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Abstract

The authors �rst recall the existence of a second equilibrium in addition to independence
to reduce the information conveyed from the margins to the joined distribution: the so-
called indeterminacy. They break down a drawing under indeterminacy into a mixture
of three independent couplings. Leveraging on this decomposition they emphasis it is the
best construction to reduce couple matchings, meaning, the expected number of equal cou-
ples drawn in a row. Besides they notice the Janson Vegelius coe�cient is nothing but
a deviation to indeterminacy and demonstrate it tends to 0 when the number of modal-
ities increases. Eventually, they notice that the indeterminacy appears in two problems
(Guessing and Task Partitioning) where couple matchings reduction is a key objective.

Keywords: Mathematical Relational Analysis, Optimal Transport, Logical Indetermi-
nacy, Coupling Functions, Task Partitioning Problem, Guessing Problem

1. Introduction

In a precedent paper Bertrand et al. (2022), we highlighted a list of structural analogies
between two discrete couplings namely independence and indeterminacy together with an
application to graph clustering.

A discrete coupling is a function C operating on two discrete marginal laws µ = µ1 . . . µp
and ν = ν1 . . . νq and which de�nes a probability law π on the product space:

πu,v = C(µu, νv), ∀ 1 ≤ u ≤ p, 1 ≤ v ≤ q

We respectively quote both those above mentioned couplings C× (independence) and
C+ (indeterminacy); this last notion has been initially introduced by J.-F. Marcotorchino in
his seminal papers Marcotorchino (1984) and Marcotorchino and Conde-Céspedes (2013))
while their formula will be reintroduced and rediscussed later on in section 2.
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Their usefulness arises in statistical applications: namely, most of our usual statistical
deviation criteria for contingency analysis are expressed in terms of deviations from one
of the two couplings (Conde-Céspedes (2013) gathers a classi�cation of them, deviation to
independence or deviation to indeterminacy). The most famous example for independence
is the χ2 index, widely used in practice which computes nothing but a deviation to the
independence coupling of the empirical margins. Symmetrically the Janson-Vegelius coe�-
cient, initially introduced in Janson and Vegelius (1977) as a contingency association index,
measures also a deviation no longer to independence but rather to indeterminacy; we shall
detail this point in subsection 4.1 before studying its global behavior.

Each criteria computes a deviation to a null hypothesis a so-called equilibrium. Further-
more, theoretical considerations lead to consider independence and indeterminacy as the
only two possible "natural" equilibria: this fact being based upon a work of Csizar Csiszár
et al. (1991), a summarized version of which is expressed in Bertrand et al. (2022).

While independence is commonly used and studied in the scienti�c literature, indeter-
minacy appears as a lesser known coupling, whose properties have been rarely presented in
an explicit way. Section 3 of this paper, is precisely dedicated to the properties implied by
indeterminacy.

The innovation of this paper can be stated as follows:

• We show that indeterminacy aims at minimizing couple matching occurrences (notion
de�ned in de�nition 1): drawing two independent couples under indeterminacy, the
probability to have both couples equal is minimized.

• We estimate the probability for a couple of margins uniformly and independently
drawn to be eligible for an indeterminacy coupling (property 4).

• We decompose an indeterminacy coupling into a mixture of three independent cou-
plings leading to a constructive drawing. This decomposition enables us to explain the
couple matching minimization inherent to indeterminacy. In each of the three options,
indeterminacy concentrates a margin on its mode while the other is uniformly and
independently drawn (property 5).

• We analyze the Janson Vegelius correlation coe�cient whose expression is nothing but
a deviation to indeterminacy. Notably, we demonstrate that it tends to 0 in average
when the number of modalities increases (property 8).

• We exhibit two applications of indeterminacy (Guessing Problem and Task Partition-
ing).

The paper is structured as follows.
Section 2 gathers a summarized version of the construction of indeterminacy. The con-

struction is interpreted as a way to reduce couple matchings. In section 3, a �rst part
computes the measure of the space of margins eligible for an indeterminacy coupling ; a
second part is dedicated to the decomposition of indeterminacy. This decomposition is, to
the best of our knowledge, new, and conveys an interpretation of the initial formula. Sec-
tion 4 gathers an analysis of the Janson Vegelius coe�cient and provides two information
problems where the logical indeterminacy coupling appears. First, leveraging on the con-
structive drawing as well as on the reducing "couple matchings" property, we show that

2



A constructive method to minimize couple matchings

indeterminacy naturally occurs in solving the so-called "guessing problem" Massey (1994)
as well as the "task partitioning problem" Bunte and Lapidoth (2014).

2. Construction of indeterminacy

When we want to couple two marginal laws, the most common and straightforward way
to proceed, consists in assuming independence and keep on computations. It is so well
integrated in our mindset, that it naturally appears in real life applications, as soon as we
want to build fast models up. In statistical analysis, the approach is quite the same: when
we use a very classical and usual criterion like the χ2 index, we are measuring nothing but
a deviation to independence.

Thinking about how we �rst introduced independence, we immediately suggest empirical
experiments: let us say if we roll a dice twice, how should we derive the resulting probabilities
from a unique dice? Most of us will naturally apply independence coupling: it really relies
on empirical experiments. We often considerate it as the null hypothesis in contingency
table analysis.

Although being the most natural, it is not, by far, the only existing available coupling
method; actually, as introduced by Sklar in Sklar (1973), any copula function will lead to a
coupling function acting on two cumulative distribution functions.

In the discrete case, two probability measures µ = µ1 . . . µp and ν = ν1 . . . νq represent
the initial margins we want to couple. The �rst one belongs to the simplex Sp of dimension
p while the second belongs to Sq of dimension q.

A coupling π of µ and ν appears as an element of Spq whose margins are µ and ν,
meaning:

p∑
u=1

πu,v = νv, ∀1 ≤ v ≤ q (1)

q∑
v=1

πu,v = µu, ∀1 ≤ u ≤ p (2)

We quote Lµ,ν the subset of Spq whose elements respect Equation (1) and Equation (2). It
exactly corresponds to the space of couplings of µ and ν.

2.1 Reducing the information conveyed by the coupling

Among Lµ,ν , some couplings π convey more information than others. We suppose we want
to reduce the available information one can extract out of realizations from π. It remains
to say we want π to be as uniform as possible.

The best way to hide information would be to use the uniform law Upq. Though, unless
both margins are uniform, it does not belong to Lµ,ν .

Hence, let us force π to belong to Lµ,ν while being as close as possible to Upq. Use of
square distance is classical, actually motivated by the mean square error decomposition. We
end up looking at

Problem 1 (Minimal Trade Model).
minπ∈Lµ,ν

∑p
u=1

∑q
v=1 (πu,v − Upqu,v)2

3
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It happens that we can compute the exact form of the solution (see Bertrand et al.
(2022)). It is given by the so-called indeterminacy coupling quoted π+ and whose formula
is given below.

π+u,v = (µ⊕ ν)u,v =
µu
q

+
νv
p
− 1

pq
, ∀1 ≤ u ≤ p, ∀1 ≤ v ≤ q (3)

This formula is positive if and only if the inequality is valid:

µ0
q

+
ν0
p
− 1

pq
≥ 0 (4)

where µ0 = min∀1≤u≤p µu and ν0 = min∀1≤v≤q νu.

The inequality (4) that margins have to satisfy considerably reduce their choice. To
better understand its impact we describe in subsection 3.1 a method to transform any couple
of margins into a couple of margins respecting Inequality (4). Furthermore we compute
the probability that µ uniformly drawn within Sp and ν uniformly drawn among Sq and
independent from µ respect Inequality (4); therefore, we measure the proportion of margins
eligible for an indeterminacy coupling.

2.2 Couple matchings minimization

Developing the cost function of Problem 1 we observe it can be simpli�ed such as minimizing:

p∑
u=1

q∑
v=1

π2u,v (5)

A �rst remark is that substituting Upqu,v by any constant in Problem 1 would have led
to the same simpli�cation. Though, interpreting it as a probability measure requires the
constant to be 1

pq .

Equation (5) can be interpreted using the notion of couple matching:

De�nition 1. π being a probability law in the simplex Spq, we draw under it two times
independently. It leads to (U1, V1) and (U2, V2). A couple matching occurs when U1 = U2

and V1 = V2.

Using this notion, Equation (5) is nothing but the probability of a couple matching. It
means that π+ corresponds to the coupling minimizing couple matchings for �xed margins.

We will decompose π+ in subsection 3.2 to propose a constructive drawing that will
actually explain the property of couple matching minimization.

3. Properties of indeterminacy

3.1 Measuring the subset of margins eligible to indeterminacy

The objective is simply to have an idea of the impact on the margins of the restrictions
imposed by the constraints stated in Equation (4).
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3.1.1 Coupling µ with µ

We have seen that if we give ourselves µ a probability law on p discrete values, therefore
belonging to the simplex Sp, it is not always possible to construct π

+ coupling µ with itself.
For this, the pair (µ,µ) must satisfy the hypothesis (4) which is written here:

µ0 ≥
1

2p
.

We want to estimate the probability that such an event happens. For this, we consider the
uniform distribution on Sp, the simplex of all laws on p values. We compute the normalized
Lebesque measure of the eligible subset of Sp.

Proposition 1.

The proportion of µ in Sp such that (µ, µ) respects Equation (4) is 1
2p−1 .

Proof

We impose restricted bounds on the integrals constructing µ:

∫ 1− p−1
2p

1
2p

∫ 1− p−2
2p
−x1

1
2p

. . .

∫ 1− 1
2p
−
∑p−2
i=1 xi

1
2p

dx1 . . . dxp−1

With the change of variable: x1 ← x1 + 1
2p

∫ 1
2

0

∫ 1− p−1
2p
−x1

1
2p

. . .

∫ 1− 2
2p
−
∑p−2
i=1 xi

1
2p

dx1 . . . dxp−1

If we continue with the successive changes of variables: xi ← xi + 1
2p

∫ 1
2

0

∫ 1
2
−x1

0
. . .

∫ 1
2
−
∑p−2
i=1 xi

0
dx1 . . . dxp−1

This is therefore exactly the de�nition of a probability law which would add to 1
2 instead

of 1, hence the result since each component is then multiplied by 1
2 and the last is imposed

by the sum at 1.

Remark 1.

The previous result is not surprising. A constructive method exists to build a valid µ. Indeed,
by Inequality (4), µu is greater than 1

2p for all u. We deduce: µu = 1
2p + ru

2 where r is an
arbitrary probability law on p elements.
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3.1.2 Coupling µ with an independent ν

So far, we have assumed to couple µ with itself, which simpli�ed the computations but
unnecessarily narrowed the problem. In fact, in the rest of the document, we couple µ with
some other law ν. Following the same assumptions as before, we draw µ and ν uniformly and
independently among the probability laws, therefore among Sp and Sq respectively. De�ning

α = pµ0, (6)

Inequality (4) results from the following proposition.

Proposition 2 (Construction of eligible margins, discrete case).
We can couple the margins (µ, ν) according to the indeterminacy if and only if there exists
a positive real α such that:

∀1 ≤ u ≤ p, µu ≥
α

p

∀1 ≤ v ≤ q, νv ≥
1− α
q

As a �rst remark, α being the minimum of a set of p elements summing to 1, the
numerator of the second inequality is indeed in [0, 1], which implies that ν is greater than
some β = 1−α in [0, 1]. A second remark concerns the introduction of the variable p in the
de�nition; it is there so as not to break the symmetry between µ and ν, ensuring that all
the values α of [0, 1] are eligible regardless of p or q.

Leveraging on Remark 1, we deduce the existence of two probability laws r and s on p
and q elements such as:

∀1 ≤ u ≤ p, µu =
α

p
+ (1− α)ru (7)

∀1 ≤ v ≤ q, νv =
1− α
q

+ αsv (8)

Proposition 3 (Constructive eligible margins).
A couple of probability laws (µ, ν) ∈ Sp × Sq respects Inequality (4) if and only it it exists a
real α ∈ [0, 1] and a couple of probability laws (r, s) ∈ Sp×Sq such that Equations (7) and (8)
are satis�ed.

For �xed α, the eligible proportion of the space Sp of µ is therefore (1− α), that of ν in
Sq is α. Since the two laws are drawn independently, the eligible proportion is the product
of both. Finally, the eligible proportion in the space Sp × Sq is given by:∫ 1

α=0
αp−1(1− α)q−1 dα =

(p− 1)!(q − 1)!

(p+ q − 2)!
(9)

The eligibility results are summarized in the following proposition:

Proposition 4 (Valid proportion).
If µ is drawn in the simplex Sp uniformly, the probability that the pair (µ, µ) respects the
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Inequality (4) is 1
2p−1 . Then, there exists a probability law r in the simplex Sp such that µ

satis�es:

∀u, µu =
1

2p
+
ru
2
. (10)

If additionally ν is drawn in Sq, independently upon µ then, the probability that the pair

(µ, ν) respects Inequality( 4) is (p−1)!(q−1)!
(p+q−2)! . In this case, there exists a real α, a probability

law r in the simplex Sp and a probability law s in the simplex Sq such that:

∀u, µu =
α

p
+ (1− α)ru (11)

∀v, νv =
1− α
q

+ αsv (12)

In addition, the previous writings characterize compliance Inequality (4).

Remark 2 (Di�erent shapes).
We notice that the expression of the eligible proportion depends on whether we are interested
in the coupling of µ with itself or with a second and independent law ν: the second formula
does not catch up with the �rst if p = q. The di�erence comes from independency only
holding in the second case. Indeed µ imposes on itself α = 1 − α generating a single case,
backwards of the integration giving the general formula of the second case which relies on
independence.

3.2 Indetermincay as a mixture of three independent couplings

The formula which de�nes indeterminacy given in Equation (3) does not provide as such
an e�cient way to draw under indeterminacy nor any interpretation of its meaning. We
propose to rewrite this formula so as to view indeterminacy as a classic mixture of three
independent couplings. Our starting point is the usual form of an indeterminacy coupling.

π+u,v =
µu
q

+
νv
p
− 1

pq
, ∀1 ≤ u ≤ p, ∀1 ≤ v ≤ q

Quoting µ0 = minu µu and ν0 = minu νu it rewrites:

π+u,v =

[
µu − µ0

q

]
+

[
νv − ν0
p

]
+

[
µ0
q

+
ν0
p
− 1

pq

]
First let us remark that the three parts between square brackets are positive since Equa-

tion (4) is satis�ed. Thus, we renormalize them to extract probability laws. Formally:

π+u,v = (1− pµ0)
[
µu − µ0
q(1− pµ0)

]
+ (1− qν0)

[
νv − ν0

p(1− qν0)

]
+ (pµ0 + qν0 − 1)

[
1

pq

]
(13)

Remark 3 (Tight case). In case any of the two �rst brackets equals 0 it means µ or ν
is uniform. In that case indeterminacy and independence couplings are the same so that
an interpretation of indeterminacy is trivial. In case the third bracket is null, it means
Inequality (4) is sharp. Anticipating on the action of T de�ned below, it means it drops the
whole uniform part of each margin leading to R = 3 never happening.
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We now de�ne a transformation T on a probability law by:

De�nition 2. Given a probability law s = s1, . . . , sr on r elements, we quote s0 its minimum.
The transformation T r generates a new law on the same elements by:

T r : Sr → Sr

(si)1≤i≤r 7→
(
si − s0
1− rs0

)
1≤i≤r

We shall quote T the transformation acting on any Sr through T |Sr = T r.

We notice that T actually removes as much uniform part as possible from the probability
law it operates on. T (s) will tend to concentrate the realizations on the modes of s.

With this notation, Equation (13) rewrites:

π+u,v = (1− pµ0)
1

q
T (µ)u + (1− qν0)

1

p
T (ν)v + (pµ0 + qν0 − 1)Upqu,v (14)

Reading Equation (14), we are able to decompose an indeterminacy draw as stated in
proposition 5.

Proposition 5 (Indeterminacy drawing decomposition).
We introduce a random variable R on 3 modalities 1, 2, 3 with respective probabilities 1−pµ0,
1−qν0 and pµ0+qν0−1. Realizations under indeterminacy eventually decomposes as follows:

1. draw R;

2. if R = 1 then (u, v) is drawn under the independence coupling of T (µ) and Uq;

3. if R = 2 then (u, v) is drawn under the independence coupling of Up and T (µ);

4. if R = 3 then (u, v) is drawn under the independence coupling of Up and Uq (it corre-
sponds to Upq).

Under this form, it appears that π+ exhausts the uniform part of each margin. It is
de�nitely coherent with indeterminacy being the projection of Upq on Lµ,ν .

T (µ) is more concentrated on the modes of µ than µ itself. Consequently when R = 1,
U is concentrated on the mode of µ, far from the uniform: this is the concession to respect
the margin on U . On any other value of R, U is uniformly drawn. Symmetrically, for V ,
the concentration on modes of ν happens when R = 2.

Eventually, Proposition 5 justi�es the method induced by indeterminacy to reduce couple
matchings. If, R = 1, a couple matching is rare since U1 = U2 is prevented by U being drawn
uniformly under Up; if, R = 2, V is drawn uniformly; if R = 3, both are drawn uniformly.

The decomposition enables us to interpret it as a mixture of three pretty straightforward
drawings as well as to explain how it reduces couple matchings while respecting the forced
margins. Indeed, transformation T de�ned in De�nition 2 actually concentrates the prob-
ability law it is applied to on its modes. When R de�ned in Proposition 5 equals 1, T (µ)
concentrates U on the modes of µ to be able to respect the margin µ while when R = 2, 3,
U is drawn uniformly. This method leverages on V uniform to hide any disequilibrium of U
while still avoiding couple matching.
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4. Applications of indeterminacy

4.1 Janson Vegelius coe�cient

In statistical analysis, given the values of two descriptive variables on n individuals, an usual
and important problem is to use a coe�cient or index, measuring the correlation between
the two variables.

Formally, U represents a �rst variable which characterizes individuals among pmodalities
(for instance the city where they are living in, their socio-professional category, their ages,
. . . ); a second variable V classi�es them among q categories (or split them into q categories
or classes).

Given independent realizations (U1, V1), . . . , (Un, Vn), the categorization of n individuals,
how do we measure the correlation between U and V ? Correlation typically means that the
value of V depends on the value of U . Expressing it with "dependence" notion, we naturally
de�ne a deviation-to-independence coe�cient (i.e. a departure from independence index),
for instance: the χ2.

To do so, from the n realizations of (U, V ), we deduce an empirical margin π counting
the proportion of individuals in each couple of modalities:

πu,v =
#{i / Ui = u & Vi = v}

n
, ∀1 ≤ u ≤ p, ∀1 ≤ v ≤ q (15)

similarly, an empiric margin µ is deduced from the empiric π on the �rst variable and
eventually an empiric second margin ν.

The empirical χ2 index, denoted χ2
n is de�ned through:

χ2
n(U, V ) =

p∑
u=1

q∑
v=1

(πu,v − (µ⊗ ν)u,v)
2

(µ⊗ ν)u,v
(16)

which obviously happens to be null if and only if the empirical distribution π of the observed
data is an independence coupling of the empiric margins:

π+u,v = (µ⊗ ν)u,v = µuνv (17)

Obviously, such an event almost never occurs, even under independence.
Using a symmetric idea, a lesser known criterion, called Janson-Vegelius Index, after the

name of the inventors of this coe�cient, who coined it in Janson and Vegelius (1977), Janson
and Vegelius (1978) or Janson and Vegelius (1982) writes as a deviation to indeterminacy:

JVn(U, V ) =

p∑
u=1

q∑
v=1

(πu,v − (µ⊕ ν)u,v)
2√

p−2
p (
∑q

u=1 µ
2
u + 1)

√
q−2
q (
∑q

v=1 ν
2
v + 1)

(18)

and obviously is equal to zero if and only if the empirical π is an indeterminacy coupling of
the empirical margins as de�ned in Equation (3).

We omit the subscript n in the following. JV index, although its formulation, using
contingency notations appears as non trivial, is actually just a classical cosine, or a Pearson's
like correlation coe�cient when rewritten in the "Mathematical Relational Analysis" Space.
A list of papers which gathers some of the most important key features about the subject
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is Marcotorchino and Michaud (1979), Marcotorchino (1984), Messatfa (1990), Opitz and
Paul (2005), Marcotorchino (1986), Marcotorchino (1991), Ah-Pine (2010).

The relational analysis space no longer encodes modalities but links between individu-
als. Two matrices X and Y of size n × n respectively associated to variables U and V are
introduced as shown in De�nition 3.

De�nition 3 (Mathematical Relational Analysis notations).
Let (U1, . . . , Un) and (V1, . . . , Vn) be two n probabilistic draws of U and V respectively. We
de�ne two associated symmetric n× n matrices X and Y by

Xi,j = 1Ui=Uj , ∀1 ≤ i, j ≤ n
Yi,j = 1Vi=Vj , ∀1 ≤ i, j ≤ n

Or in literal form:

• Xi,j = 1, if i and j share the same modality of variable U , Xi,j = 0 if not;

• Yi,j = 1, if i and j share the same modality of variable V , Yi,j = 0 if not.

To understand the notation, let us begin with some remarks about De�nition 3. Basically,
the two {0, 1}matricesX and Y (which correspond in fact to two binary equivalence relations
based on the drawn modalities) represent agreements and disagreements between the two
variables on a same draw of size n; they are symmetric with 1 values on their diagonal.

As expected, one can pass from the relational encoding to the usual contingency encoding
as well as in the reciprocal way; those transfer formulas are demonstrated in the mentioned
articles. Coming back to the JV index, those formulas enable us to write JV as a cosine in
the relational space:

JV (U, V ) = JV (X,Y ) =

∑n
i=1

∑n
j=1

(
Xi,j − 1

p

)(
Yi,j − 1

q

)
√∑n

i=1

∑n
j=1

(
Xi,j − 1

p

)2∑n
i=1

∑n
j=1

(
Yi,j − 1

q

)2 (19)

Calculations leading to Equation (19) from Equation (18) can be found in Marcotorchino
and Michaud (1979) or Marcotorchino and El Ayoubi (1991).

4.1.1 Average value of JV through simulation

The idea here is to simulate random probability laws π uniformly in Sp2 then to calculate
the values of the criterion JV on them in order to observe its distribution according to p.

We �rst propose Figure 1 which presents the distribution of the criterion. One element
strikes immediately: values concentrate around 0 as p increases. It is so far an observation
and it remains to show it in theory. We will start by demonstrating it in the case π = µ⊗µ
for which the formula is simpli�ed before demonstrating the general case.

For the moment, we propose to study Figure 2 precisely simulating the two cases to be
treated. On the "General" curve, we draw uniformly a probability matrix in Sp2 and we
calculate the value of JV ; the operation is repeated 1000 times and the average is presented.
On the "Independence" curve, we draw at random a probability law in Sp which we then
couple with itself according to an independence relation; the same number of simulations is
applied.
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Figure 1: Distribution of the JV when π is uniform in Sp2

Figure 2: Mean value of JV when π is uniform in Sp2 (General) and when π = µ⊗ µ with
µ uniform in Sp

(Independence)

4.1.2 Average value of JV through computations

This section gives a proof (in the case of the independent coupling of µ with itself corre-
sponding to "Independence" in Figure 2) of the limit property noted in the previous section.
It is stated in Proposition 6.

Proposition 6 (JV limit, independence case).
If µ is uniform in Sp then limp→∞ Eµ [JV (µ⊗ µ)] = 0

Proof

We start by using a sequence of inequalities allowing us to be interested in a reduced member
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of JV .

JV (µ⊗ µ) =
p2
∑p

u=1

(
µu − 1

p

)2∑p
u=1

(
µu − 1

p

)2
p(p− 2)(

∑p
u=1 µ

2
u) + 1

=
p2
(∑p

u=1 µ
2
u − 1

p

)2
p(p− 2)(

∑p
u=1 µ

2
u) + 1

≤
p2
(∑p

u=1 µ
2
u − 1

p

)2
p2(p− 2) 1

p2
+ 1

≤
p2
(∑p

u=1 µ
2
u − 1

p

)2
p− 1

≤ 2p

(
p∑

u=1

µ2u −
1

p

)2

(20)

(21)

To demonstrate the convergence, we recall Dirichlet's law as introduced in the De�ni-
tion 4.

De�nition 4 (Dirichlet's law).
The density of Dirichlet's law Dp which expresses a uniform law on Sp is expressed as follows:

f(µ1, ..., µp)

p∏
k=1

dµk =
1

B(p)

p∏
k=1

µ0k

p∏
k=1

dµk =
1

B(p)

∏
k = 1pdµk

where B is the mutinomial beta function.

This law is often presented as a uniform distribution over distributions. This is how
we will use it here. Indeed, we notice that the uniform law on the simplex Sp that we
have already used for the proof of the Proposition 1 is none other than the particular case
α1 = . . . = αp = 1 .

We specify the moments of this law to deduce the exact calculation of the expectation
of the upper bound.

Proposition 7 (Dirichlet's law moments).
Given µ ∈ Sp drawn according to Dirichlet's law of parameter α1, . . . , αp, we write α0 = α·.
So for all p-uplet β1, . . . , βp of positive integers, we have the formula (with β0 = β·):

E

(
p∏

u=1

µβuu

)
=

Γ (
∑p

u=1 αu)

Γ (
∑p

u=1 αu + βu)

p∏
u=1

Γ(αu + βu)

Γ(αu)
=

Γ (α0)

Γ (α0 + β0)

p∏
u=1

Γ(αu + βu)

Γ(αu)

Lemma 1 (Term tending to 0 and speed).

If µ is uniform in Sp then Eµ
[(∑p

u=1 µ
2
u − 1

p

)2]
= o

(
1
p

)
This is enough to show the convergence in expectation of JV towards 0 according to the
upper bound stated in Equation 20.
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Remark 4 (Convergence and minimum speed).
Lemma 1 shows that JV approaches its minimum 0 and further exposes the speed of con-
vergence. It becomes an equality if and only if µ ⊗ µ = µ ⊕ µ which happens if and only if
µ = Up.

Proof

We will essentially develop and use Proposition 7 in the case α1 = . . . = αp = 1.

E

( p∑
u=1

µ2u −
1

p

)2
 =

∑
1≤u,v≤p

E(µ2uµ
2
v)−

2

p

p∑
u=1

E(µ2u) +
1

p2

For the case where the total power β is 4 separated into 2 in the �rst term (u 6= v):

E(µ2uµ
2
v) =

Γ(α0)

Γ(α0 + β0)

Γ(αu + 2)Γ(αv + 2)

Γ(αu)Γ(αv)
;

=
4

p(p+ 1)(p+ 2)(p+ 3)
. (22)

For the case where the total power β is 4 at once in the �rst term (u = v):

E(µ4u) =
2 ∗ 3 ∗ 4

p(p+ 1)(p+ 2)(p+ 3)
;

=
24

p(p+ 1)(p+ 2)(p+ 3)
. (23)

Finally, for the case where the total power β is 2 in the second term

E(µ2u) =
2

p(p+ 1)
(24)

In the end, by combining Equations (22), (23) and (24), we get:

E

( p∑
u=1

µ2u −
1

p

)2
 =

4p(p− 1)

p(p+ 1)(p+ 2)(p+ 3)
+

24p

p(p+ 1)(p+ 2)(p+ 3)
− 2 ∗ 2p

p(p+ 1)
+

1

p2

=
4(p− 1)

(p+ 1)(p+ 2)(p+ 3)
+

24

(p+ 1)(p+ 2)(p+ 3)
− 4p

(p+ 1)
+

1

p2

=
4p(p+ 5)− 4(p+ 2)(p+ 3)

p(p+ 1)(p+ 2)(p+ 3)
+

1

p2

=
−24

p(p+ 1)(p+ 2)(p+ 3)
+

1

p2

Which allows us to conclude that even multiplied by pr with 0 < r < 2, the evaluated term
always tends towards 0, in detail we have shown:

Eµ [JV (µ⊗ µ)] = O(
1

p
)

13
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It thus ends the proof of Lemma 1 and Proposition 6.

Having shown that JV tends to 0 in the case π = µ⊗ µ with µ uniform in Sp, we want
to show the following more general Proposition.

Proposition 8 (JV limit).
If π is uniform in Spq then limpq→∞ Eπ [JV (π)] = 0

Proof

We show in a similar way to the independence case the inequality

JV (π) ≤ 4
√
pq

(
pq
∑
u,v

(π2u,v)− p
∑
u

(π2u,·)− q
∑
v

(π2·,v) + 1

)

Let us therefore calculate the expectation of the upper bound using Proposition 7 but this
time with a Dirichlet law on the simplex Spq. We thus consider (πu,v)1≤u≤p,1≤v≤q as a vector
of size pq.
For the �rst term

E(π2u,v) =
2

pq(pq + 1)
. (25)

For the second term

E(π2u,·) = E

∑
v,v′

πu,vπu,v′


= (q2 − q) 1

pq(pq + 1)
+ q

2

pq(pq + 1)

=
q + 1

p(pq + 1)
(26)

By combining Equations (25) and (26) and playing with symmetry for the third term, we
obtain:

E

(
pq
∑
u,v

(π2u,v)− p
∑
u

(π2u,·)− q
∑
v

(π2·,v) + 1

)

= p2q2
2

pq(pq + 1)
− p2 q + 1

p(pq + 1)
− q2 p+ 1

q(pq + 1)
+ 1

=
2pq

pq + 1
− p(q + 1)

pq + 1
− q(p+ 1)

pq + 1
+ 1

=
−p− q
pq + 1

+ 1

So that we have:

Eπ [JV (π)] = O
(

1
√
pq

)
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Remark 5. Since JV is positive we have also shown that it tends towards 0 in probability.

The propensity of the JV to approach 0 assumes that we use it sparingly; if in an
application p is large, matching 0 does not assume indeterminacy.

4.2 Guessing or spy problem

This two last subsections, illustrates the couple matching reduction under the guessing and
the task partitioning problem. They further detail both than in the original version Bertrand
et al. (2021).

The guessing problem appears in cryptography, when a spy screening a communication
session tries to determine which message was sent making use of some partial information.

4.2.1 Original problem

In cryptography, a message u in a �nite alphabet U of size p is typically sent from Alice
to Bob while a spy whose name is Charlie tries to intercept it. A common strategy for
Alice to communicate e�ciently and secretly with Bob consists in encoding the message
using a couple of keys (public, private) for each character or a symmetric encryption which
only requires one shared key between Alice and Bob. The literature concerned with the
encryption method to choose according to the situation is diverse, the most-used standard
is Advanced Encryption Standard described in various articles. Possibly, Charlie observes
an encrypted message V in a second �nite alphabet V of size q which is a function of the
message u.

Related to the cryptography situation, the guessing problem quoted hereafter as Prob-
lem 2 was �rst introduced in the article Massey (1994). While in cryptography Charlie
tries to decode a sequence of messages, the guessing problem focuses on decoding a unique
message. Furthermore, the initial version of Problem 2 is limited due to the lack of access
to any prior knowledge by the spy. A second version described in subsection 4.2.2 will intro-
duce a variable V correlated to the message; this second variable will code some information
available to Charlie as for example the encrypted message.

Though, the original version provides a collection of results that easily transpose them-
selves to the more realistic one. Let us formalize this simplest situation: U is a random
variable which takes its values in a �nite alphabet U and follows the probability law PU = µ.
A sender "Alice" generates a sequence of independent messages under µ.

Problem 2 (Original Guessing Problem or Spy Problem).
When Alice sends a message U = u to Bob, the spy Charlie must �nd out the value u of
the realization. He has access to a sequence of formatted questions for any guess ũ he may
have: "Does u equal ũ?" for which the binary answer is limited to "yes/no".

De�nition 5 (Original Strategy).
A strategy S = σ of Charlie is de�ned by an order on U representing the �rst try, the second
and so on until number p. It can be deterministic or random: we quote PS its probability
law.

15
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Besides, for a given position i ∈ [1, p], σ[i] is the element in U corresponding to the i-th
try.

In Massey (1994), a measure of performance is associated to any �xed strategy σ of
Charlie. It basically computes the ρ moment of G which counts the number of trials needed
by Charlie to �nd out which message u was sent. We shall add another performance measure
later on.

De�nition 6 (Performance measure).
The function G(σ, u) is de�ned as the number of questions required to eventually obtain a
"yes" in Problem 2 when Charlie proposed the order S = σ and Alice generated the message
U = u. It can be a random variable even for a �xed u as soon as S is. G(S,U) is a random
variable and whose formal de�nition is:

G(σ, u) =

p∑
i=1

i1σ[i]=u

We eventually de�ne the e�ciency of a strategy S by a measure of the ρ−moment of
G(S,U) under the independent coupling of S ∼ PS and U ∼ PU .

||G(S,U)||ρ =
[
E(S,U,V )∼PS,U,V (G(S,U)ρ)

]
The de�nition of G(σ, u) precisely codes the number of trials before Charlie discovers

the message u. For instance, with an alphabet U = {a, b, c, d}, if the message is u = c and
the strategy σ of the spy consists in the order (b, c, a, d) (meaning he �rst proposes message
b then c,. . . ) we have:

G(σ, u) =

p∑
i=1

i1u=σ[i]

= 1 · 1u=b + 2 · 1u=c + 3 · 1u=a + 4 · 1u=d
= 2 · 1u=c
= 2

It has been proven in the same article Massey (1994) a natural result: provided PU = µ
is known, the best strategy consists in proposing answers under the deterministic order σ
of decreasing probabilities. That is to say we �rst propose the message which appears most
often, then the second most probable and so on:

µσ[p] ≤ . . . ≤ µσ[1]

Besides they demonstrated a lower bound on the average number of questions which no
strategy can break as it is speci�ed in Theorem 2.

Theorem 2 (Lower bound on the e�ciency).
The minimal expected number of questions to solve Problem 2 veri�es the inequality:

min
S
||G(S,U)||ρ ≥ (1 + log(p))−ρ

[∑
u∈U

P(U = u)
1

1+ρ

]1+ρ
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A practical application of Theorem 2 is to provide a guarantee on the average time a spy
will take to guess a message. The sender, on its side, is motivated by maximizing the lower
bound.

4.2.2 Extended problems

As announced beforehand, Charlie has now access to an observed random variable V cor-
related with the sent message U . In the common cryptography problem it would be the
encrypted message that Charlie observes when Alice sends a message, hence a deterministic
function of the message U . Here, we generalize and suppose it can also contain, for instance,
the size of the message, the frequency channel used, the sender's location, the receiver, or
any physical information a spy can have access to. Finally, the added information, more or
less useful, is encoded into a random variable V whose values belong to a �nite alphabet V
of size q. Obviously, V is correlated with the message U but we do not suppose their link is
deterministic as it would be for an encryption.

As mentioned in the article Arikan (1996), Charlie now chooses its strategy according
to the value taken by the observed second variable V : he typically adapts himself to the
conveyed encryption. The probability law of the couple (U, V ) is quoted PU,V = π while its
margins are PU = µ and PV = ν.

The gain function now expresses as G(S,U |V ): we purposely use the notation symbol
"knowing V " to insist on the fact that V is known when the spy decides the strategy he
uses. Eventually, for any observed value V = v, an original strategy Sv (see De�nition 5) is
built up leading to an original gain function G(Sv, U) that is to say:

G(S,U |V ) =
∑
v∈V

G(Sv, U)1V=v

The same article comes up with a generalization of Proposition 2 that we report here:

Theorem 3 (Generalized lower bound on the e�ciency).
For any strategy, the average time to reconstruct the message always respects the lower
bound:

E(S,U,V )∼PS,U,V [G(S,U |V )ρ] ≥ (1 + log(p))−ρ
∑
v∈V

[∑
u∈U

(πu,v)
1

1+ρ

]1+ρ
Proof [Proof]
The result is plain given that, as we already noticed, S decomposes into original strategies Sv
for any �xed v. Hence, for any v, the local or original assigned strategy obeys Proposition 2
which directly leads to the result.

4.2.3 Indeterminacy as a lower bound

Let us move away from the literature and measure Charlie's performance by its probability
to �nd out after one trial the message u Alice sent. It is a reasonable measure as, if a
sequence of messages is sent, we may have to jump from one to the following after only one
trial.
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De�nition 7 (one-shot performance).
For a given strategy S, we de�ne the following performance measure as the probability to
�nd out the value u after one trial, formally:

M(S,U, V ) = P(S,U,V )∼PS,U,V (S[1] = U)

=

p∑
u=1

q∑
v=1

πu,vPSv (Sv[1] = u) . (27)

Remark 6 (Generalized one-shot performance).
One could easily introduce a measure whose name could be "k-shots performance" evaluating
the probability to guess after up to k trials. We would hence notice that if k ≥ p then the
"k-shots performance" equals 1 for any sensitive strategy. We will not detail it further here.

We suppose as for the original optimal strategy that the spy has access to the distribu-
tion PU,V = π. We can imagine he previously observed the non-encrypted messages in a
preliminary step.

Two strategies immediately stand out:

1. Smax: systematically returns at v �xed (observed by hypothesis), the u associated
with the maximal probability on the margin PU |V=v

2. Smargin: returns at v �xed a random realization of x under the law PU |V=v

Similarly as in see Massey (1994) where they prove Smax is the best strategy in case the
performance measure is G, we can show it also maximizes the one-shot performance. Ac-
tually, since PSv only depends on v, M is maximal under Smax, when PSv = δuv where
uv = argmaxuπu,v so that:

M(S,U, V ) ≥M(Smax, U, V ) =

q∑
v=1

πuv ,v. (28)

Eventually, we quote u1 = argmaxuµu and notice that

q∑
v=1

πuv ,v ≥
q∑

v=1

πu1,v = µu1

leading to the proposition 9.

Proposition 9 (Charlie's best performance).
We suppose that the margins µ and ν are �xed. Then, for any coupling probability π be-
tween messages U and ciphers V , the best one-shot performance Charlie can perform always
happens under Smax. Furthermore it admits a �xed lower-bound µu1 independent on π; to
summarize:

M(S,U, V ) ≥M(Smax, U, V ) =

q∑
v=1

πuv ,v ≥ µu1 . (29)
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Let us suppose, commendable task if any, that Alice wants to minimize Charlie's best
one-shot performance. We also suppose that the margins µ on U and ν on V are �xed. It is a
common hypothesis: the alphabet U in which the messages are composed typically respects
a distribution on letters; variable V on its own, if it represents frequencies for instance may
have to satisfy occupation weights on each channel. Eventually, Alice can only leverage on
the coupling between U and V .

Precisely, let us now compute the corresponding value for two canonical couplings (in-
dependence and indeterminacy). Both are optimal (for Alice).

M× = M(Smax, µ⊗ ν) = µu1 M+ = M(Smax, µ⊕ ν) = µu1

Regarding the second strategy Smargin we know it is less e�cient for Charlie in term of
one-shot performance. Yet, it is by far harder to cope with for the sender who cannot easily
prevent random con�icts. Consequently we come back to the reduction of couple matchings
(here a success for Charlie), whose indeterminacy coupling, we know, prevents us against.
Let us unfold this remark hereafter.

Replacing PSv by its value under the second strategy in Equation (27) allows us to
estimate the one-shot performance of Smargin which is given by:

M(Smargin, U, V ) =
∑
u∈U

∑
v∈V

νv(πu|V=v)
2 =

∑
u∈U

∑
v∈V

π2u,v
νv

. (30)

Concerning the strategy Smargin we have the two bounds:

||π||22
minv∈V νv

≥M(Smargin, U, V ) ≥ ||π||22
maxv∈V νv

, (31)

with

||π||2 =

√∑
u∈U

∑
v∈V

π2u,v.

Depending on ν the bounds are more or less tight. If νv goes to the uniform, the situation
becomes similar to Smax: both couplings are equal and optimal.

In any case, Equation (31) shows that studying the guessing problem brings us back to
Problem 1 associated a square-deviation cost whose solution is given by the indeterminacy
coupling of the margins. It guarantees an e�cient reduction of con�icts (see section 2.2) and
eventually a controlled one-shot performance under Smargin as expressed in Equation (31)
and an optimal one under Smax.

4.3 Tasks partitioning

The task partitioning problem occurs in manufacturing process to optimize the way to assign
tasks to production teams, or to machines in job-shop scheduling.

Task partitioning problem is originally introduced in Bunte and Lapidoth (2014) where
the authors provide a lower bound on the moment of the number of tasks to perform. Let
us follow the gathering work of Kumar et al. (2019) where they also coin a generalized task
partitioning problem basically adapting it as a special case of the guessing problem.
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Formally, we begin with the original problem of tasks partitioning: a �nite set U of tasks
size of which is quoted p is given together with an integer q ≤ p. The problem consists in
creating a partition A = (A1, . . . ,Aq) of U in q classes to minimize the number of tasks to
perform, knowing that if one needs to perform a task u ∈ Ai, it is mandatory to launch
simultaneously the whole subset of tasks included within Ai.

Practically, a task U = u to perform is randomly drawn from U under a probability
distribution PU = µ representing the tasks frequencies. As any task, the task u to perform
is assigned to a unique class Ai(u) of the arbitrary partition. Hence, A(u) = |Ai(u)| counts
the number of tasks to perform. Precisely, one plays on the partition knowledge to perform,
in average, as few tasks as possible.

Similarly to the guessing problem, the performance of a partition A is estimated through
the ρ−moment of A(U), formally EU [A(U)ρ]. Moreover, the authors show in Kumar et al.
(2019), quite similarly as for Theorem 2 that we have:

min
A

EU∼µ [A(U)ρ] ≥ 1

q

[∑
u∈U

(µu)
1

1+ρ

]1+ρ
(32)

which expresses a minimum average number of tasks to perform whatever the partition is.

Inspired by the general guessing problem, they extend the task partitioning problem. Let
us introduce here this generalized version, in which we are no longer interested in minimizing
the number of tasks to perform but rather in reducing the number of tasks before a selected
(or a chosen) task u.

Indeed, in the �rst version, as soon as u is drawn, an arbitrary rule imposes to perform
the whole subset Ai(u) leading to realize A(u) tasks. In the new version, tasks are performed
sequentially in Ai(u) according to a global strategy S that can be deterministic or random.

Typically, tasks may consist in a signatures �ow which an administration requires while
q would be the number of workers dedicated to perform those signatures on incoming doc-
uments. A worker can be given the entitlement to perform several signatures, assistants
usually do. In that case, the partition encodes the assignments of tasks to workers. When
a worker V = v is assigned a document, the depositor waits until the signature. Then the
worker follows his own strategy Sv to sign his assigned documents, meaning he can always
follow the same order leading to a deterministic strategy or change every day leading to a
random strategy.

With a global strategy S which gathers the workers' strategies Sv, ∀1 ≤ v ≤ q and for
a task u to perform, the performance of a partition A is measured using

NS,A(u)

which represents the number of tasks performed before the intended task u (u included). A
lower bound is provided in the paper Kumar et al. (2019).

Let us now suppose the keys 1 ≤ v ≤ q are associated with o�ces that must perform a
proportion νv of the incoming tasks which still follow a distribution µ. It actually appears
as a sensible problem where a manager would have to distribute in advance tasks among
teams according to the usual observed distribution of tasks and a list of available teams with
their capacities.
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Besides, we suppose each team uses the strategy Smargin to perform tasks, meaning they
randomly perform one according to their margin theoretical distribution; for a document
signing, they randomly sign one.

Remark 7 (Concrete estimated distribution).
In any of the previous applications, for spy as well as for tasks, we are dealing with probabili-
ties. Actually, we send a �nite and integer number n of messages and we similarly distribute
a �nite number n of tasks.

Moreover, U and V are �nite. Eventually, for any u ∈ U and v ∈ V, an integer number
nu,v of tasks is associated corresponding (in the spy problem) to the number of same letters u
sent using channel v. To convert nu,v into a probability measure, one would use Equation 15.

Reciprocally, given a probability measure, one will draw n messages according to π. As
n increases, it will approximate the theoretical distribution better and better.

From now on, we can rewrite our task partitioning problem under the form of a guessing
problem:

• V = v, formerly corresponds to a worker, now it represents the information the spy
has access to ;

• U = u, formerly represents a task to perform, now it represents a sent message ;

• S = σ, formerly represents the order in which tasks are performed, now it represents
the order in which Charlie proposes his guesses.

Under this formalism, we are interested in measuring the probability M(S,U, V ) of
executing u �rst as an extended application of the one-shot performance of De�nition 7 and
we have:

M(S,U, V ) ≥ ||π||22
max1≤v≤q νv

≥ ||π+||22
max1≤v≤q νv

(33)

This inequality provides a lower bound for any distribution of the tasks among the team,
no distribution can generate a worst "one-shot probability" of satisfying the intended task.

In task partitioning actually, each u is uniquely associated to a worker v = i(u) so that
the random variable representing the worker is deterministic conditionally to U . Yet, it is a
reducing case of the guessing problem where V is random.

Remark 8 (Splitting mass).
Eventually, we notice that having V random conditionally on U is a generalization of task
partitioning along the same lines the Monge-Kantorovith problem was an extension of the
one dimension Monge problem: we allow the mass splitting possibility, since a task may be
randomly assigned among several workers.

In task partitioning problem using a partition A instead of V (hence allowing no mass
splitting), we notice PY = ν is not properly de�ned. Let us extract it from the partition A
by providing each worker with a probability which sums up the probabilities of the tasks he
has to perform. Formally, we de�ne V (A) to be a random variable whose probability is:
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νAv = PV (A)(V (A) = v) =
∑
u∈Av

µu

together with the couple probability:

πAu,v = PU,V (A) (U = u, V (A) = v) = µu1u∈Av

It enables us to deduce that the one-shot probability of satisfying the intended task for
a partitioning problem accepts as a lower bound:

M(S,U,A) = M (S,U, V (A)) ≥ ||πA||22
max1≤v≤q νAv

≥ ||C
+(µ, νA)||22

max1≤v≤q νAv

Indeed, a partition problem appears as a particular coupling of U and V (A) (where
V (A)|U is deterministic) and no coupling can be worse than C+ (U, V (A)).

A direct application is that no o�ce a�ectation should provide a worse one-shot perfor-
mance...

The e�ciency of indeterminacy coupling in guessing problem as well as in task parti-
tioning directly comes from its ability to reduce couple matchings. Either it prevents the
spy from discovering the message or it provides a worst strategy by preventing a task from
being performed.

5. Conclusion

The main innovation of this paper is the decomposition of indeterminacy. It enables us, �rst
to e�ciently generate a drawing, second to interpret it as a mixture of three pretty straight-
forward drawings and last but not least to explain how it reduces couple matchings while
respecting the forced margins. Since indeterminacy cannot be de�ned on all margins, the
paper also computes the proportion of eligible margins. Furthermore, it proposes a construc-
tive method to transform any couple into an eligible couple. Besides, the limit we have show
of the Janson Vegelius coe�cient helps us to mind when de�ning a threshold to conclude to
indeterminacy. Eventually, the two applications, already presented in proceedings Bertrand
et al. (2021) are interpreted to the light of the new decomposition.
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