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ABSTRACT

In this paper we introduce and rigorously solve for the first time the photometric stereo problem for

central panoramic systems. In particular, by leveraging the unified camera model, we present a new

spherical image irradiance equation and analyze its mathematical properties in detail. The discrete

gradient field issued from this equation is fed into a drift-free normal integration algorithm tailored

to the spherical image geometry, and the light direction is estimated using the specular highlights ob-

served on mirror balls inside the scene. Extensive experiments conducted with analytical surfaces, and

synthetic and real-world images captured by central panoramic cameras, show that the proposed 3D

reconstruction pipeline is effective and tolerant to noise. The image database and the code developed

are publicly available at the address: mis.u-picardie.fr/˜fabio/ustereo.html

c© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Motivation and related work

In the last decades, photometric stereo and multi-view

stereo have known a growing success in computer vision

(Ackermann and Goesele, 2015; Furukawa and Hernández,

2015). Photometric stereo approaches leverage the observed in-

tensity variations caused by illumination changes to reconstruct

the shape of a 3D object. In its simplest incarnation, a diffuse

surface is illuminated from at least three known directions

and images are captured by a static camera: in his pioneer

work, Woodham showed that under suitable conditions, the

per-pixel surface normals can be thus recovered (Woodham,

1980). Besides the Lambertian model (i.e. surface brightness

looks the same from any viewing direction) and the neglect of

shadows and inter-reflections, other simplifying assumptions

∗∗Corresponding author: Tel.: +33 03 22 82 59 02;

e-mail: jordan.caracotte@etud.u-picardie.fr (Jordan Caracotte)

include light sources at infinity and orthographic projection

of the scene onto the imaging sensor. The data is typically

collected at small scale, in controlled indoor environments,

using multiple static lamps or robotic gantries.

Numerous extensions to the basic problem formulation have

been proposed in the literature. For example, in (Abrams et al.,

2012; Ackermann et al., 2012; Abrams et al., 2013; Jung et al.,

2015), the lighting constraints have been relaxed and out-

door images (from webcams) under natural sunlight illumi-

nation have been used for 3D reconstruction. When no

prior knowledge about the illumination, geometry and re-

flectance of the surface is available, the so-called “uncal-

ibrated” photometric stereo problem arises, which is well-

known to be ill-posed, see (Hayakawa, 1994; Basri et al., 2007;

Quéau et al., 2015, 2017; Papadhimitri and Favaro, 2013).

Other extensions include more sophisticated surface reflectance

models (Tagare and Defigueiredo, 1991; Higo et al., 2009;

Weinmann et al., 2013; Lu et al., 2015), (i.e. “Bidirectional

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/
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Fig. 1. Example output from our photometric stereo algorithm: (a) Input

360◦ images of a spiral staircase under eight different illumination condi-

tions; (b) Estimated normal map in false colors (turned upside down, for

ease of visualization), obtained with the panoramic images; (c) 3D recon-

struction of the scene.

Reflectance Distribution Functions” or BRDF, other than

the classical Lambertian reflectance), near-field (i.e. local)

lights (Mecca et al., 2014; Logothetis et al., 2017), the relax-

ation of constraints on camera placement (multi-view stereo)

(Hernández et al., 2008; Vlasic et al., 2009; Logothetis et al.,

2019) and combinations thereof (Shi et al., 2019).

However, while significant efforts have been made in the lit-

erature to robustify Woodham’s approach and to extend it from

orthographic to perspective projection (Tankus and Kiryati,

2005), to the best of our knowledge (with the exception of

an early attempt in (Kondo et al., 2008)), no results exist for

central panoramic cameras, i.e. for vision systems which pre-

serve the uniqueness of projection viewpoint (as a pinhole cam-

era coupled with a hyperbolic, parabolic or elliptical mirror).

Thanks to their large field of view, panoramic systems offer

distinctive advantages over standard pinhole cameras, for pho-

tometric stereo. First of all, a single 360◦ image is more in-

formative about the content of an observed scene, thus speed-

ing up data collection and 3D reconstruction. Therefore, it is

no longer necessary to create large datasets of images taken

from multiple vantage viewpoints for recording the appear-

ance of a surface from all around. Second, severe visibility

issues, e.g. due to self-occlusion, are alleviated. These ben-

efits are particularly evident when the camera is placed at the

center of a complex 3D environment, as that reported in Fig. 1,

which would require multiple shots from a perspective system

to be fully covered. Central panoramic cameras also suffer

from some fundamental limitations: in fact, they provide im-

ages with non-uniform spatial resolution and large distortions.

These issues can be partially alleviated by non-central systems,

such as panoramic line-scan cameras (Benosman et al., 1996;

Ait-Aider and Berry, 2019).

As shown in (Geyer and Daniilidis, 2000), projection sys-

tems with a single effective viewpoint can be described by a

unifying image spherical model. However, whereas this model

has been very successful in robot vision (e.g. for visual odom-

etry (Zhang et al., 2016; Matsuki et al., 2018) or visual servo-

ing (Mariottini and Prattichizzo, 2008)), it has not yet been ex-

ploited in the photometric stereo literature.

1.2. Original contributions, organization and notation

In this paper, we make standard assumptions on the illumi-

nation and reflectance models (i.e. Lambertian surfaces), but

we push the boundaries of research by considering more gen-

eral camera models. More specifically, we leverage the uni-

fied camera model of Geyer & Daniilidis, and present a novel

spherical image irradiance equation whose mathematical prop-

erties are studied in detail. The measured gradient field is fed

into a drift-free normal integration algorithm which explicitly

accounts for the geometry of spherical images. Adapting the

approach in (Schnieders and Wong, 2013) to our generic set-

ting, the light direction in real images is estimated using the
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specular highlights observed on mirror balls inside the scene.

A large-scale validation campaign performed with analytical

surfaces, synthetic and real-world images captured by central

catadioptric cameras illustrates the theory and shows the effec-

tiveness of our 3D reconstruction pipeline in terms of accuracy

and robustness.

In summary, the two main contributions of this paper are:

1. A unifying theory of photometric stereo, encompassing

widely-used camera models in computer vision,

2. A complete 3D reconstruction pipeline, including a drift-

free normal integration algorithm tailored to the spherical

image geometry.

The rest of this paper is organized as follows. In Sect. 2,

we briefly review the unified camera model and the perspec-

tive image irradiance equation. In Sect. 3, we present the new

spherical image irradiance equation, we study its geometric

properties, and describe our geometry-aware normal integration

method. In Sect. 4, we discuss the results of extensive numer-

ical and real-world experiments. Finally, in Sect. 5, the main

contributions of the paper are summarized and some possible

avenues for future research are outlined.

Assumptions: For the reader’s convenience, we recapitu-

late here the assumptions made through this work. We con-

sider a 3D environment which includes a central panoramic

camera observing a scene with Lambertian surface. The scene

and the calibrated camera are static. A moving homogeneous

light source without fall-off is set at infinity, and the direction

of parallel light rays is assumed to be known (or it is esti-

mated, e.g. using mirror balls inside the scene). Notation:

Throughout this article, we use the symbol Rn to denote the

n-dimensional Euclidean space, and R
m×n the space of m × n

matrices. SO(3) indicates the special orthogonal group in di-

mension three, Sn = {x ∈ Rn+1 : ‖x‖ = ρ} the n-sphere of radius

ρ > 0 where ‖x‖ denotes the Euclidean norm of vector x ∈ Rn,

and Ry(θ) and Rz(ϕ) the 3 × 3 elementary rotations of an angle

θ and ϕ about the y- and z-axis, respectively. The tangent space

of the differentiable manifoldM at point x is denoted by TxM.

Moreover, x̂ denotes a normalized vector i.e. x̂ = x/‖x‖, and

x an estimate of vector x. Finally, 〈x, y〉 indicates the scalar

product of x, y ∈ Rn, x× y the vector product of x, y ∈ R3, and

, the equality by definition.

2. Preliminaries

2.1. Unified camera model

For the reader’s convenience, in this section we briefly

review the unified theory of central catadioptric pro-

jection (Geyer and Daniilidis, 2000, 2001). Theorem 1

in (Geyer and Daniilidis, 2000) establishes that catadioptric

projection with a single effective viewpoint is equivalent to

projection to a sphere, followed by projection to a plane from

a point. Consider a unit sphere centered at the origin of the

world frame {O; x, y, z}, and let the plane z = −m be the im-

age plane (see Fig. 2). A 3D point X = [x, y, z]T is first pro-

jected to two antipodal points Q and Q′ of coordinates ±X/‖X‖

, ± [xs, ys, zs]
T on the unit sphere. For the second part of

the map, we need to determine the perspective projection to the

plane z = −m from the projection point [0, 0, ℓ]T on the z-axis

of the sphere (point O′ in Fig. 2). If we confine ourselves to

point Q, the projection of X onto the image plane is then:

x =

[

(ℓ + m)x

ℓ ‖X‖ − z
,

(ℓ + m)y

ℓ ‖X‖ − z
, −m

]T

. (1)

ℓ

m

x

z

x

O

O′

Q′

Q = X
‖X‖

X

N

S

Image plane L

Fig. 2. A 3D point X = [x, y, z]T is projected to two antipodal points

±X/‖X‖ on the unit sphere (Geyer and Daniilidis, 2000, Sect. 2.1). The two

antipodal points Q and Q′ are projected to the image plane z = −m via pro-

jection from the point O′ (in the interest of clarity, only the projection of Q

to x on the image plane is shown in the figure). The normal vector to the 3D

surface S at point X is denoted by N, and L is a generic illumination vector.
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Let us now describe the projections using conical section

mirrors (i.e. parabolic, hyperbolic and elliptical mirrors). In this

case, the non-negative parameters ℓ and m have a clear physical

meaning: ℓ is a function of the eccentricity of the conic, and

m is a function of both its scale and eccentricity. When ℓ = 1

and m = 0, i.e. the point of projection is the North pole, we

have a case of stereographic projection (when X is restricted

to the sphere) or, equivalently, parabolic projection (Coxeter,

1969, Sect. 6.9). On the other hand, when ℓ = 0 and m = 1, we

have a perspective projection.

Note that the model above can be applied to cameras with

fisheye lenses as well (Ying and Hu, 2004). However, it

does not fit most fisheye lenses perfectly, and it is often

supplemented with a distortion model, see (Barreto, 2006;

Kannala and Brandt, 2006; Usenko et al., 2018).

2.2. Perspective image irradiance equation

To make a parallel with the results that we will present in

Sect. 3, we report below the perspective image irradiance equa-

tion derived in (Tankus et al., 2005, Th. 1). The following

customary assumptions hold throughout the paper. A 3D sur-

face S (see Fig. 2) can be represented by a function of world

coordinates or image coordinates (Tankus and Kiryati, 2005).

We denote by ž(x, y) the depth function written in {O; x, y, z}.

If (x, y, ž(x, y)) is projected onto the image point (u, v) (normal-

ized coordinates), then its depth is denoted by z(u, v) (by def-

inition, z(u, v) = ž(x, y)). I(u, v) indicates the intensity at im-

age point (u, v). The scene is Lambertian1 and is illuminated

from direction L , [pd, qd, −1]T by a light source at infin-

ity (cf. Fig. 2). N(x, y) denotes the surface normal at point X.

In our notation, we use the convention that the light sources and

normals point towards the camera (hence, the negative third co-

ordinate). Finally, α̌(x, y) ∈ [0, 1] denotes the diffuse albedo

(intrinsic reflectivity of the surface (Smith and Fang, 2016)) at

1Lambertian surfaces do not change appearance depending on the view-

ing direction. For instance, matte surfaces are to a large extent well approxi-

mated by the Lambertian model, since they diffuse light almost uniformly in

all directions. On the other hand, metal, mirrors, and other shiny surfaces,

do not (Ma et al., 2004, Sect. 3.A).

point (x, y, ž(x, y)), and α(u, v) the albedo projected onto im-

age point (u, v).

Theorem 1 (Perspective image irradiance equa-

tion (Tankus and Kiryati, 2005))

Under the previous notation and assumptions, the perspective

image irradiance equation is,

I(u, v) = α(u, v) 〈 N̂(u, v), L̂ 〉 =

−α(u, v) LT

‖L‖
√

(up + vq + 1)2 + f 2(p2 + q2)



































f p

f q

up + vq + 1



































,

(2)

where

p ,
1

z

∂ z

∂ u
=
∂ ln z

∂ u
, q ,

1

z

∂ z

∂ v
=
∂ ln z

∂ v
.

�

Note that by definition, I(u, v) ∈ [0, 1].

3. Photometric stereo for central panoramic systems

In this section, we will derive an image irradiance equation

which complies with the unified camera model presented in

Sect. 2.1. To this end, we will assume that the perspective pro-

jection step in equation (1) has been already performed, and we

will restrict our attention to the unit sphere. Our ultimate goal

will be to estimate the radial distance (or range) ρ from multi-

ple images of a 3D surface S observed from the same viewpoint

but under different illumination conditions. We will conclude

the section with a description of the method developed to inte-

grate the measured gradient field.

3.1. Spherical image irradiance equation

To represent an image on the sphere, it is expedient to in-

troduce the spherical coordinates (ρ, θ, ϕ) (Weber and Arfken,

2003, Sect. 2.5):


































x = ρ sin θ cosϕ,

y = ρ sin θ sinϕ,

z = ρ cos θ,

where ρ ∈ [0, ∞) is the radial distance, θ ∈ (0, π) the polar an-

gle and ϕ ∈ [0, 2π) the azimuthal angle (see Fig. 3). Note that
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ex

ey

ez

eθ

eϕ

eρ

ρ

ϕ

ϕ = constant

θ = constant

θ

Fig. 3. Spherical coordinates (ρ, θ, ϕ) and spherical coordinate system

surfaces.

at ρ = 0, the angles θ and ϕ are not defined. The coordinate

surfaces θ = constant, are right-circular cones with apex at the

origin having the z-axis as their axis of revolution, and the co-

ordinate surfaces ϕ = constant, are vertical half-planes passing

through the origin (cf. Fig. 3). Let now r = [x, y, z]T . Then, the

basis set of unit vectors {eρ, eθ, eϕ} for the spherical coordinates

is given by (Weber and Arfken, 2003, Sect. 2.3):

eρ =
1

hρ

∂ r

∂ ρ
=



































sin θ cosϕ

sin θ sinϕ

cos θ



































,

eθ =
1

hθ

∂ r

∂ θ
=



































cos θ cosϕ

cos θ sinϕ

− sin θ



































, eϕ =
1

hϕ

∂ r

∂ ϕ
=



































− sinϕ

cosϕ

0



































,

where the scale factors (a.k.a. metrical or Lamé coefficients):

(hρ, hθ, hϕ) =

(
∥

∥

∥

∥

∥

∂ r

∂ρ

∥

∥

∥

∥

∥

,

∥

∥

∥

∥

∥

∂ r

∂ θ

∥

∥

∥

∥

∥

,

∥

∥

∥

∥

∥

∂ r

∂ ϕ

∥

∥

∥

∥

∥

)

= (1, ρ, ρ sin θ).

Note that the unit vectors eρ, eθ and eϕ vary in direction as the

angles θ and ϕ vary. We are now ready to state the main result

of this section (cf. Theorem 1).

Theorem 2 (Spherical image irradiance equation)

Let v = [v1, v2]T and w = [w1, w2]T be two vectors lying

on the tangent plane of S
2 at r, and let det(A) > 0 where

A = [v, w]. Then, under the previous assumptions, the spheri-

cal image irradiance equation for the directions v and w is,

I(θ, ϕ) =
α(θ, ϕ) LT

||L||

√

(v1 p − w1q)2 +

(

w2q − v2 p

sin θ

)2

+ det(A)2

·Rz(ϕ) Ry(θ)













































v1 p − w1 q

w2 q − v2 p

sin θ

− det(A)













































,

(3)

where α(θ, ϕ) ∈ [0, 1] denotes the albedo at point (θ, ϕ),

p ,
1

ρ
∇w ρ = ∇w ln ρ, q ,

1

ρ
∇v ρ = ∇v ln ρ, (4)

and ∇w ρ = 〈∇ρ, w〉 is the directional derivative2 of ρ along

vector w.

Proof: The proof follows the same outline as that of Theo-

rem 1 in (Tankus et al., 2005). By considering the directions

v, w ∈ Tr S
2, the surface normal N can be computed as

(see Fig. 2):

N(θ, ϕ) =

(

v1

∂ r

∂ ϕ
+ v2

∂ r

∂ θ

)

×

(

w1

∂ r

∂ ϕ
+ w2

∂ r

∂ θ

)

=

[(

v1

∂ ρ

∂ ϕ
+ v2

∂ ρ

∂ θ

)

eρ + v1 hϕ eϕ + v2 hθ eθ

]

×

[(

w1

∂ ρ

∂ ϕ
+ w2

∂ ρ

∂ θ

)

eρ + w1 hϕ eϕ + w2 hθ eθ

]

= ρ
[

sin θ (v1∇wρ − w1∇vρ) eθ + (w2∇vρ − v2∇wρ) eϕ

− ρ sin θ det(A) eρ
]

,

(5)

where the last equality follows from the definition of directional

derivative and the identities:

eρ × eρ = 0, eϕ × eϕ = 0, eθ × eθ = 0,

eρ × eθ = eϕ, eϕ × eρ = eθ, eθ × eϕ = eρ.

2The directional derivative of a scalar function f (x) : R
n → R along

a vector w ∈ R
n is the function ∇w f (x) defined by the limit ∇w f (x) =

lim
h→ 0

f (x+ h w)− f (x)
h

. If f is differentiable at x, then the directional derivative

exists along any vector w, and one has ∇w f (x) = 〈∇ f (x), w〉.
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Equation (5) can be equivalently rewritten as:

N(θ, ϕ) = ρ sin θRz(ϕ) Ry(θ)









































v1∇w ρ − w1∇v ρ

1

sin θ
(w2∇v ρ − v2∇w ρ)

− det(A) ρ









































,

where Rz(ϕ) Ry(θ) = [eθ, eϕ, eρ] ∈ SO(3). Note that given

a vector written in {eρ, eθ, eϕ}, the rotation matrix Rz(ϕ) Ry(θ)

allows to express it in {ex, ey, ez}, the basis set of unit vectors

for the Cartesian coordinates (cf. Fig. 3). Since for R ∈ SO(3),

‖R x‖ = ‖x‖, ∀ x ∈ R3, we have that:

N̂(θ, ϕ) =
N(θ, ϕ)

‖N(θ, ϕ)‖
=

1
√

(v1∇w ρ − w1∇v ρ)2 +
(

w2∇v ρ− v2∇w ρ

sin θ

)2
+ det(A)2 ρ2

·Rz(ϕ)Ry(θ)









































v1∇w ρ − w1∇v ρ

1

sin θ
(w2∇v ρ − v2∇w ρ)

− det(A)ρ









































.

If the scene is Lambertian and it is illuminated from direction

L = [pd, qd, −1]T by a point source at infinity, the irradiance

equation for the directions v and w is given by:

I(θ, ϕ) = α(θ, ϕ) 〈 N̂(θ, ϕ), L̂ 〉 =

α(θ, ϕ) LT

‖L‖

√

(v1∇w ρ − w1∇v ρ)2 +
(

w2∇v ρ− v2∇w ρ

sin θ

)2
+ det(A)2 ρ2

·Rz(ϕ) Ry(θ)











































v1∇w ρ − w1∇v ρ

1

sin θ
(w2∇v ρ − v2∇w ρ)

− det(A)ρ











































,

(6)

where α(θ, ϕ) is the albedo at point (θ, ϕ). From equation (4),

it follows that ∇v ρ = qρ and that ∇w ρ = pρ. By substituting

these expressions in (6) and rearranging, the radial distance ρ

cancels out, and equation (3) in the statement is obtained. �

The set of points on the surface of the sphere where

I(θ, ϕ) = κ for constant κ ∈ [0, 1], is called an isophote

(Pottmann and Wallner, 2010, Sect. 6.3). In other words an

isophote is a curve on the surface of the sphere that connects

points of equal intensity.

If {v, w} is the standard basis set of unit vectors, i.e. v =

[1, 0]T and w = [0, 1]T , then equation (3) simply reduces to,

I(θ, ϕ) =
α(θ, ϕ) LT

||L||

√

p2 +

(

q

sin θ

)2

+ 1

Rz(ϕ) Ry(θ)









































p

q

sin θ

−1









































,

where

p ,
1

ρ

∂ ρ

∂ θ
=
∂ ln ρ

∂ θ
, q ,

1

ρ

∂ ρ

∂ ϕ
=
∂ ln ρ

∂ ϕ
. (7)

Remark 1 (Properties of the spherical image irradiance

equation)

As in the perspective case (cf. equation (2)), the spherical image

irradiance equation (3) only depends on the directional deriva-

tives of ln ρ(θ, ϕ) along v and w, but not on ln ρ(θ, ϕ) itself. As

a consequence, the problem of recovering the radial distance

ρ(θ, ϕ) from the image irradiance equation reduces to the prob-

lem of recovering ln ρ(θ, ϕ) from equation (3). Since the natu-

ral logarithm is a bijective function and ρ(θ, ϕ) > 0, recovering

ln ρ(θ, ϕ) is equivalent to recovering ρ(θ, ϕ) = exp(ln ρ(θ, ϕ)).

We also observe that as (2), equation (3) is invariant to scale

changes, meaning that the intensity functions of c ρ(θ, ϕ) (for

constant c) and ρ(θ, ϕ) are identical. In other words, the radial

map can only be reconstructed up to a scale factor. ⋄

Photometric stereo relies on several images of the same ob-

ject observed from an identical viewpoint, under n different il-

lumination conditions. Let us denote the images and the corre-

sponding illumination vectors, Ii(θ, ϕ) and

Li , [pdi
, qdi
, −1]T , i ∈ {0, 1, . . . , n − 1},

respectively. Using (3), the ith image irradiance equation

is then:

Ii(θ, ϕ) =
α(θ, ϕ) LT

i

||Li||

√

(v1 p − w1q)2 +

(

w2q − v2 p

sin θ

)2

+ det(A)2

·Rz(ϕ) Ry(θ)











































v1 p − w1q

w2q − v2 p

sin θ

− det(A)











































.

By dividing the ith image by the kth (assuming that the latter is
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non-zero everywhere), we obtain:

Ii(θ, ϕ)

Ik(θ, ϕ)
=

‖Lk‖L
T
i Rz(ϕ)Ry(θ)

[

v1 p − w1q,
w2q − v2 p

sin θ
,− det(A)

]T

‖Li‖L
T
k Rz(ϕ)Ry(θ)

[

v1 p − w1q,
w2q − v2 p

sin θ
,− det(A)

]T
.

(8)

By expanding the numerator and the denominator, and by col-

lecting the terms containing p and q, the photometric ratio (8)

can be rewritten as,

Ai,k p + Bi,k q + Ci,k = 0, i, k ∈ {0, 1, . . . , n − 1}, (9)

where

Ai,k =
[

Ii ‖Li‖〈Lk, eθ〉 − Ik ‖Lk‖〈Li, eθ〉,

−
1

sin θ

(

Ii ‖Li‖〈Lk, eϕ〉 − Ik ‖Lk‖〈Li, eϕ〉
)

]

v,

Bi,k = −
[

Ii ‖Li‖〈Lk, eθ〉 − Ik ‖Lk‖〈Li, eθ〉,

−
1

sin θ

(

Ii ‖Li‖〈Lk, eϕ〉 − Ik ‖Lk‖〈Li, eϕ〉
)

]

w,

Ci,k = − det(A)
(

Ii ‖Li‖〈Lk, eρ〉 − Ik ‖Lk‖〈Li, eρ〉
)

,

and Ii is a shorthand for Ii(θ, ϕ). One may observe that sys-

tem (9) is linear in p and q. Since two images are neces-

sary to construct each one of its equations, then three im-

ages are sufficient to recover the two unknowns p and q un-

der ideal conditions. However, in the presence of image noise,

the least-squares solution to system (9) is clearly preferable.

Note that the number of equations in system (9) does not ex-

ceed Neq =
(

n

2

)

= n(n − 1)/2.

Some remarks are in order at this point.

Remark 2 (Albedo estimation)

Note that equation (8) is independent of albedo (in fact, by

computing the photometric ratio, the coefficients α(θ, ϕ) can-

cel out). Hence, the approach described above recovers the

gradient field (p, q) without providing any information about

the albedo. Computing the albedo amounts to a simple inverse

rendering problem: to this end, one can use, for example, the

closed-form formula in (Smith and Fang, 2016, Sect. 4.1). ⋄

Remark 3 (Illumination vectors: special configurations)

With reference to system (9) and Fig. 3, we observe the follow-

ing special configurations for the illumination vectors Li, Lk:

• If Li, Lk are orthogonal to eρ for all i, k, then system (9)

only admits the trivial solution p = q = 0. In fact, in this

case 〈Lk, eρ〉 = 〈Li, eρ〉 = 0 and Ci,k = 0. Geometri-

cally speaking, this means that the illumination vectors lie

in a tangent plane to the sphere (raking light), and that

the isophotes satisfying I(θ, ϕ) = 0, are lines of latitude

(i.e. circles on the sphere parallel to the equator).

• If Li, Lk are orthogonal to eθ for all i, k and v2 = 0,

then Ai,k = 0 and only q can be computed (p is undeter-

mined). This means that the illumination vectors belong

to a plane tangent to the right-circular cone with apex at

origin, shown in Fig. 3.

• If Li, Lk are orthogonal to eϕ for all i, k and w1 = 0, then

Bi,k = 0 and only p can be computed (q is undetermined).

This means that the illumination vectors are radial to the

sphere in a meridian half-plane.

• If either Li or Lk is orthogonal to both eϕ and eθ for all i, k,

system (9) simplifies, but p and q can be both computed.

In this case, the illumination vectors are generically radial

to the sphere. ⋄

Remark 4 (Ambient illumination)

Note that by introducing a third image I j(θ, ϕ), equation (8)

can be made invariant to ambient illumination. In fact, if

the irradiance equation relative to direction Li is Ii(θ, ϕ) =

α(θ, ϕ)(〈N̂(θ, ϕ), L̂i〉 + a) where a > 0 is the constant ambient

light, then by taking the ratio of differences between images,

i.e. by computing, for example,

Ii(θ, ϕ) − I j(θ, ϕ)

Ik(θ, ϕ) − I j(θ, ϕ)
=
〈N̂(θ, ϕ), L̂i〉 − 〈N̂(θ, ϕ), L̂ j〉

〈N̂(θ, ϕ), L̂k〉 − 〈N̂(θ, ϕ), L̂ j〉
,

the ambient term cancels out. However, a known pitfall of this

approach (Smith and Fang, 2016), is that the estimation of the

gradient field becomes more sensitive to noise. ⋄

Remark 5 (Light attenuation)

Let f(d) be a generic light attenuation function, where d is the

distance between the light source and a point on the surface S.

This is a decreasing function of the distance: for example
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in (Prados and Faugeras, 2005; Liao et al., 2007), the authors

considered a simple inverse square law, i.e. f(d) = 1/d2. Then,

by defining If
i
(θ, ϕ) = f(di) Ii(θ, ϕ) where di is the distance of

the ith light source, the photometric ratio (8) becomes,

If
i
(θ, ϕ)

If
k
(θ, ϕ)

=
f(di)

f(dk)

Ii(θ, ϕ)

Ik(θ, ϕ)
, (10)

from which a set of linear equations in p and q similar to (9)

can be derived. However, to solve this system of equations, the

distances di, dk need to be known, and to accurately estimated

them is not a trivial task in practice. If all distances are identical

(i.e. di = dk, ∀ i, k), then the attenuation factor in (10) cancels

out, and we obtain equation (8). ⋄

To construct system (9), we simply discarded the zero in-

tensities. However, in the last decade, a popular class of ap-

proaches has emerged in which only a subset of observed in-

tensities for each pixel is chosen (Barsky and Petrou, 2003;

Hernández et al., 2010). The idea behind these selection-based

approaches is to exclude observations that are believed to de-

viate from the modeling assumptions made by the photometric

stereo algorithm (e.g. by discarding shadowed pixels). While

these methods could be potentially used to appropriately choose

the “best” combinations, we decided not to apply them here

in order to keep our 3D reconstruction pipeline simple and the

message focused on our generic camera model.

3.2. Integration of gradient field

System (9) allows to recover the gradient field (p, q) of the

3D surface S. However, to reconstruct the unknown radial

map ρ(θ, ϕ) (in contrast to the unknown depth map z(u, v)

in the perspective case), the gradient field needs to be inte-

grated. A plethora of integration methods exists in the lit-

erature (Quéau et al., 2018a). The variational approach is

among the earliest and most popular (Quéau et al., 2018b):

it considers a least-squares cost function in its continuous

form, and it solves the corresponding 2D Poisson equation.

In (Horovitz and Kiryati, 2004), iterative methods based on

the Gauss-Seidel scheme or its variants (Successive Over-

Relaxation and Full Multigrid) are used for numerical inte-

gration. Path integrals and grid-based basis functions have

been also proposed by some authors for the integration

step (Ackermann and Goesele, 2015).

The direct (i.e. non-iterative) algebraic approach proposed

in (Harker and O’Leary, 2008) has several attractive features:

uniqueness of solution (up to a constant of integration) and

numerical stability, which allows for reliable surface re-

construction even for high-resolution images, among oth-

ers. Assuming an orthographic image projection model and

a gradient field corrupted by Gaussian noise, the authors in

(Harker and O’Leary, 2008) formulated the problem as that of

reconstructing a discrete surface whose derivatives are equal

to p and q in the least-squares sense. With a matrix defini-

tion of the cost function, standard linear algebra is used to find

the unique least-squares minimum, which satisfies a Sylvester

matrix equation (see (Harker and O’Leary, 2015) for further

details). Finally, numerical differentiation, which takes the

form of a matrix multiplication, yields the depth of the recon-

structed surface.

We will use the method of Harker & O’Leary in Sect. 4, for

comparison purposes. In the next section, we will describe a

drift-free approach for the integration of the gradient field, tai-

lored to the spherical image geometry.

Geometry-aware normal integration method

To account for the constraints on the (θ, ϕ) grid, we designed

a normal integration method which explicitly handles them.

We have seen in Sect. 3.1 that if {v, w} is the standard basis

set of unit vectors, then p and q are defined as in equation (7).

Using a simple finite-difference method to approximate the two

partial derivatives in (7), we obtain:

p =
∂ ln ρ

∂ θ
≃

ln ρ(θ + ∆θ, ϕ) − ln ρ(θ, ϕ)

∆θ
,

q =
∂ ln ρ

∂ ϕ
≃

ln ρ(θ, ϕ + ∆ϕ) − ln ρ(θ, ϕ)

∆ϕ
,

(11)

where ∆θ and ∆ϕ denote the step-sizes along the θ- and

ϕ-direction, respectively. From (11), a linear system of equa-

tions (one for each node of the grid) can be constructed and

solved using the least-squares method. The sparsity of this lin-

ear system can be exploited for fast numerical solution (a speed
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0

0

2π

π/2

Panoramic image

ϕ

θ

(a)

North pole

(b)

Fig. 4. Spherical constraints imposed in our drift-free normal integration

method: (a) Circularity constraint (note that only the northern hemisphere

was considered in our implementation, see Sect. 4), and (b) North-pole con-

straint. The distance between the North pole and the surrounding nodes of

the discrete grid has been exaggerated for ease of illustration.

up of a few orders of magnitude was observed in our tests).

Note that the two equations in (11) are well-defined everywhere

except for the nodes on the boundary of the grid (a von Neu-

mann neighborhood is considered). To address this issue, we

augmented the system of equations with two additional con-

straints. The first one, cf. (Frankot and Chellappa, 1988), is

a periodic boundary condition referred to as the Circularity

constraint. In fact, since the radial distance must take on the

same values along opposite azimuth boundaries, we enforced

ρ(θ, ϕ + ∆ϕ) = ρ(θ, 0) for ϕ = 2π with θ ∈ (0, π/2] (i.e., the

rectangular grid is wrapped around, see Fig. 4(a)). The sec-

ond constraint is imposed on the contiguous nodes lying on the

annulus around the North pole (i.e. the node with θ = 0, a

singularity of the spherical coordinate representation): all these

nodes are considered to be neighbors. This constraint is re-

ferred to as North-pole constraint (see Fig. 4(b)). In Sect. 4,

we will show that the introduction of the Circularity and North

pole constraints is beneficial in drastically reducing the drift ex-

perienced with the method of Harker & O’Leary.

Fig. 5 reports the complete flowchart of our photometric

stereo algorithm. For visualization purposes, note that the re-

constructed radial map is displayed in Cartesian coordinates,

and that X in Fig. 5 denotes the estimated Cartesian coordinates

of a generic point on it (up to a scale factor).

4. Experimental validation

In this section, we present the results of an extensive exper-

imental campaign. We evaluated our photometric stereo algo-

rithm in a number of different scenarios, going from analyti-

cal surfaces (Sect. 4.1) to synthetic (Sect. 4.2) and real-world

images (Sect. 4.3) taken by perspective and catadioptric cam-

eras. The use of synthetic images allowed us to arbitrarily con-

trol the illumination conditions, and easily test the robustness

of our approach. For the sake of simplicity, in Sect. 4.1 and

Sect. 4.2 we ignored the second projection step (from the unit

sphere to the image plane, cf. Sect. 2.1). In fact, as long as

the intrinsic parameters ℓ and m are known, the process is fully

reversible. Moreover, the light directions were assumed to be

perfectly known. Therefore, only the last three blocks of the

flowchart in Fig. 5 were considered. Finally, in all cases, we

assumed that {v, w} is the standard basis set of unit vectors.

4.1. Analytical surfaces

The proposed method has been validated using two test sur-

faces whose mathematical expression is known. By illuminat-

ing the surfaces from different directions, a set of synthetic im-

ages was generated, which we injected into our 3D reconstruc-

tion pipeline. The first surface will be referred to as Volcano,

and its analytical expression, given here expediently in spheri-

cal coordinates, is (see Fig. 6(a)):

ρ(θ, ϕ) =
9

cos θ
+ 100 sin θ. (12)

Note that since (12) is axially symmetric, it does not depend on

parameter ϕ. The second surface (see Fig. 6(d)), called Starfish,

has the following expression:

ρ(θ, ϕ) = 6 + sin
( θ

10
+ 5ϕ

)

.
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EE

:
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E

ℓ, m

I0(xs, ys, zs), . . . , In−1(xs, ys, zs) I0(θ, ϕ), ..., In−1(θ, ϕ)

p(θ, ϕ)

q(θ, ϕ)

N̂(θ, ϕ)

ρ(θ, ϕ)
X

L0, . . . , Ln−1

S

n

Fig. 5. Flowchart of the proposed photometric stereo algorithm. The algorithm takes n images from a central panoramic camera, as input.

To precisely assess the 3D reconstruction quality, we consid-

ered the angular deviation between the actual and estimated

normal vectors:

ε(θ, ϕ) = arccos(〈N(θ, ϕ), N(θ, ϕ)〉), (13)

with θ ∈
{

π
λ
, 2π
λ
, . . . , π

2
− π
λ

}

, ϕ ∈
{

0, π
λ
, . . . , 2π − π

λ

}

, where

N(θ, ϕ) is the normal at (θ, ϕ) estimated by our method, and

1/λ is the sampling interval (λ = 100 in our tests). Note that

only the northern hemisphere was considered in our tests, i.e.

θ is between 0 and π/2. For the Volcano and Starfish, the im-

age intensities Ii(θ, ϕ), i ∈ {0, 1, 2, 3}, corresponding to the light

directions,

L0 = [1/4, 1/4, −1]T , L1 = [−1/4, 1/4, −1]T ,

L2 = [−1/4, −1/4, −1]T , L3 = [1/4, −1/4, −1]T ,

have been corrupted with additive zero-mean white Gaussian

noise with variance σ2 (the four illumination vectors were

placed in symmetric positions to irradiate the two surfaces as

uniformly as possible). A saturation function was applied to

the noisy image intensities to keep them within the [0, 1] inter-

val. For the sake of simplicity and without loss of generality,

we assumed that all the 3D points of the test surfaces were vis-

ible from the camera, i.e. no self-occlusions. Figs. 6(b),(f) re-

port the boxplots (Matlab) of the error ε(θ, ϕ) (in degrees) over

the two test surfaces, for an increasing magnitude of the image

noise (σ ∈ {0, 0.1, . . . , 0.5}). Note that ε(θ, ϕ) , 0 for σ = 0.

In fact, the information about the 3D scene provided by the four

illumination vectors is not rich enough to guarantee a perfect re-

construction. However, with 16 light directions, we observed a

25% error reduction. Finally, Figs. 6(c) and 6(g) show the dis-

tribution of the error ε(θ, ϕ) (bin size 0.5◦) for σ = 0.3, and

Figs. 6(d) and 6(h) the distribution of the scaled radial distance

error ρs(θ, ϕ) − ρs(θ, ϕ) (bin size 0.01) for σ = 0.3, where,

ρs(θ, ϕ) ,
ρ(θ, ϕ)

max
θ, ϕ
ρ(θ, ϕ)

,

by using the our normal integration method with step-sizes

∆θ = ∆ϕ = π/λ. By definition, ρs(θ, ϕ) ∈ [0, 1]. An inspec-

tion of Fig. 6(h) reveals that the radial distance error is higher in

correspondence with the central narrow ridges of the Starfish,

as expected.

4.2. Synthetic images

To test the effectiveness of the proposed reconstruc-

tion method under more realistic conditions, we used

Blender (Blender Foundation, 2018) to create a 3D scene

of known geometry observed from a given viewpoint (our

ground truth). We then generated panoramic images under 8

different illumination conditions from this unique viewpoint.

As in Sect. 4.1, we assumed that the illumination vectors L0,

. . . , L7 are known (and arranged symmetrically about the

scene), and that all the points on the 3D surfaces are visi-

ble from the camera. To limit the number of input images to
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Fig. 6. Analytical surfaces: (a) Volcano and (d) Starfish; (b),(f) Boxplots of the error ε(θ, ϕ) for an increasing magnitude of the additive Gaussian noise on the

image intensities; (c),(g) Distribution of the error ε(θ, ϕ) (bin size 0.5◦) for σ = 0.3; (d),(h) Distribution of the scaled radial distance error ρs(θ, ϕ)− ρs(θ, ϕ)

(bin size 0.01) for σ = 0.3.

the algorithm, the self-occlusions were not taken into account.

Finally, we set λ = 1024, and for more realism, we simulated

the quantization effect on 8-bit intensity images by mapping

Ii(θ, ϕ) ∈ [0, 1] ⊂ R, i ∈ {0, 1, . . . , 7}, onto the discrete set

{0, 1, . . . , 255}.

In our first test, we considered the Stanford Bunny3. Fig. 7(a)

shows the reconstructed 3D surface for σ = 0.3, Fig. 7(b)

the boxplot of the error ε(θ, ϕ) for an increasing magnitude

of the image noise, and Fig. 7(c) the distribution of the error

ε(θ, ϕ) (bin size 0.5◦) for σ = 0.3. Finally, Fig. 7(d) reports

the distribution of the error ρs(θ, ϕ) − ρs(θ, ϕ) (bin size 0.01)

for σ = 0.3, relative to the area of Stanford Bunny inside the

red circle shown in Fig. 7(a) (the vertical axes in Figs. 7(c)

and 7(d) refer to the number of normals and radial distances

in the reconstructed surface, respectively). We focused on this

portion of the scene to eliminate the artifacts due to depth dis-

continuities and kinks (i.e. where the surface is continuous,

but non-differentiable), and perform a pertinent statistical eval-

3The Stanford 3D Scanning Repository.

uation of our normal integration algorithm (the step-sizes are

∆θ = ∆ϕ = π/λ).

For the sake of comparison, we modified the method

based on the orthographic image projection model

in (Harker and O’Leary, 2008), to fit our spherical formu-

lation. In particular, the (x, y) rectangular grid was replaced

by a (θ, ϕ) grid, and the solution of the Sylvester matrix equa-

tion becomes, in our case, the radial distance ρ(θ, ϕ) between

the camera center O and the points on the 3D surface, instead

of the depth z(u, v). Compared to the same 3D reconstruction

of the Stanford Bunny obtained with the method of Harker

& O’Leary, the Circularity and North pole constraints are

instrumental to reduce the drift and the Gibbs phenomena

around the kinks (see Fig. 8).

In our second test, we emulated the image acquisition pro-

cess of a panoramic camera placed at the center of a 3D syn-

thetic scene, a Spiral staircase. As already mentioned in the

Introduction (see Fig. 1), the reconstruction of this scene in

its entirety pose a significant challenge for standard perspec-

tive cameras, because of their limited field of view. Similarly to
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Fig. 7. Synthetic images: Stanford Bunny, (a) Reconstruction of the 3D surface for σ = 0.3, (b) Boxplot of the error ε(θ, ϕ) for an increasing magnitude

of the additive Gaussian noise on the image intensities, (c) Distribution of the error ε(θ, ϕ) (bin size: 0.5◦) for σ = 0.3, (d) Distribution of the error

ρs(θ, ϕ) − ρs(θ, ϕ) (bin size: 0.01) relative to the red circled area shown in (a), for σ = 0.3; Spiral staircase, cf. Fig. 1, (e) Reconstruction of the 3D surface

for σ = 0.3, (f) Boxplot of ε(θ, ϕ) for an increasing magnitude of the additive Gaussian noise on the image intensities, (g) Distribution of the error ε(θ, ϕ)

(bin size: 0.5◦) for σ = 0.3, (h) Distribution of the error ρs(θ, ϕ) − ρs(θ, ϕ) (bin size: 0.01) for σ = 0.3.

Stanford Bunny, Fig. 7(e) reports the reconstructed 3D surface

for σ = 0.3, Fig. 7(f) the boxplot of ε(θ, ϕ) for an increasing

magnitude of the image noise, and Figs. 7(g) and 7(h), the dis-

tribution of the errors ε(θ, ϕ) and ρs(θ, ϕ)−ρs(θ, ϕ) for σ = 0.3,

respectively. Again, the step-sizes are ∆θ = ∆ϕ = π/λ. In both

tests, the proposed reconstruction method provided accurate re-

sults in the presence of noisy measurements.

4.3. Real-world images

In the next subsection, we will describe the hardware used in

our experiments and the method to estimate the light directions

from the specular highlight on a mirror ball. We will then report

the 3D reconstruction results obtained with real images from a

perspective and a catadioptric camera. We will conclude the

section with a discussion about some possible improvements

of our 3D reconstruction pipeline.

4.3.1. Material

To evaluate the performance of our 3D reconstruction

pipeline in a real setting, we built a 2 m × 1.25 m × 1.12 m

booth consisting of an aluminum frame covered by a black cur-

tain, to shield any parasitic room light (see Fig. 9). Two ex-

panded polystyrene foam objects, whose white matte surfaces

agree reasonably well with the Lambertian model, Cat (23 cm

tall and 14 cm at the widest point) and Teddy Bear (19 cm tall

and 12 cm at the widest point), were placed inside the booth

and they were illuminated with a 220 V, 5.3 W OSRAM 5-LED

lamp with the following optical specifications:

• Luminous flux: 350 lm,

• CIE Ra: 80,

• Temperature: 4000 K (cool white),

• Beam angle: 36◦.
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(a) (b)

(c) (d)

Fig. 8. Synthetic images, Stanford Bunny: Reconstruction of the 3D surface

obtained with our method (top row), and the method of Harker & O’Leary

(bottom row), for σ = 0.3; (a),(c) frontal viewing angle, and (b),(d) high

viewing angle. As evident from (d), the drift deforms the back of the Bunny.

The images were captured by an IDS UI-1245LE-C-HQ RGB

camera: we used a Tamron objective (8 mm, ∅ 25.5 mm) for

the acquisition of the perspective images (size: 1280 pixels ×

LED lamp
Catadioptric camera

Laptop

Fig. 9. Experimental setup: 5-LED lamp, test objects (Cat, left, and Teddy

Bear, right) and catadioptric camera. The IDS camera faces upwards

and it is connected to a laptop via a USB port for the acquisition of the

panoramic images. During the experiments, we drew the black curtains

which fully cover the booth: they are shown open for illustration pur-

poses only.

1024 pixels) and a RemoteReality parabolic mirror with a tele-

centric lens screwed on the IDS camera for the catadioptric ones

(size: 1024 pixels × 1024 pixels). The 24-bit RGB images were

converted to 8-bit grayscale before being injected into the 3D

reconstruction pipeline. In order to estimate the Camera Re-

sponse Function (CRF), we took a sequence of images of the

same scene with 16 different exposure times (we fixed gamma

to 1). We then applied the method by (Grossberg and Nayar,

2004), but this led to unsatisfactory results. In fact, we ob-

served a large discrepancy between the estimated CRF and

the curve obtained by plotting the pixel intensities as a func-

tion exposure time, which is indeed linear. Hence, follow-

ing (Diaz and Sturm, 2013), we simply fitted an affine function

to the data points to determine the CRF.

In order to estimate the illumination vectors L0, . . . , Ln−1

using real catadioptric images (see the bottom left block

in Fig. 5), we adapted the light calibration method proposed

in (Schnieders and Wong, 2013) for perspective cameras, to

the generic setting considered in this paper. This method

consists in observing the specular highlight produced by the

LED lamp on a mirror ball of known radius (for more details,

see (Caracotte et al., 2021)). It turned out to be quite reliable in

our experiments, but other (possibly less invasive) methods can

used for the estimation of light directions as well.

(a) (b)

Fig. 10. Perspective images of a cat from the DiLiGenT dataset (Shi et al.,

2019): (a) Ground truth of the normal map in false colors; (b) Normal map

estimated with our generic camera model.
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Table 1. Perspective images of a cat from the DiLiGenT dataset (Shi et al.,

2019): Mean angular error (MAE) in degrees of some state-of-the-art al-

gorithms and ours.

Algorithm Baseline WG10 IW12 GC10 AZ08

MAE 8.41 6.72 7.21 8.21 6.53

Algorithm HM10 ST12 ST14 IA14 Ours

MAE 8.40 12.34 6.12 6.74 8.36

4.3.2. Perspective images

In our first test, we quantified the accuracy of the estimated

gradient field on perspective images (obviously, our generic

camera model includes pinhole cameras). To this end, we

considered the 96 images of a cat under different illumina-

tion conditions, available in the ‘DiLiGenT’ dataset (Shi et al.,

2019), hence, Neq = 4560, cf. Sect. 3.1. The image inten-

sities were scaled in the [0, 1] interval, and the values be-

low the 0.05 threshold were set to zero to filter out image

noise. Fig. 10(a) reports the ground truth of the normal map

in false colors, and Fig. 10(b) the normal map estimated with

our generic model. With the exception of few minor differ-

ences on the left hind leg and right shoulder, the two nor-

mal maps are identical. Table 1 reports a more quantita-

tive evaluation of the results. In fact, the mean angular er-

ror (MAE, recall (13)), obtained with our method is com-

pared with that of some state-of-the-art photometric stereo

algorithms: Baseline (Woodham, 1980), WG10 (Wu et al.,

2010), IW12 (Ikehata et al., 2012), GC10 (Goldman et al.,

2010), AZ08 (Alldrin et al., 2008), HM10 (Higo et al.,

2010), ST12 (Shi et al., 2012), ST14 (Shi et al., 2014),

IA14 (Ikehata and Aizawa, 2014), see (Shi et al., 2019, Sect. 2)

for more details. The accuracy of the normal vectors estimated

with our generic camera model is comparable to that of the

Baseline, as expected. In our second test, we performed a

qualitative evaluation of our 3D reconstruction algorithm us-

ing 20 perspective images of the polystyrene foam Cat, taken

inside the booth shown in Fig. 9 with our IDS camera. For

the estimation of the light directions, we placed two steel pin-

ball balls with a radius rm = 12.5 mm in front of the ob-

ject (see Fig. 11(a)). HySCaS (Caron and Eynard, 2011) was

used for the calibration of the camera, yielding ξ = 0.82655

where ξ is the parameter of Barreto’s unifying model for cen-

tral projection systems (Barreto, 2006). Fig. 11(b) shows the

estimated normal map in false colors after the application of a

mask, and Fig. 11(c) the albedo map estimated with the method

in (Smith and Fang, 2016, Sect. 4.1). Finally, Fig. 11(d) reports

the 3D reconstruction of the Cat obtained with our geometry-

aware normal integration method with step-sizes ∆θ = ∆ϕ =

π/λ, λ = 1024. Since the node of the integration grid with θ = 0

lies in the middle of the scene, we could apply the Circularity

and North-pole constraints. In spite of a slight leveling and dis-

tortion along the radial directions towards the North pole, the

3D shape of the Cat has been correctly retrieved by the normal

integration method.

(a) (b) (c)

(d)

Fig. 11. Perspective images: (a) One out of the 20 input images of the Cat;

(b) Normal map in false colors, estimated with our generic camera model;

(c) Albedo map, and (d) 3D reconstruction of the object.
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4.3.3. Catadioptric images

A battery of tests was performed with catadioptric images of

the Cat (26 images) and Teddy Bear (16 images). Our experi-

mental setup is shown in Fig. 12. The camera points towards the

ceiling of the booth, to provide a better coverage of the two ob-

jects. Four steel balls with a radius rm = 35.5 mm were placed

inside the scene for the determination of the illumination vec-

tors. At least two balls were visible in each image, providing

redundant information for robust estimation. The direction of

the illumination vectors is shown in Fig. 13. Again, the camera

was calibrated with HySCaS. Fig. 14 illustrates the whole re-

construction procedure. Figs. 14(a), (b) report two catadioptric

images of the Cat and the Teddy Bear. The LED lamp is visible

as a bright spot on the center left and top right of Fig. 14(a)

and Fig. 14(b), respectively, and that the maximum distance

from the camera, corresponding to one of the top corners of the

booth, is 170 cm. The estimated normal map in false colors and

the albedo map estimated with the method in (Smith and Fang,

2016) are shown in Figs. 14(c), (d), respectively, while the 3D

reconstruction of the two objects obtained with our normal in-

tegration method for ∆θ = ∆ϕ = π/λ and λ = 1024, is reported

in Fig. 14(e). To handle the discontinuities due to the back-

ground and apply the Circularity and North-pole constraints, in

the integration phase we introduced five mutually-orthogonal

synthetic planes of normals around each object (four walls and

the floor), and then combined the 3D reconstructions of the Cat

Fig. 12. Real-world experiments: catadioptric camera, Cat and Teddy

Bear, and the four mirror balls used for the estimation of the illumina-

tion vectors.
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Fig. 13. Top view of the illumination vectors (colored) in the camera frame.

and Teddy Bear. From Fig. 14(e) we observe that, while slightly

flattened, the 3D shape of the two objects has been correctly es-

timated. This is all the more remarkable, considering a number

of practical limitations of our proof-of-concept implementation:

the image distortion has not been corrected, the illumination is

not spatially homogeneous (the light cone of the LED lamp has

an aperture of 36◦ and produced an undesirable bright disk on

the objects), the light attenuation has not been taken into ac-

count (cf. Remark 5), and the projection model of the camera is

quasi-central (as a consequence, the ears of the Cat and Teddy

Bear are slightly trimmed).

4.3.4. Discussion

We conclude this section with a discussion about some pos-

sible improvements of our 3D reconstruction pipeline. Our fo-

cus will be on the impact of non-directional lighting, image

re-sampling, and two-step recovery of radial distance, on the

quality of the recovered surface.

On directional lighting

In our experiments, the assumption of directional lighting is

not strictly satisfied. It is then worth quantifying which is the

effect of the distance of the point light source on the 3D re-

construction accuracy. To evaluate to which extent the theo-

retical assumption of a point light source at infinity is critical

for photometric stereo with central catadioptric cameras, some



16

(a) (b)

(c)

(d)

(e)

Fig. 14. Catadioptric images: (a),(b) Sample input images of the Cat and Teddy Bear, respectively; (c) Normal map in false colors, estimated with our generic

camera model, and (d) albedo map; (e) 3D reconstruction of the objects. The images in (c) and (d) were turned upside down, for ease of visualization.
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Fig. 15. Impact of the distance δ of the point light source on the normal esti-

mation error: mean (solid red) and standard deviation (± 1 sigma, dashed

black) of the error ε(θ, ϕ), for (a) the Stanford Bunny (size: 100 units) in the

perspective case, considering the whole object, and (b) the Spiral staircase

(size: 30 units) in the catadioptric case.

tests have been performed. Figs. 15(a),(b) show the mean (solid

red) and standard deviation (± 1 sigma, dashed black) of the

error ε(θ, ϕ) for the Stanford Bunny and the Spiral staircase,

respectively, as a function of the distance δ of the light source

(no image noise). The size of the first object (length of the di-

agonal of the bounding box) is 100 units, and the size of the

second, 30 units. From Fig. 15(b), we observe that for δ > 450

(i.e. 15 times the size of the Spiral staircase), the light source

can be deemed to be at “infinity”, and it has virtually no effect

on the error ε(θ, ϕ).

On the partition of the sphere

The choice of constant polar and azimuthal angular steps ∆θ

and ∆ϕ, yields a rectangular grid which can be easily processed

by our normal integration method. However, it requires an in-

terpolation (the re-sampling step) that might alter the input data.

Moreover, the resulting tessellation of the sphere is not spa-

tially uniform (in a geodesic sense), and this might affect the

quality of the reconstructed 3D surface. By choosing “small”

step-sizes in our experiments, we did not observe any apprecia-

ble quantitative degradation in performance. However, in future

works, we plan to rigorously address this issue by taking advan-

tage of the free tangent directions v and w introduced in Theo-

rem 2, to define grids of arbitrary shape. An alternative option

is to uniformly partition the sphere with one of the numerous

methods available in the literature, for example considering a

Quaternary Triangular Mesh (see (Guan and Smith, 2017) and
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(Horn, 1984, Sect. V)), or the geodesic grids recently proposed

in (Zhao et al., 2015; Adarve and Mahony, 2017).

On “global” methods

Note that (9) is a pixel-wise linear system in (p, q) =

(∇w ln ρ, ∇v ln ρ), or equivalently, a linear system of partial dif-

ferential equations in ln ρ. Instead of adopting a two-step ap-

proach which consists in first solving in terms of (p, q) and

then integrating the normals, one could discretize the gradient

operator directly with finite differences, and turn (9) into a sin-

gle large (but sparse) linear least-squares system in ln ρ, thus

circumventing the problem of integration. This “global” ap-

proach has been considered in a series of recent papers (see e.g.

(Logothetis et al., 2016; Smith and Fang, 2016)), and it makes

a legitimate direction for future research. In fact, directly solv-

ing for the radial distance is expected to limit the propagation

of artifacts throughout the 3D reconstruction pipeline.

5. Conclusions and future work

The reduced field of view of perspective cameras calls for

vision sensors with enhanced imaging capabilities for the 3D

reconstruction of complex scenes. In this paper, we have

presented a unifying theory of photometric stereo, which en-

compasses the most popular camera models in computer vi-

sion (notably perspective and central catadioptric systems), and

complements the existing literature. In particular, closed-form

solutions based on a new generic spherical image irradiance

equation (Theorem 2), have been proposed and experimen-

tally tested over a large database of synthetic and real-world

panoramic images.

This work opens up several interesting avenues for future re-

search. Since the focus of this article was on camera modeling,

a classic calibrated photometric stereo setting in a controlled

environment was considered. For further studies, we plan to re-

lax our assumptions on the nature of the light source, and to ad-

dress the case of general illumination conditions in an outdoor

scenario. More sophisticated normal integration methods which

can handle non-rectangular reconstruction domains, will be

evaluated as well (Quéau et al., 2018a). The concurrent estima-

tion of the gradient field, albedo and illumination vectors with-

out mirror balls inside the scene, and the extension of our re-

sults to multi-color surfaces (Quéau et al., 2016), and to glossy

and hybrid surfaces (i.e. surfaces which are neither purely Lam-

bertian nor purely specular (Weinmann et al., 2013)) consider-

ing more general BRDF, are other subjects of future research.

Finally, the case of twin-fisheye cameras has been recently ad-

dressed in (Caracotte et al., 2021).

Supplementary Material

To foster reproducible research, the image datasets and

the code developed to obtain the results reported in Sect. 4,

are publicly available on the Internet at the address:

mis.u-picardie.fr/˜fabio/ustereo.html
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Logothetis, F., Mecca, R., Quéau, Y., Cipolla, R., 2016. Near-Field Photometric

Stereo in Ambient Light, in: Proc. 27th British Machine Vision Conf., pp.

1–12.

Lu, F., Matsushita, Y., Sato, I., Okabe, T., Sato, Y., 2015. From Intensity Profile

to Surface Normal: Photometric Stereo for Unknown Light Sources and

Isotropic Reflectances. IEEE Trans. Pattern Anal. 37, 1999–2012.
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