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ABSTRACT

Context. The unprecedented amount and the excellent quality of lensing data expected from upcoming ground and space-based sur-
veys present a great opportunity for shedding light on questions that remain unanswered with regard to our universe and the validity
of the standard ΛCDM cosmological model. The development of new techniques that are capable of exploiting the vast quantity of
data provided by future observations, in the most effective way possible, is of great importance.
Aims. This is the reason we chose to investigate the development of a new method for treating weak-lensing higher-order statistics,
which are known to break the degeneracy among cosmological parameters thanks to their capacity to probe non-Gaussian properties
of the shear field. In particular, the proposed method applies directly to the observed quantity, namely, the noisy galaxy ellipticity.
Methods. We produced simulated lensing maps with different sets of cosmological parameters and used them to measure higher-order
moments, Minkowski functionals, Betti numbers, and other statistics related to graph theory. This allowed us to construct datasets
with a range of sizes, levels of precision, and smoothing. We then applied several machine learning algorithms to determine which
method best predicts the actual cosmological parameters associated with each simulation.
Results. The most optimal model turned out to be a simple multidimensional linear regression. We use this model to compare the
results coming from the different datasets and find that we can measure, with a good level of accuracy, the majority of the parameters
considered in this study. We also investigated the relation between each higher-order estimator and the different cosmological param-
eters for several signal-to-noise thresholds and redshifts bins.
Conclusions. Given the promising results we obtained, we consider this approach a valuable resource that is worthy of further devel-
opment.

Key words. gravitational lensing: weak – cosmology: theory – methods: statistical

1. Introduction

Over the past several decades, the availability of multi-band
astronomical data of increasingly greater quality has led to
impressive progress in the field of observational cosmology and
resulted in the establishment of the concordance Λ cold dark
matter (ΛCDM) model. Its parameters (which specify the con-
tribution of matter and the cosmological constant to the energy
budget, its expansion rate, and growth of structures) have been
measured with an unprecedented level of precision through
the joint application of various cosmological probes, such as
the angular anisotropy of the cosmic microwave background
(CMB), the baryon acoustic oscillation (BAO), galaxy cluster-
ing (GC), and weak lensing (WL) studies (e.g., Dunkley et al.
2009; Planck Collaboration XVI 2014; Planck Collaboration
XIII 2016; Planck Collaboration VI 2020; Alam et al. 2017; DES
Collaboration 2018).

In particular, the Planck Collaboration VI (2020, hereafter
PC18) combined measurements of CMB polarization, tempera-
ture, and lensing with the BAO and type Ia supernova (SN) data
to obtain the tightest possible constraints on the cosmological
parameters. the constraints on PC18 are in good agreement with

different BAO, SN, and some galaxy lensing observations, but
they show a slight tension with the DES Collaboration (2018)
results, which were obtained with GC and WL data. These con-
straints also present a more significant tension with the local
measurements of the Hubble constant (Riess et al. 2018). Con-
sidering the precision of these measurements and the accuracy
with which those studies were performed, we could speculate
that the observed tensions may be linked to new physics or to
phenomena that are not accounted for in the standard cosmolog-
ical model – more so than to systematic errors. In fact, despite
the successful results that were obtained, it is important to stress
that the nature of the main energy contents of the universe pre-
dicted by the ΛCDM model (i.e., dark energy that drives cosmic
speed up and dark matter that is responsible for the formation of
large-scale structures) is still unknown.

These open questions can be explored by ongoing surveys,
such as the DES Collaboration (2005), the Hyper Suprime-
Cam (HSC, Aihara et al. 2017), and the Kilo-Degree Survey
(KiDS, de Jong et al. 2012), as well as next-generation sur-
veys from the ground, such as the Legacy Survey of Space and
Time (LSST, Abell 2009), or space-based, such as ESA’s Euclid
(Laureijs et al. 2011) and NASA’s Wide Field Infrared Survey
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Telescope (WFIRST, Green et al. 2012) mission. The Euclid
survey, notably, will collect both imaging and spectroscopic
datasets using WL and galaxy clustering as its primary probes to
constrain, with unprecedented precision, the dark energy equa-
tion of state, measure the rate of cosmic structure growth to dis-
criminate between general relativity against and modified grav-
ity and to look for deviations from Gaussianity of initial density
perturbations to test inflationary scenarios. In particular, Euclid
will obtain high-quality data on sub-arcsec scale of galaxy shape
measurements for galaxies up to z ≥ 2, covering 15 000 deg2 of
the extragalactic sky.

Although the density field on large scales is well-appro-
ximated by a Gaussian distribution, the information brought on by
the measurement of non-Gaussianity on small scales can help to
break degeneracies and further constrain the cosmological param-
eters. With regard to accessing this information, WL is considered
to be one the best tools. As predicted by general relativity (and any
metric theory of gravity), the matter distribution along the line
of sight deflects the light rays because they propagate along the
geodesic lines, causing a distortion of the image of the emitting
sources. In the WL regime, this effect is too small to be detected
on single galaxies and a statistical approach is needed to access
the information contained in the cosmic shear field.

Given its sensitivity to the background expansion and to the
growth of structures, second-order lensing statistics have been
employed with remarkable success in the past, via the analy-
sis of the two-point correlation function and its Fourier counter-
part, namely, the power spectrum (see, e.g., Munshi et al. 2008;
Kilbinger 2015; Bartelmann & Maturi 2017; Köhlinger et al.
2017; Hildebrandt et al. 2017; Troxel et al. 2018; Hikage et al.
2019; Hamana et al. 2020, and references therein). In order to
access the non-Gaussian information originating from the non-
linear collapse of the primordial density fluctuations, however, it
is necessary to go to a higher order in the statistical description
of the shear field. Along with the more traditional three- and
four-point correlation functions, and the corresponding bi- and
tri-spectra in Fourier space, (e.g., Takada & Jain 2003, 2004;
Semboloni et al. 2011; Fu et al. 2014), various estimators
have been more recently used. Topological descriptors such as
Minkowski functionals and Betti numbers have been applied to
lensing convergence maps (Matsubara & Jain 2001; Sato et al.
2001; Taruya et al. 2002; Matsubara 2010; Kratochvil et al.
2011; Pratten & Munshi 2012; Petri et al. 2013; Shirasaki &
Yoshida 2014; Ling et al. 2015; Vicinanza et al. 2019; Marques
et al. 2019; Mawdsley et al. 2020; Parroni et al. 2020; Zürcher
et al. 2021), and on three-dimensional Gaussian random fields
to study the topology of the primordial density field (Park et al.
2013; Pranav et al. 2017, 2019), respectively. Moreover Hong
et al. (2020) applied graph theory estimators to study the topo-
logical structure of clustering in N-body simulations correspond-
ing to different cosmological models.

In the context of WL studies, the topological higher order
estimators have usually been applied to lensing convergence
maps. However, the convergence is not a direct observable, so
to actually solve an inversion problem, it is necessary to start
from the shear data. Even though several methods have already
been conceived and a lot of progress has been made (e.g., Pires
et al. 2009, 2020; Jullo et al. 2013; Jeffrey et al. 2018; Price
et al. 2020, 2021), this reconstruction is still considered as a
non-trivial problem that requires very accurate control of sys-
tematic effects coming from survey masking, borders, noise,
and the fact that what we are actually observing is the galaxy
ellipticity, which is a measure of the noisy reduced shear and
not the shear itself. In order to circumvent this reconstruction

problem, higher-order statistics could be applied directly to ellip-
ticity maps but the issue in this case would be the lack of the-
oretical predictions that the measurements could be compared
to. Even in the cases where a theoretical study has indeed been
carried out, as for the higher order moments and Minkowski
functionals of convergence maps, we have to take into account
the approximated calculations due to the challenge of model-
ing nonlinearities in the matter power spectrum and bispectrum.
The mismatch between theoretical expected values and actual
noisy observations can be dealt with through a calibration pro-
cess performed on simulations (e.g., Vicinanza et al. 2018, 2019,
Parroni et al. 2020) but this requires the creation of an appropri-
ate parametrization, which is nevertheless a non-trivial approx-
imation, adding nuisance parameters and possible degeneracy
with the cosmological ones, hence weakening the constraints.

It is for these reasons that we chose to apply higher-order
moments, Minkowski functionals, Betti numbers, and several
statistics from graph theory to simulated noisy ellipticity maps,
and to use different machine learning techniques to study the
relation between those estimators and the cosmological parame-
ters that were used to generate the simulations. In recent years,
machine learning has proven to be a valuable tool in a variety
of astrophysical studies and notably in some WL applications,
such as the discrimination between different modified gravity
cosmologies (e.g., Merten et al. 2019; Peel et al. 2019), the mea-
surement of the (ΩM , σ8) parameters degeneracy (e.g., Gupta
et al. 2018; Fluri et al. 2018, 2019), and mass maps reconstruc-
tion (e.g., Jeffrey et al. 2020). In our case, it allows us to bypass
the theory issues discussed above and allows us to make direct
use of noisy ellipticity maps, based upon which we calculated
new and promising higher order estimators.

The paper is organized as follows. In Sect. 2, we describe
how we obtained the simulated shear maps for the different set of
cosmological parameters. In Sect. 3, we introduce the different
higher-order estimators that we measured from the maps and we
present the final datasets that we used for the training phase. In
Sect. 4, we compare the results from different models. In Sect. 5,
we use the best model obtained to study the effect of the dataset
size, of the measurement accuracy, and of the smoothing scale
on the score, as well as performing the training and the predic-
tions using the different datasets. In Sect. 6, we study the rela-
tion between the individual estimators and each cosmological
parameter. In Sect. 7, we discuss the limitations of this work and
possible improvements. In Sect. 8, we draw our conclusions. In
Appendix A, we briefly outline the different machine learning
methods that we compared in this study.

2. Simulation of shear maps

In order to produce the simulated shear maps, we used
The Full-sky Lognormal Astro-fields Simulation Kit
(FLASK; Xavier et al. 2016), which is a fast and flexible pub-
lic code that takes as its input the auto- and cross-power spec-
tra to create random realizations of different astrophysical fields
that follow a multivariate lognormal distribution, reproducing
the expected cross-correlations between the input fields. The
choice of a multivariate lognormal distribution is motivated by
the better approximation that this distribution represents of the
fields that we want to simulate, compared to a multivariate Gaus-
sian distribution (e.g., Scaramella et al. 1993; Taruya et al. 2002;
Hilbert et al. 2011; Clerkin et al. 2017). This is also a simpler
approximation, which is capable of conveying the non-Gaussian
information contained in the shear field that we are interested
in measuring. Moreover, a non-negligible aspect of this kind of
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simulation is the computational speed it offers, which allows
FLASK to produce full-sky realization within minutes.

While we refer to Xavier et al. (2016) for the details on the
inner workings of FLASK, we want to draw attention to some of
the limitations of this approach here. In one of the two proposed
solutions, FLASK computes the shear starting from the conver-
gence, which is, in turn, calculated via an approximated line-
of-sight integration of the simulated density field. This affects
the choice of the redshift range of the simulations. In fact, this
approximation consists of a weighted Riemann sum over the
chosen redshift bins, which is able to reproduce the theoretical
spectra within 3% for z > 0.5. Due to the small number of bins
in the sum at low redshift, the precision of the approximation
degrades quickly. For this reason, we decided to cut the source
catalog at z > 0.55. Moreover, the line-of-sight integration solu-
tion produces a convergence field that follows a distribution of
a sum of correlated lognormals, which is not exactly lognormal,
even if it is very similar. Although it is possible to add a shift
the convergence field generated by FLASK in order to match the
third-order moment, this would artificially alter the convergence
probability distribution function, so that moments higher than
the third would be modified in an unpredictable way. Moreover,
lacking a theoretical estimate for some of the statistics we go
on to consider below, there is really no way to judge whether
FLASK is able to reproduce them. However, running a number of
full N-body and ray-tracing simulations as large as the one we
need for our study is definitely not possible with the computing
resources at our disposal. We therefore prefer to rely on FLASK
for this preliminary study since we want to show the potentiality
of the method we are proposing rather than apply it to real data.

We chose a Euclid-like source redshift distribution as was
done for the Euclid Collaboration (2019a):

n(z) =
3 ng
2 z0

(
z
z0

)2

exp

− (
z
z0

)3/2, (1)

with ng the number of galaxies per arcmin2, and z0 = zm/
√

2
with zm the median redshift. We set ng = 30 gal arcmin−2 and
zm = 0.9 as expected for Euclid given a limiting magnitude
maglim = 24.5 in the imaging VIS filter.

We used CLASS (Blas et al. 2011; Dio et al. 2013) to com-
pute the input power spectra for 25 top-hat equispaced redshift
bins over the range 0.0 ≤ z ≤ 2.5 for a flat ΛCDM model, vary-
ing the cosmological parameters {H0, ωb,ΩM ,ΩΛ, w0, ns, σ8}, in
each simulation. Because we wanted to compare our measure-
ments and errors on each of those parameters with state-of-the-
art results, we chose to refer to the results presented in the con-
straints on PC18. For each simulation, we randomly extracted
each parameter from a Gaussian distribution with mean µ and
width σ, corresponding to the measured values and errors of the
constraints on PC18 parameters, respectively, which are shown
in Table 1. With these settings, we created a first batch of ∼1000
simulations, followed by a second batch of ∼500 simulations for
which we doubled the width of each Gaussian in order to cover
a larger area in the parameter space.

Setting Nside = 2048 and giving as input to FLASK the source
redshift distribution, the mask based on the private Euclid Flag-
ship galaxy mock catalog version 1.6.18, and the angular auto-
and cross-power spectra calculated as described, we obtained a
catalog containing the coordinates, the redshift, and the noisy
ellipticity components for each galaxy, for each simulation.

As described in Xavier et al. (2016), the complex ellipticity
ε = ε1 + iε2 is computed as

Table 1. Mean and width of the Gaussian distributions from which we
extracted the cosmological parameter values for each simulation, corre-
sponding to the constraints on PC18 results and errors.

Parameter µ σ

H0 67.66 0.42
ωb 0.02242 0.00014
ΩM 0.3111 0.0056
ΩΛ 1-ΩM 0.0056
w0 −1.028 0.032
ns 0.9665 0.0038
σ8 0.8102 0.0060

ε =


εs + g

1 + g∗εs
, |g| ≤ 1

1 + gε∗s
ε∗s + g∗

, |g| > 1,

(2)

where g ≡ γ/(1 − κ), is the reduced shear, γ is the shear, and κ is
the convergence, and εs = εs,1 + iεs,2 is the source intrinsic ellip-
ticity, whose components (εs,1, εs,2) are randomly drawn from a
Gaussian distribution with zero mean and a standard deviation
σεs that can be set by the user. We set σεs = 0.31. When a map is
constructed, the ellipticity components are averaged inside each
pixel in order to decrease the noise given by the intrinsic ellip-
ticity. We clarify then that what we call shear maps are therefore
maps of the noisy ellipticity, which is the only WL direct observ-
able. More precisely, the value in each pixel is |ε| = ε2

1 + ε2
2, the

mean of the norm of the complex ellipticity.
Each catalog was then split into redshift bins with equal

width ∆z = 0.05 and centered in z from 0.5 to 1.8 in steps of 0.3.
According to the Euclid Red Book (Laureijs et al. 2011), pho-
tometric redshifts will be measured with an error <0.05(1 + z)
allowing to separate sources in bins with a center determined
with an accuracy better than 0.002(1 + z) as confirmed by more
recent analyses (Euclid Collaboration 2019a, 2020; Joshi et al.
2019). As such, our choice ∆z = 0.05 is well within the real-
istic capabilities of Euclid. For each slice of redshift, we first
obtained 100 maps of 5× 5 deg2 and 300× 300 pixels, leaving a
gap of ∼1◦ between two consecutive maps so that we were able
to consider them as independent realizations. We performed a
gnomonic projection to project the maps onto the plane of the
sky, under a flat sky approximation, which holds for the size of
the maps that we used.

In Fig. 1, we show one of the shear maps obtained using
the catalog from the simulation corresponding to the constraints
on PC18 parameters and redshift bin z = 0.6. The map was
smoothed using a Gaussian filter with scale θs = 2′ and nor-
malized subtracting the mean and dividing by the variance. In
a second moment, in order to increase the training set and the
signal-to-noise ratio (S/N), we decided to perform four more
realizations for each combination of the cosmological parame-
ters already calculated, therefore making 500 maps for each sim-
ulation, bringing the total to ∼750 000 maps per redshift bin.

1 While in the literature, noise is usually added to κ or γ directly on the
map pixels assuming a Gaussian distribution with zero mean and width
σn = σεs/

√
ngApixel, with σεs = 0.3, FLASK assigns the noise, in the

form of εs, on each individual galaxy trough Eq. (2).
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Fig. 1. One of the maps taken from the simulation corresponding to the
constraints on PC18 parameters, at z = 0.6, smoothed with a Gaussian
filter with scale θs = 2′ and normalized subtracting the mean and divid-
ing by the variance.

3. Higher-order estimators

The simulated maps are the input for our investigation of the
potentiality of high-order statistics to constrain cosmological
parameters. Going beyond the second order opens up a wide
range of possible choices, and it is not clear a priori which is
the most promising one. For this reason, we considered many
different alternatives, which we briefly describe in the following
subsections.

3.1. Higher-order moments

Before measuring the higher order moments (HOM), we
smoothed the shear maps using a Gaussian filter with scale
θs = {2′, 4′, 6′} and subtracted the mean value to put all the maps
to the same null mean value. Denoting with ε(x, y) the resulting
field, on each map, for all redshift bins, we estimated the third-
and fourth-order centered moments, the skewness, and the kur-
tosis, respectively defined as:

k3 =
〈
ε3

〉
,

k4 =
〈
ε4

〉
,

S 3 = k3/
〈
ε2

〉3/2
,

S 4 = k4/
〈
ε2

〉2
,

(3)

In Fig. 2, we show the HOM as a function of the redshift,
calculated on the maps from the simulation corresponding to the
constraints on PC18 parameters, for the smoothing scale θs = 2′.
The values are averaged over 500 maps. We notice that all the
moments have their minimum value at z = 0.9, the median
redshift of the source distribution, and then they increase with
the redshift. We obtained similar results but lower absolute val-
ues for the smoothing scales θs = {4′, 6′}. In particular, in the
simulation corresponding to the constraints on PC18 parame-
ters, we measured a decrease in value between the measurements
obtained with θs = 2′ and θs = 6′ of a factor ∼40. With the excep-
tion of k4, for which the minimum value shifts to higher red-
shift for increasing smoothing, the behavior of the HOM remains
unaltered.

The two plots in the bottom, corresponding to S 3 and S 4, are
grayed out to indicate that those HOM were discarded because
their scatter among different maps generated with the same cos-
mology was larger than the difference among maps with differ-
ent cosmologies. In other words, we did not retain the features
for which the ratio between the inter-simulation variance and the
intra-simulation variance was smaller than one. In this case, one
can not discriminate among cosmological models so that the cor-
responding probe is not expected to be of any help for our aims.
In the following, we used the same criterion to discard several
values of the other estimators.

3.2. Minkowski functionals

Given the smoothed two-dimensional shear field ε(x, y) with
zero mean and variance σ2

0, we define the excursion set Qν as
the region where ε/σ0 > ν holds for a given threshold ν. The
three Minkowski functionals (MFs) are defined as:

V0(ν) =
1
A

∫
Qν

da,

V1(ν) =
1

4 A

∫
∂Qν

dl,

V2(ν) =
1

2 π A

∫
∂Qν

dl K ,

(4)

where A is the map area, ∂Qν the excursion set boundary, da
and dl are the surface and line element along ∂Qν, and K its
curvature. Therefore, V0, V1, and V2 are the area, the perimeter,
and the genus characteristics of the excursion set Qν.

Defining ε ≡ ε/σ0, we can rewrite Eq. (4) as

V0(ν) =
1
A

∫
A

dxdy Θ(ε − ν),

V1(ν) =
1

4 A

∫
A

dxdy δD(ε − ν)
√
ε2

x + ε2
y ,

V2(ν) =
1

2 π A

∫
A

dxdy δD(ε − ν)
2 εx εy εxy − ε

2
x εyy − ε

2
y εxx

ε2
x + ε2

y

,

(5)

where κi = ∂κ/∂xi, and κi j = ∂2κ/∂xi∂x j with (i, j) = (x, y), are
the first and second derivatives of the field.

In Fig. 3, we can see the three MFs obtained from the maps of
the simulation corresponding to the constraints on PC18 param-
eters averaged over 500 maps, for all redshift bins, with smooth-
ing scale θs = 2′, as a function of the threshold, with ν ∈ [−4, 7]
and ∆ν = 1. The dashed black lines delimit the S/N range that
was retained for the training sample, which corresponds to the
range ν ∈ [−1, 1]. The values outside of these lines, in the grayed
out regions, were discarded following the variance ratio criterion
previously defined. While the lines corresponding to V0 at dif-
ferent redshift are almost indistinguishable, we can see that V1
values increase with z, V2 values for ν ≥ 0 have the same behav-
ior, and V2 values for ν < 0 tend to decrease as a function of the
redshift. For the smoothing scales θs = {4′, 6′}, we obtained qual-
itatively similar results but lower absolute values for V1 and V2.
Specifically, for the simulation corresponding to the constraints
on PC18 parameters, the measurements of V0 with θs = 2′ and
with θs = 6′ changed less than ∼5%, while for V1 and V2 we
observed a decrease in value of a factor ∼30.

3.3. Betti numbers

The definition of Betti numbers (Betti 1870) requires the knowl-
edge of some fundamental concepts of simplicial homology.
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Fig. 2. HOM calculated on the maps
obtained from the simulation correspond-
ing to the constraints on PC18 parame-
ters, averaged over 500 maps, for all red-
shift bins, with smoothing scale θs = 2′.
The error bars correspond to the standard
deviation divided by the square root of
the number of maps. The grayed-out plots
in the bottom show that the S 3 and S 4
HOM were discarded from the rest of the
analysis.
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Fig. 3. MFs calculated on the maps obtained from the simulation cor-
responding to the constraints on PC18 parameters, averaged over 500
maps, for all redshift bins, with smoothing scale θs = 2′. The error bars
correspond to the standard deviation divided by the square root of the
number of maps. The dashed black lines contain the values selected for
the training, the grayed out regions indicate the discarded values.

A proper treatment of this topic is beyond the scope of this paper,
so we refer to more specific resources (e.g., Munkres 1984;
Delfinado & Edelsbrunner 1993; Edelsbrunner & Harer 2008)
for details and formal definitions.

Considering again ε(x, y) and the excursion set Qν, we define
the Betti numbers in two dimensions, β0 and β1, as the number
of connected regions and the number of holes in the excursion
set, respectively. In Fig. 4, we show a working example obtained
from an excursion set of a random Gaussian field on a 10 × 10
pixel map. We applied a Delaunay triangulation to the map and
considered two points as connected if they touch each other hori-
zontally, vertically, or diagonally, that is, if they are 8-connected.
In Fig. 4, the vertices are represented as numbered blue circles,
the edges as pink lines, and the triangles as shaded pink regions
enclosed by three edges. Every connected region is represented
with a different shade of gray, and the holes are outlined in dark
blue. Because we have seven different connected regions and one
hole, the Betti numbers in this case will be β0 = 7, and β1 = 1.

In Fig. 5, we show the two Betti numbers as a function of
the threshold, with ν ∈ [−4, 7] and ∆ν = 1, estimated from the
maps of the simulation with the constraints on PC18 parame-
ters, averaged over 500 maps, for the different redshift bins, and
with smoothing scale θs = 2′. As in Fig. 3, the dashed black lines
delimit the threshold range that was retained for the training, that
is, the range ν ∈ [0, 2] for β0 and the range ν ∈ [−2, 0] for β1, and
the grayed out regions indicate the range discarded following the
variance ratio criterion. We can see from the left panel that the
number of connected regions for a given threshold increases with
the redshift, while in the right panel, we note that the number of
holes increases with z for ν < 0 and it has the opposite behavior
for ν ≥ 0. Increasing the smoothing to scales of θs = {4′, 6′} does
not change the behavior of the measured curves but their abso-
lute value gets smaller. For the simulation corresponding to the
constraints on PC18 parameters, the decrease in value between
the measurements obtained with θs = 2′ and with θs = 6′ is of a
factor of ∼10.
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Fig. 4. Working example obtained from an excursion set of a random
Gaussian field on a 10×10 pixel map, to illustrate the quantities defined
in Sect. 3.3 for the Betti numbers, and in Sect. 3.4 for the graph statis-
tics. Every numbered blue circle is a vertex, the pink lines are edges,
the shaded pink regions are triangles. Different connected regions are
represented with different shades of gray, and the holes are outlined in
dark blue. The tag on each vertex shows the quantities ki(ki − 1)/2, and
∆i, which are the number of connected triples, and the number of trian-
gles, centered on the vertex. The parameters listed on the right are, in
order, N the numbers of vertices, K the number of edges, Ng the num-
ber of vertices belonging to the giant component, τ the transitivity, C the
LCC, α the average degree, p the edge density, S the fraction of vertices
belonging to the giant component, and β0, β1 the Betti numbers.

3.4. Graph statistics

The simplicial complex structure defined in Sect. 3.3 can also
be interpreted as a network or a graph so that some tools used
in network science can be applied to it. Following Hong et al.
(2020) we define the following basic graph quantities

α =
2K
N
,

p =
2K

N(N − 1)
,

S =
Ng

N
,

(6)

where N is the total number of vertices, Ng is the number of ver-
tices belonging to the largest connected sub-graph in a network,
called the “giant component”, and K is the total number of edges.
Defining the “degree” as the number of neighbors for each ver-
tex, we can call α the “average degree” while p is the fraction of
connected edges over all pairwise combinations and it is, there-
fore, called the “edge density”, and S is the fraction of vertices
belonging to the giant component. In Fig. 4, for example, N = 30
and the largest component is the structure on the right, composed
by 17 vertices, so that Ng = 17 and S = 0.57. The total number
of edges is K = 33, so that we can calculate also the average
degree and the edge density, α = 2.2 and p = 0.08.

Given three vertices, if they are connected by at least two
edges, they are called a “connected triple”, whereas if they are
connected by three edges, thereby forming a triangle, they are
called a “closed triple”. With this definition, we also consider a

“closed triple” a “connected triple”. We can look at Fig. 4 to bet-
ter understand this concept. For example, the vertices {19, 20, 24}
form one connected triple, centered on the vertex 20. The ver-
tices {00, 03, 06, 07} form two connected triples, one centered
on the vertex 03, and one centered on the vertex 06. Taking as
an example the triangle formed by the vertices {09, 10, 11} and
ignoring for the moment the other vertices connected to it (ver-
tices 05, 13, and 14) we can count three triples which are closed
and, therefore, also connected, {11, 09, 10} centered on the ver-
tex 09, {09, 10, 11} centered on the vertex 10, and {10, 11, 09}
centered on the vertex 11. This means that a triangle always
counts for three closed triples. We can then define the following
quantity:

τ =
No. of closed triples

No. of connected triples
=

3 × No. triangles
No. of connected triples

, (7)

which is referred to as “transitivity” or a “global clustering coef-
ficient”. In Fig. 4, τ = 0.38. We can also calculate the transitiv-
ity for each vertex i, a quantity referred to as the local clustering
coefficient (LCC), as

Ci =
2∆i

ki(ki − 1)
=

No. of closed triples centered on i
No. of connected triples centered on i

, (8)

where ki is the number of neighbors of the vertex i, so that
ki(ki − 1)/2 is the total number of connected triples centered on
the vertex, and ∆i is the number of triangles centered on the ver-
tex, that is, the number of closed triples centered on the vertex.
In Fig. 4, every vertex has a tag with two number, the first corre-
sponds to ki(ki−1)/2, and the second is ∆i. For example, the ver-
tex 04 has two neighbors so that k04 = 2 and k04(k04 − 1)/2 = 1,
and it has no triangles centered on it so that ∆04 = 0 and therefore
C04 = 0. The vertex 16 has k16 = 5, k16(k16−1)/2 = 10, ∆16 = 4,
so that C16 = 0.4. For vertices like 02, 12, and 28, which have no
neighbors and no triangles centered on them, Ci is not defined.
We define the average LCC as the averaged value of Ci over all
N vertices and call it C. In Fig. 4, C = 0.3. We measured τ, C, α,
p, and S on the graph obtained by applying a Delaunay triangu-
lation to the ε(x, y) maps that we first downgraded to 100 × 100
pixels for computational speed reasons.

In Fig. 6, we show the graph statistics estimated from the
simulated maps with the constraints on PC18 parameters, aver-
aged over 500 maps, as a function of the threshold, with ν ∈
[−4, 7] and ∆ν = 1, for each redshift bin, and with smoothing
scale θs = 2′. Again, as in Figs. 3 and 5, the dashed black lines
delimit the values that were selected for the training phase, and
the grayed out regions correspond to the discarded values, fol-
lowing the variance ratio criterion. As we can see, we used the
values of τ, C, α, and p in the range ν ∈ [−1, 1], while S was
entirely discarded. We notice that τ and C have a very similar
behavior, as expected considering that C is the vertex-wise ver-
sion of τ, and that they both increase with ν and with z, mean-
ing that the clustering of the structures in the maps increases
both globally and locally as a function of the redshift and of the
threshold. On the other hand, α, p, and S tend to decrease with
the redshift, so that while the structures tend to cluster more,
they also get smaller. Regarding the behavior with the threshold,
while S is too noisy and p is more or less constant in the range
considered, α decreases. Therefore, as expected, structures get
smaller for high S/N. Again, for smoothing scales θs = {4′, 6′},
the qualitative behavior of the different graph statistics remains
unchanged but their absolute value slightly decreases. In fact, for
the simulation corresponding to the constraints on PC18 param-
eters, we measured a difference of less than ∼15%, between the
values obtained with θs = 2′ and with θs = 6′.

A123, page 6 of 20

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202038715&pdf_id=4


C. Parroni et al.: Higher-order statistics of shear field via a machine learning approach

4 3 2 1 0 1 2 3 4 5 6 7

0

100

200

300

400

0

z bin 0
z bin 1
z bin 2
z bin 3
z bin 4

4 3 2 1 0 1 2 3 4 5 6 7

0

50

100

150

200

250

300

350

400

1

Betti numbers

Fig. 5. Two Betti numbers calcu-
lated on the maps obtained from the
simulation corresponding to the con-
straints on PC18 parameters, averaged
over 500 maps, for all redshift bins,
with a smoothing scale θs = 2′. The
error bars correspond to the standard
deviation divided by the square root of
the number of maps. The dashed black
lines contain the values selected for the
training, the grayed out regions indicate
the discarded values.

3.5. Training and test samples

In order to compile the final dataset, we collected the measure-
ments of all the higher order estimators described so far. Includ-
ing the k3 and k4 HOM, the three MFs in the threshold range
of ν ∈ [−1, 1], the two Betti numbers in the range of ν ∈ [0, 2]
for β0 and in the range of ν ∈ [−2, 0] for β1, and the τ, C, α,
and p graph statistics in the range of ν ∈ [−1, 1], we obtained
29 measurements for each redshift bin, making a total of 145
measurements for each simulation.

Because the measurements on a single map are dominated by
the noise, we need to increase the S/N of the estimators by aver-
aging them over multiple maps. In order to investigate whether
we could obtain a better performance from a bigger but noisier
dataset or from a smaller dataset with a higher S/N, we decided
to average each measurement over 100, 300, and all 500 maps
belonging to the same simulation, obtaining three versions of
the dataset. In the first version (hereafter AVG100), we averaged
each of the 145 measurements over 100 maps, corresponding to
a total area of 2500 deg2. Because we have 500 maps for each
simulation, we obtained five realizations of the set of 145 mea-
surements for each combination of the cosmological parameters.
Therefore, the dataset passed from 750 000 to 7500 independent
realizations. In the second version (hereafter AVG300), we aver-
aged each of the 145 measurements over 300 maps, correspond-
ing to a total area of 7500 deg2, obtaining just one realization for
each cosmological model. This means that there are 200 maps,
among the 500 maps per simulation, that we did not use. This
dataset passed from 750 000 to 1500 independent realizations.
Finally, in the third version (hereafter AVG500), we averaged
each of the 145 measurements over 500 maps, corresponding to
a total area of 12 500 deg2, therefore, using all the maps available
for each simulation and obtaining again just one realization of
the set of measurements for each combination of the cosmolog-
ical parameters. This dataset also passed from from 750 000 to
1500 independent realizations. A summary of the three datasets
is given in Table 2.

Each of the three datasets is then divided into a training set,
consisting of 80% of the respective original dataset, and a test
set obtained with the remaining 20%. Hereafter we will refer
to the estimator measurements in the datasets as “features”, and
to the corresponding cosmological parameters as “labels”. We
repeated this procedure for each smoothing scale, obtaining the
three datasets, AVG100, AVG300, and AVG500 for θs = 2′, and
the datasets AVG100 and AVG300 for θs = {4′, 6′}. Consider-
ing that the application of Gaussian smoothing degrades part of

the information contained in the shear maps, we expect to obtain
progressively worse results for increasing smoothing scale. For
this reason and to save computational time, we chose not to apply
the smoothing scales θs = {4′, 6′} to the AVG500 dataset, deem-
ing as exhaustive the comparison of the results coming from the
AVG100 and AVG300 dataset with those from the smoothing.

A comment is in order here about the choice of the map size.
Having a side length of 5 deg only gives us confidence that the
flat sky approximation can be used, which is useful given that a
full sky treatment of some of the above statistics is not available.
Such small maps are, however, likely to be affected by cosmic
variance which is a further motivation to average over a large
number of them. In a realistic application, this can be done split-
ting the full survey area into 5 × 5 deg2 non-overlapping maps.
This would demand an area of (2500, 7500, 12 500) deg2 in order
to create the AVG100, AVG300, AVG500 datasets. Among cur-
rent ongoing Stage III surveys, DES is compliant with our
requirements for AVG100 since Y3 and Y5 data releases will
cover 5000 deg2. On the contrary, Stage IV surveys will be
needed for AVG300 and AVG500 given the large area required.
In particular, both Euclid (15 000 deg2) and LSST (18 000 deg2)
will cover enough area for both cases. The methods we are pre-
senting is therefore designed to fully exploit the potentiality of
Stage IV surveys.

In Fig. 7, we show the correlation between the different fea-
tures using the 500 maps from the simulation with the constraints
on PC18 parameters (300 maps for θs = {4′, 6′}). In the upper-
left panel, we find the total covariance matrix for smoothing
θs = 2′, which includes all the selected features and all redshift
bins, and, in the upper right panel, a zoom on the first redshift
bin. We can observe that within the same simulation, the corre-
lation between features at different redshift bins is quite small
due to the adopted binning. On the other hand, for a given red-
shift bin some features appear to be more correlated than others.
In particular, we notice higher correlations between the HOM
and the MFs and between the MFs and the Betti numbers, while
the graph statistics appear to have slightly lower correlations
with the other set of estimators. Such a result was not entirely
unexpected. At a lowest order, the MFs can be expressed as a
perturbative series whose coefficients are related to the gener-
alized moments whose analytical expression is quite similar to
that for the HOM. This tells us that MFs are indeed related to the
moments of the distribution so that a correlation can be antici-
pated. Similarly, the Betti numbers are known to be a generaliza-
tion of the MFs which explains why they turn out to be correlated
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Fig. 6. Graph statistics calculated on the maps obtained from the sim-
ulation corresponding to the constraints on PC18 parameters, averaged
over 500 maps, for all redshift bins, with smoothing scale θs = 2′. The
error bars correspond to the standard deviation divided by the square
root of the number of maps. The dashed black lines contain the values
selected for the training, the grayed out regions indicate the discarded
values.

with them. On the contrary, the relation between graph statistics
and the other estimators has not been investigated up to now, so
the lack of correlation that we find is an interestingly novel prop-
erty. In the bottom panels, we show again the zoomed covariance
matrix of the first redshift bin but for different smoothing scales,
θs = 4′ on the left, and θs = 6′ on the right. We notice that
the correlation between the Betti numbers at different thresholds
decreases, while the correlation of the graph statistics increases.
On the other hand, the correlation between the graph statistics
and the rest of the estimators further decreases, showing a decou-
pling into two sets of estimators.

4. Model selection

Using the training and the test sets, which we obtained
as explained in the previous section, we compared different
machine learning algorithms in order to establish the model that
best describes the relation between the features that we measured
on the shear maps and the cosmological parameters. Explaining
the inner workings of the different algorithms and the particular
implementations that we used is beyond the scope of this paper.
We nevertheless briefly outline the methods used in Appendix A,
referring the interested reader to the specific resources therein for
further details. The algorithms that we tested are linear regres-
sion, ridge regression, kernel ridge regression, Bayesian ridge
regression, lasso regression, support vector machine, K nearest
neighbors, Gaussian processes, decision tree, random forests,
and gradient boosting.

We used the Python scikit-learn (Pedregosa et al. 2011)
library implementation of all the listed algorithms. A limitation
of the Scikit-learn implementation in the majority of the methods
used is the lack of a possibility to training a model to predict the
entire set of labels at once. In fact, even if the labels were chosen
randomly and independently, making them uncorrelated (with
the exception of ΩM and ΩΛ, which are linked by the assump-
tion of a flat universe, ΩΛ = 1 − ΩM), they act simultaneously
on the maps and some features could be sensitive to particular
parameter combinations. This problem could have been solved
by varying one cosmological parameter at a time for each sim-
ulation. The downside is that the computational time needed to
generate the same amount of simulations would be multiplied
by the number of cosmological parameters that we are interested
in and, more importantly, this approach would produce a train-
ing set that would not be representative of observations. In fact,
making vary one parameter at a time requires to fix the remain-
ing parameters to some value that, with observations, we do not
know a priori. Therefore, we decided to perform the training
separately for each cosmological parameter and considered the
effect of the variation of the remaining parameters as additional
noise on the features. This means that we trained seven different
machine learning models for each algorithm and used them to
predict the respective cosmological parameters.

We performed a three-fold cross-validation to choose the val-
ues of the hyperparameters that determine the best model for
each method. We evaluated the performance of each model using
the R2 score, defined as:

R2 = (1 − RSS/TSS)

RSS =
∑(

ytrue − ypred

)2

TSS =
∑

(ytrue − 〈ytrue〉)2,

(9)

where RSS is the residual sum of squares, TSS is the total sum
of squares, ytrue are the true labels, and ypred are the predicted
labels. With this definition, the best score is 1 and a constant
model that always predicts the expected value of y, disregarding
the input features, would give a score of 0. The score can also
be negative, because a model can be arbitrarily worse than the
constant model.

All the penalized models (i.e., ridge, kernel ridge, Bayesian
ridge, lasso, and support vector machine) obtained the best score
with a small value of the penalty hyperparameter (α ≤ 10−4)
tending therefore to a simple linear regression model. All the
models employing a kernel (i.e., kernel ridge, support vector
machine, and Gaussian processes) gave the best performance
when using a linear kernel, compared to the other kernels that we
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Table 2. Summary of the three datasets.

Dataset No. of maps
per average

No. of realizations
per cosmology

Total no. of
realizations

Equivalent area

AVG100 100 5 7500 2500
AVG300 300 1 1500 7500
AVG500 500 1 1500 12 500

Notes. Starting from 750 000 independent realizations (500 maps for each of the 1500 cosmologies): in AVG100 each feature is averaged over 100,
corresponding to a total area of 2500 deg2, making five realizations for each cosmology and a total of 7500 realizations; in AVG300 each feature
is averaged over 300, corresponding to a total area of 7500 deg2, making one realization for each cosmology and a total of 1500 realizations; in
AVG500 each feature is averaged over 500, corresponding to a total area of 12 500 deg2, making one realization for each cosmology and a total of
1500 realizations.
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Fig. 7. Top left: covariance matrix obtained using all 29 features for each redshift bin, measured on the 500 maps from the simulation with the
constraints on PC18 parameters, with smoothing θs = 2′. Top right: same as in the top left panel, but for the first redshift bin only. Bottom left:
same as in the top right panel, but measured on 300 maps for smoothing θs = 4′. Bottom right: same as in the top right panel, but measured on 300
maps for smoothing θs = 6′. We notice that within the same simulation, the correlation between features at different redshift bins is quite small due
to the adopted binning, while for a given redshift bin some features appear to be more correlated than others. The correlation between the graph
statistics and the rest of the estimators further decreases with increasing smoothing scale.

tested (i.e., polynomial of degree 2 and 3, RBF, sigmoid, Matern,
and rational quadratic kernels from the Scikit-learn library),
again making the models tend to a linear regression.

In Table 3, we show the score obtained on the test set for the
best model for each method and for each cosmological param-
eter, with the dash indicating a negative score. The results were
obtained using the AVG100 dataset with θs = 2′. As expected,

we can see that all the models tending to the linear model
obtained the same score, with the exception of support vec-
tor machine, which uses a different minimization function com-
pared to linear, ridge, kernel ridge, Bayesian ridge, lasso, and
Gaussian processes. Overall, the best score is obtained with the
linear regression, followed by Gaussian processes and random
forests, while K nearest neighbors, decision tree, and support
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Table 3. R2 scores of the best model on the test set for: linear regression, ridge regression, kernel ridge regression, Bayesian ridge regression, lasso
regression, support vector machine (SVM), K nearest neighbors (KNN), Gaussian processes (GP), decision tree (DT), random forests (RF), and
gradient boosting (GB), for each cosmological parameter.

Linear Ridge k. ridge b. ridge Lasso SVM KNN GP DT RF GB

H0 0.16 0.17 0.17 0.17 0.18 0.16 – 0.16 0.05 0.15 0.16
ωb – – – – – – – – – – –
ΩM 0.61 0.61 0.61 0.61 0.61 – 0.31 0.61 0.19 0.49 0.55
ΩΛ 0.61 0.61 0.61 0.61 0.61 – 0.31 0.60 0.19 0.49 0.55
w0 0.65 0.65 0.65 0.65 0.65 0.57 0.49 0.65 0.42 0.59 0.60
ns 0.16 0.16 0.16 0.16 0.16 – – 0.16 0.02 0.10 0.11
σ8 0.56 0.56 0.56 0.56 0.56 – 0.30 0.56 0.25 0.48 0.49

Notes. The dash represents a negative value of the score. The dataset used is the AVG100 with θs = 2′. All models tending to the linear regression
obtained the same score, with the exception of support vector machine. Overall, the best score is obtained with the linear regression.

vector machine perform progressively poorly. The fact that lin-
ear regression performs better than the other models can be
explained considering the small interval of variation of each cos-
mological parameter. We are looking at a very zoomed-in region
of the hyperspace spanned by the features so that locally the rela-
tion with the cosmological parameters tends to linearity. The
parameter that is best predicted is w0 with a promising score
of 0.65, with ΩM and ΩΛ coming next with a still fairly good
score of 0.61. We obtained a slightly lower score of 0.56 for σ8,
while H0, and ns obtained a much lower scores, andωb cannot be
predicted at all, having only negative scores for all models. The
scores that we obtained confirm the ability of WL to probe cer-
tain parameters more than others as was expected from previous
cosmic shear studies (e.g., Takada & Jain 2004; Munshi et al.
2008) in which ΩM and σ8 were tightly constrained and, using
external CMB measurements of H0, ns, andωb, it was possible to
also improve the constraints on the dark energy equation of state
parameters. Increasing the smoothing scale to θs = {4′, 6′}, we
obtain the same qualitative results in terms of the performance
of one model with respect to another but overall progressively
lower scores. We investigate the effect of the smoothing in more
detail in the next section.

5. Predictions of the cosmological parameters
Considering the results outlined in the previous section, we
decided to retain for the rest of this work only the best-
performing model, which turned out to be linear regression.
Using this model, we want to study the impact that the size of
the training set (i.e., the number of independent realizations), the
S/N of the features (i.e., the number of maps used to average the
features), and the smoothing have on the results. We also want
to determine which is the best predicted parameter and verify if
the results are consistent using the different training sets.

We performed the training and the prediction for each cos-
mological parameter on all three datasets, AVG100, AVG300,
and AVG500 with smoothing θs = 2′ and on the AVG100
and the AVG300 datasets with the additional smoothing scales
θs = {4′, 6′}, in order to compare the results.

In Tables 4–6, we show the R2 score that we obtained in each
case. The dash represents a negative value of the score. In the
following, we only discuss the R2 score because we found that
given our dataset, it is the most meaningful statistic with regard
to evaluating the model performance. In Appendix B, we also
consider two additional statistics, the mean squared error, and
the mean absolute percentage error.

Table 4. R2 score for the three datasets, AVG100, AVG300, and
AVG500 with smoothing scale θs = 2′, for each cosmological
parameter.

AVG100, θs = 2′ AVG300, θs = 2′ AVG500, θs = 2′

H0 0.16 0.09 0.03
ωb – – –
ΩM 0.61 0.64 0.70
ΩΛ 0.61 0.64 0.70
w0 0.65 0.75 0.81
ns 0.16 0.23 0.32
σ8 0.56 0.73 0.80

Notes. The dash represents a negative value of the score. As expected,
increasing the number of maps per simulation improves the perfor-
mance of the algorithm.

Table 5. Same as in Table 4, but for the AVG100 and AVG300 datasets
with smoothing scale θs = 4′.

AVG100, θs = 4′ AVG300, θs = 4′

H0 0.16 –
ωb – –
ΩM 0.55 0.60
ΩΛ 0.55 0.60
w0 0.62 0.68
ns 0.06 –
σ8 0.52 0.64

Table 6. Same as in Table 4, but for the AVG100 and AVG300 datasets
with smoothing scale θs = 6′.

AVG100, θs = 6′ AVG300, θs = 6′

H0 0.18 0.06
ωb – –
ΩM 0.55 0.61
ΩΛ 0.55 0.61
w0 0.60 0.60
ns 0.04 –
σ8 0.47 0.52

Notes. Comparing this results with those in Tables 4 and 5, we observe
that overall the score decreases with increasing smoothing scale.
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Starting from Table 4, we compare the results obtained with
the AVG100, AVG300, and AVG500 datasets with smoothing
θs = 2′. We can see that while H0 and ωb cannot be pre-
dicted with any dataset version, the results for the other parame-
ters improve progressively. The best measured parameter is still
w0 for which we obtained the improved score of 0.75 using
the AVG300 dataset, and the even better score of 0.81 with
the AVG500 dataset, corresponding to a score improvement of
∼25%. The two parameters which obtained the next best score
with the AVG100 dataset, ΩM and ΩΛ, both got a smaller but still
exhibited a consistent improvement of ∼15% in score reaching
a value of 0.64 and 0.70, with the AVG300 and the AVG500
datasets respectively. The parameters that obtained the largest
score improvement are σ8 which went from a value of 0.56 for
the AVG100 dataset, to 0.73 for the AVG300 dataset, reaching
the very good score of 0.80 for the AVG500 dataset with a total
score improvement of ∼43%, making it the second best pre-
dicted parameter, and ns which improved its score of ∼100%,
going from 0.16 to 0.23 for the AVG300 dataset, and 0.32 for
the AVG500 dataset.

Moving on to Table 5, we can see the results obtained
from the AVG100 and the AVG300 datasets with smoothing
θs = 4′ and observe an overall decrease in score. Comparing
the AVG100 results with θs = 2′ and θs = 4′, we notice that
the most affected parameters are ΩM and ΩΛ, which got their
score degraded of ∼10%. On the other hand, the same compari-
son for the AVG300 datasets shows that we obtained the greatest
decrease in score for w0 and σ8, corresponding to ∼10% and
∼14%, respectively. We also remark that ns cannot be predicted
with θs = 4′ with neither the AVG100 nor the AVG300 dataset.

In Table 6, we show the results obtained from the AVG100
and the AVG300 datasets with smoothing θs = 6′. We notice that
while the scores of ΩM and ΩΛ are stable compared to the results
presented in Table 5, the score of w0 and σ8 further decreased of
∼10−20%. Again, ns cannot be measured with this smoothing
scale.

Considering the behavior of the score for the different cos-
mological parameters that we observed with increasing smooth-
ing, we can conclude that ΩM and ΩΛ are less affected by the
degradation of the spatial resolution and of the information that
we can measure on the shear maps compared to w0, σ8, and ns.
In fact, as we show in Sect. 6, the features that most contribute
to the measurement of ΩM and ΩΛ are the graph statistics, which
turned out to be much less sensitive to the smoothing scale com-
pared to the other estimators. We also remark that the decoupling
between the graph statistics estimators and the HOM, MFs, and
Betti numbers, which we observed in the correlation matrix pre-
sented in Fig. 7 for increasing smoothing, did not help the algo-
rithm to extract additional information, having probably been
counterbalanced by the increased correlation inside the set of
graph statistics estimators.

Figure 8 shows the true labels versus the predicted labels, for
each cosmological parameter, using the AVG100, the AVG300,
and the AVG500 datasets, with smoothing θs = 2′. The dots rep-
resent individual predictions while the shaded areas correspond
to the 1σ region, obtained dividing the test sample into 10 bins
of the true label values and calculating the mean and standard
deviation of the predictions inside each bin. The more the col-
ored region for each given parameter aligns along the dashed
black diagonal, the better will be the prediction obtained with
such model. The black dots are the values of the constraints
on PC18 parameters with the respective error, reported also on
the y-axis as reference. We can see that the alignment along the
diagonal improves passing from the blue, to the red, and to the

orange regions, corresponding to the AVG100, the AVG300, and
the AVG500 datasets, and that we obtain the best results for the
ΩM , ΩΛ, w0, and σ8 parameters, confirming what is shown in
Tables 4–6.

In the top-left panel of Fig. 9, we show the learning curve for
the w0 parameter, which corresponds to the score as a function of
the training set size (as percentage values of the complete dataset
size, reported in Table 2), for the training and the test set of the
AVG500 dataset, with smoothing θs = 2′. We performed three-
fold cross-validation and plotted the mean values, with the error
bars corresponding to the standard deviation of the different real-
izations. We see that as the training set size increases, the train
score decreases and the test score increases. For example, using
∼20% of the entire dataset for training and the remaining ∼80%
for testing results in a training score of >0.9 and in a test score of
∼0.5. When the training score is much higher than the test score,
we are in a situation of overfitting, meaning that the model per-
forms almost perfectly on the data that it has seen before but
very poorly on new data. Around a training set size of 50% the
two curves start to flatten and come out of the overfitting region.
We can verify that for our default choice of a training set size of
&80, our model does not overfit the data because the difference
between the training and the test score is small.

In the top-right panel of Fig. 9, we show the learning curve
for the w0 parameter for the test set of the three datasets, with
smoothing θs = 2′. We notice that the blue curve correspond-
ing to the AVG100 dataset flattens out at a training set size of
∼50% and a test score of ∼0.6. The red and the orange curves,
representing the AVG300 and the AVG500 datasets, respectively,
exhibit a different behavior. We can see that for a training set size
of <3%, we obtain low or negative scores, while for a training
set size >30% the test set curves show an increasing score that
reaches values of ∼0.7 for the AVG300 dataset and ∼0.8 for the
AVG500 dataset, yet they do not reach a plateau value. This is
due to the smaller size of the AVG300 and the AVG500 datasets,
which is one fifth of the AVG100 dataset. We can conclude that
the number of maps used to average the features in order to
increase the S/N of the measurements has a sizable impact on
the results and it is proportional to the R2 score obtained. On
the other hand, while increasing the dataset size for the AVG100
version would not change the results; for the AVG300 and the
AVG500, we can envisage a margin of improvement of a few
percent.

In the bottom-left and bottom-right panels of Fig. 9, we show
again the learning curve for w0 and ΩM , respectively, but this
time we compare the results obtained on the test set using the
AVG300 dataset with smoothing θs = {2′, 4′, 6′}. Looking at the
plot for w0, we notice the same increasing trend for the three
curves as for the AVG300 and AVG500 curves in the top panel
for smoothing θs = 2′. Confirming the results shown in Tables 5
and 6, the red and orange curves reach a lower score compared to
the blue curve. Even if the margin of improvement of a few per-
cent with increasing dataset size is apparent for all three cases,
we remark that the plateau value will be lower for increasing
smoothing. From the same analysis for the ΩM plot, we observe
that the curves corresponding to smoothing θs = {4′, 6′} are more
or less superposed and that they reach a score value very close to
the blue curve. This consolidates the conclusions that we drew
when comparing the results of Tables 5 and 6 for the different
cosmological parameters regarding the higher sensitivity of w0,
σ8, and ns to some particular bits of information contained in
the shear maps that is degraded by the smoothing, as compared
to ΩM and ΩΛ.
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Fig. 8. Performance on the test set of the linear regression model for each cosmological parameter, and for the three datasets, AVG100, AVG300,
and AVG500, with θs = 2′. The dots represent individual predictions. The shaded regions delimit the 1 σ interval obtained dividing the test sample
into 10 bins of the true label values and calculating the mean and standard deviation of the predictions. We obtain the best predictions with the
AVG500 dataset and for the ΩM , ΩΛ, w0, and σ8 parameters.

In summary, we conclude that overall the model performance
increases as a function of the S/N of the features (or the number
of maps used for the averages, i.e., the total area) and decreases
as a function of the smoothing scale.

6. Feature importance

Once we obtained the predictions of the cosmological parame-
ters, we wanted to investigate their relation with the higher order
estimators used to obtain them. In order to estimate which fea-
tures contribute more to the measurement of each cosmological
parameter, we repeated the training using random subsets of the

features in the AVG500 dataset, with smoothing θs = 2′. We
then assigned a value to each feature summing the score divided
by number of features in the subset, for each random realiza-
tion, increasing the number of iterations until convergence, for
a total of 800 000 realizations. We used random subsets with
sizes between 3 and 15 features. We then normalized the feature
contributions so that they assume a value between 0 and 1.

In Fig. 10, we show a color map that indicates the impor-
tance of each feature, that is, the contribution of each feature
to the final score, for each cosmological parameter. We remark
that as the feature contributions are normalized separately for
each color map, they offer a measure of the importance of each
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Fig. 9. Top left: learning curve for the
train and the test set of the AVG500
dataset, with smoothing θs = 2′, for the
w0 parameter. Top right: learning curve
for the test set of the AVG100, AVG300,
and AVG500 datasets, with smoothing
θs = 2′, for the w0 parameter. Bottom
left: learning curve for the test set of the
AVG300 dataset, with smoothing θs =
{2′, 4′, 6′}, for the w0 parameter. Bottom
right: same as in the middle panel but
for the ΩM parameter. In all cases, we
performed a three-fold cross-validation.
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Fig. 10. Normalized feature importance for each cosmological parameter. Graph statistics have a fundamental importance for the measurement
of ΩM and ΩΛ, as do the MFs for ns, and the HOM for σ8, while w0 slightly favors HOM and MFs. Overall the information measured from the
different estimators increases with decreasing redshift. From left to right, the R2 scores are {0.03,−, 0.70, 0.70, 0.81, 0.32, 0.80}, as reported in
Table 4.

feature compared to the others, in the context of the prediction
of a given cosmological parameter. When comparing the color
maps between them, we have to keep in mind the R2 scores for
the AVG500 dataset, which are reported in Table 4 for each cos-
mological parameter. Color maps for parameters with low R2

score should be taken with caution, which is the case for H0,
ωb, and ns. We nevertheless report them for completeness.

It turns out that the color maps for H0, ΩM , and ΩΛ show
the same qualitative features. For all of them, the HOM, the
zeroth-order MF V0, and the Betti numbers give a negligible
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contribution to the final score, which is dominated by the other
two MFs and the (τ,C, α, p) graph statistics. Low-to-medium
redshift bins are preferred with the bin at z = 0.9 for graph statis-
tics playing a major role in determining ΩM and ΩΛ.

It is, on the contrary, hard to interpret the color map for ωb
with its almost random distribution of colors. This is, however,
not surprising given the negative score in every version of the
feature dataset used. Again, this could have been anticipated
since ωb is mainly responsible for modulating the BAO wiggles
in the matter power spectrum which are smoothed out by the
lensing kernel. As such, WL is not sensible to this parameter no
matter which estimators (second or higher order) that we rely on.

The color map for w0 points toward the HOM and MFS as
the main contributors with no particular preference for a red-
shift bin, while graph statistics and Betti numbers follow with the
medium-to-high redshift range contributing the most. The need
to use all the redshift bins (although with different estimators)
is likely related to the need to follow the growth of structures
whose evolution is determined by the w0 value. Which estimator
is best suited to this depends on the level of non-Gaussianity. At
low redshift, the nonlinear collapse of structures enhances the
non-Gaussianity of the field which can be quantified by the easy
to measure HOM an MFs. On the contrary, at larger z, one is
approaching the linear regime hence the need for more advanced
tools to spot the residual non-Gaussianity.

Moving to ns, the color map points at V1, V2, and β1 at low
redshift as leading contributor with β0 and p giving the resid-
ual contribution. It is important to remember, however, that ns is
poorly determined overall so that the color map is less informa-
tive. Finally, the color map for σ8 shows some similarity with
the one for w0, the main contribution coming from the HOM,
followed by the MFs and the p parameter. However, the impor-
tance of the parameters now increases as z decreases, with the
first redshift bin bringing the majority of the information.

Excluding ωb for its erratic behavior from the rest of this dis-
cussion, we can observe that overall the information measured
from the different estimators increases with decreasing redshift
(dramatically so for ns and σ8), with the exception of w0. While
for ΩM , and ΩΛ the peak is reached at z = 0.9, the most con-
tributing redshift bin for ns and σ8 is clearly z = 0.6. On the
other hand, for w0 the importance appears to be more uniform in
redshift, with a slight preference for z = 1.2 − 1.5.

While MFs seems to be in some measure sensitive to all the
cosmological parameters, generally, the Betti numbers appear to
contribute the least, with a small exception at some thresholds
for ns and σ8. Graph statistics have a fundamental importance
for the measurement of ΩM and ΩΛ, as do the MFs for ns, and
the HOM for σ8. Once again, w0 shows a more uniform behavior
also in terms of estimators contribution, slightly favoring HOM
and MFs. This explains to some extent the decrease in score for
the different cosmological parameters with increasing smoothing
scale. As we discuss in Sect. 5, the score of ΩM and ΩΛ is more
stable as a function of the smoothing, compared to the score of
w0, σ8, and ns, and this behavior is reflected by the most impor-
tant features for each parameter. In fact, while the HOM, MFs,
and Betti numbers change with the smoothing of a factor ∼40,
∼30, and ∼10, respectively, the graph statistics only vary of less
than ∼15%.

The feature importance can also be interpreted considering
the physical meaning of the different estimators. The measure-
ment of ΩM , and ΩΛ parameters is mainly due to τ, C, α, and p,
making these parameters sensitive to overall degree of connec-
tivity or clustering measured on the shear maps. The ns parame-
ter is linked to the information that is contained in the derivatives

of the shear field, through V1 and V2, which are in turn connected
to the matter power spectrum and bispectrum, while in addition
to this, σ8 is also related to a greater extent to the variance of
the shear field through V0 and to the three- and fourth-point cor-
relation functions, through k3 and k4. Finally, all of the above
contributes to the measurement of w0.

7. Improving the methodology

The main aim of this paper is to present a new methodology
applicable to WL higher order statistics starting from the shear
field without the need for convergence reconstruction or for a
theoretical formulation of the relation between the estimators
used and the underlying cosmology. The interesting results dis-
cussed above are a good reason to reconsider the limitations of
this first step in order to understand how to make the method still
more appealing.

One point worth improving is related to the realism of the
training set of simulations. We have indeed approximated the
shear field as lognormal and used FLASK to quickly generate
a large set of maps varying the cosmological parameters. Both
these aspects can be ameliorated. First, we note that the require-
ment that the lognormal approximation is a good representa-
tion of the shear field has forced us to consider only bins with
z > 0.5, thus cutting out the low redshift regime, which is the
one dominated by the dark energy we want to investigate. Since
we only considered models with constant equation of state, it
has not been of paramount importance to investigate where the
transition from accelerated to decelerated expansion takes place.
Adding wa to the list of parameters would probably call for the
inclusion of lower redshift bins. Also the fact that FLASK does
not make any assumption on the shear higher order moments,
making them unreliable for realistic simulations, implies that
some of the estimators that we considered could lead to dif-
ferent results on actual observations. Moving beyond FLASK is
therefore be necessary in order to create a training set which is
as similar as possible to the underlying true universe. For this
same reason, it is of fundamental importance to adopt the cor-
rect source redshift distribution and account for the errors due to
photo-z. We note that both these aspects are survey-dependent
so that a reliable training exercise can be obtained only with
a good knowledge of the survey specifics. Moreover, intrinsic
alignment, which in the weak regime linearly adds to the lensing
shear, should also be taken into account. Even if intrinsic align-
ment is a local effect that should not alter the global topology of
the maps and it is subdominant at high redshift, it increases the
correlation among close redshift bins and therefore might also
increase the correlation among features at different z, decreasing
their constraining power. It also represents an additional source
of noise that should be modeled and included in the simulations
(e.g., Bruderer et al. 2016; Hildebrandt et al. 2017; Wei et al.
2018; Ghosh et al. 2020). Another missing ingredient are bary-
onic effects, which affects the cosmic shear signal at medium
angular scales, where the total matter power spectrum is sub-
jected to a suppression of power up to ∼30%, and at very small
scales, where the power is enhanced because of efficient baryon
cooling and star formation in the halo centers. These effects
have been modeled both numerically and analytically but dif-
ferent implementations lead to different results. While the gen-
eral trend is reproduced in most simulations, there is still no
agreement on the quantitative level so that more work need to
be done to reach a self-consistent treatment of these processes
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in the cosmological context (e.g., Harnois-Déraps et al. 2015;
Chisari et al. 2018; Euclid Collaboration 2019b; Kacprzak et al.
2019; Schneider et al. 2019, 2020a,b).

Another aspect worth improving is the range which the cos-
mological parameters are varied over to generate the simulated
maps. Our initial goal was to compare the constraints that can
be obtained from WL high-order statistics with those from the
joint use of CMB and other probes reported in the constraints on
PC18. This motivated us to choose the constraints on PC18 val-
ues as reference and the corresponding 1σ errors as width of the
Gaussian distribution that we used to randomly extract the sim-
ulations parameters. Machine learning methods can not really
assign an error to the estimate of a parameter so that we decided
to quantify the uncertainty by analyzing the statistics of the test
results. As shown in Fig. 8, the constraints we get in this way
are comparable to those in the constraints on PC18 suggesting
that using high-order statistics is as efficient as the CMB joint
with other probes. However, in order to strengthen this promis-
ing result, it would be interesting to probe a much wider range
in the parameter hyperspace to see whether the preference for
multilinear regression we have found is genuine or an artifact of
having used a so small range that all deviations from the fiducial
can be parameterized through linear relations. It is entirely possi-
ble, indeed, that in this case, more sophisticated machine learn-
ing methods would stand out as the preferred ones and would
eventually improve the constraints.

A final point to discuss concerns the precision of the esti-
mators measurements. As we have seen, higher scores ask for
higher precision which can be obtained by averaging over a large
number of maps. Ideally, one could generate as many maps as
needed from the same initial simulation, but this is no more the
case if one wants to rely on real maps. Indeed, for a Euclid
like survey, cutting the total 15 000 sq deg survey area leads to
∼300 maps which must be taken as an upper limit preventing to
increase precision through averagSing over an ad libitum num-
ber of maps. Luckily, Fig. 9 shows that, even keeping fixed the
number of maps to ∼300, we can still improve our predictions
while increasing the dataset size. For this project, we were able
to employ only ∼200 000 hours of CPU time. The use of few
million hours of computation time on more powerful hardware
(such as a national supercomputer) could allow us to build a
dataset 10−100 times larger. As an alternative, it would be fea-
sible to rely on a decent number of realistic N-body simulations
to cut more maps investing the same amount of computational
resources. Such a strategy, however, would ask for a prelimi-
nary narrowing of the parameter space so that additional probes
should be used to avoid wasting time in exploring models that
have already failed in fitting other data.

Therefore, before this method can be applied to observations
there are two main technical aspects that need to be addressed.
First of all, the simulations must be realistic, including all the
effects that we have been discussed above, and more specifi-
cally, they must be as close as possible to the actual data that
we want to use in terms of survey characteristics such as source
redshift distribution, noise, photo-z errors, and mask. The sur-
vey mask in particular, would determine the available area and
the maximum number of maps that can be generated. Second,
such simulations would require a significant amount of com-
putation time so that the definition and the sampling of the
cosmological parameter space must be optimized, for instance,
with Latin hypercube sampling (McKay et al. 1979; Tang 1993;
Euclid Collaboration 2019b).

8. Conclusions

The search for new statistical methods capable of shedding fur-
ther light on the nature and nurture of dark energy is becom-
ing more and more important as the promise of unprecedented
high quality data from Stage IV lensing surveys (such as Euclid)
moves towards realistic applications. Motivated by this consider-
ation, we have here investigated a machine learning approach to
higher-order statistics of the shear field. Going beyond second-
order allows us to better probe the non-Gaussianity imprinted
on the shear field by the nonlinear collapse of structures,
thereby allowing us to alleviate degeneracy among cosmological
parameters.

Our proposed method is innovative in three aspects. First,
we directly work on the shear field as reconstructed from noisy
galaxy ellipticity field which is the only quantity that is actually
measured from images. This makes it possible to circumvent the
non-trivial problem of map making, that is, the need to recon-
struct the convergence field from noisy shear data. As a second
novelty, we added some graph statistics measurements to the list
of the estimators which (to the best of our knowledge) have never
been used before in the context of WL studies and, in particular,
on shear maps. The third novel aspect of the proposed method-
ology is the decision to use machine learning techniques to infer
the almost complete set cosmological parameters solely from the
shear higher-order estimators. We were motivated by the con-
sideration that a theoretical formalism to compute the adopted
quantities is available only for some of them and, in any case,
based on a number of approximations and hypotheses that lim-
its their application and may run the risk of introducing uncon-
trolled bias. The use of machine learning, on the contrary, is free
of any assumption, flexible enough to include as many estima-
tors as we want, and as reliable as the training set. While the
application of machine learning for the prediction of cosmologi-
cal parameters in the context of WL is not a new concept per se,
our work diverges from the rest of the literature, as previous WL
machine learning studies have been limited to the use of conver-
gence maps, to the variation of only two parameters (ΩM ,σ8) in
a wide range sampled in big steps, and to the training of neural
networks. To our knowledge, ours is the first work in which sev-
eral machine learning methods were applied to noisy ellipticity
maps, while more than two cosmological parameters were made
vary and the contribution of each estimator to the measurements
of each parameter was investigated.

Using CLASS and FLASK, we produced 500 simulated noisy
ellipticity maps, at five redshift bins, for 1500 sets of cosmolog-
ical parameters, making each parameter vary randomly within
1σ, and 2σ for a smaller sample, from the values measured by
the constraints on PC18. On each map, we measured the HOM,
MFs, Betti numbers, and graph statistics higher order estima-
tors at different thresholds for a total of 29 features per redshift
bin. We created several datasets to investigate how the size, the
accuracy, and the smoothing of the training sample affects the
results obtained on the test set. In the AVG100 dataset, we aver-
aged each feature over 100 maps (corresponding to a total area
of 2500 deg2, obtaining five independent realizations for cosmol-
ogy and a total of 7500 independent realizations) and we applied
Gaussian smoothing with θs = {2′, 4′, 6′}. Both the AVG300
and AVG500 datasets contain one independent realizations for
cosmology and a total of 1500 independent realizations, but in
the first dataset we averaged each feature over 300 maps (cor-
responding to a total area of 7500 deg2), with smoothing scales
θs = {2′, 4′, 6′}, while in the second the average was performed
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using 500 maps (corresponding to a total area of 12 500 deg2),
for smoothing θs = 2′ only.

We performed the model selection comparing different
machine learning algorithms and found out that the best perform-
ing model is also the simplest one, that is, the linear regression.
As we expected, the score decreases increasing the smoothing
scale, and more severely so for the w0, σ8, and ns cosmolog-
ical parameters, which appear to be more affected by the loss
of information due to the smoothing, compared to ΩM and ΩΛ.
We observed that the precision of the feature measurements (i.e.,
the S/N) has to be favored over the number of independent real-
izations per cosmology in the training dataset because the score
generally increases with the number of maps used to perform the
averages, namely, with the total survey area. In fact, we obtained
a better performance with the AVG500 dataset, which contains
only one realization per cosmology but a higher feature S/N,
compared to the AVG100 dataset, which contains five realiza-
tions per cosmology but lower feature S/N.

We found the best scores for the AVG500 dataset with
smoothing θs = 2′. We were able to accurately predict w0 and σ8
with a score R2 ∼ 0.8, followed by ΩM and ΩΛ with R2 ∼ 0.7,
and ns with R2 ∼ 0.3. The remaining parameters, H0 and ωb,
could not be measured with our approach. On one hand, this
confirms the greatest sensitivity of WL to certain cosmological
parameters, as expected from previous cosmic shear studies. On
the other hand, considering the lack of external constraints on
H0, ωb, and ns, it could be surprising to an extent that one of the
best measured parameters is indeed w0, even if this result could
probably be due in part to the fact that we kept fixed wa, the
parameter that controls the evolution of the dark energy equation
of state. The other interesting aspect of this work consists in the
investigation of the importance of each feature in the measure-
ment of the different cosmological parameters. The new estima-
tors that we introduced, the graph statistics, resulted to be very
promising, contributing effectively to the prediction of all param-
eters (remarkably so for ΩM and ΩΛ), along with MFs that con-
firmed their utility even when applied to shear maps. The HOM
are important for the measurement of w0 and especially of σ8,
while the Betti numbers contribute less compared to the other
estimators. In terms of redshift, the majority of the information
comes for low-medium z for ΩM and ΩΛ, low z for ns and σ8,
and from all bins but with a peak at medium-high z for w0.

We also discussed the limitations of this work, which consist
mainly of the approximations made on the simulations side, the
reduced redshift and cosmological parameters range used, and
the limited dataset size that we were able to produce. This work
was performed using only a couple hundred thousands of com-
putation hours but with additional resources it would be possible
to increase the size of the dataset and to explore a larger portion
of the cosmological parameters hyperspace from which poten-
tially more complex relations between the features and the labels
could emerge. On the other hand, such resources could also be
invested in the production of more realistic simulations.

Finally, we want to stress the potential of this approach in
terms of its flexibility. The fact that we do not need to develop
a theoretical treatment of the statistics that we want to use in
order to express their relation to cosmology and their expected
value with regard to the universe we are considering opens the
way to exploring different interesting estimators and even to cre-
ate new ones. This method allows us to easily introduce new
features and to study their relevance in the measurement of a
specific cosmological parameter, along with the particular red-
shift range that we need to probe to access the majority of the
information. Moreover, this regression model could be turned

into a classification model that we could employ to distinguish
between alternative cosmologies, such as f (R) modified grav-
ity models or really any model that differs from the standard
ΛCDM model. We conclude that in considering the results that
we obtained with this first and somehow rough attempt at the
application of this method, we believe that it is worthwhile
to take the investigation of this promising approach further in
the context of higher-order lensing statistics analyses in future
works.
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Appendix A: Models description

Here, we briefly overview the methods that we use and compare
in Sect. 4. We recall that we used the scikit-learn (Pedregosa
et al. 2011) library implementation of all the listed algorithms.
We refer to comprehensive machine learning books for the
theoretical background (e.g., Bishop 2006; Hastie et al. 2009;
Murphy 2012) and to the Python Scikit-learn library page
on regression problems2 for the technical description of each
method. When possible, we will refer to more specific resources
for the details on the particular algorithm implementation that
we used, contained in the library.

– Linear regression: Linear model with as many coefficients
as the number of features. It aims to minimize the residual sum
of squares between the true labels and the labels predicted by
the linear approximation. Calling X the feature matrix, w the
coefficient vector, and y the labels, we want to solve a problem
of the form:

min
w
‖X w − y‖22.

– Ridge regression: Penalized linear model with as many
coefficients as the number of features. It adds a L2-norm penalty
term, which controls the size of the coefficients, to the residual
sum of squares that has to be minimized. The penalty term is
controlled by a hyperparameter α. This corresponds to the fol-
lowing solution of the problem (see Rifkin & Lippert 2007, for
theoretical and implementation details):

min
w
‖X w − y‖22 + α‖w‖22.

– Kernel ridge regression: Ridge regression with the applica-
tion of a kernel, i.e., a function k(x, x′) : X × X → R that mea-
sures similarity between any two points x, x′ of the feature space
X. It allows for the learning of a linear function in the space
induced by the kernel that corresponds to a nonlinear function in
the original space. The model is determined by the kernel choice
and by the regularization hyperparameter α.

– Bayesian ridge regression: Probabilistic regression model
with as many coefficients as the number of features. It imposes a
prior over the coefficients w in the form of a spherical Gaussian

p(w|λ) = N(w|0, λ−1Ip),

and the output is assumed to be a Gaussian distribution around
X w,

p(y|X,w, α) = N(y|X w, α),

where α and λ are two regularization hyperparameters, which
control the precision of the estimate and are computed from the
data with the assumption of uninformative priors. The aim is to
maximize the log marginal likelihood of the model.

– Lasso regression: Penalized linear model with sparse coef-
ficients. It adds a L1-norm penalty term, which reduces the num-
ber of features used in the regression, to the residual sum of
squares that has to be minimized. The penalty term is controlled
by a hyperparameter α. This corresponds to the solution of the
problem (see Tibshirani et al. 2010 and Kim et al. 2008 for the-
oretical and implementation details):

min
w
‖X w − y‖22 + α‖w‖1.

2 https://scikit-learn.org/stable/supervised_
learning.html#supervised-learning

– Support vector machine: Similar to kernel ridge regression,
but instead of the squared error function it uses the ε-insensitive
error function which learns a sparse model, ignoring errors that
are smaller than ε. This corresponds to the solution of the prob-
lem:

min
w

Vε(X w − y) + α‖w‖22,

with Vε the ε-insensitive error function,

Vε(r) =


0, |r| ≤ ε

|r| − ε. otherwise

The model is therefore given by the choice of the kernel, the
ε hyperparameter, and the regularization hyperparameter. See
Smola & Schölkopf (2004) for a detailed description of support
vector machine regression theory and algorithms.

– K nearest neighbors: The label corresponding to the set
of input features is given by the mean of the label values of
the k nearest neighbors points in the feature space. The num-
ber of neighbors to consider is a hyperparameter of the model
and different metrics can be used to calculate the distance
between points in the feature space. We used the default stan-
dard Euclidean distance. See Bentley (1975) for the K-D Tree
algorithm and Omohundro (1989) for the Ball Tree algorithm.

– Gaussian processes: Given the features xi and the corre-
sponding label yi, we want to find the function:

yi = f (xi) + ε,

where ε is the noise, assumed to be GaussianN(0, σn). We need
then to infer a distribution over functions given the data p( f |X, y)
and from that make predictions on test points (x∗, y∗) calculat-
ing the mean of the conditional distribution p( f∗|x∗,X, y). We
can use Gaussian Processes to solve this problem. A Gaussian
Process is a collection of random variables, any finite subset of
which have a joint Gaussian distribution, and it is completely
specified by its mean function and its covariance function. In the
noisy case, given a kernel, we can write the covariance of the
prior distribution over the target functions f = f (x) as

cov( f (xi), f (xj)) = k(xi, xj) + σ2
nδi j,

where k is a kernel function. In order to model the predictive dis-
tribution, we can apply the Bayes theorem and use the prior to
condition the training data to model the joint distribution p(f, f∗)
of the training functions f and the functions in test points f∗,
which, by definition of Gaussian processes, will be a joint Gaus-
sian(

f
f∗

)
= N ∼

(
0,

(
K(X,X) + σ2

nI K(X,X∗)
K(X∗,X) K(X∗,X∗)

) )
,

where K is the covariance matrix and Ki j = k(xi, xj). From
p(f, f∗) we can then calculate the posterior predictive distribution
p( f∗|x∗,X, y). The model is defined by the kernel choice. The
kernel hyperparameters are fitted from the data. See Rasmussen
& Williams (2006) for a theoretical overview and Algorithm 2.1
therein for the implementation details.

– Decision tree: Non-parametric method that creates a model
applying a series of binary decision rules to the features, through
as a series of nodes. At each node, the sample is divided in two
subsamples using the best split, i.e., the split that corresponds
to the binary decision that minimizes the mean squared error

A123, page 18 of 20

https://scikit-learn.org/stable/supervised_learning.html#supervised-learning
https://scikit-learn.org/stable/supervised_learning.html#supervised-learning


C. Parroni et al.: Higher-order statistics of shear field via a machine learning approach

between the true labels and the predicted labels, among all pos-
sible decisions (one for each feature). Each subsample is in turn
split in two and the procedure is iterated until the terminal nodes,
called leaf nodes, are reached and a prediction is given. The
structure created in this way is called the tree. The maximum
depth of the tree is a hyperparameter of the model. See Breiman
et al. (1984) for a description of classification and regression tree
(CART) algorithms.

– Random forests: An ensemble of decision trees. Each tree
is built from a bootstrap sample of the training data. The best
split at each node of the tree is determined using a random sub-
set of the input features. The prediction is given by averaging the
results of all the trees in the ensemble. Among others, the num-
ber of trees, the maximum depth of each tree, and the number
of features used to choose the split are hyperparameters of the
model. See Breiman (2001) for a detailed description of random
forests theory and implementation.

– Gradient boosting: Similar to random forests, but at each
iteration the current tree is trained using the residual error of the
previous tree, in order to refine the prediction of the labels. The
contribution of each tree is controlled by a learning rate hyperpa-
rameter. See Fawcett (2001) and Friedman (2002) for algorithm
details.

Appendix B: MSE and MAPE results
In Sect. 5, we present and discuss the results that we obtained
performing the training and the prediction for each cosmolog-
ical parameter on all three datasets, AVG100, AVG300, and
AVG500, with smoothing θs = 2′ and on the AVG100 and
the AVG300 datasets with the additional smoothing scales θs =
{4′, 6′}, using the R2 score as the only metric to evaluate the dif-
ferent model performances.

Here, we expand on those results, focusing on the analysis of
the R2 score values in conjunction with the mean squared error
(MSE) and with the mean absolute percentage error (MAPE),
which are defined as

MSE =
1
N

∑(
ypred − ytrue

)2

MAPE =
1
N

∑∣∣∣∣∣∣∣∣
(
ypred − ytrue

)
ytrue

∣∣∣∣∣∣∣∣ × 100,
(B.1)

where ytrue are the true labels, ypred are the predicted labels, and
N is the total number of data points (i.e., independent realiza-
tions in the dataset).

In Tables B.1–B.3, we add to the scores already given in
Sect. 5 (in Tables 4–6) the MSE, and the MAPE that we obtained
in each case. The dash in the R2 column represents a negative
value of the score, we do not report the values of the MSE and
MAPE in those cases. We notice that parameters that have a low-
medium score (R2 < 0.5), as H0, ns, and σ8 in some instances
in Tables B.1–B.3 present a low value of the MSE and/or of the
MAPE. This is somewhat counter-intuitive because we would
expect high MSE and MAPE for low scores.

We can explain this result by rewriting Eq. (9) using the fol-
lowing relation:

TSS = RSS + ESS

ESS =
∑(

ypred − 〈ytrue〉
)2
,

(B.2)

where RSS is the residual sum of squares, TSS is the total sum
of squares, as defined in Eq. (9), and ESS is the explained sum
of squares or the sum of squares due to regression. Equation (9)
then becomes

R2 = 1 −
RSS
TSS

=
ESS
TSS

, (B.3)

which can be interpreted as the total variance explained by the
model over the total variance or the proportion of the variance
in the true label values that is predictable from the features. In
other words, the ESS and the TSS measure how much variation
there is in the predicted label values and in the true label values,
respectively.

This means that a low R2 score corresponds to ESS � TSS
so that the model will produce predicted values that are too close
to the mean value of the true label distribution compared to the
actual variance of the true label distribution. An example is a
constant or almost constant model that always predicts the mean
value of the true label distribution. However, if at the same time
the true label distribution has a low TSS value, that is, low vari-
ance (as is the case when considering the small range of variation
of the cosmological parameters in the simulations), this model
could lead to low MSE and MAPE because, on average, the pre-
dicted labels will be close to the true labels, being both concen-
trated around the mean. This means that the MSE and MAPE
alone have no real meaning in evaluating the performance of
a model and have to be considered in conjunction with the R2

score.
We can look at Fig. 8 to better understand this concept. As

explained in Sect. 5, the true labels are shown versus the pre-
dicted labels in Fig. 8 for each cosmological parameter, using the
AVG100, the AVG300, and the AVG500 datasets, with smooth-
ing θs = 2′. The dots represent individual predictions while the
shaded areas correspond to the 1σ region, obtained dividing the
test sample into ten bins of the true label values and calculat-
ing the mean and standard deviation of the predictions inside
each bin. The more the colored region for each given param-
eter aligns along the dashed black diagonal, the better will be
the prediction obtained with such model. The black dots are the
values of the constraints on PC18 parameters with the respective
error, reported also on the y-axis as reference. We can see that H0
and ωb in all three versions, and ns in the AVG100 version and
slightly in the AVG300 version, fall in the situation described
above. The predicted model, in fact, is represented by a more or
less horizontal region and the individual predictions correspond
to a cloud of dots concentrated around the mean value. This
results in a bad model that is not able to predict the true label
values over the entire range considered, especially for extreme
values, which explains the low R2 score. Because the cloud of
individual predictions is centered around the mean with a small
scatter, the MSE and MAPE have also a low value.

The remaining parameters show an almost perfect alignment
along the diagonal, especially for the AVG500 version, confirm-
ing the good R2 score results presented in Table B.1.
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Table B.1. R2 score, MSE, and MAPE for the three datasets, AVG100, AVG300, and AVG500 with smoothing scale θs = 2′, for each cosmological
parameter.

AVG100, θs = 2′ AVG300, θs = 2′ AVG500, θs = 2′

R2 MSE MAPE R2 MSE MAPE R2 MSE MAPE
H0 0.16 0.30 0.6% 0.09 0.32 0.6% 0.03 0.34 0.7%
ωb – – – – – – – – –
ΩM 0.61 2.30 × 10−5 1.2% 0.64 2.29 × 10−5 1.2% 0.70 1.89 × 10−5 1.1%
ΩΛ 0.61 2.30 × 10−5 0.5% 0.64 2.29 × 10−5 0.5% 0.70 1.89 × 10−5 0.5%
w0 0.65 7.34 × 10−4 2.0% 0.75 4.57 × 10−4 1.6% 0.81 3.51 × 10−4 1.5%
ns 0.16 2.22 × 10−5 0.4% 0.23 1.78 × 10−5 0.3% 0.32 1.58 × 10−5 0.3%
σ8 0.56 2.74 × 10−5 0.5% 0.73 1.68 × 10−5 0.4% 0.80 1.25 × 10−5 0.4%

Notes. The dash in the R2 column represents a negative value of the score, we do not report the values of the MSE and MAPE in those cases. As
expected, increasing the number of maps per simulation improves the performance of the algorithm.

Table B.2. Same as in Table 4, but for the AVG100 and AVG300 datasets with smoothing scale θs = 4′.

AVG100, θs = 4′ AVG300, θs = 4′

R2 MSE MAPE R2 MSE MAPE
H0 0.16 0.35 0.7% – – –
ωb – – – – – –
ΩM 0.55 2.57 × 10−5 1.2% 0.60 2.51 × 10−5 1.2%
ΩΛ 0.55 2.57 × 10−5 0.6% 0.60 2.51 × 10−5 0.5%
w0 0.62 8.53 × 10−4 2.3% 0.68 5.82 × 10−4 1.9%
ns 0.06 2.60 × 10−5 0.4% – – –
σ8 0.52 3.17 × 10−5 0.5% 0.64 2.27 × 10−5 0.5%

Table B.3. Same as in Table 4 but for the AVG100 and AVG300 datasets with smoothing scale θs = 6′.

AVG100, θs = 6′ AVG300, θs = 6′

R2 MSE MAPE R2 MSE MAPE
H0 0.18 0.34 0.7% 0.06 0.33 0.7%
ωb – – – – – –
ΩM 0.55 2.57 × 10−5 1.3% 0.61 2.46 × 10−5 1.2%
ΩΛ 0.55 2.57 × 10−5 0.6% 0.61 2.46 × 10−5 0.5%
w0 0.60 9.17 × 10−4 2.3% 0.60 7.37 × 10−4 2.1%
ns 0.04 2.68 × 10−5 0.4% – – –
σ8 0.47 3.50 × 10−5 0.6% 0.52 3.00 × 10−5 0.5%

Notes. Comparing this results with those in Tables 4 and 5, we observe that overall the score decreases with increasing smoothing scale.
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