 

he process of structure formation in the Universe proceeds along
istinctly different regimes of dynamical development. It starts with
he initial field of Gaussian random density and velocity fluctuations.
ubsequently, structure evolves from a long linear evolution phase

n which it retains a near perfect Gaussian character. The first
 estiges of comple x structure emerge during the quasi-linear phase,
ltimately culminating in the development of highly non-linear
ollapsed structures and objects in the fully non-linear regime. 

Given that the cosmic web and non-linear structure are the
roduct of the gra vitationally ev olved initial Gaussian conditions, it
s interesting to investigate in how far it has retained – topologically –
he memory of the primordial density and velocity field out of which
t arose. In several accompanying studies, we analysed in detail the
tructure and topology of Gaussian random fields (Feldbrugge et al.
019 ; Pranav et al. 2019a ; Pranav et al., in preparation). 
Fig. 10 compares the topology – in terms of the Betti curves – of

he earliest epoch represented in the simulations at redshift z = 3.8
ith that of a related Gaussian random field. To facilitate comparison,
e use the normalized density ν as filtration quantity, 

= 

δ
. (6) 
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σ

 Which unfortunately cannot be calculated analytically for the skew normal 
istribution. Also notice that the uncertainties of the mean are much lower 
han the uncertainties of the mode. The mean is calculated directly from fitting 
arameters, whereas the mode is measured from the original curve itself. The 
ncertainties of the latter depend on the sampling of the curves. 

n  

i  

t  

e  

i
 

s  
o allow a comparison, both fields are smoothed on a scale of
 h −1 Mpc using a Gaussian filter. The first observation is that of
 prime difference between the symmetric Gaussian field and the
on-linear density field. In a Gaussian field the β0 and β2 curves
re mirrored, symmetric images of each other. This reflects the
erfect symmetry between underdense and o v erdense re gions in
aussian fields. Non-linear gravitational e volution e vidently breaks

he symmetry between underdense and o v erdense re gions. This is
learly reflected in the strong asymmetry between the β0 and β2 

urves in the left-hand panel of Fig. 10 . 
As a result, the field develops an ever larger asymmetry between

nderdense and o v erdense re gions. While underdense re gions are
onfined to a density deficit in the limited range of −1 < δ <

, o v erdense re gions dev elop a long tail of almost unconstrained
 v erdensities, such as massiv e clusters of galaxies with o v erdensities
n excess of δ ≈ 1000. Gravitational evolution leads to the develop-
ent of a field with an increasingly non-Gaussian character. In the

trongly non-linear situation, this can be reasonably approximated
s a lognormal field (Coles & Jones 1991 ). 

Topologically speaking, we find that at z = 3.8 the β0 and
2 curves are strongly deformed, skewed and shifted versions of

he corresponding Betti curves in the linear-regime Gaussian field.
hereas the order of the Betti curve maxima remains the same, their

xact positions help to illustrate the differences. In the case of the
aussian random field they are located at ν = −√ 

3 ≈ −1 . 732, 0,
nd + 

√ 

3 ≈ 1 . 732. For the evolved mass distribution at z = 3.8, we
nd that the maxima of the β0 , β1 , and β2 curves have shifted to ν
2.0, −0.1, and −1.23 (see also Table 1 ). 
The β0 curve has developed a long high-density tail reflecting

he formation of the gravitationally contracted and collapsed mass
oncentrations. The β2 curve shows that the void population is
uch smaller than that of the wide spectrum of o v erdense mass

oncentrations. Evidently, almost by definition it remains within a
arrow density range. As a consequence of the hierarchical evolution
f voids – through merging of smaller voids into ever large ones – the
umber density of voids (and hence the area below the Betti curve)
s decreasing. In combination with the fact that voids occupy most of
he cosmic volume (see e.g. van de Weygaert & Platen 2011 ; Cautun
t al. 2014 ), and hence do not leave space for additional ones, the
mplication is a decrease in the number of voids. 

The development of the filament and tunnel population as repre-
ented by the β1 curve appears to entail a more modest evolution. The
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Figure 11. Shaded slices through the density field. We show the evolution of the cosmic web for decreasing redshift from left to right. Structural components 
are emphasized by shading the pixels depending on the Betti numbers. The cut-off densities are the same as in Fig. 2 and depend on the maxima of the Betti 
curves (Table 1 ). High-density regions are coloured black, regions of intermediate density are coloured dark grey, low-density regions are coloured light grey 
and the regions of lowest density are coloured white. We associate black with clusters, dark grey with filaments, light grey with walls, and white with voids. 
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1 curve at z = 3.8 still resembles the curve of the Gaussian initial
onditions, though now modestly skewed with a slightly longer tail 
owards higher densities. For lower densities it appears to fall off
owards 0 faster than in the initial Gaussian field. This suggests that
n particular the population of higher density filamentary bridges, a 
ey element in establishing the cosmic web, is gradually becoming 
 more prominent aspect in the cosmic mass distribution. This is in
ine with our view of the dynamical evolution and buildup of the
osmic web (see e.g. van de Weygaert & Bond 2008 ). 

We know that the Betti numbers are intimately related to the Euler
haracteristic (see e.g. van de Weygaert et al. 2011 ; Pranav et al.
019a ). The Euler characteristic χ is the alternating sum of Betti
umbers, 

= 

∑ ∞ 

k= 0 ( −1 ) k βk 

= β0 − β1 + β2 . (7) 

he right-hand panel of Fig. 10 presents the comparison of the Euler
haracteristic χ for the Gaussian initial conditions (red, dashed) with 
he evolved web-like distribution at redshift z = 3.8 (black, solid).
he Euler characteristic at z = 3.8 has clearly evolved away from the
ell-known symmetric shape for a Gaussian random field (see Adler 
981 ; Bardeen et al. 1986 ; Hamilton et al. 1986 , for the analytical
xpression). 5 Instead, we see a narrow low-density wing and a broad 
igh-density wing. 

.3 Topological visualization of density fields 

ne aspect of Betti curves that we may use to provide an informative
opological visualization of the mass distribution is the finding that 
he characteristic topological features – voids, loops of filaments, and 
lusters – typically dominate the mass distribution o v er specific den- 
ity ranges. We infer this directly from the fact that the corresponding
etti curves delineate different ranges o v er which the y peak. In other
ords, Betti curves of different dimensions dominate at characteristic 
 Strictly speaking, the symmetric expression for the Euler characteristic of 
aussian random fields is only valid for compact manifolds without boundary. 
he correct expression for any (more realistic) configuration is given by the 
aussian Kinetic Formula (Adler & Taylor 2007 ; Pranav et al. 2019a ). 

i  

u  

l

t
B  
ensity level, which implies that the mass distribution at different 
ensity levels is dominated by different structural components (Figs 2 
nd 6 ). 

The indication that each of the specific topological features is 
ominant o v er a specific density range suggests the possibility to –
t least roughly – visualize the occurrence of islands, filaments and 
unnels, and voids and walls by identifying typical density thresholds 
nd plotting the corresponding superlevel sets. Fig. 2 shows the 
uperlevel sets corresponding to density levels equal to the maxima 
f the zero- (top row), one- (medium row), and two-dimensional 
bottom row) Betti curves. The evolution of the evolving structural 
lements of the cosmic web can be appreciated from the three panels
n each row: the left-hand panel shows the high-redshift configuration 
t z = 3.8, the middle panel that at a medium redshift z = 1.0, and
he right-hand panel the low-redshift situation at the present epoch, 
 = 0. The values for the densities at the corresponding Betti curve
axima are listed in Table 1 . 
The topologically selected patterns elucidate the role and devel- 

pment of clusters and islands, filaments and tunnels, and voids and
alls, in defining the cosmic web. The first structures to emerge in

he cosmic matter distribution are the peaks and the matter islands
orming around them. While they represent rare mass concentrations 
t high redshift, from z = 1 onward their distribution reveals a spatial
rganization along web-like patterns, where they are found in the 
ost prominent filaments and walls of the cosmic web. Along with

his, the accompan ying dev elopment of the intricate filamentary and
 all-lik e structures reveals the hierarchical buildup of the spine of

he cosmic web (see Arag ́on-Calvo et al. 2010b ; Cautun et al. 2014 ).
t the lowest threshold, corresponding to the dominance of voids, 
e see that the mass distribution is evolving from one with large
isconnected web-like patches into one that consists of a percolating 
oam-lik e netw ork permeating the entire cosmic volume. At this
evel, the mass distribution is dominated by walls and voids, defining
 landscape that is indented by void cavities. The void population
s evolving hierarchically from one of a large number of smallish
nderdense regions to one of a considerably lower number of much
arger void regions (Sheth & van de Weygaert 2004 ). 

Fig. 11 shows a variation on the topological segmentation of 
he mass distribution. It combines the information of the three 
etti curves in one image, in which the shade is determined by
MNRAS 507, 2968–2990 (2021) 
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Figure 12. Evolution of � CDM homology, persistence histograms. The rows from top to bottom depict the logarithmic persistence point density of dimension 
zero, one, and two (in red, orange, and blue). From left to right, the panels have redshift z = 3.8, 1, 0. The axis limits and scale are the same for all diagrams, to 
allo w easier comparison, e ven though (particularly for the diagram of dimension two) large parts of the plotting areas do not contain information. We refer to 
the text concerning what information on the hierarchical formation can be deduced from these diagrams. 
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he dominant Betti number/topological component. It produces a
atural segmentation, in which connected high-density regions are
epresented by black shades, intermediate-density regions with the
lamentary structure are shaded dark grey, and low-density regions
orresponding to walls light grey, while the lowest density regions –
he voids – are shown in white. 

.4 Evolution of persistence of the � CDM cosmic web 

ersistence diagrams provide detailed information on the evolving
ultiscale structure of the mass distribution. As such the evolving
NRAS 507, 2968–2990 (2021) 
ersistence diagrams form a direct reflection of the intricate hierar-
hical buildup of structure. 

The typical evolution of the persistence diagrams of the
 CDM mass distribution is shown in Fig. 12 . It shows the zero-,

ne-, and two-dimensional persistence diagrams for three redshifts,
he high redshift of z = 3.8, the medium redshift z = 1.0, and the
resent epoch z = 0.0. A quick first glance at Fig. 12 reveals that: 

(i) To first order, the persistence diagrams – for dimensions zero,
ne, and two – retain their triangular shape as the cosmic mass
istrib ution ev olves. The principal ev olutionary trend is a gradual
niform expansion of the triangular core region. This ‘expansion’
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f the persistence diagrams is a reflection of the gravitationally 
volving density field. It leads to the emergence of a growing 
opulation of topological features, whose characteristic density spans 
 continuously increasing range of values. 

(ii) The uniform expansion of the persistence diagram translates 
tself in a stretching of the range of birth and death densities
f features in the cosmic matter distribution, as well as in their
ersistence values. 
(iii) In addition to their widening, we see a shift of the centre of

he persistence diagrams’ triangular core region. This shift is a clear 
allmark of the non-linear hierarchical evolution of the cosmic mass 
istribution. 
(iv) In terms of the expansion and shift of the triangular core region 

f the persistence diagram, there is a marked difference between the 
ero-, one-, and two-dimensional persistence diagrams. 

(v) The triangular core of the zero-dimensional persistence di- 
gram of islands and matter clumps shows a strong size evolution 
long with a marked shift. It expands by at least an order of magnitude
rom z = 3.8 to z = 0.0, representing the emergence of islands and
lumps whose density contrast δ is at least 10 to 100 higher than
t z = 3.8. We also observe an increasingly skewed morphology 
ith a centre that shows a strong and systematic shift away from the
ean density ( δb , δd ) = (0.0, 0.0) to higher birth and death densities.
v erall, it rev eals that to wards lo wer redshifts we see the formation of
ass islands and clumps o v er an increasing range of density values.
hese features also e xist o v er an order of magnitude higher density

ange, implied by the increased persistence range. They also merge 
ith surrounding structures at a higher and wider range of positive 
ensity values. The development of a wider and richer population of
ass clumps is a direct manifestation of the hierarchical nature in 
hich they build up. 
(vi) The triangular core region in the one-dimensional persistence 

iagrams show a moderate expansion from z = 3.8 to z = 0.0. It is
idening to both lower and higher densities, including a mild increase 
f the persistence values. The triangular region is and remains quite 
ymmetric, while its location hardly shifts. Its evolution is mainly 
ne in which the left- and right-hand concave wings – seen along the
irth–death line – gradually mo v e up and outward. Having noted that
he prominent features in the one-dimensional persistence diagram 

epresent the phase in which filaments and tunnels connect the 
 v erdense re gions in the cosmic mass distribution into the perv asi ve
tructure of the cosmic web, its moderate development shows that 
his transition retains a largely universal character with only a mild 
hange of the densities of the filamentary connections. 

(vii) Interestingly, the evolution of the two-dimensional void 
ersistence diagrams appears to be dominated by a shift in density 
alues, and considerably less by a widening of the density values 
f the voids. The increase in the density and persistence range of
oids is quite limited. Instead, we see a continuous shift from z =
.8 to z = 0.0 of the persistence points to lower density values. It
s a direct reflection of the outflow of mass from the void interior
nd the continuously deepening of the void interior (see e.g. van de
eygaert & van Kampen 1993 ; Sheth & van de Weygaert 2004 ), in

ombination with the restricted density range of voids to −1.0 < δ

 0.0. 

In addition to these general observations concerning the evolution 
f the persistence diagrams, we wish to address two characteristics 
nd/or signatures that in the earlier discussion on the present epoch 
 z = 0.0) persistence diagram were identified as providing specific 
nformation on the formation of the cosmic web and its connections. 
he first aspect is the presence of an apex in the persistence
iagrams, the second aspect the distribution of the persistence values 
f topological features. 

.4.1 Evolving persistence and connectivity: the apex transition 

he multiscale nature of the gravitationally evolved mass distribution 
t z = 0.0 is marked by the presence of a distinct apex in the
ersistence diagram (Section 4.4 ). The sharp ape x es in the zero-,
ne-, and two-dimensional diagrams turn out to be manifestations of 
 characteristic transition in the dynamical structure and development 
f the cosmic mass distribution. The apex in the zero-dimensional 
iagram marks the o v erdense features that are connecting up into
he perv asi ve network of the cosmic web. The connection typically
ccurs at the density level at which these features turn around
heir initial expansion into gravitational contraction. This important 
onnectivity transition is also recognized as an apex in the one-
imensional diagram marking the birth of the filaments and tunnels 
hat form the bridges of the cosmic web. The apex in the two-
imensional persistence diagram for voids signifies the hierarchical 
volution of the void population, marking the density at which they
merge as enclosed cavities and also the characteristic density δ ≈
0.8 of fully evolved voids. 
Given the significance of the apexes for our understanding of how

he various topological features connect up in the cosmic web and
f their role in establishing these connections, we have assessed how
heir locations in the persistence diagrams evolve in time. To this
nd we determine the tip of the ape x es in the zero-, one-, and two-
imensional persistence diagrams in terms of the birth and death 
ensity values, and take this location as defining parameter for 
he apex. Concretely, we computed this by taking the mean of all
irth–death pairs with a persistence higher than 99.9 per cent of the
ighest occurring persistence (for this dimension). The evolution of 
he ape x es in the three persistence diagrams is shown in Fig. 13 . The
op row of the figure shows the evolution of the apex’s location in
erms of birth density δb and death density δd . The uncertainties are
alculated from the five independent simulation runs. 

The trends in terms of the regular (birth, death) values are as
 xpected. First, we observ e a generic cosmological aspect in all
ersistence diagrams. In all panels, we see that the ape x es e xperience
lear and uniform evolutionary trends. Also, we see that the increase
r decrease of the apex locations appears to slow down after z = 1.0.
he changes in apex location from z = 1.0 to z = 0.0 are hardly
ignificant. This is a direct reflection of the slo wdo wn in structure
rowth in � CDM cosmologies due to the increasing dominance 
f the cosmological constant. In the second publication of this 
tudy (Wilding et al., in preparation), we address the aspect of the
lobal cosmological and dark energy influence on the topology of 
he cosmic web in considerably more detail. 

A second global observation is that all ape x es in the zero-, one-, and
wo-dimensional persistence diagrams experience a strong, uniform 

hift through the persistence diagrams. The development in each 
imension exhibits some notable differences. The apex in the zero- 
imensional diagram for mass concentrations shows a steady and 
niform increase. On the other hand, the apex in the one-dimensional
iagram for filamentary loops mo v es towards higher birth densities,
hile the density at which they merge into walls surrounding voids
ecreases with time. Finally, the two-dimensional apex, marking the 
ppearance of voids and their disappearance into the o v erall mass
istribution, shows a uniform decrease to ever lower density values 
s time proceeds. 
MNRAS 507, 2968–2990 (2021) 
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M

Figure 13. Evolution of � CDM homology, the apex. We show the evolution of the high-persistence apex for the usual density field and for a field scaled so that 
σ log( δ+ 1) = 1 at all redshifts, thus reducing the influence of evolved structures. The error bars show the SD of the location’s birth and death value as calculated 
from the five independent simulation runs. 
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The apex in the zero-dimensional persistence diagram (Fig. 13 ,
eft-hand top row) shows a uniform increase towards decreasing
edshift. As time proceeds, this reflects the growing density contrast
f the matter concentrations. Topologically speaking, this results
n the appearance of o v erdense islands at higher birth densities, as
ell as their merging with nearby features and the cosmic web at

orrespondingly higher densities. This time evolution proceeds by the
ierarchical buildup of the mass concentrations: the peaks and islands
t higher redshift were of a smaller spatial scale, and gradually merge
nto more massive and larger objects. The smaller density clumps at
igher redshifts correspond to lower densities (at the ef fecti ve grid
ell filter scale). 

The most interesting issue with respect to the formation of the
osmic web is how the apex in the one-dimensional persistence
iagram of filaments and tunnels develops as mass concentrations
ondense out of the primordial density field. From the top centre
anel of Fig. 13 , we learn that the birth density at which filaments
nd tunnels appear in the density field grows in time. As with the
ass clumps, this is a direct reflection of the hierarchical buildup of

ll aspects of the cosmic web. At higher redshifts, the filamentary
ridges have a smaller scale. Even when compensating for the o v erall
rowth of structure in terms of the normalized density (Fig. 13 ,
ottom centre panel), we find a continuous increase of the birth
ensity of filaments and tunnels as time proceeds. This is the result
f the buildup of filaments through a process of continuous merging
f smaller filamentary bridges into larger scale filaments. Visually,
e see this process in computer simulations, such as in Fig. 1 . 
NRAS 507, 2968–2990 (2021) 

m  
Descending to even lower density thresholds we see how filaments
isappear as they blend into the w all-lik e boundaries surrounding
 oid ca vities. As time proceeds, we see this happening at ever
ower density thresholds (Fig. 13 , top centre panel). It reflects the
act that voids e v acuate their interior as they mature, resulting in a
ass distribution marked by ever larger and emptier voids. The void

opulation builds up in a hierarchical fashion, in which large voids are
he product of the merging of smaller voids that dominated the mass
istribution at earlier epochs (Sheth & van de Weygaert 2004 ). The
elf-similar development seen in the two-dimensional persistence
iagram of normalized densities (Fig. 13 , bottom right-hand panel)
s a direct reflection of this. 

.4.2 Evolving persistence and connectivity: self-similarity? 

e assess the location of the ape x es with respect to the o v erall
volving mass distribution. Given the non-linear nature of the evolved
ass distribution at the redshifts analysed, we do this in terms of the

ormalized (logarithmic) density f n , 

 ̄n = 

f l − μl 

σl 

, (8) 

n which f l is the logarithmic value of the density field, 

 l = log ( δ + 1) , (9) 

nd μl and σ l its mean and dispersion. In a hierarchically evolving
ass distribution, the structure on small scales at earlier times
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Figure 14. Evolution of � CDM homology, persistence curv es. Persistence curv es of dimensions zero, one, and two (left to right), with the curves for all 
eight different redshifts together. To illustrate the time evolution, the curve corresponding to the earliest snapshot (redshift z = 3.8) is the darkest (black) and 
brightness increases when progressing towards lower redshift, until the curve for redshift z = 0 is red, yellow, or blue, according to the respective dimension of 
zero, one, and two. We see a clear decrease in the number of features at the lower persistence side, and a consistent increase at values of higher persistence. 
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esembles that of the structure on large scales at later times. Ideally,
n scenarios in which the primordial mass distribution would be 
escribed by a power-law power spectrum, the resemblance would 
e one of perfect self-similarity: the mass distribution at early times
ould be a small-scale version (statistically) exactly similar to the 

arge-scale distribution at later times. The Megaparsec cosmic web at 
 = 0.0 is similar to the cosmic web that existed on smaller scales at
igher redshifts. While a � CDM power spectrum does not result in
 perfect self-similar evolution, o v er the spatial scales co v ered by the
imulation box we should to good approximation expect self-similar 
ehaviour. 
As we discussed in Section 4.4.1 , the ape x es are topological

ignatures of dynamical transitions in the buildup of the cosmic web. 
n a perfectly self-similar cosmology, at each scale these transitions 
ould occur under the same conditions, at correspondingly different 

pochs. At earlier epochs the ape x es, and the transitions the y entail,
hould also occur at similar densities on smaller scales. To this end,
e compare the density values of the ape x es in normalized units, i.e.

n terms of f̄ n (equation 8 ). 
By scaling the mass distribution at each epoch in terms of the

 v erall amplitude of the density inhomogeneities, we test whether, 
n essence, its evolution is a self-similar mapping from epoch to 
poch. The panels in the bottom row of Fig. 13 plot the location of the
pe x es for the zero-, one-, and two-dimensional persistence diagrams 
n terms of the scaled mass distribution. It reveals that at redshifts
rom z ≈ 1.0 to z = 0.0, the apex is found at approximately the same
irth and death value (within error bars). All three dimensions also 
how a uniform increase of the apex (birth, death) values from high
edshift to low redshift, which is as expected given the considerably 
maller characteristic scales of the cosmic web at higher redshift 
iven the effective filtering on a grid scale. 
The normalized persistence diagrams show a different behaviour 

ith respect to their ape x es: for all three diagrams we find a
ystematic and uniform increase of the ape x es’ normalized density 
rom high to low redshift. It is strong evidence for the persistence
iagrams topologically expressing the notion of the self-similar 
volution of the mass distribution. 
m  
.4.3 Evolution of persistence values 

n additional informative aspect are the persistence values for the 
opological features in the mass distribution. Fig. 14 shows the 
v olving distrib ution of persistence values for the zero-, one-, and
wo-dimensional features in the mass distribution. The panels plot 
he number density of features as a function of persistence value π i .
he time evolution is represented in terms of the changing colour
f the curves, turning from dark at z = 3.8 to red, yellow, or blue
t z = 0.0. The persistence values have a range spanning several
agnitudes, hence the logarithmic scale for the persistence values. 
For all three dimensions, the persistence distribution is a distribu- 

ion that peaks at a characteristics persistence, with a value between
≈ 0.05 and π ≈ 0.1. On the left-hand side this is preceded, in all

ases, by a long wing of lo w-persistence v alues, in essence the noisy
eatures in the mass distribution. The right-hand wings represent the 
table and prominent features that exist over a large density range. 

The evolution of the persistence curv es involv es two aspects. The
rst one is the uniform decrease of the curves on the low-persistence
ide from z = 3.8 to z = 0.0. It reflects the gradual disappearance of
oisy feature. We observe this in the case of the mass clumps, of the
laments and tunnels an in the case of the voids. 
The second aspect of the persistence evolution reveals a difference 

etween the three classes of features. There is a strong increase of
igh-persistence mass clumps (zero-dimensional features). This is 
mmediately attested by the systematic and sizeable shift of the high-
ersistence wing from z = 3.8 to z = 0.0. It even involves a shift
f the peak of the distribution towards higher persistence values. At
ater times, gravitational evolution has produced highly non-linear 

assive clumps that mark more prominent and stable features in the
 v erall mass distribution than their less pronounced precursors. 
Also, the persistence values of the one-dimensional features 

filaments and tunnels) show a trend towards higher persistence 
alues. The trend is more moderate than that for the zero-dimensional
eatures, and also involves only a minor shift of the peak towards
igher persistence values. The filaments and tunnels appear to 
ecome a more robust element of the web-like network in which the
ass distribution is organized. It is a reflection of the hierarchical
MNRAS 507, 2968–2990 (2021) 
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volution of the cosmic web, in which more tenuous filaments and
unnels define a smaller scale version of the cosmic web at high
edshifts, while larger, denser filamentary bridges mark the mass
istribution at later times (see e.g. Cautun et al. 2014 , for an e xtensiv e
escription). 
The voids hardly reveal a shift towards higher density values.

heir evolution predominantly involves an almost uniform decrease
n number density of voids of a given persistence. The slight but still
erceptible increase in the number of high-persistence features (albeit
uch smaller than in the lower dimensions) points to the formation

f a small number of large, deep voids. The evolution also reflects the
lmost self-similar development of the hierarchically evolving void
opulation: the late-time void population is – statistically speaking –
 large-scale equi v alent of the population of smaller voids at earlier
pochs (Sheth & van de Weygaert 2004 ). 

 SUMMARY  A N D  C O N C L U S I O N S  

e assess the topological structure and connectivity of the
 CDM cosmic web in terms of the multiscale topological formalism

f persistence and Betti numbers. TDA offers an intricate quantitative
escription of how the structural components of the cosmic web
re assembled and organized within its complex network. The
etti curves specify the prominence of features as a function of
ensity level, and their evolution with cosmic epoch reflects the
hanging network connections between these structural features.
he persistence diagrams quantify the longevity and stability of

opological features. In this study we establish, for the first time,
he link between persistence diagrams, the features they show,
nd the gravitationally driven cosmic structure formation process.
y following the diagrams’ development over cosmic time, the

ink between the multiscale topology of the cosmic web and the
ierarchical buildup of cosmic structure is established. 
Persistent topology enables us to explore the cosmic web’s

omplex and intricate spatial pattern, by specifically addressing the
spects of patterns, connectivity and complexity that are not or hard
o infer from the more conventional clustering measures such as
he two-point correlation functions. In this sense, persistent homol-
gy provides us with necessary complementary phase correlation
nformation on the large-scale distribution of mass and galaxies. It
rovides an innov ati ve path to wards opening up the cosmological
nformation contained in the properties of the cosmic web. 

In this study, we describe a detailed and e xtensiv e analysis of
he evolving hierarchical topology of the cosmic web in � CDM cos-
ologies on the basis of the mass density field filtration. The principal

ntentions are 

(i) to assess and quantify the connectivity of the cosmic web in
erms of the levels at which its structural components join into the
 v erall web-like network, 
(ii) to establish the relationship between the characteristics of the

etti curves and persistence diagrams, and the gravitationally driven
osmic structure formation process, 

(iii) to explore the sensitivity of the topology of the cosmic web
o the underlying cosmology, 

(iv) to assess the extent to which the topological measures are able
o extract cosmological information. 

This study extends the earlier work by our group on the homology
nd persistent topology of the cosmic mass distribution (van de
eygaert et al. 2011 ; Nevenzeel 2013 ; Park et al. 2013 ; Pranav

t al. 2017 , 2019a , b ; Feldbrugge et al. 2019 ) and focuses on the
NRAS 507, 2968–2990 (2021) 
opology of the evolving non-linear cosmic mass distribution in
 CDM cosmologies. 

.1 Cosmic web at z = 0 – global and multiscale topology 

he first stage of our analysis is an in-depth investigation of the
osmic web topology at z = 0, the present epoch. We analyse the
etti curves for zero-, one-, and two-dimensional topological features
long with the corresponding persistence diagrams. In the physical
ontext of the cosmic web, the zero-dimensional features are the
atter assemblies or ‘islands’, the superclusters and clusters in the

alaxy distribution. The one-dimensional features are the filaments
nd tunnels, while the two-dimensional features are the low-density
oids and their w all-lik e boundaries. 

(i) All three persistence diagrams have a characteristic triangular
haped morphology. The majority of birth–death points are located
ear the diagonal base, corresponding to low-significance short-
ived features. The structurally significant part of the diagrams is
he typically triangular region, bounded by the diagonal and two
oncave edges, which coalesce at a sharp peak. 

(ii) We introduce the concept of the apex of a persistence diagram.
t refers to the tip of the sharp peaks in the diagrams and represents
eatures of highest persistence. The apex marks the location in the
iagram where a large number of features simultaneously undergoes
 topological ‘phase transition’, either o v er a wide range of birth or
eath densities. 
(iii) The formation of the cosmic web is marked by the apex of

he one-dimensional persistence diagram. At a birth density of δ ≈
, it corresponds to the rather sharp transition at which individual
ass concentrations – superclusters and clusters – get connected

hrough filamentary bridges, establishing the percolating network of
he cosmic web. 

(iv) Interestingly, the topological transition at δ ≈ 5 coincides
ith the density at which o v erdense re gions decouple from the
ubble expansion. It indicates an interesting concordance, within
 very narrow density range, between the condensation of mass
oncentrations in the Universe and their assembly into a space-filling
lamentary network. 
(v) The disappearance of the filamentary network at a narrow

ensity range around δ ≈ −0.7 identifies the stage at which the
osmic mass distribution gets marked by the appearance of a
opulation of individual voids surrounded by enclosing walls. The
harp transition is preceded by a stage in which tunnels get filled up
nto tenuous solid walls. This transition and the establishment of the
rominent void population at δ ≈ −0.8, as expected by theories of
 oid ev olution (Blumenthal et al. 1992 ; Sheth & van de Weygaert
004 ), is most clearly reflected in the two-dimensional persistence
iagram in terms of a sharply outlined apex. 

.2 Cosmic Web evolution – a dynamic topology 

n the second stage of our analysis, we follow the evolving topology
f the cosmic web from z = 3.8 until the current epoch. 

(i) The o v erall dev elopment of the structure and topology of
he cosmic mass distribution is reflected in the change of the
orresponding Betti curves. Their parametrization in terms of a
kew normal distribution allows a quantitative characterization of
he changing properties of the various topological features. 

(ii) A typical example is seen in the evolution of the void popu-
ation. The outflow of mass from cosmic voids into the surrounding
alls and filaments and the corresponding decrease of void densities
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nds its topological expression in the downward trend of the mean 
kewed normal parameter μ (Fig. 9 ) of the d = 2 Betti curve. 

(iii) The apex of the persistence diagrams displays a systematic 
hift (see Fig. 13 ) that reflects the evolution of the structural
omponents of the cosmic web. In terms of the evolving amplitude 
f the density fluctuations in the cosmic density field, we find that in
articular the one-dimensional and two-dimensional ape x es show a 
elf-similar development. It demonstrates that the hierarchical nature 
f the evolution of the filamentary network and void population leaves 
 topological imprint in the persistence diagram. 

(iv) In the case of all structural components, the systematic shift 
f the apex slows down considerably after z ≈ 0.5. It corresponds to
he slowing and halting of the cosmic structure formation process 
nce dark energy assumes dominance o v er the dynamics of the
niverse (Peebles 1980 ; Frieman, Turner & Huterer 2008 ). 

.3 Future outlook 

e have demonstrated that it is possible to obtain a wealth of detailed
nformation on the formation and evolution of large-scale cosmic 
tructure, and specifically the cosmic web, through the analysis of 
he topological characteristics and connectivity. We found that it 
s possible to infer the relationship between the abstract language 
f homology and algebraic topology and a range of aspects of the
ravitational structure formation process. 
In general, topological characteristics are not related to a single, 

nique, and identifiable structural component. They inform us about 
he connections with other structures, and hence addresses their 
lobal embedding and connectivity. We exploit this in a follow-up 
tudy (Wilding et al., preparation), in which we assess the cosmo- 
ogical sensitivity of persistence based topological characteristics. In 
his study we demonstrate the way in which different dark energy 
rescriptions translate into detectable and significant differences in 
opology. 

Of key importance for the viability of the topological analysis of
he cosmic mass and galaxy distribution is its success with respect 
o the observational reality. On the one hand, the analysis of ob-
ervational data poses a range of practical challenges. These include 
easurement uncertainties, undersampled re gions, re gions with non- 

xisting or simply missing data, systematic selection effects, and the 
nfluence of redshift distortions in galaxy surv e y maps (see Kaiser
987 ; Hamilton 1998 ). Investigation of these observational influence 
s currently the focus of an e xtensiv e project, which will be the
eported in a future publication (Wilding et al., in preparation). 

On the other hand, we need a method that does not solely rely on
ocal data, but rather on the interplay between the local and the global
tructure: The Betti numbers and the detailed persistence persistence 
iagrams provide exactly that. Research on using persistence to 
nvestigate structural patterns in the halo distribution of the cosmic 
eb and its relation to the underlying topology is reported in an

ccompanying third publication (Bermejo, Wilding, van de Weygaert 
 Jones, in preparation). 
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