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Abstract: The vibrational predissociation of NeBr2 has been studied using a variety of theoretical and
experimental methods, producing a large number of results. It is therefore a useful system for comparing
different theoretical methods. Here, we apply the trajectory surface hopping (TSH) method that consists
of propagating the dynamics of the system on a potential energy surface (PES) corresponding to quantum
molecular vibrational states with possibility of hopping towards other surfaces until the van der Waals
bond dissociates. This allows quantum vibrational effects to be added to a classical dynamics approach.
We have also incorporated the kinetic mechanism for a better compression of the evolution of the complex.
The novelty of this work is that it allows us to incorporate all the surfaces for (v = 16, 17, . . . , 29) into the
dynamics of the system. The calculated lifetimes are similar to those previously reported experimentally
and theoretically. The rotational distribution, the rotational energy and jmax are in agreement with other
works, providing new information for this complex.

Keywords: trajectory surface hopping; kinetic mechanism

1. Introduction

The field of the chemical physics is very broad. Among the main goals of the field is to study
the properties and dynamics of molecular systems, including intra-and inter-molecular energy transfer
processes leading to dissociation of excited molecules. This goal has been achieved via a large number
of theoretical and experimental studies. Time resolved spectroscopic and pump-probe methods, in both
the frequency and the time domains, have been especially useful for providing data to test theoretical
methods [1,2]. These methods have been applied to the vibrational predissociation of an extensive variety
of van der Waals (vdW) complexes composed of three or more atoms with a range of bond energies, atomic
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masses, and vibrational frequencies. Due to the weakness of the vdW interactions in these systems, the
constituents retain their chemical integrity upon complex formation so the energy transfer mechanism can
be easily identified and studied at the state-to-state level [3–16]. The NeBr2 van der Waals molecule has
been particularly useful for these studies since the dynamics is on the boarder line for which classical and
quantum methods are comparably useful. This allows us to investigate in particular the applicability of
the trajectory surface hopping (TSH) method [8,14–16]. The TSH method has been widely used [17–23],
demonstrating its validity and efficiency for a variety of molecular dynamics problems. For this study
of the vibrational predissociation of NeBr2, the diabatic potential energy surfaces are formed by the
interaction of the Ne atoms with the v = 16, 17, . . . , 29 Br2 vibrational levels. The couplings between
surfaces are provided by the van der Waals potential. The TSH results obtained for NeBr2 vibrational
predissociation are compared to previous work using other methods [8–10]. We also implement the “kinetic
mechanism” [15] to interpret the results of the TSH simulation. This method considers two mechanism for
transferring energy from the vibration of the diatom to the van der Waals modes. The first mechanism
corresponds to a direct vibrational predissociation (VP) transfer of the dissociative coordinate. The second
mechanism involves preliminary energy transfer to the non-dissociative van der Waals modes, followed
by intramolecular vibrational redistribution (IVR). After IVR has taken place, the cluster is cooled by
expelling the rare gas atoms, a process called IVR-evaporative cooling (EC). The values of the kinetic
rate constants which characterize these elementary steps are determined by fitting the results of the TSH
simulation to the analytical expressions for the time evolution of the NeBr2 concentration. The simplicity
of our treatment and its relatively low computational cost will allow it to be extended to systems with
more degrees of freedom (e.g., more rare gas atom), thus offering an attractive and different alternative to
purely classical treatments.

The paper is organized as follows: in Section 2, we discuss the procedure of the TSH method
as well as the computational details. We also describe our implementation of the kinetic mechanism.
In Section 3, results are presented and discussed through figures and tables. Section 4 summarizes the
conclusions that can be drawn from this work. In the Appendix A, we describe our procedure to compute
the transition probabilities in considerable detail.

2. Theory and Methods

We use Jacobi coordinates (r, R, θ) to describe the NeBr2 triatomic complex, with r being the bond
length of Br2, R the intermolecular distance from the Ne atom to the center of mass of the dihalogen and
the angle between~r and ~R vectors. These definitions are shown in Figure 1. Calculations are performed
considering total angular momentum null (~J =~j +~l =~0), with~j being the angular momentum of Br2 and
~l the orbital angular momentum, a well justified constraint while studying photodissociation events.
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Figure 1. Jacobi coordinates for NeBr2 molecule.

The classical Hamilton function corresponding to this three degree of freedom model of the complex
is written as

H J=0 = HBr2 +
1

2µNeBr2

(p2
R +

p2
θ

R2 ) + Vint(r, R, θ), (1)

where

HBr2 =
1

2µBr2

(p2
r +

p2
θ

r2 ) + VBr2(r), (2)

VNe,Br2(r, R, θ) is the van der Waals interaction between the Ne atom and the Br2 molecule,

VBr2(r) = D1(e[−2α1(r−r̄)] − 2e[−α1(r−r̄)]), (3)

VNeBr2(r, R, θ) = VR(R1) + VR(R2), (4)

VR(R) = D2(e[−2α2(R−R̄)] − 2e[−α2(R−R̄)])

R2
1,2 = R2 + r2/4± rRcos(θ),

and VBr2 is the Morse’s potential between Br-Br atoms. The quantities µBr2 = m−1
Br2

+ m−1
Br2

and µNeBr2 =

m−1
Ne + (mBr2 + mBr2)

−1 stand for inverse of reduced masses for the Br2 and NeBr2, respectively. The values
D1, D2, α1, α2, r̄ and R̄ are from [24].

For the quantum treatment, we have used as quantum coordinate the Br2 vibration (r) and the other
variables are treated as classical coordinates; for our case these are R and θ. A potential energy surface
(PES) is defined by a single state of the quantum degree of freedom (r). It is on this surface that the
trajectories for the classical degrees of freedom evolve. Quantum transitions are modeled by hops of the
trajectories from one surface to another. These are governed by the evolution of the multicomponent
time-dependent vibrational wave function |ψ(t)〉.

As we have commented before, our surfaces are diabatic (see Figure 2) and the couplings are provided
by the van der Waals potential. This is different from the usual trajectory surface hopping TSH treatment



Mathematics 2020, 8, 2029 4 of 17

where the transitions occur between electronic adiabatic surfaces, in well defined regions of avoided
crossings.
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Figure 2. Schematic figure of the van der Waals interaction. The curves are calculated for the “T” shaped
configuration (θ = 90◦).

2.1. TSH Method in the Diabatic Representation

For our triatomic system, we can write the Hamiltonian as follow:

H(r, R, θ) = Hq(r) + Hel(R) + Hint(r, R, θ) (5)

where Hq(r) is the quantum part depending on the vibrational coordinate r of Br2, Hcl(R) is the
Hamiltonian describing the classical degrees of freedom and Hint(r, R, θ) is the interaction operator
which couples the quantum and classical degrees of freedom.

In our case, Hq(r) describes the vibrational motion of Br2 in the B state,

Hq(r) = −
h̄2

2µBr2

∂2

∂r2 + VBr2(r) (6)

and

Hcl(R) =
p2

R
2µNeBr2

+
p2

θ

2µNeBr2 R2 (7)

Finally, Hint(r, R, θ) has the form

Hint(r, R, θ) =
p2

θ

2µBr2 r2 + VNeBr2(r, R, θ) (8)

If we do a variable change |v〉 = |ψv(r)〉 to simplify notation, the averaged Hamiltonian can be
written as:
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〈v′|H J=0|v〉 = (Ev +
p2

R
2µNeBr2

)δv′v + 〈v′|VNeBr2(r, R, θ)|v〉+
p2

θ

2µBr2

〈v′| 1
r2 |v〉+

+
p2

θ

2µNeBr2 R2 δvv′ ,

where δvv′ = 1 if v = v′ and 0 if v 6= v′ is the Kronecker’s delta and Ev is the vibrational energy for Br2

obtained by solving

ĤBCψv(r) = Evψv(r), (9)

where ĤBC operator corresponds to the function HBr2(r) defined in Equation (6).
We have used Bode’s method [25] for the integration of these equations. This subroutine is very

important because we have the Morse potential depending of r, R and θ, and we want to know the
averaged effect of r for a vibrational level. It is the source of the PES and the coupling among them is due
to non diagonal elements 〈v′|H J=0|v〉.

The equations motionscover on the vth surface are defined as follows (taking into account that |v′〉=|v〉,
〈v|H J=0|v〉):

dR
dt

=
∂〈v|H J=0|v〉

∂pR
=

pR
µNeBr2

(10)

dθ

dt
=

∂〈v|H J=0|v〉
∂pθ

= pθ

(
〈v| 1

r2 |v〉
µBr2

+
1

µNeBr2 R2

)
(11)

dpR
dt

= −∂〈v|H J=0|v〉
∂R

=
p2

θ

µNeBr2 R3 − 〈v|
∂VNeBr2(r, R, θ)

∂R
|v〉 (12)

dpθ

dt
= −∂〈v|H J=0|v〉

∂θ
= −〈v|

∂VNeBr2(r, R, θ)

∂θ
|v〉. (13)

The state vector |ψ(t)〉 describing the vibration of Br2 is obtained by solving the time-dependent
Schrödinger equation

ih̄
∂|ψ(t)〉

∂t
= [Hq(r) + Hint(r, R, θ)]|ψ(t)〉. (14)

|ψ(t)〉 is written as

|ψ(t)〉 = ∑
v

cv(t)e−iEvt/h̄|v〉 (15)

where the sum is over all v states of Hq(r) with energy Ev, cv(t). The complex variable indicates the
amplitude of each vibrational level over the total wave function. This is known as the semiclassical
expansion of the electronic wave function. Replacing (Equation (15)) in (Equation (14)), we obtain:

ih̄
∂

∂t ∑
v

cv(t)e−iEvt/h̄|v〉 = ∑
v

cv(t)e−iEvt/h̄[Hq(r) + Hint(r, R, θ)]|v〉. (16)

Replacing Hq(r)|v〉 = Ev|v〉, multiplying 〈v′| on the left, and taking into account ∑
v
〈v′|v〉 = δvv′ then

yields, respectively:
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ih̄e−iEvt/h̄
(

ċv(t)−
iEv

h̄
cv(t)

)
= cv(t)Eve−iEvt/h̄ + ∑

v′
cv′(t)e

−iEv′ t/h̄〈v′|Hint(r, R, θ)|v〉, (17)

ih̄e−iEvt/h̄ ċv(t) + cv(t)Eve−iEvt/h̄ = cv(t)Eve−iEvt/h̄ + ∑
v′

cv′(t)e
−iEv′ t/h̄〈v′|Hint(r, R, θ)|v〉, (18)

and
ih̄ċv(t) = ∑

v′
cv′(t)e

i(Ev−Ev′ )t/h̄〈v′|Hint(r, R, θ)|v〉. (19)

The cv(t) coefficients satisfy

ċv(t) = −
i
h̄ ∑

v′
〈v′|Hint(r, R, θ)|v〉e[i(Ev−Ev′ )t/h̄]cv′(t) (20)

and for each vibrational level we determine the population as follows:

ρvv′(t) = cv(t)c∗v′(t), (21)

where ρvv′(t) is the density matrix.
The transition probabilities from the current state v to all other states v′ 6= v during the time interval

∆t are computed using the surface hopping probability (see Appendix A for more detail):

gv→v′ =
2∆t

h̄

Im
(

c∗v(t)cv′(t)e
[i(Ev−Ev′ )t/h̄]

)
|cv(t)|2

〈v′|Hint(r, R, θ)|v〉. (22)

The initial conditions for the classical trajectories are selected randomly for a total energy
corresponding to the zero-point of the complex NeBr2, for a particular vibrational state of the Br2 molecule.
The component of the momentum that is parallel to the quantum state coupling vector is only taken into
account to adjust, in order to conserve, the total energy [26,27]. In our case, quantum transitions occur
between diabatic surfaces, defined for each vibrational level Br2(B). These surfaces are coupled by the
NeBr2 potential. Momenta are adjusted during a surface hop using

Pv′ = Pv − γvv′∇R〈v|Hint(r, R, θ)|v′〉 (23)

where Pv′ and Pv are the classical momenta which correspond to the classical coordinate R after and before
the transition, respectively. The value of γvv′ is obtained by imposing the total energy conservation after
the transition. In this way, the angular momentum is also conserved. Energy conservation imposed using:

P2
v′

2µNeBr2

+ 〈v′|Hint(r, R, θ)|v′〉+ Ev′ =
P2

v
2µNeBr2

+ 〈v|Hint(r, R, θ)|v〉+ Ev (24)

Taking into account |~Pv′(R)| = Pv′ , |~Pv(R)| = Pv, replacing

E0 = 〈v|Hint(r, R, θ)|v〉+ Ev (25)

E f = 〈v′|Hint(r, R, θ)|v′〉+ Ev′ (26)

and taking avv′ =
(5R〈v′ |Hint(r,R,θ)|v〉)2

2µNeBr2
and bvv′ =

Pv5R〈v′ |Hint(r,R,θ)|v〉
µNeBr2

, we obtain:
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P2
v′

2µNeBr2

− P2
v

2µNeBr2

= avv′γ
2
vv′ − bvv′γvv′ (27)

with the energy conservation satisfying:

avv′γ
2
vv′ − bvv′γvv′ − (E0 − E f ) = 0 (28)

• If b2
vv′ + 4avv′(E0 − E f ) < 0, then there is not a real solution for this equation and the hop cannot

occur. In this case, it is called a frustrated hop.
• If b2

vv′ + 4avv′(E0 − E f ) ≥ 0, the hop can occur, and the rescaling factor (γvv′ ) is computed as:

γvv′ =
bvv′ +

√
b2

vv′ + 4avv′(E0 − E f )

2avv′
i f bvv′ < 0 (29)

γvv′ =
bvv′ −

√
b2

vv′ + 4avv′(E0 − E f )

2avv′
i f bvv′ ≥ 0 (30)

when a hop occurs, we reset the wave function employing the “instantaneous decoherence” (ID) approach
[26]

• cv = 0 ∀ v 6= v′

• cv′ = 1

2.2. Treatment of Frustrated Hop

When a frustrated hop occurs, we activate “∇V” prescription [28]. Specifically, when a frustrated hop
is encountered, the following quantities are computed:

• ph = ~p ·~h
• Fh = −∇Vv ·~h

where ~p is the nuclear momentum of the trajectory and “∇Vv” is the gradient of the target vibrational state
v, ph and Fh are the projection of the nuclear momentum and the force of the target vibrational state along
the hopping vector h, respectively. If ph and Fh have the same sign, the target vibrational state accelerates
the trajectory along h. Otherwise, if the two quantities have opposite signs, the target vibrational state
causes a delay in the trajectory of the Ne. For that, we use the follow criterion for frustrated hop.

1. phFh ≥ 0 the momentum keeps its sign;
2. phFh < 0 the momentum changes its sign.

2.3. Kinetic Mechanism

The kinetic mechanism allows us to understand the path followed by our system as it relaxes and
dissociates (see Figure 3). We consider Br2(v− i) . . . Ne (intermediate state detected in the TSH simulation)
as a sum of two contributions: a short-lived contribution coming from the VP process, which we denote by
Br2(v− i) . . . NeVP, and a longer-lived contribution coming from the IVR process denoted as Br2(v− i) . . .
NeIVR. Therefore, only the sum is taken into account to fit the kinetic rate constants. We include the
Br2(v− i) . . . NeVP intermediates in the direct VP process, dividing each direct VP step into two processes
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characterized by the rate constants kVPa and kVPb for the loss of the first vibrational quantum, and kVP2a
and kVP2b for the loss of the second one.

Figure 3. Scheme of kinetic mechanism.

We fit the data obtained in the simulation by using the next procedure:

[Br2(v) . . . Ne] = [{Br2(v) . . . Ne}ivr + {Br2(v) . . . Ne}vp] (31a)

[{Br2(v) . . . Ne}ivr] =
kivr
kv

e−kvt (31b)

[{Br2(v) . . . Ne}vp] =
kvpa

kv
e−kvt (31c)

[Br2(v− 1) . . . Ne] = [{Br2(v− 1) . . . Ne}ivr + {Br2(v− 1) . . . Ne}vp] (32a)

[{Br2(v− 1) . . . Ne}ivr] =
kivr

k1 − kv
(e−kvt − e−k1t) (32b)

[{Br2(v− 1) . . . Ne}vp] =
kvpa

kv − kvpb
(e−kvpbt − e−kvt) (32c)

[Br2(v− 1)] = [{Br2(v− 1)}ivr + {Br2(v− 1)}vp] (33a)

[{Br2(v− 1)}ivr] =
kivrkec

(k1 − kv)k1kv

(
k1(1− e−kvt)− kv(1− e−k1t)

)
(33b)

[{Br2(v− 1)}vp] =
kvpa

(kv − kvpb)kv

(
kv(1− e−kvpbt)− kvpb(1− e−kvt)

)
(33c)

[Br2(v− 2) . . . Ne] = [{Br2(v− 2) . . . Ne}ivr + {Br2(v− 2) . . . Ne}vp] (34a)

[{Br2(v− 2) . . . Ne}ivr] =
kivrkivr2

(k1 − kv)(k2 − k1)(k2 − kv)
{(k2 − k1)e−k1t +

+(kv − k2)e−k1t + (k1 − kv)e−k2t} (34b)
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[{Br2(v− 2) . . . Ne}vp] =
kivrkvp2a

(k1 − kv)(k1 − kvp2b)(kvp2b − kv)
{(k1 − kvp2b)e−kvt +

+(kvp2b − kv)e−k1t + (kv − k1)e
−kvp2bt} (34c)

[Br2(v− 2)] = [{Br2(v− 2)}ivr + {Br2(v− 2)}vp] (35a)

[{Br2(v− 2)}ivr] =
kivrkivr2kec2

(k1 − kv)(k2 − k1)(k2 − kv)(k1kvk2)
{k2k1(k2 − k1)(1− e−kvt)

+kvk2(kv − k2)(1− e−k1t) + k1kv(k1 − kv)(1− e−k2t)} (35b)

[{Br2(v− 2)}vp] =
kivrkvp2a

(k1 − kv)(k1 − kvp2b)(kvp2b − kv)(k1kv)
{k1kvp2b(k1 − kvp2b)(1− e−kvt)

+kvp2bkv(kvp2b − kv)(1− e−k1t) + kvk1(kv − k1)(1− e−kvp2bt)} (35c)

where:

• kv = kvpa + kivr

• k1 = kvp2a + kivr2 + kec

• k2 = kec2 + k′

2.4. Computational Details

In the methodology involved, two important stages contribute:

• First stage

This step consists of propagating the dynamics of the system by evolving classically the nuclear
motion on the potential energy surface. For this, employ the Adams Bashfort method [25], initiating
with the method of Runge Kutta 4th order. We obtain, from the system of Equations (10)–(13),
the momentum and coordinate of the Ne, the θ angle and the angular momentum of the system in Jacobi
coordinates (see Figure 1). These coordinates are defined as follows: r is the distance between the diatomic
constituents, R is the distance of the noble gas to the mass of the chemical bound and θ is the angle between
r and R. In the method, some physical considerations of importance are imposed for obtaining a consistent
result, such as the conservation of total energy. We consider that our system is dissociated beyond a certain
maximum distance. For this, we take Rmax= 10 Å and a maximum time which the system will remain
bounded, tmax= 600 ps. Taking into account the above, we use an integration step equal to 0.1 ps, which
leads to 6× 106 integration cycles and ensuring a total energy conservation error of less than 10−8 cm−1.

Simultaneously, in the other simulation thread, the Equation (20) is integrated, obtaining the cv

coefficients. The cvc∗v′ coefficients are the weight of each vibrational level (if v = v′) during the dynamics
of the system and cvc∗v′ (if v 6= v) indicate the coherence between states.

In order to apply the population conservation, the sum of the populations has to be equal the unity.
We also incorporate a method for the hop decision (it is known as the Fewest Switches algorithm, see
Appendix A). Another important aspect is the rescaling of the momentum to preserve the total energy of
the system when the hop occurs.

To obtain the average interaction potentials of van der Waals, the Bode method is implemented.
It is very important to define the average potentials and crossings between curves (see Figure 2).
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• Second stage

This stage consists of performing a fitting to initial, intermediate and final populations during the
simulation. The complexity of doing this is that the parameters are shared and therefore obtaining these
depends on the statistical behavior for each initial vibrational level. We followed the steps from the
reference [29], which is a generalization of the Marquardt method for multiple equations and shared
parameters.

3. Results and Discussion

The first two columns of Table 1 report the rate constants obtained by fitting the kinetic model to the
TSH results for lifetimes and intermediate state dynamics (see Equation (31a)) using

τ =
1

kivr + kvpa
(36)

Table 1. Rate constants (in ns−1) obtained by fitting the trajectory surface hopping (TSH) simulation results.

v0 kivr kvpa kv k1 kvpb kec kivr2 k2 kvp2b kec2 kvp2a

16 0.024 4.456 4.600 81,019 8,050,000 1,704,730 51,948 2,523,430 604.148 361.258 24,245
17 0.110 5.716 5.887 60,896 882.070 733.634 15,961 846.233 150.962 1948 153,785
18 0.055 5.410 5.620 20,124 2935.5 7713 28,970 818.535 12.646 3335 23,207
19 1.484 12.805 13.991 63,190 223.312 1907 15,356 217.080 499.413 496.263 11,185
20 2.742 14.914 16.970 55,278 185 734.147 7684 171.379 18.734 769.698 1929
21 11.999 35.608 41.82 2475 162.684 14.016 211.989 123.330 169.610 197.089 791.290
22 3.934 14.956 18.821 5723 228.020 26.9789 367.425 39.847 932.066 145.867 3575
23 4.685 16.540 20.996 5263 168.904 29.035 1023 118.771 268.294 102.744 3339
24 3.966 13.345 17.937 138.804 237.482 1.030 157.180 1911 4412 551.141 86.110
25 10.397 19.055 29.327 149.336 142.794 12.052 132.472 1821 1507 261.619 86.482
26 11.937 16.686 29.887 100.351 126.820 0.157 118.667 3502 6501 1001.190 48.893
27 115.150 0.153 105.520 76.882 0.110 25.249 50.949 1826 692,718 34.391 32.183
28 69.295 2.478 71.940 85.525 1250 2.920 1604 12,152 16,751 444.040 5.350
29 133.750 3.642 127.640 81.460 7.287 2.087 1536 12,276 11,827 431.941 5.684

Table 1 shows the rate constants obtained from the fitting of the TSH results to the kinetic mechanism.
From this table we get much information about the path followed and the time spent in each initial,
intermediate and final state. If (kvpa > kvpb) or (kvp2a > kvp2b), the system remains more time in
the intermediate state before the dissociation occurs. However, if (kvpb > kvpa) or (kvp2b > kvp2a)
occurs, the complex breaks its bond faster than otherwise. Moreover, for the lower vibrational levels,
we obtained larger values for kvpb. This means that just after hopping, the molecule is dissociated.
On the other hand, for the higher vibrational level there is a great probability of following an IVR process
(kivr > kvpa), and the others follow a VP process (kvpa > kivr). In addition, there is a competition between
kec and kivr2. When kec > kivr2, the system is dissociated, losing a vibrational quantum number. In another
case, the system is submitted to an IVR process again. In Figure 4, we show the lifetimes obtained.
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In Figure 5, we show the process which the system followed until its dissociation.
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Figure 5. Path followed (statistically) for each vibrational level.

In Figure 5, we can see that from vibrational level v = 21 the loss of two quanta through the VP v0 − 2
process is significant. This causes the system to take longer to dissociate. Particularly for vibrational levels
v = 28, 29, the predominant process is IVR-EC v0 − 2.

Through the simulation, we can know at what vibrational level the system is, and we do not need
algorithms to obtain it. This is very good because the TSH method itself gives us that information.
In the following figure, we present the exit channel (statistically) for each initial vibrational level.

As we can see in Figure 6 that the TSH results are in agreement with previous theoretical and
experimental results. Other very important observables are 〈Erot〉 and jmax. The first one is the averaged
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rotational energy. The second one is the Br-Br angular momentum. Both quantities are calculated when
the molecule is dissociated.
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Figure 6. Exit channel.

As we can appreciate in Figure 7, we report our results in comparison with experimental ones and
previous results.
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reference [8] to compute jmax).
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In Figure 8, we represent the rotational distributions of Br2 after dissociation. We can see that there is
a peak in the range of j = 20–24 (Figure 8c). This is an effect that we can see from v0 = 21 to v0 = 26, with
the loss of two vibrational quantum numbers. This means that, for these vibrational levels having greater
rotational excitation, the system takes a longer time to dissociate. Therefore, it does not have enough
energy to break the vdW bond. They are non-reactive van der Waals modes and, as a direct consequence,
the lifetimes are longer.
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Figure 8. Rotational distribution for the transitions (a) v = 21–20, (b) v = 22–21, (c) v = 24–22 , (d) v = 29–27.
Experimental results correspond to [30].

To analyze the conservation relation, we compute the correlation matrix for all vibrational levels
under study. As we discussed before for the lowest vibrational levels (v = 16–20), the fragmentation
process occurs when the system loses one quantum energy. For those vibrational levels, more correlation
is found for the kvpa and kivr parameters. As we have shown in Figure 9, the parameter kec shows a strong
correlation with those parameters where the process involves two losses of quantum energy. Then, kec

plays an important role because it links the number of quantum energy losses in the fragmentation of the
system (∆v = −1,−2,−3...).
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Figure 9. Correlation matrix for vibrational level v = 23.

4. Conclusions

We have investigated the vibrational predissociation process for the NeBr2 system by using TSH
method. In our simulation, we studied a range of vibrational levels (from v = 16 to v = 29). We found
that the larger values for kvpb correspond to the lower vibrational levels. This is in correspondence with
the dissociated of the molecule occurs just after hopping surface. As we comment in Section 3, there is a
competition between VP and IVR processes. The TSH method is a robust methodology for the study of
molecular fragmentation for this kind of system. This affirmation could be justified through Figures 6–8.
In these figures, we showed our results in comparison with the previous theoretical results and the
experimental ones. As we can appreciate, the agreements are very good.

Perspectives

This method is a powerful tool for dealing with this type of system and can be extended to more
complex structures (e.g., more vdW interactions). We continue with this work and we are checking that
the strongest coupling belongs to v± 1. In that case, we must consider fewer surfaces for dynamics than
before.
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Appendix A

We suppose that we have a quasiclassical system where the vibrational population for each state in
the time t are determines for diagonal elements of ρvv. For an ensemble of N trajectories that propagate
simultaneously, the number of trajectories in the state v will be:

Nv(t) = ρvv(t)N (A1)

In t + ∆t the ocupation state will change to:

Nv(t + ∆t) = ρvv(t + ∆t)N (A2)

Assuming that Nv(t)>Nv(t + ∆t), the minimum number of transitions neccessary for this change of
occupation will be: Nv(t)− Nv(t + ∆t), hops from state |v〉 to another ones, and 0 hops from any state to
|v〉

The hopping probability out from state |v〉 is:

Pv(t, ∆t) =
Nv(t)− Nv(t + ∆t)

Nv(t)
=

ρvv(t)− ρvv(t + ∆t)
ρvv(t)

= −∆t
ρ̇vv(t)
ρvv(t)

≈ ∆t
ρ̇v′v′(t)
ρvv(t)

(A3)

where (v′ 6= v) y ρv′v′ is the state where is has growing the population,

ρ̇vv(t) = ˙cv(t)c∗v(t) = ċ∗v(t)cv(t) + c∗v(t)ċv(t) = (c∗v(t)ċv(t))∗ + c∗v(t)ċv(t) = 2Re(c∗v(t)ċv(t)) (A4)

Replacing the last expression for (A3), we get:

Pv = −2
Re(c∗v(t)ċv(t))

cv(t)c∗v(t)
. (A5)

Taking into account (20) and Re(icv′(t)c∗v(t)) = −Im(cv′(t)c∗v(t))

Pv(t) =
2∆t

h̄

∑
v′

Im
(

c∗v(t)cv′(t)e
[i(Ev−Ev′ )t/h̄]

)
〈v′|Hint(r, R, θ)|v〉

cv(t)c∗v(t)
= ∑

v′ 6=v
Pv→v′ (A6)

Changing the notation then gives

gv(t) = ∑
v′ 6=v

gv→v′(t) (A7)

gv→v′(t) = max

0,
2∆t

h̄

Im
(

c∗v(t)cv′(t)e
[i(Ev−Ev′ )t/h̄]

)
|cv(t)|2

〈v′|Hint(r, R, θ)|v〉

 (A8)

• if gv→v′ < 0, then gv→v′ = 0.

To determine whether a hop from the |v〉 surface is realized, we chose a random number 0 < η < 1. We
use a uniform distribution.

• if 0 < η < gv→v′ , the system hops to surface |v′〉. We considered ordered states (v, v′, v”, . . .).
• if gv→v′ < η < gv→v′ + gv→v”, the system hops to surface |v” >.
• if ∑v′ 6=v gv→v′ < η < 1, then system remains in state v.
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