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Abstract

In reductive proof search, proofs are naturally generalized by solutions, comprising all (possibly infinite)
structures generated by locally correct, bottom-up application of inference rules. We propose a rather natural
extension of the Curry-Howard paradigm of representation, from proofs to solutions: to represent solutions
by (possibly infinite) terms of the coinductive variant of the typed lambda-calculus that represents proofs.
We take this as a starting point for a new, comprehensive approach to proof search; our case study is proof
search in the sequent calculus LJT for intuitionistic implication logic. A second, finitary representation is
proposed, comprising a syntax of lambda-terms extended with a formal greatest fixed point, and a type
system that can be seen as a logic of coinductive proofs. In the finitary system, fixed-point variables enjoy a
relaxed form of binding that allows the detection of cycles through the type system. Formal sums are used
in both representations to express alternatives in the search process, so that not only individual solutions
but actually solution spaces are expressed. Moreover, formal sums are used in the coinductive syntax to
define “decontraction” (contraction bottom-up)—an operation whose theory we initiate in this paper. A
semantics is defined assigning a coinductive lambda-term to each finitary term, making use of decontraction
as a semantical match to the relaxed form of binding of fixed-point variables present in the finitary system.
The main result is the existence of an equivalent finitary representation for any full solution space expressed
coinductively. This result is the main ingredient in the proof that our logic of coinductive proofs is sound
and complete with respect to the coinductive semantics. These results are the foundation for an original
approach to proof search, where the search builds the finitary representation of the full solution space, and
the a posteriori analysis typically consisting in applying a syntax-directed procedure or function. The paper
illustrates the potential of the methodology to the study of proof search and inhabitation problems in the
simply-typed lambda-calculus, reviewing results detailed elsewhere, and including new results that obtain
extensive generalizations of the so-called monatomic theorem.
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1. Introduction

Proof theory starts with the observation that a proof is more than just the truth value of a theorem. A
valid theorem can have many proofs, and several of them can be interesting. In this paper, we somehow
extend this to the limit and study all proofs of a given proposition. Of course, who studies proofs can also
study any of them (or count them, if there are only finitely many possible proofs, or try to enumerate them
in the countable case). But we do this study somehow simultaneously: we introduce a language to express
the “full solution space” of proof search. And since we focus on the generative aspects of proof search, it
would seem awkward to filter out failed proof attempts from the outset. This does not mean that we pursue
impossible paths in the proof search (which would hardly make sense) but that we allow to follow infinite
paths. An infinite path does not correspond to a successful proof, but it is a structure of locally correct
proof steps, generated by the bottom-up application of inference rules (the perspective of reductive proof
theory). In other words, we use coinductive syntax to model all locally correct proof figures. This gives rise
to a not necessarily wellfounded search tree. However, to keep the technical effort simpler, we have chosen a
logic where this tree is finitely branching, namely the implicational fragment of intuitionistic propositional
logic with a proof system given by the cut-free fragment of the sequent calculus LJT , introduced in [1] as
the typed calculus λ. Actually, we will consider the variant of LJT where axioms are restricted to atomic
formulas, and, since we do not consider the cut rule, the system is isomorphic to the system of simply-typed
long normal forms in lambda-calculus which throughout this paper we will denote by λ.
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Lambda terms or variants of them (expressions that may have bound variables) are a natural means to
express proofs (an observation that is called the Curry-Howard isomorphism) in implicational logic. Proof
alternatives (locally, there are only finitely many of them since our logic has no quantifier that ranges over
infinitely many individuals) can be formally represented by a finite sum of such solution space expressions,
and it is natural to consider those sums up to equivalence of the set of the alternatives. Since whole solution
spaces of (possibly infinite) proof trees are being modeled, we call these coinductive terms forests.

By their coinductive nature, forests are no proper syntactic objects: they can be defined by all mathematical
(meta-theoretic) means and are thus not “concrete”, as would be expected from syntactic elements. This
freedom of definition will be demonstrated and exploited in the canonical definition (Definition 1) of forests
as solutions to the task of proving a logical sequent (a formula A in a given context Γ). In a certain sense,
nothing is gained by this representation: although one can calculate on a case-by-case basis the forest for a
formula of interest and see that it is described as fixed point of a system of equations (involving auxiliary
forests as solutions for the other meta-variables that appear in those equations), an arbitrary forest can only
be observed to any finite depth, without ever knowing whether it is the expansion of a regular cyclic graph
structure (the latter being a finite structure).

Therefore, a coinductive representation is more like a semantics, a mathematical definition; in particular,
one cannot extract algorithms from an analysis based on it. For this reason, an alternative, finitary
representation of solution spaces is desired, and we develop, for intuitionistic implication logic, one such
representation in the form of a (“normal”, i. e., inductive) typed lambda-calculus. Besides formal sums (to
express choice in the search procedure), this calculus has fixed points, to capture cyclic structure; moreover,
fixed-point variables enjoy a relaxed form of binding, since cycle structure has to be captured up to the
inference rule of contraction.

Our main result is that the forests that appear as full solution spaces of logical sequents can be interpreted
as semantics of a typed term in this finitary typed lambda-calculus. For the Horn fragment (where nesting of
implications to the left is disallowed), this works very smoothly without surprises ([2, Theorem 15]). The full
implicational case, however, needs some subtleties to capture redundancy that comes from the introduction
of several hypotheses that suppose the same formula—hypotheses that would be identified by applications
of the inference rule of contraction. In the finitary calculus, a relaxed form of binding is adopted for the
fixed-point variables over which the greatest fixed points are formed; and the interpretation of such finite
expressions in terms of forests needs, in the full case, a special operation, defined on forests, that we call
decontraction (contraction bottom-up 1). Without this operation, certain repetitive patterns in the full
solution spaces due to the presence of negative occurrences of implications could not be matched on the
semantical side. With it, we obtain the finitary representation (Theorem 2).

This result lays the foundation for an original approach to proof search. Given a sequent, proof search is
run once, not to solve a certain problem (e. g., deciding if the sequent is provable), but to generate the finitary
representation of the entire solution space. This representation becomes thus available for later use (and
reuse), in whatever a posteriori analysis we wish to carry out (e. g., solve a decision or counting problem);
and the analysis consists typically in giving the finitary term representing the solution space to a recursive
predicate or function, whose definition is driven by the syntax of the finitary calculus. The potential of this
methodology has been proved elsewhere [3, 4], in the study of proof search in LJT and the simply-typed
λ-calculus. But here we will offer new results in the same vein, namely extensive generalizations of the
so-called “monatomic theorem” [5].

This paper is a substantially revised and extended version of our first workshop paper [2]2 on this topic.
Relatively to this work, the main novel aspects of this paper are:

1. The development of a typing system for the untyped finitary system λ
gfp

Σ of [2] (called λgfp
Σ in the present

paper). The typing system controls the mentioned relaxed form of binding of fixed-point variables that
allows the detection of cycles in proof search. It can be seen as a logic of coinductive proofs, whose
soundness and completeness we will prove here.

1This operation was called co-contraction in [2].
2Note however that in the present paper we do not treat separately the Horn fragment, as we do in [2].
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2. An in-depth analysis of decontraction. This operation is bound to play a central role in reductive proof
search, but surprisingly has never been properly studied. We lay down in this paper the basic results
of its theory.

3. The revision of the technical details leading to the main theorem of [2] (Theorem 24), in light of the
refinements allowed by the novel typing system, leading to the revised form as Theorem 2 below.

4. An illustration of the potential that our methodology has in the study of proof search in LJT and the
simply-typed λ-calculus, exemplified with a new extensive generalization of the monatomic theorem
mentioned before.

This paper grew out of our technical report [6] to which two subsequent journal publications [3, 4] refer. It is
also meant as a replacement for that technical report, so that future readers of these journal articles would
rather consult the present paper. However, from the list above, only item 3 is needed for this purpose, the
other developments deepen the understanding of the concepts and thus are a genuine contribution in this
paper (not considering that technical report as a publication). Still, also the main theorem of the workshop
paper [2] has not yet been published in archival quality and thus appears here in such quality for the first
time.

The paper is organized as follows. Section 2 recalls the system LJT/λ and elaborates on proof search in
this system. Section 3 develops the coinductive representation of solution spaces for LJT/λ. Section 4 studies
the operation of decontraction. Section 5 develops the finitary calculus and the finitary representation of full
solution spaces. Section 6 is dedicated to applications to proof search in LJT and inhabitation problems in
λ. Section 7 concludes, also discussing related and future work.

2. Background

We start by introducing our presentation of the base system λ, of simply-typed long normal forms in
lambda-calculus, which, as mentioned before (and explained later), is in Curry-Howard correspondence with
cut-free LJT [1].

2.1. Simply-typed λ-calculus, reduced to normal forms

Letters p, q, r are used to range over a base set of propositional variables (which we also call atoms).
Letters A,B,C are used to range over the set of formulas (= types) built from propositional variables using
the implication connective (that we write A ⊃ B) that is parenthesized to the right. Throughout the paper,
we will use the fact that any implicational formula can be uniquely decomposed as A1 ⊃ A2 ⊃ · · · ⊃ Ak ⊃ p
with k ≥ 0, written in vectorial notation as ~A ⊃ p. For example, if the vector ~A is empty the notation means
simply p, and if ~A = A1, A2, the notation means A1 ⊃ (A2 ⊃ p).

A term of λ (also referred to as a proof term) is either a typed lambda-abstraction or a variable applied
to a possibly empty list of terms. For succinctness, instead of writing lists as a second syntactic category, we
will use the informal notation 〈t1, . . . , tk〉 (meaning 〈〉 if k = 0), abbreviated 〈ti〉i if there is no ambiguity on
the range of indices. So, λ-terms are given by the following grammar:

(terms) t, u ::= λxA.t | x 〈t1, . . . , tk〉

where a countably infinite set of variables ranged over by letters w, x, y, z is assumed. Note that in
lambda-abstractions we adopt a domain-full presentation (a. k. a. Church-style syntax), annotating the bound
variable with a formula. As is common-place with lambda-calculi, we will identify terms up to α-equivalence,
i. e., names of bound variables may be consistently changed, and this is not considered as changing the term.
The term constructor x 〈t1, . . . , tk〉 is usually called application. When n = 0 we simply write the variable x.
The terms are obviously in one-to-one correspondence with β-normal “ordinary” lambda-terms, the only
difference being the explicit tupling of argument terms to variables in the λ syntax.

We will view contexts Γ as finite sets of declarations x : A, where no variable x occurs twice. The context
Γ, x : A is obtained from Γ by adding the declaration x : A, and will only be written if x is not declared in Γ.
Context union is written as concatenation Γ,∆ for contexts Γ and ∆ if Γ ∩∆ = ∅. The letters Γ, ∆, Θ are
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Figure 1: Typing rules of λ

Γ, x : A ` t : B

Γ ` λxA.t : A ⊃ B
RIntro

(x : ~B ⊃ p) ∈ Γ ∀i, Γ ` ti : Bi

Γ ` x〈ti〉i : p
LVecIntro

used to range over contexts, and the notation dom(Γ) stands for the set of variables declared in Γ. We will
write Γ(x) for the type associated with x for x ∈ dom(Γ), hence viewing Γ as a function on dom(Γ). Context
inclusion Γ ⊆ ∆ is just set inclusion.

As usual, in this presentation of λ there is only one form of sequent, namely Γ ` t : A. We call a sequent
atomic when A is an atom. (Note however that this contrasts to LJT/λ [1] where two forms of sequents are
used, as lists of terms are treated formally.) The rules of λ for deriving sequents are in Figure 1. LVecIntro

presupposes that the indices for the ti range over 1, . . . , k and that ~B = B1, . . . , Bk, for some k ≥ 0. Such
obvious constraints for finite vectors will not be spelt out in the rest of the paper.

In the particular case of k = 0, in which (x : p) ∈ Γ is the only hypothesis of LVecIntro, we type variables
(with atoms). In fact, viewed in terms of the system LJT/λ, LVecIntro is a derived rule, combining logical
steps of contraction, left implication, and axiom, the latter being atomic, formed with atom p.

Note that the conclusion of the LVecIntro rule is an atomic sequent. This is not the case in LJT/λ
[1], where list sequents can have a non-atomic formula on the right-hand side. In the variant of cut-free
LJT/λ we adopted, the only rule available for deriving an implication is RIntro. A consequence of this
restriction is that the space of proofs is reduced, allowing only uniform proofs [7], and all the logical steps
of LJT underlying LVecIntro are only required with atomic right-hand side (both in the conclusion and
in the rightmost premise). Still, our atomic restriction in LVecIntro will not cause loss of completeness of
the system for intuitionistic implication. This restriction is typically adopted in systems tailored for proof
search, as for example systems of focused proofs. In fact, our presentation of LJT/λ corresponds to a focused
backward chaining system where all atoms are asynchronous (see e. g. [8]). A consequence of the atomic
restriction of LVecIntro (specifically, of an atomic axiom) in λ is that it does not type all β-normal forms, but
only those in η-long β-normal form (see, e. g., §8A7 of the book [5], where these terms are called simply long
β-nf ’s, and §8A8 of op. cit. for an argument of why any β-normal form can be η-expanded to a long β-nf ).

2.2. Reductive proof search for λ

We consider proof search problems given by a context Γ and an implicational formula A. We express
them as logical sequents Γ⇒ A, corresponding to sequents of λ without proof terms. Γ⇒ A is nothing but
the pair consisting of Γ and A, but which is viewed as a problem description: to search for proofs of formula
A in context Γ. We use the letter σ to communicate logical sequents but allow ourselves to speak of sequent
σ in the interest of a lighter language.

Even though the system λ is a focused sequent calculus, reductive proof search on λ has well identified
points where choices are needed [9]. This is readily seen in such a simple setting as ours, where only
implication is considered. Observing the rules in Figure 1, one concludes that implications have to be
decomposed by RIntro until an atom is obtained; here, in order to apply LVecIntro, a choice has to be made
as to which assumption x is to be picked from the context, generating a control branching of the process (if
there is no x to choose, we mark the choice point with failure); at each choice, several search sub-problems
are triggered, one for each Bi, generating a different branching of the process, more of a conjunctive nature.3

In all, a search forest is generated, which is pruned to a tree, once a choice is made at each choice point. Such
trees we call solutions (of the proof-search problem posed by the given sequent). Sequents with solutions are
called solvable. Since the search forest is a structure where all solutions are superimposed, we also call it
solution space.

3Of course, this is all too reminiscent of or- and and-branching in logic programming. But we are not confined to the Horn
fragment.
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Finite solutions are exactly the proofs in λ (hence the provable sequents are solvable); but solutions
need not be finite. For instance, given the sequent σ = (f : p ⊃ p, x : p ⇒ p), we can apply forever the
LVecIntro rule with variable f if we wish, producing an infinite solution. But σ also has finite solutions,
hence is provable. On the other hand, the solvable sequent f : p ⊃ p ⇒ p has a unique infinite solution,
hence is not provable.

Example 1. The illustrating examples of this paper are with the following types.

• BOOLE := p ⊃ p ⊃ p, an encoding of the Boolean values as λxp.λyp.x and λxp.λyp.y. This example
illustrates that we obtain different solutions when using the differently labeled (with x and with y)
hypotheses for p. We do not apply the so-called total discharge convention and stay plainly in the spirit
of lambda-calculus.

• INFTY := (p ⊃ p) ⊃ p, which is obviously uninhabited in lambda-calculus (as would be the type p alone),
but, as mentioned before, has a unique infinite solution (see Example 2).

• CHURCH := (p ⊃ p) ⊃ p ⊃ p, the type of Church numerals λfp⊃p.λxp.fn〈x〉, n ≥ 0. As mentioned
above, there is also the solution with an infinite repetition of f ’s.

• PEIRCE := ((p ⊃ q) ⊃ p) ⊃ p with different atoms p and q (the Peirce formula, in particular when
reading q as falsity), which is a classical tautology but not one of minimal logic and therefore uninhabited
in lambda-calculus.

• DNPEIRCE := (PEIRCE ⊃ q) ⊃ q, which is provable in minimal logic and therefore inhabited in
lambda-calculus (already studied in [2]).

• THREE := ((p ⊃ p) ⊃ p) ⊃ p, the simplest type of rank 3 (the nesting depth) which has inhabitants of
the form λx.x〈λy1.x〈λy2.x〈· · · 〈λyn.yi〉 · · ·〉〉〉, n ≥ 1 and 1 ≤ i ≤ n. (The types (p ⊃ p) ⊃ p of x and p
of all yk have been omitted for presentation purposes.) Notice that THREE is PEIRCE with identification
of the two atoms. It may be seen as a simplification of the DNPEIRCE example.

Some of our examples are also covered in Section 1.3.8 of [10]. Notice that they write BOOLE as 12 (their
example (i)), CHURCH as 1 → 0 → 0 (their example (iv)) and THREE as 3 (their example (vii)) in that
book. PEIRCE is their example (iii).

The type THREE ⊃ p ⊃ p is example (viii) in Section 1.3.8 of the cited book, and is called the “monster”.
Since THREE is PEIRCE with identification of the two atoms p, q, the monster type is similarly resembling
DNPEIRCE, but of rank 4 (while the latter has rank 5). For us, both types are equally challenging, insofar as
both require an infinite supply of bound variables for enumerating their (normal) inhabitants, which is why
we did not include the monster type in our sample of examples.

3. Coinductive representation of proof search

In this section we develop a coinductive representation of solutions and of solution spaces. This represen-
tation combines two ideas: the coinductive reading of the syntax of proofs, and the adoption of formal sums
(in the case of solution spaces). Formal sums allow the definition of the operation of decontraction, which
will play a crucial role in the relationship to the finitary representation of solution spaces to be developed in
the next section.

3.1. Representation of solutions: the λco-system

We introduce now λco, a coinductive extension of λ. Its expressions are formed without any consideration
of well-typedness and will be the raw syntax that underlies possibly non-wellfounded proofs, i. e., solutions.

The raw syntax of these expressions is presented as follows

N ::=co λx
A.N |x〈N1, . . . , Nk〉 ,

6



Figure 2: Typing rules of λco

Γ, x : A ` N : B

Γ ` λxA.N : A ⊃ B
RIntroco

(x : ~B ⊃ p) ∈ Γ ∀i, Γ ` Ni : Bi

Γ ` x〈Ni〉i : p
LVecIntroco

yielding the terms of system λco (read coinductively, as indicated by the index co)—still with finite tuples
〈Ni〉i, which is why we will call these expressions rather coterms.

We consider a coinductive definition of syntax with binding as a base concept, but the reader might
appreciate a concrete set-theoretic construction. The terms of λ are then construed as finite trees, with the
grammar elements λxA and x〈·1, . . . , ·k〉 on the nodes (where the latter includes with the case k = 0 also the
leaves of the tree). And these trees are identified modulo α-equivalence. The coinductive reading is then
based on finite and infinite trees, again with these node decorations. If we disregard variable binding for the
moment, this construction can be seen as metric completion of the finite terms (see, e. g., [11, Sect. 12.2]).
To take into account variable binding with its necessity to identify α-equivalent terms, we can just follow
the description of infinitary lambda-calculus in [11, Sect. 12.4]. Even though the coterms may be infinite,
all the positions in them are of finite length, and a definition of α-equivalence by recursion on the lengths
of positions can be given. This allows to define a metric on α-equivalence classes and then to identify the
α-equivalence classes of coterms as metric completion of the α-equivalence classes of finite terms. Besides
incorporating the identification of coterms that only differ in the naming of their bound variables, we consider
as equal terms that finitely decompose in the same way, which is to say that their successive deconstruction
(not taking into account consistent differences in names of bound variables) according to the grammar must
proceed the same way, and this to arbitrary depth. In the described set-theoretic construction, this just
means that they are α-equivalent finite or infinite trees, which is an extensional concept (that does not
depend on how that infinite tree has been generated by an effective program). Thus, the natural notion of
equality that we are using is bisimilarity modulo α-equivalence. Following mathematical practice, this is
still written as plain equality (in type theory, it would have to be distinguished from definitional equality /
convertibility and from propositional equality / Leibniz equality and would be a coinductive binary relation).

Since the raw syntax is interpreted coinductively, also the typing rules have to be interpreted coinductively,
which is symbolized by the double horizontal line in Figure 2, a notation that we learnt from [12]. (Of course,
the formulas/types stay inductive.). This defines when Γ ` N : A holds for a finite context Γ, a coterm N
and a type A, and the only difference to the rules in Figure 1 is their coinductive reading and their reference
to coinductively defined terms. When Γ ` N : A holds, we say N is a solution of σ, when σ = Γ⇒ A. The
set-theoretic counterpart of coinductive typing derivations consists of finite and infinite trees that are suitably
labelled with the data of applications of the typing rules. No extra identification of α-equivalent derivations
is needed, and we anyway do not consider identity of proofs for our purposes.

In the rest of the paper, we will gloss over such set-theoretic interpretations of coinductive concepts.

Example 2. Consider it∞ := λfp⊃p.N with the coterm N the infinitely repeated application of f , i. e., on
the top level, N has an application node with variable f and just one argument, and the latter is the same as
N (and it does not even make sense to ask what comes after this infinite succession of applications of f). In
other words, N is the unique coterm that is solution of the equation N = f〈N〉. Using coinduction on the
typing relation, we can easily show ` it∞ : INFTY, and hence find a (co)inhabitant of a formula that does not
correspond to a theorem in most logics.

Another view of the typing system of Figure 2 is a coinductive definition of which logical sequents Γ⇒ A
are solvable: they are those for which a coterm N exists such that Γ ` N : A is coinductively derivable by
these two rules—where the syntax of N traces the rule applications, hence N is just the evidence for the
existence of a coinductive derivation in a system similar to Figure 2, but without proof terms in the sequents.
However, there is no requirement of having a program generating the tree corresponding to the coterm N
that is merely meant to exist. Constructive witnesses for derivability—however for sets of solutions instead
of individual solutions—will be studied in the finitary system of Section 5.
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Figure 3: Extra typing rule of λcoΣ w. r. t. λco

∀i, Γ ` Ei : p

Γ `
∑
iEi : p

Alts

As expected, the restriction of the typing relation to the finite λ-terms coincides with the typing relation
of the λ system:

Lemma 1. For any t ∈ λ, Γ ` t : A in λ iff Γ ` t : A in λco.

Proof By induction on t, and using inversion of typing in λ. �

After having recalled the coinductive reading of syntax with variable binding and what typing means for
it, we now move to original material.

3.2. Representation of solution spaces: the λcoΣ system

We now come to the coinductive representation of whole search spaces in λ.
The set of coinductive cut-free λ-terms with finite numbers of elimination alternatives is denoted by λcoΣ

and is given by the following grammar:

(terms) N ::=co λxA.N |E1 + · · ·+ En
(elim. alternatives) E ::=co x〈N1, . . . , Nk〉

where both n, k ≥ 0 are arbitrary. The terms of λcoΣ are also called forests. If we do not want to specify the
syntactic category (terms or elimination alternatives), we consider them just as expressions and generically
name them T , to reflect their nature as terms in a wide sense.

Note that summands cannot be lambda-abstractions.4 We will often use
∑
iEi instead of E1+· · ·+En—in

generic situations or if the dependency of Ei on i is clear, as well as the number of elements. If n = 0, we
write O for E1 + · · ·+ En. If n = 1, we write E1 for E1 + · · ·+ En (in particular this injects the category of
elimination alternatives into the category of (co)terms) and do as if + was a binary operation on (co)terms.
However, this will always have a unique reading in terms of our raw syntax of λcoΣ . In particular, this reading
makes + associative and O its neutral element.

The coinductive typing rules of λcoΣ are the ones of λco, together with the rule given in Figure 3, where
the sequents for coterms and elimination alternatives are not distinguished notationally.

Notice that Γ ` O : p for all Γ and p. This phenomenon makes an alternative view analogously to the
one described for system λco after Example 2 rather uninteresting. Atoms should not be seen as a kind of
coinductive consequence of the rules governing implication. Later in this section, we will introduce the notion
of membership in forests, and O obviously will then not have any members according to that definition.
However, this kind of emptiness is undecidable in general, hence the forests in the derivations do play an
important role for any interpretation of derivations.

Since, like the coterms, forests are not built in finitary ways from finitary syntax (although the number
of elimination alternatives is always finite, as is the number of elements of the tuples), their most natural
notion of equality is again bisimilarity modulo α-equivalence. However, in forests, we even want to neglect
the precise order of the summands and their (finite) multiplicity. We thus consider the sums of elimination
alternatives as if they were sets of alternatives, i. e., we further assume that + is symmetric and idempotent.
This means, in particular, that this identification is used recursively when considering bisimilarity (anyway
recursively modulo α-equivalence). This approach is convenient for a mathematical treatment but would
be less so for a formalization on a computer: It has been shown by Picard and the second author [13] that

4The division into two syntactic categories also forbids the generation of an infinite sum (for which n = 2 would suffice had
the categories for N and E been amalgamated).
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bisimulation up to permutations in unbounded lists of children can be managed in a coinductive type even
with the interactive proof assistant Coq, but it did not seem feasible to abstract away from the number of
occurrences of an alternative (which is the meaning of idempotence of + in presence of symmetry), where
multiplicity depends on the very same notion of equivalence that is undecidable in general.

As for λco, we just use mathematical equality for this notion of bisimilarity on expressions of λcoΣ , and so
the sums of elimination alternatives can plainly be treated as if they were finite sets of elimination alternatives
(given by finitely many elimination alternatives of which several might be identified through bisimilarity).

We are now heading for a concise description of the full (as explained later) solution spaces for logical
sequents by means of our extended coinductive syntax.

Definition 1 (Full solution spaces). The function S, which takes a sequent σ = (Γ⇒ A) and returns a
forest, is given corecursively as follows: In the case of an implication,

S(Γ⇒ A ⊃ B) := λxA.S(Γ, x : A⇒ B) .

In the case of an atom p, for the definition of S(Γ⇒ p), let yi : Ai be the i-th declaration in some enumeration

of Γ with Ai of the form ~Bi ⊃ p. Let ~Bi = Bi,1, . . . , Bi,ki . Define Ni,j := S(Γ⇒ Bi,j). Then, Ei := yi〈Ni,j〉j ,
and finally,

S(Γ⇒ p) :=
∑
i

Ei .

This is more sloppily written as

S(Γ⇒ p) :=
∑

(y: ~B⊃p)∈Γ

y〈S(Γ⇒ Bj)〉j .

In this manner, we can even write the whole definition in one line:

S(Γ⇒ ~A ⊃ p) := λ~x : ~A.
∑

(y: ~B⊃p)∈∆

y〈S(∆⇒ Bj)〉j (1)

with ∆ := Γ, ~x : ~A. The usual convention on bound variables ensures that (x’s are fresh enough so that) ∆ is
a context.

This definition has to be read with Proposition 1 in mind that will be stated and proven later in this section
and that guarantees that all and only the solutions of a logical sequent σ are in a precise sense contained in
S(σ).

A crucial element (for the succinctness of this definition and the rather structure-oriented further analysis)
is that RIntro is the only way to prove an implication, hence that the leading lambda-abstractions are
inevitable. Then, the extended (finite) context ∆ is traversed to pick variables y with formulas of the form
~B ⊃ p, thus with the right atom p in the conclusion. And this spawns tuples of search spaces, for all the
Bj , again w. r. t. the extended context ∆. Notice that this is a well-formed definition: for every sequent σ,
S(σ) is a forest, regardless of the result of proof search for the given sequent σ, and this forest has the type
prescribed by σ:

Lemma 2 (Type soundness of S). Given Γ and A, the typing Γ ` S(Γ⇒ A) : A holds in λcoΣ .

In particular, all free variables of S(Γ⇒ A) are declared in Γ.
Let us illustrate the function S at work with some examples.

Example 3. One sees immediately that S(⇒ BOOLE) = λxp.λyp.x+ y.

Example 4. Observe that S(⇒ INFTY) = it∞ (applying our notational conventions, and reflecting the fact
that there is a unique alternative at each sum). In other words, it∞ solves the same equation as is prescribed
for S(⇒ INFTY), and so it is the solution (modulo =).
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Figure 4: Steps towards calculating S(⇒ DNPEIRCE)

N0 = S(⇒ DNPEIRCE) = λxPEIRCE⊃q.N1

N1 = S(x⇒ q) = x〈N2〉
N2 = S

(
x⇒ PEIRCE

)
= λy(p⊃q)⊃p.N3

N3 = S(x, y ⇒ p) = y〈N4〉
N4 = S(x, y ⇒ p ⊃ q) = λzp.N5

N5 = S(x, y, z ⇒ q) = x〈N6〉
N6 = S

(
x, y, z ⇒ PEIRCE

)
= λy

(p⊃q)⊃p
1 .N7

N7 = S(x, y, z, y1 ⇒ p) = y〈N8〉+ z + y1〈N8〉
N8 = S(x, y, z, y1 ⇒ p ⊃ q) = λzp1 .N9

N9 = S(x, y, z, y1, z1 ⇒ q)

Example 5. Consider the sequent ⇒ CHURCH. We have:

Church := S(⇒ CHURCH) = λfp⊃p.λxp.S(f : p ⊃ p, x : p⇒ p)

Now, observe that S(f : p ⊃ p, x : p ⇒ p) = f〈S(f : p ⊃ p, x : p ⇒ p)〉 + x is asked for. We identify
S(f : p ⊃ p, x : p⇒ p) as the (unique) solution as a forest for N of the equation N = f〈N〉+ x. Using ν as
means to communicate solutions of fixed-point equations on the meta-level5, we have

S(⇒ CHURCH) = λfp⊃p.λxp.ν N.f〈N〉+ x

By unfolding of the fixed point and by making a choice at each of the elimination alternatives, we can
collect from this coterm as the finitary solutions of the sequent all the Church numerals (λfp⊃p.λxp.fn〈x〉
with n ∈ N0), together with the infinitary solution λfp⊃p.λxp.ν N.f〈N〉 (corresponding to always making the
f -choice at the elimination alternatives).

Example 6. We consider now an example without nested implications (in the Horn fragment). Let Γ = x :
p ⊃ q ⊃ p, y : q ⊃ p ⊃ q, z : p, with p 6= q. Note that the full solution spaces of p and q relative to this sequent
are mutually dependent and they give rise to the following system of equations:

Np = x〈Np, Nq〉+ z
Nq = y〈Nq, Np〉

and so we have
S(Γ⇒ p) = ν Np.x〈Np, ν Nq.y〈Nq, Np〉〉+ z
S(Γ⇒ q) = ν Nq.y〈Nq, ν Np.x〈Np, Nq〉+ z〉

Whereas for p we can collect one finite solution (z), for q we can only collect infinite solutions.

Example 7. Let us consider DNPEIRCE of Example 1. When q is viewed as absurdity, PEIRCE is Peirce’s
law, and thus DNPEIRCE can be viewed as double negation of Peirce’s law. We have the calculation in
Figure 4 (where in sequents we omit formulas on the left-hand side). Now, in N9 observe that y, y1 both have
type (p ⊃ q) ⊃ p and z, z1 both have type p, and we are back at N5 but with the duplicates y1 of y and z1 of
z. Later, we will call this duplication phenomenon decontraction, and we will give a finitary description of
N0 and, more generally, of all S(σ) (again, see Theorem 2). Of course, by taking the middle alternative in
N7, we obtain a finite proof, showing that DNPEIRCE is provable in λ.

5This notation does not imply any form of designating or even programming the fixed point by a suitable language; we allow
all mathematical means to justify the existence of the fixed point as a forest, and for this we have the underlying set-theoretic
view as (equivalence classes of) potentially infinite trees at our disposal.
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Figure 5: Membership relations

mem(M,N)

mem(λxA.M, λxA.N)

∀i, mem(Mi, Ni)

mem(x〈Mi〉i, x〈Ni〉i)
mem(M,Ej)

mem(M,
∑
iEi)

Example 8. For completeness, we describe the beginning of the calculations for THREE (for PEIRCE see
Example 9). S(⇒ THREE) = λx(p⊃p)⊃p.x〈λyp.N〉, abbreviating N for S(x : (p ⊃ p) ⊃ p, y : p⇒ p). Then,
N = x〈λzp.N ′〉+ y, with N ′ = S(x : (p ⊃ p) ⊃ p, y : p, z : p⇒ p). We could further unravel the definition
and provide a description of S(⇒ THREE) up to any finite depth, but we prefer a more symbolic solution in
Section 5 which exploits decontraction in the same way as for the preceding example.

We give a membership semantics for expressions of λcoΣ in terms of sets of terms in λco. More precisely,
the membership relations mem(M,N) and mem(M,E) are contained in λco×λcoΣ and λco×EλcoΣ respectively
(where EλcoΣ stands for the set of elimination alternatives of λcoΣ ) and are given coinductively by the rules in
Figure 5. In particular there is no M such that mem(M,O). In this sense, O is an empty solution space, but
there are many others, such as λxA.O and x〈O〉. These three forests are pairwise distinct, i. e., not bisimilar.
We do thus not identify forests having the same members (and examples can be given that even have the
same types in the same contexts).

We allow ourselves a small interlude: A natural question is if one can avoid O as subexpression of a forest,
so that having an empty solution space does not “come as a surprise” but is visible from the outset: having
O at the root. As far as full solution spaces S(σ) are concerned, there is a refined definition involving the
concepts developed in Section 5 of the present paper that can achieve forests of that special form, and this
leads to a “König’s lemma for simple types” [4, Theorem 4.25] saying that those obtained forests are infinite
iff σ has an infinite solution. In other words, those forests cannot accumulate an infinite amount of nodes
that “in the end” turn out not to contribute anything to a solution. This being said, it does not seem feasible
to develop a theory of solution spaces without having O as a building block. End of the interlude.

Coterms have the types of the forests they are members of.

Lemma 3 (Soundness w.r.t. membership semantics).

1. For N ∈ λco, T ∈ λcoΣ , if Γ ` T : A in λcoΣ and mem(N,T ) then Γ ` N : A in λco.

2. For t ∈ λ, T ∈ λcoΣ , if Γ ` T : A in λcoΣ and mem(t, T ) then Γ ` t : A in λ.

Proof We just prove the first statement, the second statement follows immediately from the first by virtue
of Lemma 1.

It suffices to show for N ∈ λco, N ′ ∈ λcoΣ , if Γ ` N ′ : A in λcoΣ and mem(N,N ′) then Γ ` N : A in λco

(replacing expression T by term N ′), since from this follows easily the result for elimination alternatives
(replacing T by E ∈ λcoΣ ). Let

R := {(Γ, N,A) | ∃N ′ ∈ λcoΣ ·mem(N,N ′) ∧ Γ ` N ′ : A}

By coinduction, to prove that this relation is contained in the typing relation of λco, it suffices to show that
it is closed backward relatively to the rules defining that typing relation—which means, roughly speaking,
that for each element of R there is a typing rule which produces such element from premisses in R. This
is the most fundamental principle of coinduction for coinductively defined predicates. It exploits that the
coinductively defined predicate is maximal among the post-fixedpoints of the set operator underlying the
coinductive definition. In our present application of the principle, we need to show that for any (Γ, N,A) ∈ R,
one of the following holds:

1. A = A0 ⊃ A1, N = λxA0 .N1, and (Γ,x : A0 , N1 , A1) ∈ R;

2. A = p, and there is y : ~B ⊃ p ∈ Γ so that N = y〈Ni〉i, and, for all i, (Γ, Ni, Bi) ∈ R.
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Let (Γ, N,A) ∈ R. Then mem(N,N ′) and Γ ` N ′ : A, for some N ′ ∈ λcoΣ . The proof proceeds by case
analysis on A.

Case A = A0 ⊃ A1. By definition of the typing relation, we must have N ′ = λxA0 .N ′1 and Γ, x : A0 `
N ′1 : A1, for some N ′1; and by definition of mem, we must have N = λxA0 .N1, and mem(N1, N

′
1), for some

N1; therefore, (Γ,x : A0 , N1 , A1) ∈ R, by definition of R.

Case A = p. By definition of the typing relation, we have N ′ =
∑
j

Ej and Γ ` Ej : p, for all j. Then, by

definition of mem, we must have, mem(N,Ej), for some j. Let Ej = y〈N ′i〉i. Again by definition of mem,
N = y〈Ni〉i, with mem(Ni, N

′
i) for all i. Since Γ ` y〈N ′i〉i : p, we must have, again by definition of the typing

relation, y : ~B ⊃ p ∈ Γ and Γ ` N ′i : Bi for all i. Hence, for all i, (Γ , Ni , Bi) ∈ R, by definition of R. �

Now, we prove that in fact, for any search problem σ = Γ ⇒ A, the members of S(σ) are exactly the
solutions of σ.

Proposition 1 (Soundness and completeness of full solution spaces).

1. For N ∈ λco, mem(N,S(Γ⇒ A)) iff Γ ` N : A in λco.

2. For t ∈ λ, mem(t,S(Γ⇒ A)) iff Γ ` t : A in λ.

Proof
We prove the first statement in detail as a further example of coinductive reasoning, the second statement

follows immediately from the first by virtue of Lemma 1.
“If” (stating completeness, i. e., that the S function indeed gathers all solutions). Consider the relations

R1 := {(N,S(Γ⇒ A)) | Γ ` N : A}
R2 := {(x〈Ni〉i, x〈S(Γ⇒ Bi)〉i) | (x : B1, · · · , Bk ⊃ p) ∈ Γ ∧ Γ ` x〈N1, . . . , Nk〉 : p}

It suffices to show that R1 ⊆ mem, but this cannot be proven alone since mem is defined simultaneously for
coterms and elimination alternatives. We also prove R2 ⊆ mem, and to prove both by coinduction on the
membership relations, it suffices to show that the relations R1, R2 are closed backward relatively to the rules
defining the membership predicate, that is:

1. for any (M,N) ∈ R1, one of the following holds:

(a) (M,N) = (λxA.M ′, λxA.N ′), and (M ′, N ′) ∈ R1;

(b) N =
∑
i

Ei, and for some i, (M,Ei) ∈ R2;

2. for any (M,E) ∈ R2, M = x〈Mi〉i, and E = x〈Ni〉i, and for all i, (Mi, Ni) ∈ R1

1. Take an arbitrary element of R1, i. e., take (M,S(Γ⇒ A)) s. t. Γ ` M : A. One of the following
happens:

i) A = A0 ⊃ A1, M = λxA0 .M ′, and Γ, x : A0 `M ′ : A1;

ii) A = p, and there is y : ~B ⊃ p ∈ Γ so that M = y〈M ′i〉i, and, for all i, Γ `M ′i : Bi.

Case i). Note that S(Γ ⇒ A) = λxA0 .S(Γ, x : A0 ⇒ A1). So, in order to prove (1a), we need to show
(M ′,S(Γ, x : A0 ⇒ A1)) ∈ R1, which follows from Γ, x : A0 `M ′ : A1.

Case ii). Note that S(Γ⇒ A) =
∑

z:~C⊃p∈Γ

z〈S(Γ⇒ Cj)〉j . So, since y : ~B ⊃ p ∈ Γ, for the proof of (1b), it

suffices to show (M,y〈S(Γ⇒ Bi)〉i) ∈ R2, which holds because y : ~B ⊃ p ∈ Γ and Γ ` y〈M ′i〉i : p (the latter

being a consequence of y : ~B ⊃ p ∈ Γ, and Γ `M ′i : Bi, for all i).

2. Take an arbitrary element of R2. So, it must be of the form (x〈Ni〉i, x〈S(Γ⇒ Bi)〉i) s.t. (x : ~B ⊃ p) ∈ Γ
and Γ ` x〈Ni〉i : p. From the latter follows Γ ` Ni : Bi, for all i. So, by definition of R1, (Ni,S(Γ⇒ Bi)) ∈ R1,
for all i.

“Only if” (stating soundness, i. e., that the S function only collects solutions). Follows from Lemmas 2
and 3. �
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Figure 6: The decontraction operation on forests

[Γ′/Γ](λxA.N) = λxA.[Γ′/Γ]N

[Γ′/Γ]
∑
i

Ei =
∑
i

[Γ′/Γ]Ei

[Γ′/Γ]
(
z〈Ni〉i

)
= z〈[Γ′/Γ]Ni〉i if z /∈ dom(Γ)

[Γ′/Γ]
(
z〈Ni〉i

)
=

∑
(w:A)∈∆z

w〈[Γ′/Γ]Ni〉i if z ∈ dom(Γ)

Example 9. Let us consider the case of Peirce’s law that is not valid intuitionistically. We have (for p 6= q):

S(⇒ PEIRCE) = λx(p⊃q)⊃p.x〈λyp.O〉

The fact that we arrived at O and found no elimination alternatives on the way annihilates the coterm
and implies there are no terms in the full solution space of ⇒ PEIRCE (hence no proofs, nor even infinite
solutions).

4. Decontraction

In this section, divided into three subsections, we introduce and study the decontraction operation on
forests. The main result of this section is Lemma 13, in the third subsection, because of its role in the proof
of Theorem 2—the main theorem of the paper. Lemma 13 shows that decontraction is the right operation to
apply to a full solution space T = S(Γ⇒ C) to express the effect on the full solution space of growing the
context Γ to an inessential extension Γ′—this growth is made precise below and denoted by Γ ≤ Γ′. Before,
in the second subsection, the more general situation, where T is any expression in λcoΣ (not necessarily a
full solution space) is analyzed in Lemma 9, a result that shows in what sense decontraction witnesses the
inversion of the inference rule of contraction. Finally, inversion of contraction is related to (and follows from)
a kind of inversion of substitution, whose most general form is contained in Lemma 7, to be found already in
the first subsection.

The decontraction operation on forests, denoted [Γ′/Γ]N , is defined only when Γ ≤ Γ′. Roughly speaking,
the decontraction effect at the level of forests is to add new elimination alternatives, made possible by the
presence of more variables in Γ′. This effect is best seen in the last clause of Definition 3 (in Figure 6) that
applies the decontraction operation to a single elimination alternative.

Definition 2. 1. |Γ| = {A | there is x s. t. (x : A) ∈ Γ}.
2. Γ ≤ Γ′ if Γ ⊆ Γ′ and |Γ| = |Γ′|.

Notice that |Γ| has only one element for each type occurring in the declarations of Γ. It thus abstracts away
from multiple hypotheses of the same formula.

Definition 3 (Decontraction for forests). Let Γ ≤ Γ′. For T an expression of λcoΣ , we define [Γ′/Γ]T
by corecursion as described in Figure 6. In the last defining clause, A := Γ(z) and ∆z := {(z : A)} ∪ (Γ′ \ Γ).
The usual convention on bound variables applies, which requires in the first clause that the name x is chosen
so that it does not appear in Γ′.

The effect of the last clause is to replace the summand z〈Ni〉i with z of type Γ(z) according to Γ with the
sum of all w〈Ni〉i that receive this type according to the potentially bigger context Γ′, excluding the other
variables of Γ but including the case w = z, and to continue the operation corecursively in the argument
terms.6

6In the workshop version [2], we had a more “aggressive” version of decontraction (called co-contraction in that paper) that
did not exclude the other variables of Γ in the last clause, and for which we further added the binding x : A to Γ and Γ′ in the
corecursive call in the lambda-abstraction case. On solutions, these differences are immaterial, c. f. the example after Lemma 10.
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Lemma 4. If mem(M,T ) and Γ ≤ Γ′ then mem(M, [Γ′/Γ]T ).

Proof A coinductive proof can confirm the obvious intuition of the effect of decontraction: either a summand
is maintained, with corecursive application of decontraction to the subterms, or it is replaced by a sum with
even extra summands. �

Lemma 5. [Γ/Γ]T = T .

Proof Obvious coinduction for all expressions. �

We formally extend the decontraction data from contexts to sequents σ. (This overloading of the operation
will only be used in the next section.)

Definition 4 (Decontraction for sequents). Let σ = (Γ⇒ A) and σ′ = (Γ′ ⇒ A′).

1. σ ≤ σ′ if Γ ≤ Γ′ and A = A′;

2. if σ ≤ σ′, then [σ′/σ]T := [Γ′/Γ]T .

4.1. Decontraction and substitution

Decontraction is a form of undoing substitution, in the following sense (N ∈ λco):

mem(N, [Γ, x : A, y : A/Γ, x : A][x/y]N) (2)

In fact, we prove a stronger result. Let [x/x1, · · · , xn]N denote [x/x1] · · · [x/xn]N . We will even allow
ourselves to abbreviate x1, · · · , xn by ~x, when variable n is in the context of discourse.

Lemma 6 (Undoing substitution – a general principle). For N ∈ λco, T ∈ λcoΣ ,

mem([x1/x1, · · · , xn]N,T )⇒ mem(N, [Γ, x1 : A, . . . , xn : A/Γ, x1 : A]T ) .

Proof Obviously, it suffices to show the statement with a term N ′ in place of the expression T . This
will follow from R1 below being included in the membership relation with terms as second argument. Let
∆ := Γ, x1 : A and ∆′ := Γ, x1 : A, . . . , xn : A. Let

R1 := {(N, [∆′/∆]N ′) | mem([x1/~x]N,N ′)}
R2 := {(z〈Ni〉i, z〈[∆′/∆]N ′i〉i) | ∀i, mem(Ni, [∆

′/∆]N ′i) ∈ R1}

We argue by coinduction on membership. The proof obligations named (1)(a), (1)(b), and (2) in the proof of
Proposition 1 are renamed here Ia, Ib, and II, respectively.

Let (N, [∆′/∆]N ′) ∈ R1, hence
mem([x1/~x]N,N ′) . (3)

We have to show that Ia or Ib holds. We proceed by case analysis of N .
Case N = λz.N0. Then mem(λz.[x1/~x]N0, N

′), hence, by definition of membership, we must have
N ′ = λz.N ′0 and

mem([x1/~x]N0, N
′
0) , (4)

hence [∆′/∆]N ′ = λz.[∆′/∆]N ′0. From (4) and definition of R1 we get (N0, [∆
′/∆]N ′0) ∈ R1, so Ia holds.

Otherwise, that is, if N is not a lambda-abstraction, then the same is true of [x1/~x]N , hence (3) implies

that N ′ =
∑
j

E′j , with

mem([x1/~x]N,E′j) (5)

for some j, hence

[∆′/∆]N ′ =
∑
j

[∆′/∆]E′j . (6)
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Figure 7: Corecursive equations governing [
∑
~x/x1]

[
∑
~x/x1](λxA.N) = λxA.[

∑
~x/x1]N

[
∑
~x/x1]

∑
i

Ei =
∑
i

[
∑
~x/x1]Ei

[
∑
~x/x1]

(
z〈Ni〉i

)
= z〈[

∑
~x/x1]Ni〉i if z 6= x1

[
∑
~x/x1]

(
x1〈Ni〉i

)
=

∑n
j=1 xj〈[

∑
~x/x1]Ni〉i

To fulfil Ib, we need (N,E) ∈ R2, for some summand E′ of (6). From (5) and the definition of membership
we must have N = z〈Ni〉i, for some z, hence

[x1/~x]N = w〈[x1/~x]Ni〉i , (7)

with w a variable determined by z and ~x as follows: if z ∈ {x1, . . . , xn}, then w = x1, else w = z. Facts (5)
and (7) give E′j = w〈N ′i〉i and, for all i,

mem([x1/~x]Ni, N
′
i) , (8)

hence
(Ni, [∆

′/∆]N ′i) ∈ R1 . (9)

Now we will see that z〈[∆′/∆]N ′i〉i is a summand of [∆′/∆]E′j , sometimes the unique one. There are two
cases:

First case: z ∈ {x1, . . . , xn}. Then [∆′/∆]E′j =
∑n
k=1 xk〈[∆′/∆]N ′i〉i, since w = x1.

Second case: otherwise, w = z. Now, by definition of decontraction, z〈[∆′/∆]N ′i〉i is always a summand
of [∆′/∆](z〈N ′i〉i), and the latter is [∆′/∆]E′j since w = z.

Therefore, z〈[∆′/∆]N ′i〉i is a summand of sum (6). Moreover, (N, z〈[∆′/∆]N ′i〉i) ∈ R2 by definition of R2

and (9). So Ib holds.
Now let (z〈Ni〉i, z〈[∆′/∆]N ′i〉i) ∈ R2. Proof obligation II is fulfilled, as (Ni, [∆

′/∆]N ′i) ∈ R1 holds for all
i, by definition of R2. �

Fact (2) follows from the previous lemma by taking n = 2, x1 = x, x2 = y and T = [x1/x1, x2]N .
The converse of the implication in Lemma 6 fails if other declarations with type A exist in Γ.

Example 10. Let Γ := {z : A}, ∆ := Γ, x : A, ∆′ := Γ, x : A, y : A, N := y and T := z. Then N is a
member of [∆′/∆]T , since [∆′/∆]T = z + y, but [x/y]N = x and x is not a member of T .

The result of a decontraction [Γ, x1 : A, · · · , xn : A/Γ, x1 : A]T , where Γ has no declarations with type A,
does not depend on Γ nor A, so it deserves a lighter notation as [x1 + · · ·+ xn/x1]T . We will even allow
ourselves to abbreviate x1 + · · ·+ xn by

∑
~x, when variable n is in the context of discourse. This particular

case of the operation satisfies the equations in Figure 7. For this particular case, we get a pleasing formula:

Lemma 7 (Undoing substitution – a tighter result for a special case). For N ∈ λco, T ∈ λcoΣ ,

mem([x1/x1, · · · , xn]N,T )⇔ mem(N, [x1 + · · ·+ xn/x1]T ) ,

provided xi /∈ FV (T ), i = 2, . . . , n.

Proof “Only if”. Particular case of Lemma 6.
“If”. Let φ(T ) denote the proviso on T . Let

R1 := {([x1/~x]N,N ′) | φ(N ′) ∧mem(N, [
∑
~x/x1]N ′)}

R2 := {(z〈[x1/~x]Ni〉i, z〈N ′i〉i) | ∀i, ([x1/~x]Ni, N
′
i) ∈ R1}
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We argue by coinduction on membership and thus obtain the “if” part with T replaced by N ′, from which
the general case immediately follows. The proof obligations named (1)(a), (1)(b), and (2) in the proof of
Proposition 1 are renamed here Ia, Ib, and II, respectively.

Let ([x1/~x]N,N ′) ∈ R1, hence φ(N ′) and

mem(N, [
∑

~x/x1]N ′) . (10)

The proof proceeds by case analysis of N .
Case N = λz.N0, so [x1/~x]N = λz.[x1/~x]N0. By (10) and definitions of membership and of [

∑
~x/x1]N ′,

N ′ = λz.N ′0, hence φ(N ′0) (because z is not one of x2, · · · , xn), [
∑
~x/x1]N ′ = λz.[

∑
~x/x1]N ′0 and

mem(N0, [
∑

~x/x1]N ′0) . (11)

So ([x1/~x]N0, N
′
0) ∈ R1, by definition of R1, (11) and φ(N ′0), which completes proof obligation Ia.

Case N = z〈Ni〉i. Then [x1/~x]N = y〈[x1/~x]Ni〉i, with y = x1 when z ∈ {x1, . . . , xn}, and y = z otherwise.

From (10) and definitions of membership and of [
∑
~x/x1]N ′, one gets N ′ =

∑
j

E′j , hence φ(E′j) for all j, and

[
∑
~x/x1]N ′ =

∑
j

[
∑
~x/x1]E′j . In order to fulfil proof obligation Ib, we need ([x1/~x]N,E′) ∈ R2, for some

summand E′ of N ′. From (10) again, we get, for some j,

mem(z〈Ni〉i, [
∑

~x/x1]E′j) . (12)

Let E′j = w〈N ′i〉i, hence φ(N ′i) for all i. We now have two cases:

First case: w = x1. Then [
∑
~x/x1]E′j =

∑n
k=1 xk〈[

∑
~x/x1]N ′i〉i. From (12) we get, for some k,

mem(z〈Ni〉i, xk〈[
∑

~x/x1]N ′i〉i) (13)

hence, for all i,

mem(Ni, [
∑

~x/x1]N ′i) . (14)

From (13), z = xk, hence y = x1. We prove ([x1/~x]N,E′j) ∈ R2, that is (x1〈[x1/~x]Ni〉i, x1〈N ′i〉i) ∈ R2. By
definition of R2, we need ([x1/~x]Ni, N

′
i) ∈ R1, for all i. This follows from (14), φ(N ′i) and the definition of

R1.
Second case: w 6= x1. Then [

∑
~x/x1]E′j = w〈[

∑
~x/x1]N ′i〉i. From (12), z = w; from φ(E′j) and w 6= x1,

z /∈ {x1, . . . , xn}. Still from (12), we get again (14) and now ([x1/~x]N,E′j) = (z〈[x1/~x]Ni〉i, z〈N ′i〉i) ∈ R2

follows as before.
Let (z〈[x1/~x]Ni〉i, z〈N ′i〉i) ∈ R2, hence proof obligation II holds by definition of R2. �

The proviso about variables x2, · · · , xn in the previous lemma is necessary for the “if” implication.
Otherwise, one has the following counter-example: n := 2, N := x2, and T = x2. N is a member of
[x1 + x2/x1]T = x2 but x1 = [x1/x1, x2]N is not a member of T .

4.2. Decontraction and contraction

Decontraction is related to the inference rule of contraction. By contraction we mean the rule in the
following lemma.

Lemma 8 (Contraction). In system λ the following rule is admissible and invertible:

Γ, x : A, y : A ` t : B

Γ, x : A ` [x/y]t : B .

That is: for all t ∈ λ, Γ, x : A, y : A ` t : B iff Γ, x : A ` [x/y]t : B.
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Proof Routine induction on t, using inversion of RIntro and LVecIntro. �

If Γ ≤ Γ′, then, from a proof of Γ′ ⇒ B, we get a proof of Γ ⇒ B by a number of contractions. The
following result justifies the terminology “decontraction”.

Lemma 9 (Decontraction and types). Let T be an expression of λcoΣ and Γ′ ∪ ∆ be a context. If
Γ ∪∆ ` T : B and Γ ≤ Γ′ then Γ′ ∪∆ ` [Γ′/Γ]T : B.

Proof (Notice that we exceptionally consider not necessarily disjoint unions of contexts. This is immaterial
for the proof but will be needed in Lemma 19.) Immediate by coinduction.7 �

In particular, if Γ ` u : B in λ and Γ ≤ Γ′, then indeed Γ′ ` [Γ′/Γ]u : B — but [Γ′/Γ]u is not guaranteed to
be a proof (i. e., a term in λ).

Example 11. Let Γ := {f : p ⊃ p ⊃ q, x : p}, Γ′ := {f : p ⊃ p ⊃ q, x : p, y : p}, and u := f〈x, x〉, hence
Γ ≤ Γ′ and Γ ` u : q. Then, [Γ′/Γ]u = f〈x+ y, x+ y〉, and the given particular case of the previous lemma
entails Γ′ ` f〈x+ y, x+ y〉 : q. The term f〈x+ y, x+ y〉 is no λ-term, but rather has several members. Due
to Lemma 7, these are exactly the (four, in this case) t ∈ λ such that [x/y]t = u. Thanks to Lemma 8, it
follows that each member t of f〈x+ y, x+ y〉 satisfies Γ′ ` t : q.

On the other hand, if T in Lemma 9 is the full solution space S(Γ⇒ B) (rather than a mere member u of
it), then [Γ′/Γ]T is indeed the full solution space S(Γ′ ⇒ B) — but we have to wait until Lemma 13 to see
the proof.

Example 12. Continuing Example 11, since S(Γ ⇒ q) = u, one has [Γ′/Γ]S(Γ ⇒ q) = f〈x + y, x + y〉.
Lemma 13 will guarantee that f〈x+ y, x+ y〉 (a term obtained from u by decontraction) is the full solution
space S(Γ′ ⇒ q). Thanks to Proposition 1, one sees again that each member of t of f〈x+ y, x+ y〉 satisfies
Γ′ ` t : q.

4.3. Decontraction and full solution spaces

The intuitive idea of the next notion is to capture saturation of sums, so to speak.

Definition 5 (Maximal decontraction). Let T ∈ λcoΣ and Γ be a context.

1. Consider an occurrence of x in T . Consider the traversed lambda-abstractions from the root of T to the
given occurrence of x, and let yA1

1 , . . . , yAnn be the respective variables. We call Γ, y1 : A1 . . . , yn : An
the local extension of Γ for the given occurrence of x.

2. T in λcoΣ is maximally decontracted w. r. t. Γ if:
(a) all free variables of T are declared in Γ; and
(b) every occurrence of a variable x in T is as head of a summand x〈Ni〉i in a sum in which also

y〈Ni〉i is a summand (modulo bisimilarity), for every variable y that gets the same type as x in
the local extension of Γ for the occurrence of x.

Lemma 10 (Full solution spaces are maximally decontracted). Given sequent Γ⇒ C, the full solu-
tion space S(Γ⇒ C) is maximally decontracted w. r. t. Γ.

Proof By coinduction. For the variable occurrences that are on display in the one-line formula (1) for

S(Γ⇒ ~A ⊃ p)—that is, for each of the y’s that are head variables of the displayed summands—the local

context is ∆ = Γ, ~x : ~A, and if y1 and y2 have the same type in ∆ with target atom p, both variables
appear as head variables with the same lists of argument terms. For variable occurrences hidden in the
j-th argument of some y, we use two facts: (i) the j-th argument is maximally decontracted w. r. t. ∆ by
coinductive hypothesis; (ii) ∆ collects the variables λ-abstracted on the path from the root of the term to
the root of j-th argument. �

7With this lemma in place, invertibility in Lemma 8 follows from general reasons. Take N = t in fact (2) and then apply this
lemma and Lemma 3.
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Example 13. Let Γ := {z : p}, ∆ := Γ, x : p, N := λxp.z〈〉 and N ′ := λxp.z〈〉+ x〈〉. The term N is not
maximally decontracted w. r. t. Γ. Intuitively, the sum z〈〉 is not saturated, as it does not record all the
alternative proofs of ∆ ⇒ p. Hence N cannot be the full solution space S(Γ ⇒ p ⊃ p) — the latter is N ′,
hence N ′ is maximally decontracted w. r. t. Γ, by the previous lemma. The output of decontraction [Γ/Γ]N
(being N) is not maximally decontracted8. We will be interested mostly in applying decontraction to already
maximally decontracted terms, e. g., full solution spaces.

Lemma 11. If |Γ′ \ Γ| and |∆| are disjoint, Γ′,∆ is a context and Γ ≤ Γ′ then [Γ′,∆/Γ,∆]T = [Γ′/Γ]T .

Proof Easy coinduction. �

The disjointness condition of the previous lemma is rather severe. It can be replaced by maximal
decontraction of the given term.

Lemma 12. If Γ′,∆ is a context, Γ ≤ Γ′ and T is maximally decontracted w. r. t. Γ,∆, then [Γ′,∆/Γ,∆]T =
[Γ′/Γ]T .

Proof By coinduction. The proof then boils down to showing for any subterm z〈Ni〉i of T , if a w 6= z is
found according to the last clause of the definition of decontraction with [Γ′,∆/Γ,∆], then one can also find
w according to the last clause of the definition of decontraction with [Γ′/Γ]. Assume such a w. Since it
comes from the last clause, we have z ∈ dom(Γ,∆) (hence, by the usual convention on the naming of bound
variables, z is even a free occurrence in T ), and (w : (Γ,∆)(z)) ∈ Γ′ \Γ. If z ∈ dom(Γ), then we are obviously
done. Otherwise, z ∈ dom(∆), and so (w : ∆(z)) ∈ Γ′ \ Γ. Since |Γ′| = |Γ|, there is (x : ∆(z)) ∈ Γ. Since T
is maximally decontracted w. r. t. Γ,∆, the subterm z〈Ni〉i is one summand in a sum which also has the
summand x〈Ni〉i, and for the latter summand, the last clause of the definition of decontraction with [Γ′/Γ]
can be used with (w : Γ(x)) ∈ Γ′ \ Γ. �

Corollary 1. If Γ′,∆ is a context, Γ ≤ Γ′, then [Γ′,∆/Γ,∆]S(Γ,∆⇒ C) = [Γ′/Γ]S(Γ,∆⇒ C).

Proof Combine the preceding lemma with Lemma 10.9 �

The following main result of this section says that the full solution space w. r. t. an inessential extension
of a context is obtained by applying the decontraction operation to the full solution space corresponding to
the original context.

Lemma 13 (Decontraction and full solution spaces). If Γ ≤ Γ′ then S(Γ′ ⇒ C) = [Γ′/Γ](S(Γ⇒ C)).

Proof Let R := {(S(Γ′ ⇒ C), [Γ′/Γ](S(Γ ⇒ C))) | Γ ≤ Γ′, C arbitrary}. We prove that R is closed
backward relative to the notion of bisimilarity taking sums of alternatives as if they were sets. From this, we
conclude R ⊆=.

S(Γ′ ⇒ C) = λzA1
1 · · · zAnn .

∑
(z: ~B⊃p)∈∆′

z〈S(∆′ ⇒ Bj)〉j (15)

and

[Γ′/Γ](S(Γ⇒ C)) = λzA1
1 · · · zAnn .

∑
(y: ~B⊃p)∈∆

∑
(w:∆(y))∈∆′y

w〈[Γ′/Γ]S(∆⇒ Bj)〉j (16)

where ∆ := Γ, z1 : A1, . . . , zn : An, ∆′ := Γ′, z1 : A1, . . . , zn : An, for y ∈ dom(Γ), ∆′y := {(y : ∆(y))}∪(Γ′\Γ),
and for y = zi, ∆′y = {(y : ∆(y))}.

8This is in contrast with the definition of co-contraction in [2], which outputs maximally decontracted terms, e. g., [Γ/Γ]N = N ′

in this case.
9The notion of being maximally decontracted is not essential for this paper. Only this corollary will be used in the sequel,

and it could also be proven directly, in the style of the proof of the following lemma. For this to work smoothly, the statement
should be generalized to: If Γ′,∆,Θ is a context, Γ ≤ Γ′, then [Γ′,∆/Γ,∆]S(Γ,∆,Θ⇒ C) = [Γ′/Γ]S(Γ,∆,Θ⇒ C).
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From Γ ≤ Γ′ we get ∆ ≤ ∆′, hence

(S(∆′ ⇒ Bj), [∆
′/∆]S(∆⇒ Bj)) ∈ R ,

which fits with the summands in (16) since, by Corollary 1, [∆′/∆]S(∆ ⇒ Bj) = [Γ′/Γ]S(∆ ⇒ Bj). To
conclude the proof, it suffices to show that (i) each head-variable z that is a “capability” of the summation
in (15) is matched by a head-variable w that is a “capability” of the summation in (16); and (ii) vice-versa.

(i) Let z ∈ dom(∆′). We have to exhibit y ∈ dom(∆) such that (z : ∆(y)) ∈ ∆′y. First case: z ∈ dom(∆).
Then, (z : ∆(z)) ∈ ∆′z. So we may take y = z. Second and last case: z ∈ dom(Γ′) \ dom(Γ). By definition
of Γ ≤ Γ′, there is y ∈ dom(Γ) such that (z : Γ(y)) ∈ Γ′. Since Γ(y) = ∆(y) and z /∈ dom(∆), we get
(z : ∆(y)) ∈ ∆′y.

(ii) We have to show that, for all y ∈ dom(∆), and all (w : ∆(y)) ∈ ∆′y, (w : ∆(y)) ∈ ∆′. But this is
immediate. �

Notice that we cannot expect that the summands appear in the same order in (15) and (16). Therefore,
we are obliged to use symmetry of +. It is even convenient to disregard multiplicity, as seen in the following
example.

Example 14. Let Γ := x : p, Γ′ := Γ, y : p, ∆ := z : p, Θ := Γ,∆, Θ′ := Γ′,∆ and C := p. Then
S(Θ ⇒ C) = x + z and S(Θ′ ⇒ C) = x + y + z. This yields [Θ′/Θ]S(Θ ⇒ C) = (x + y) + (z + y) and
[Γ′/Γ]S(Θ ⇒ C) = (x + y) + z, where parentheses are only put to indicate how decontraction has been
calculated. Taken together, these calculations contradict the strengthening of Lemma 13 without idempotence
of +, when the parameters Γ, Γ′, of the lemma are taken as Θ, Θ′, and they also contradict the analogous
strenghtening of Corollary 1 when the parameters Γ, Γ′, ∆, C of the corollary are as given here.

The summand-wise and therefore rather elegant definition of decontraction is the root cause for this blow-up
of the decontracted terms. However, mathematically, there is no blow-up since we identify (x+ y) + (z + y)
with x+ y + z, as they represent the same set of elimination alternatives.

In the light of Lemma 10, Lemma 13 shows that S(Γ⇒ C), which is maximally decontracted w. r. t. Γ,
only needs the application of the decontraction operation [Γ′/Γ] for Γ ≤ Γ′ to obtain a term that is maximally
decontracted w. r. t. Γ′.

Example 15 (Example 7 continued). Thanks to Lemma 13, N9 is obtained by decontraction from N5:

N9 = [x : ·, y : (p ⊃ q) ⊃ p, z : p, y1 : (p ⊃ q) ⊃ p, z1 : p / x : ·, y : (p ⊃ q) ⊃ p, z : p]N5 ,

where the type of x has been omitted. Hence, N6, N7, N8 and N9 can be eliminated, and N5 can be expressed
as the (meta-level) fixed point:

N5 = ν N.x〈λy(p⊃q)⊃p
1 .y〈λzp1 .[x, y, z, y1, z1/x, y, z]N〉+ z + y1〈λzp1 .[x, y, z, y1, z1/x, y, z]N〉〉 ,

now missing out all types in the decontraction operation(s). Finally, we obtain the closed forest

S(⇒ DNPEIRCE) = λxPEIRCE⊃q.x〈λy(p⊃q)⊃p.y〈λzp.N5〉〉

This representation also makes evident that, by exploiting the different decontracted copies of y, there are
infinitely many M ∈ λco\λ such that mem(M,S(⇒ DNPEIRCE)), in other words, ⇒ DNPEIRCE has infinitely
many infinite solutions.

Example 16 (Example 8 continued). Likewise, Lemma 13 shows that, with the notation of Example 8
and omitting the types in the decontraction operation, N ′ = [x, y, z/x, y]N , hence

S(⇒ THREE) = λx(p⊃p)⊃p.x〈λyp.νN.x〈λzp.[x, y, z/x, y]N〉+ y〉

Visibly, the only infinite solution is obtained by choosing always the left alternative, creating infinitely many
vacuous bindings, thus it can be described as λx(p⊃p)⊃p.N0 with N0 = x〈λ p.N0〉 (where is the name of
choice for a variable that has no bound occurrences).

We have now seen succinct presentations of the full solution spaces of all of the examples in Example 1.
Although described with few mathematical symbols, they are still on the informal level of infinitary terms
with meta-level fixed points, but this will be remedied by a finitary system in the next section.
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5. A typed finitary system for solution spaces

In this section we develop a finitary lambda-calculus to represent solution spaces of proof search problems
in λ. The main points in the design of the calculus are:

1. λ is extended with fixed-point variables and formal greatest fixed points, as well as formal sums;

2. Fixed-point variables stand for spaces of solutions;

3. Fixed-point variables are typed by logical sequents;

4. A relaxed form of binding of fixed-point variables has to be allowed, and controlled through the typing
system.

The calculus is called finitary because its terms are generated inductively; and its terms are called
finitary forests due to the presence of formal sums. There is a semantics of the finitary forests, by way
of an interpretation into forests. The relaxed form of binding is matched, on the semantical side, by the
special operation of decontraction. This is developed in the first subsection, with the typing system only
coming in the second subsection. To each sequent, one can associate a finitary forest (third subsection) whose
interpretation is the forest that represents the full solution space of the sequent: this is our foundational
theorem (fourth subsection), showing the completeness of the semantics w. r. t. those forests that represent
solution spaces. The fifth and final subsection presents a variation of the semantics, that will be needed in
the applications described in Section 6.

5.1. The untyped system λgfp
Σ

The set of inductive cut-free lambda-terms with finite numbers of elimination alternatives, and a fixed-point
operator is denoted by λgfp

Σ and is given by the following grammar (read inductively):

(terms) N ::= λxA.N | gfp Xρ.E1 + · · ·+ En | Xρ

(elim. alternatives) E ::= x〈N1, . . . , Nk〉

where X is assumed to range over a countably infinite set of fixed-point variables (also letters Y , Z will range
over them), and where, as for λcoΣ , both n, k ≥ 0 are arbitrary. We extend our practice established for λcoΣ of
writing the sums E1 + · · ·+ En in the form

∑
iEi for n ≥ 0. Also the tuples continue to be communicated

as 〈Ni〉i. As for λcoΣ , we will identify expressions modulo symmetry and idempotence of +, thus treating
sums of elimination alternatives as if they were the set of those elimination alternatives. Again, we will write
T for expressions of λgfp

Σ , i. e., for terms and elimination alternatives.
In the term formation rules, letter ρ appears. It is supposed to stand for “restricted” logical sequents

in that we require them to be atomic, i. e., of the form Γ ⇒ p with atomic conclusion. Henceforth, this
restriction is indicated when using the letter ρ, possibly with decorations. Let FPV (T ) denote the set of free
occurrences of typed fixed-point variables in T , defined with the expected cases as follows: FPV (Xρ) := {Xρ},
FPV (λxA.N) := FPV (N), FPV (x〈N1, . . . , Nk〉) := FPV (N1) ∪ . . . ∪ FPV (Nk). However, in gfp Xρ.

∑
iEi

the fixed-point construction gfp binds all free occurrences of Xρ′ in the elimination alternatives Ei, not just
Xρ, as long as ρ ≤ ρ′. To be precise, the definition is as follows:

FPV (gfp Xρ.E1 + · · ·+En) :=
(
FPV (E1) ∪ . . . ∪ FPV (En)

)
\ {Xρ′ | ρ′ atomic logical sequent and ρ ≤ ρ′}

In fact, the sequent ρ serves a different purpose than being the precise type of bound fixed-point variables X,
see below on well-bound expressions that require at least that only Xρ′ with ρ ≤ ρ′ are free in the body of
the gfp-abstraction with binding variable Xρ.

In the sequel, when we refer to finitary forests we have in mind the terms of λgfp
Σ . The fixed-point operator

is called gfp (“greatest fixed point”) to indicate that its semantics is (now) defined in terms of infinitary
syntax, but there, fixed points are unique. Hence, the reader may just read this as “the fixed point”.

We next present a general-purpose interpretation of expressions of λgfp
Σ in terms of the coinductive syntax

of λcoΣ (using the ν operation on the meta-level). We stress its general purpose by putting g as upper index
to the semantics brackets. This is for contrast with the special-purpose interpretation we introduced under
the name “simplified semantics” in our subsequent work [3] and that will be presented at the end of this
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Section 5. The general-purpose interpretation of finitary forests is based on the same ideas as our original
interpretation [2] but is more precise on the conditions that guarantee its well-definedness. (Nonetheless, in
the cited paper, no problem arises with the less precise definitions since only representations of full solution
spaces were interpreted, see below.)

We call an expression T trivially regular if FPV (T ) has no duplicates: A set S of typed fixed-point
variables is said to have no duplicates if the following holds: if Xρ1 , Xρ2 ∈ S, then ρ1 = ρ2. In other words:
X does not appear with two different types in S. We do not confine our investigation to trivially regular
expressions, see Appendix A for an example where we require more flexibility.

Definition 6 (Regularity in λgfp
Σ ). Let T ∈ λgfp

Σ . T is regular if for all fixed-point variable names X,
the following holds: if Xρ ∈ FPV (T ) for some sequent ρ, then there is a sequent ρ0 such that, for all
Xρ′ ∈ FPV (T ), ρ0 ≤ ρ′.

Obviously, every trivially regular T is regular (using ρ0 := ρ and reflexivity of ≤ since ρ′ = ρ). Trivially,
every closed T , i. e., with FPV (T ) = ∅, is trivially regular.

As is to be expected, interpretation of expressions of λgfp
Σ is done with the help of environments, a notion

which will be made more precise than in [2]. Since interpretations of T only depend on the values of the
environment on FPV (T ), we rather assume that environments are partial functions with a finite domain.
Hence, an environment ξ is henceforth a partial function from typed fixed-point variables Xρ to (co)terms of
λcoΣ with finite domain dom(ξ) that has no duplicates (in the sense made precise above).

The interpretation function will also be made partial: [[T ]]gξ will only be defined when environment ξ is
admissible for T :

Definition 7 (Admissible environment). An environment ξ is admissible for expression T of λgfp
Σ if for

every Xρ′ ∈ FPV (T ), there is an Xρ ∈ dom(ξ) such that ρ ≤ ρ′.

Notice that the required sequent ρ in the above definition is unique since ξ is supposed to be an environment.
This observation even implies the following characterization of regularity:

Lemma 14. T ∈ λgfp
Σ is regular iff there is an environment ξ that is admissible for T .

Proof Obvious. �

We have to add a further restriction before defining the interpretation function:

Definition 8 (Well-bound expression). We call an expression T of λgfp
Σ well-bound iff for any of its

subterms gfp Xρ.
∑
iEi and any free occurrence of Xρ′ in any Ei, ρ ≤ ρ′.

According to our definition of FPV , an expression that is not well-bound has a subterm N := gfp Xρ.
∑
iEi

such that FPV (N) contains some Xρ′ that “escapes” the binding because ρ ≤ ρ′ does not hold. Finitary
forests we will construct to represent search spaces therefore ought to be well-bound, and this will be
strengthened in Lemma 18 to a question of typability.

Definition 9 (General-purpose interpretation of finitary forests as forests). For a well-bound ex-

pression T of λgfp
Σ , the interpretation [[T ]]gξ for an environment ξ that is admissible for T is given by structural

recursion on T in Figure 8. Notice that the case of gfp uses the extended environment ξ ∪ [Xρ 7→ N ] that is
admissible for Ei thanks to our assumption of well-boundness. (Moreover, by renaming X, we may suppose
that there is no Xρ′ in dom(ξ).) The meta-level fixed point over N is well-formed since every elimination
alternative starts with a head/application variable, and all occurrences of N in the summands are thus
guarded by constructors for elimination alternatives, and therefore the fixed-point definition is productive
(in the sense of producing more and more data of the fixed point through iterated unfolding) and uniquely
determines a forest, unlike an expression of the form ν N.N that does not designate a forest and would only
come from the syntactically illegal term gfpXρ.Xρ.
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Figure 8: Definition of general-purpose interpretation

[[Xρ′ ]]gξ = [ρ′/ρ]ξ(Xρ) for the unique ρ ≤ ρ′ with Xρ ∈ dom(ξ)

[[gfp Xρ.
∑
i

Ei]]
g
ξ = ν N.

∑
i

[[Ei]]
g
ξ∪[Xρ 7→N ]

[[λxA.N ]]gξ = λxA.[[N ]]gξ
[[x〈Ni〉i]]gξ = x〈[[Ni]]gξ〉i

We better not use the shorthand [[·]]gξ with the placeholder for the expression from λgfp
Σ to be interpreted since

the question of admissibility of ξ depends on the actual argument T .
The interpretation [[T ]]gξ only depends on the values of ξ for arguments Xρ for which there is a sequent ρ′

such that Xρ′ ∈ FPV (T ). In more precise words, the interpretations [[T ]]gξ and [[T ]]gξ′ coincide whenever ξ
and ξ′ agree (already w. r. t. definedness) on all typed fixed-point variables Xρ for which there is a sequent ρ′

such that Xρ′ ∈ FPV (T ).
If T is closed, i. e., FPV (T ) = ∅, then the empty function is an admissible environment for T , and the

environment index in the interpretation is left out, hence the interpretation is abbreviated to [[T ]]g. Anyway,
the interpretation of a closed T does not depend on the environment.

If no Xρ′ occurs free in
∑
iEi for any sequent ρ′, we allow ourselves to abbreviate the finitary forest

gfp Xρ.
∑
iEi as

∑
iEi. Thanks to our observation above on the dependence of [[T ]]gξ on ξ, we have

[[
∑
i

Ei]]
g
ξ =

∑
i

[[Ei]]
g
ξ .

5.2. Typing system for λgfp
Σ

We now have finitary means to represent solution spaces, in other words, the finitary forests of λgfp
Σ can

now serve as witnesses for the existence of suitable forests (terms of λcoΣ ) that arise as their general-purpose
semantics. According to the idea of the Curry-Howard correspondence, these witnesses appear as the proof
objects that are being typed in a typing system that is to be understood as a constructive deductive system
for solution spaces. Due to the semantics into forests of λcoΣ , this deductive system, when seen as a logic, is a
“logic of coinductive proofs”—or rather a “logic of coinductive proof spaces”, due to the use of sums.

The main desiderata for the typing system we are about to introduce are soundness and completeness in
the following sense: Soundness means that if a proof object T is typed in the typing system by a certain
sequent, then the semantics of T is a forest in λcoΣ whose members are proofs (more generally, solutions) of
that sequent. Completeness means that every sequent types a proof object T such that its semantics is a
forest in λcoΣ whose members are exactly all proofs (more generally, solutions) of that sequent.

The deductive system we are introducing is in the form of a typing system for λgfp
Σ , and it is given through

inference rules for deriving sequents of the general form Ξ cΓ ` T : B, shown in Figure 9. Here are some

explanations of the figure. The first context Ξ has the form
−−−→
X : ρ, so fixed-point variables are typed by

atomic sequents. The sequents accumulated in Ξ are the “coinductive hypotheses” of the typing derivation,
when the latter is seen as a proof in the “logic of coinductive proofs”. The first typing rule in Figure 9 implies
that fixed-point variables enjoy a relaxed form of binding.

The context Ξ is such that no fixed-point variable name X occurs twice (there is no condition concerning
duplication of sequents). So, Ξ can be (and will be) seen as a partial function, and Ξ, when regarded as
a set of typed fixed-point variables, has no duplicates. If Ξ is empty, then we write Γ ` T : B instead of
Ξ cΓ ` T : B.

Lemma 15 (Weakening). If Ξ cΓ ` T : B, Ξ ⊆ Ξ′ and Γ ⊆ Γ′ then Ξ′ cΓ′ ` T : B.

Proof Obvious since, for the Ξ argument, there is only look-up, and for the Γ argument, weakening is
directly built into the rules concerning fixed-point variables and goes through inductively for the others. �
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Figure 9: Typing system for λgfp
Σ

(X : ρ) ∈ Ξ ρ ≤ ρ′ = (Θ′ ⇒ p) Θ′ ⊆ Γ

Ξ cΓ ` Xρ′ : p

for all i, Ξ, X : ρ cΓ ` Ei : p ρ = (Θ⇒ p) Θ ⊆ Γ

Ξ cΓ ` gfp Xρ.
∑
iEi : p

Ξ cΓ, x : A ` N : B

Ξ cΓ ` λxA.N : A ⊃ B
(x : ~B ⊃ p) ∈ Γ for all i, Ξ cΓ ` Ni : Bi

Ξ cΓ ` x〈Ni〉i : p

Lemma 16. If Ξ cΓ ` T : B then the free term variables of T are in dom(Γ).

Notice that the free term variables of XΓ⇒p are dom(Γ) and that dom(Γ) enters the free term variables of
gfpXΓ⇒p.

∑
iEi.

Proof Induction on T . �

Lemma 17. If Ξ cΓ ` T : B and Xρ′ ∈ FPV (T ) then there is a sequent ρ such that (X : ρ) ∈ Ξ and
ρ ≤ ρ′.

Proof Induction on T . �

Corollary 2. If Ξ cΓ ` T : B, and ξ is a partial function from typed fixed-point variables Xρ to (co)terms
of λcoΣ with domain Ξ, then ξ is an environment, and it is admissible for T .

As a consequence of the last lemma, we obtain by induction on T :

Lemma 18 (Typable terms are well-bound). If Ξ cΓ ` T : B then T is well-bound.

Proof Induction on T . �

Definition 10 (Well-typed environment). An environment ξ is well-typed w. r. t. context Γ if for all
XΘ⇒q ∈ dom(ξ), Θ ⊆ Γ and Γ ` ξ(XΘ⇒q) : q (in λcoΣ ).

Lemma 19 (Soundness of the typing system for λgfp
Σ w.r.t. the general-purpose interpretation).

Let Ξ cΓ ` T : B in λgfp
Σ and ξ be a well-typed environment w. r. t. Γ with dom(ξ) = Ξ. Then Γ ` [[T ]]gξ : B

in λcoΣ . In particular (for empty Ξ), if Γ ` T : B in λgfp
Σ , then Γ ` [[T ]]g : B in λcoΣ .

A proof sketch is as follows: Induction on T , using Lemma 9 in the base case of a fixed-point variable and
using an embedded coinduction in the case of a greatest fixed point. To see how this works intuitively, we
set T := gfp Xρ.

∑
iEi and assume Ξ cΓ ` T : p, which comes in particular from Ξ′ cΓ ` Ei : p for all i,

with Ξ′ := Ξ, X : ρ. By definition, [[T ]]gξ =
∑
i[[Ei]]

g
ξ′ , with ξ′ := ξ ∪ [Xρ 7→ [[T ]]gξ ]. Our goal is to show that

Γ ` [[T ]]gξ : p. Since the typing relation is coinductive, we spawn a coinduction for this goal. It suffices to

show for every i that Γ ` [[Ei]]
g
ξ′ : p. For this, we apply the induction hypothesis on Ξ′ cΓ ` Ei : p and the

environment ξ′ that is well-typed w. r. t. Γ and has the right domain. Well-typedness demands in particular
that Γ ` ξ′(Xρ) : p, but this is Γ ` [[T ]]gξ : p that we assumed coinductively. And this reasoning is not circular
since the appeal to the coinductive hypothesis in the so constructed argument for the typing judgement is
guarded through the application of typing rules. This application of guarded coinduction is still peculiar
since the goal to be proved enters the provisos of the lemma. However, a rather straightforward argument
depending on “observation depth” can be given, which we will develop now.
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Figure 10: Typing rules with observation depth of λcoΣ

Γ, x : A `n N : B

Γ `n+1 λx
A.N : A ⊃ B

(x : ~B ⊃ p) ∈ Γ ∀i, Γ `n Ni : Bi

Γ `n+1 x〈Ni〉i : p

∀i, Γ `n Ei : p

Γ `n+1

∑
iEi : p Γ `0 T : A

Definition 11 (Typability in λcoΣ with observation depth). We define for n ≥ 0 the n-typability rela-
tion Γ `n T : A with the same data Γ, T and A as for typability in λcoΣ , by recursion on n. The recursive
definition is presented in the style of inductive derivation rules in Figure 10.

The first three rules take up the coinductive rules for typing in λcoΣ but replace the coinductive reading by
the descent from index n+ 1 to n when read backwards. The last rule expresses that if we are interested in
observations up to depth 0 only, every forest is accepted. Hence index 0 does not stand for an observation at
the root but for no observation at all.

Lemma 20 (Antitonicity of n-typability). Given a context Γ, a formula A and a forest T . Then for all
n ≥ 0, if Γ `n+1 T : A then Γ `n T : A.

Proof Obvious induction on n. �

We refine Lemma 9 to n-typability.

Lemma 21 (Closedness under decontraction of n-typability). Let T be an expression of λcoΣ and
Γ′ ∪∆ be a context. If Γ ∪∆ `n T : B and Γ ≤ Γ′ then the following holds:

1. If T is a term N , then Γ′ ∪∆ `n [Γ′/Γ]N : B;

2. If T is an elimination alternative E, then Γ′ ∪∆ `n E′ : B holds for every summand E′ of [Γ′/Γ]E.

Proof Simultaneous induction on n (the formulation is general enough to get the induction through). �

We will use this lemma for Γ′ ⊆ ∆ and terms N , hence in the following form: If ∆ `n N : B and Γ ≤ Γ′ ⊆ ∆,
then ∆ `n [Γ′/Γ]N : B.

Since n-typability simply counts derivation depths of typability and the rules only have finitely many
premisses (even if their number is unbounded), we regain typability if n-typability holds for all n.

Lemma 22 (Inductive characterization of typability in λcoΣ ). Given a context Γ, a formula A and a
forest T . Then Γ ` T : A iff Γ `n T : A for all n ≥ 0.

Proof From left to right: induction on n. From right to left: the usual coinductive argument, exploiting
antitonicity to put together indices obtained for the finitely many premisses. �

Lemma 23 (Ramification of Lemma 19). Let Ξ cΓ ` T : B in λgfp
Σ and ξ be an environment with

dom(ξ) = Ξ such that for all XΘ⇒q ∈ dom(ξ), Θ ⊆ Γ. Then, the following implication holds for all n ≥ 0:
If for all XΘ⇒q ∈ dom(ξ), Γ `n ξ(XΘ⇒q) : q, then Γ `n [[T ]]gξ : B.

Proof Let us denote by An(ξ) the assumption of the implication to prove, for all n ≥ 0. The proof is by
induction on T (equivalently, on the derivation of Ξ cΓ ` T : B).

Case T = Xρ′ . Then B = p, (X : ρ) ∈ Ξ, ρ = (Θ⇒ p) ≤ (Θ′ ⇒ p) = ρ′ with Θ′ ⊆ Γ. Recall that ρ ≤ ρ′
is equivalent to Θ ≤ Θ′. Let n ≥ 0 and assume An(ξ), in particular Γ `n ξ(Xρ) : p. By Lemma 21, since
ξ(Xρ) is a term of λcoΣ , we get Γ `n [Θ′/Θ](ξ(Xρ)) : p, but [Θ′/Θ](ξ(Xρ)) = [ρ′/ρ](ξ(Xρ)) = [[T ]]gξ .

Case T = gfp Xρ.
∑
iEi, with ρ = (θ ⇒ p). Then B = p, Θ ⊆ Γ and for all i, Ξ′ cΓ ` Ei : p, with

Ξ′ := Ξ, X : ρ. We prove the announced implication by induction on n. The case n = 0 is trivial by the
definition of 0-typability. We thus assume as side induction hypothesis that An(ξ) implies Γ `n [[T ]]gξ : p. We
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assume An+1(ξ) and have to show Γ `n+1 [[T ]]gξ : p. As in the proof sketch for Lemma 19, [[T ]]gξ =
∑
i[[Ei]]

g
ξ′ ,

with ξ′ := ξ ∪ [Xρ 7→ [[T ]]gξ ]. Let i be one of the indices. We have to show that Γ `n [[Ei]]
g
ξ′ : p. We apply the

main induction hypothesis for Ei, with the derivation Ξ′ cΓ ` Ei : p and environment ξ′ which satisfies the
global condition for the environment in the lemma since for XΘ⇒p ∈ dom(ξ′) \ dom(ξ), we also have Θ ⊆ Γ.
It thus remains to show An(ξ′). We already assumed An+1(ξ), hence by Lemma 20, we also have An(ξ), and
the side induction hypothesis ensures Γ `n [[T ]]gξ : p, but the latter is Γ `n ξ′(Xρ) : p. This was the missing
verification to pass from An(ξ) to An(ξ′).

The other cases require no technical intricacies and use Lemma 20 and the admissible rule of context
weakening for n-typability (in the case of lambda-abstraction). �

By virtue of both directions of Lemma 22, Lemma 19 follows from its ramification.

By composing the soundness properties of the general-purpose interpretation and the membership
semantics of Section 3 we obtain the following result, which says that, if T is typable in the typing system
for λgfp

Σ , then [[T ]]g only has “correct” members (finite or infinite).

Theorem 1 (Soundness of the typing system for λgfp
Σ ). If Γ ` T : B in λgfp

Σ , then:

1. For N ∈ λco, if mem(N, [[T ]]g) then Γ ` N : A in λco.

2. For t ∈ λ, if mem(t, [[T ]]g) then Γ ` t : A in λ.

Proof By Lemmas 3 and 19. �

5.3. Finitary representation of full solution spaces

Full solution spaces for λ can be shown to be finitary, with the help of the finitary representation mapping
F(σ; Ξ), which we introduce now.

Definition 12 (Finitary representation of full solution spaces). Let Ξ :=
−−−→
X : ρ be a vector of m ≥ 0

declarations (Xi : ρi) with ρi = Θi ⇒ qi where no fixed-point variable name occurs twice. The definition of

F(Γ⇒ ~A ⊃ p; Ξ) is as follows:
If, for some 1 ≤ i ≤ m, p = qi, Θi ⊆ Γ and |Θi| = |Γ| ∪ {A1, . . . , An}, then

F(Γ⇒ ~A ⊃ p; Ξ) := λzA1
1 · · · zAnn .Xρ

i ,

where i is taken to be the biggest such index.10 Otherwise,

F(Γ⇒ ~A ⊃ p; Ξ) := λzA1
1 · · · zAnn .gfp Y ρ.

∑
(y: ~B⊃p)∈∆

y〈F(∆⇒ Bj ; Ξ, Y : ρ)〉j

where, in both cases, ∆ := Γ, z1 : A1, . . . , zn : An with a context z1 : A1, . . . , zn : An of “fresh” variables
(not occurring in Γ or any Θi), and ρ := ∆⇒ p. In the latter case, Y is tacitly supposed not to occur in Ξ
(otherwise, the extended list of declarations would not be well-formed).

Notice that, in the first case, the leading lambda-abstractions bind variables in the type superscript ρ of
Xi, and that the condition Θi ⊆ Γ—and not Θi ⊆ ∆—underlines that the fresh variables z1, . . . , zn cannot
be consulted although their types enter well into the next condition |Θi| = |Γ| ∪ {A1, . . . , An}, which is
equivalent to |Θi| = |∆| (of which only |Θi| ⊇ |∆| needs to be checked). The first case represents the situation
when the full solution space is already captured by a purported solution Xi for the sequent Θi ⇒ p with the
proper target atom, with all hypotheses in Θi available in Γ and, finally, no more formulas available for proof
search in the extended current context ∆ than in Θi. Hence, the purported solution Xi only needs to be

10In the original definition [2, Definition 22 of function N ], the need for this disambiguation was neglected, with an insufficient
extra condition that no sequent occurs twice among the ρi.
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Figure 11: Steps towards calculating F(⇒ DNPEIRCE)

F(⇒ A) = λxA0⊃q.N ′1
N ′1 = gfp Xx⇒q

1 .x〈F(x⇒ A0;X1)〉
F(x⇒ A0;X1) = λy(p⊃q)⊃p.N ′3

N ′3 = gfp Xx,y⇒p
2 .y〈F(x, y ⇒ p ⊃ q;X1, X2)〉

F(x, y ⇒ p ⊃ q;X1, X2) = λzp.N ′5
N ′5 = gfp Xx,y,z⇒q

3 .x〈F(x, y, z ⇒ A0;X1, X2, X3)〉
F(x, y, z ⇒ A0;X1, X2, X3) = λy

(p⊃q)⊃p
1 .N ′7

N ′7 = gfp Xx,y,z,y1⇒p
4 .

y〈F(x, y, z, y1 ⇒ p ⊃ q;X1, X2, X3, X4)〉+ z+
y1〈F(x, y, z, y1 ⇒ p ⊃ q;X1, X2, X3, X4)〉

F(x, y, z, y1 ⇒ p ⊃ q;X1, X2, X3, X4) = λzp1 .N
′
9

N ′9 = Xx,y,z,y1,z1⇒q
3

expanded by decontraction in order to cover the full solution space for ρ (as will be confirmed by Theorem 2).
That F indeed is a total function will be proven below in Lemma 24.

In the sequel, we will omit the second argument Ξ to F in case Ξ is the empty vector of declarations
(m = 0 in the definition).

Note that, whenever one of the sides of the following equation is defined according to the first or second
case, then so is the other, and the equation holds (of course, it is important to use variables zi that are fresh
w. r. t. Ξ):

F(Γ⇒ ~A ⊃ p; Ξ) = λzA1
1 · · · zAnn .F(Γ, z1 : A1, . . . , zn : An ⇒ p; Ξ)

Example 17 (Examples 7 and 15 continued). We calculate the finitary forest representing the full
solution space for the twice negated Peirce formula A := DNPEIRCE, writing A0 for PEIRCE. The successive
steps are seen in Figure 11 where we continue with the omission of formulas in the left-hand sides of sequents.
For brevity, we do not repeat the sequents associated with the fixed-point variables. The names of intermediary
terms are chosen for easy comparison with Example 7. The fixed-point variables X1, X2 and X4 thus have
no occurrences in F(⇒ A), and, as announced before, we will omit them in our resulting finitary forest

F(⇒ DNPEIRCE) = λxPEIRCE⊃q.x〈λy(p⊃q)⊃p.y〈λzp.N ′5〉〉
with

N ′5 = gfp Xx,y,z⇒q
3 .x〈λy(p⊃q)⊃p

1 .y〈λzp1 .X
x,y,z,y1,z1⇒q
3 〉+ z + y1〈λzp1 .X

x,y,z,y1,z1⇒q
3 〉〉 ,

still omitting the formulas in the left-hand sides of the sequents.

Example 18. For the other examples, we have the following representations.

• F(BOOLE) = λxp.λyp.x+ y.

• F(INFTY) = λfp⊃p.gfp Xf :p⊃p⇒p.f〈Xf :p⊃p⇒p〉.

• F(CHURCH) = λfp⊃p.λxp.gfp Xρ.f〈Xρ〉+ x with ρ := f : p ⊃ p, x : p⇒ p.

• F(PEIRCE) = λx(p⊃q)⊃p.x〈λyp.O〉 (using O for the empty sum under the omitted gfp).

• F(THREE) = λx(p⊃p)⊃p.x〈λyp.gfpY ρ1 .x〈λzp.Y ρ2〉 + y〉 with ρ1 := x : (p ⊃ p) ⊃ p, y : p ⇒ p,
ρ2 := x : (p ⊃ p) ⊃ p, y : p, z : p⇒ p, hence ρ1 ≤ ρ2.

Notice that for INFTY, CHURCH and THREE, the presentation of the full solution spaces had already been
brought close to this format thanks to cycle analysis that guided the unfolding process, and Theorem 2 below
ensures that this works for any sequent.

26



Strictly speaking, Definition 12 is not justified since the recursive calls do not follow an obvious pattern
that guarantees termination. The following lemma spells out the measure that is recursively decreasing in
the definition of F .

To this end, we introduce some definitions. Given a finite set A of formulas

Asub := {B | there exists A ∈ A such that B is subformula of A} .

We say A is subformula-closed if Asub = A. A stripped sequent is a pair (B, A), where B is a finite set of
formulas. A stripped restricted sequent additionally has that A is an atom. If σ = Γ⇒ A, then its stripping
|σ| denotes the stripped sequent (|Γ|, A). We say (B, A) is over A if B∪{A} ⊆ A. There are size(A) := a ·2k
stripped restricted sequents over A, if a (resp. k) is the number of atoms (resp. formulas) in A.

Lemma 24 (Termination of F). For all sequents σ and vectors Ξ as in Definition 12, the finitary forest
F(σ; Ξ) is well-defined.

Proof As in the definition, we consider a sequent σ of the form Γ ⇒ C with C = ~A ⊃ p. Let us call
recursive call a “reduction”

F(Γ⇒ ~A ⊃ p;
−−−−−−−→
X : Θ⇒ q) F(∆⇒ Bj ;

−−−−−−−→
X : Θ⇒ q, Y : ρ) (17)

where the if-guard in Definition 12 fails; ∆ and ρ are defined as in the same definition; and, for some y,
(y : ~B ⊃ p) ∈ ∆. We want to prove that every sequence of recursive calls from F(Γ⇒ C; Ξ) is finite.

Observe that the context of the first argument to F is monotonically increasing during any sequence of
recursive calls: in the reduction, one passes from Γ to its extension ∆ by fresh variables. Since only fresh
variables are added to Γ, this means that whenever for some i, Θi is not a subset of Γ in the original call to
F , this will hold of all the further contexts occurring in the recursive calls. In other words, the if-guard in
Definition 12 fails forever, hence Xi will not enter the result of the computation. Therefore, without loss of
generality, we may assume that for all i, Θi ⊆ Γ. Trivially, this condition is then inherited to the recursive
calls: for 1 ≤ i ≤ m, Θi ⊆ Γ ⊆ ∆, and Θm+1 = ∆ which is the context in the new first argument of F .

In the original definition [2, Definition 22 of function N ], it was required that no sequent occurs twice
among the (Θi ⇒ qi) = ρi. Of course, if ρj = ρi with j < i, then the first case of the definition of F will not
take into account Xj : ρj (since the biggest i with the required properties is chosen), hence it will never be
taken into account. Therefore, without loss of generality, we may assume that all ρi are different.

But we can do better: Since we may already assume that for all i, Θi ⊆ Γ, we infer from |ρj | = |ρi| with
j < i that the first case of the definition of F will not take into account Xj : ρj (for the same reason as
before). Therefore, without loss of generality, we may assume that all the stripped (restricted) sequents |ρi|
are different, in other words, size(Ξ) = m, where m ≥ 0 is the length of vector Ξ and size(Ξ) is the number
of elements of |Ξ| and |Ξ| := {|ρ| : ρ ∈ Ξ}. Also this condition is inherited to the recursive calls: Since Θi ⊆ Γ
for all i, if |ρ| = |Θi| for some i ≤ m, the first clause of Definition 12 would have applied, but we assumed to
be in the recursive case. As a consequence of this extra assumption, the first clause of the definition will
never be with two possible indices i out of which the biggest would have to be chosen.

Let A := (|Γ| ∪ {C, q1, . . . , qm})sub. By our assumptions, the strippings of σ and all ρi are over A. In
particular, m ≤ size(A).

We will now show that for subformula closed A, if the strippings of σ and all ρi are over A, then this also
holds for the arguments F is called with in the recursive call: |∆| = |Γ| ∪ {A1, . . . , An} ⊆ A since ~A ⊃ p ∈ A
and A is subformula-closed. For the same reason p ∈ A. Bj is a subformula of ~B ⊃ p and ~B ⊃ p ∈ |∆|
because (y : ~B ⊃ p) ∈ ∆, for some y.

Since in subsequent recursive calls, the strippings of the arguments are all over A, we continue to have
m′ ≤ size(A) for all subsequent lengths m′ of the second argument of F . Of course, this is a fixed bound on
the recursion depth which is therefore finite. Put differently, termination is guaranteed since the measure
size(A)−m ≥ 0 strictly decreases. �

We have justified the definition of F(σ) for all sequents σ.
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Notice that yet more detailed invariants could be established above (under the same restrictions we were
allowed to ask for without loss of generality): Θ1 ⊆ . . . ⊆ Θm would also be preserved under reduction, as
well as that the last Θm is Γ, unless m = 0. Yet another invariant is that all qi are in |Γ|sub. All of them can
be trivially initiated with empty Ξ and thus are observed in F(σ).

Also notice that, while the growing size of Ξ is our argument for termination, an implementation for
calculating F(σ) would rather not store all of Ξ in its recursive calls: as soon as a reduction occurs where
|∆| is a strict superset of |Γ|, it is clear that the if-case of Definition 12 can never apply for some element in
Ξ in the recursive calculation of F(∆ ⇒ Bj ; Ξ, Y : ρ), so (the old) Ξ does not need to be stored in those
further recursive calls.

An important objective of the typing system in Section 5.2 is attained by the following result:

Lemma 25 (Finitary representation is well-typed).

Ξ cΓ ` F(Γ⇒ C; Ξ) : C .

In particular, Γ ` F(Γ⇒ C) : C.

Proof By structural recursion on the obtained finitary forest F(Γ ⇒ C; Ξ). Notice that the context
weakening built into the gfp rule in Figure 9 is not needed for this result (i. e., Θ and Γ of that rule can
always agree). �

Corollary 3 (Finitary representation is well-bound). F(σ; Ξ) is well-bound, and F(σ) is closed.

Proof Use Lemma 18 for the first part. Notice that this is needed to argue that free fixed-point variables of
F(σ; Ξ) have necessarily names that occur in Ξ. But we can just apply Lemma 17 for empty Ξ to obtain the
second part. �

5.4. Equivalence of representations and completeness of the typing system for λgfp
Σ

Now, we establish the result on the equivalence of the coinductive and inductive representations of the
full solution spaces. For this, we need that forests are identified not only up to bisimilarity, because of the
rather rough way decontraction operates that takes identification up to symmetry and idempotence of the
sum operation for the elimination alternatives for granted. The proof below is a revision of the proof of [2,
Theorem 24] in the light of the new notion of environments and their admissibility w. r. t. a term, but with
the help from the typing system for finitary forests.

Theorem 2 (Equivalence). For any sequent σ, [[F(σ)]]g = S(σ).

Proof
For a vector Ξ =

−−−→
X : ρ satisfying the requirements in Definition 12, the mapping ξΞ obtained by setting

ξΞ(Xρi
i ) := S(ρi) is an environment. By Corollary 3, F(σ; Ξ) is well-bound. Moreover, using Corollary 2,

we have that ξΞ is admissible for F(σ; Ξ). Therefore, [[F(σ; Ξ)]]gξΞ is well-defined. We will show that

[[F(σ; Ξ)]]gξΞ = S(σ) – whose right-hand side is independent from Ξ, and thus also its left-hand side.
The theorem follows by taking for Ξ the empty vector, since by convention the empty environment is

omitted from the notation for the general-purpose interpretation. (Anyway, by Corollary 3, F(σ) is closed
and thus its general-purpose interpretation does not depend on an environment.)

The proof is by structural induction on the term F(σ; Ξ). Let σ = Γ⇒ ~A ⊃ p and ∆ := Γ, z1 : A1, . . . , zn :
An, as in Definition 12. We will again assume that ρi is given as Θi ⇒ qi.

Case p = qi and Θi ⊆ Γ and |Θi| = |∆|, for some 1 ≤ i ≤ m, which implies ρi ≤ (∆⇒ p) (*). The proof
of this case is completed in Figure 12.

The inductive case is essentially an extension of the inductive case in [2, Theorem 15] for the Horn
fragment. In this other case, we calculate as follows.

LHS = λzA1
1 · · · zAnn .N∞, where N∞ is the unique solution of the following equation

N∞ =
∑

(y:
−→
B⊃p)∈∆

y〈[[F(∆⇒ Bj ; Ξ, Y : ρ)]]gξΞ∪[Y ρ 7→N∞]〉j (18)
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Figure 12: Part (iii) of first main case in proof of Theorem 2

LHS = λzA1
1 · · · zAnn .[[X∆⇒p

i ]]gξΞ (by definition)

= λzA1
1 · · · zAnn .[(∆⇒ p)/ρi]ξΞ(Xρi

i ) (by definition and (*) above)

= λzA1
1 · · · zAnn .[(∆⇒ p)/ρi]S(ρi) (by definition of ξΞ)

= λzA1
1 · · · zAnn .S(∆⇒ p) (by Lemma 13 and (*))

= RHS (by definition)

where ρ := ∆ ⇒ p. Now observe that, by inductive hypothesis (applied to the subexpressions F(∆ ⇒
Bj ; Ξ, Y : ρ) of F(σ; Ξ)), the following equations (19) and (20) are equivalent.

S(ρ) =
∑

(y:
−→
B⊃p)∈∆

y〈[[F(∆⇒ Bj ; Ξ, Y : ρ)]]gξ(Ξ,Y :ρ)
〉j (19)

S(ρ) =
∑

(y:
−→
B⊃p)∈∆

y〈S(∆⇒ Bj)〉j (20)

By definition of S(ρ), (20) holds; since ξ(Ξ,Y :ρ) = ξΞ ∪ [Y ρ 7→ S(ρ)] and because of (19), S(ρ) is the solution

N∞ of (18). Therefore LHS = λzA1
1 · · · zAnn .S(ρ), and the latter is RHS by definition of S(Γ⇒ ~A ⊃ p). �

Corollary 4. F(σ; Ξ) is regular.

Proof By Lemma 14, F(σ; Ξ) is regular since ξΞ in the proof above is admissible for it. �

See Appendix A for an even stronger result than regularity.

Corollary 5. For every M ∈ λco, mem(M, [[F(σ)]]g) iff mem(M,S(σ)).

Proof Immediate consequence of Theorem 2. Obviously, membership is not affected by bisimilarity (modulo
α-equivalence and our identifications for the sum operation). �

The equivalence theorem is the last building block for the announced completeness result on the typing
system of λgfp

Σ , which says that, in that typing system, any sequent has an inhabitant T such that the
members of [[T ]]g are exactly the “correct” ones (finite or infinite).

Theorem 3 (Completeness of the typing system of λgfp
Σ ). For every logical sequent σ = Γ⇒ A, there

is a closed finitary forest T such that Γ ` T : A and:

1. For N ∈ λco, mem(N, [[T ]]g) iff Γ ` N : A in λco.

2. For t ∈ λ, mem(t, [[T ]]g) iff Γ ` t : A in λ.

Proof Take T := F(σ). Its recursive definition does terminate (Lemma 24), T receives the right type
(Lemma 25), T is closed (Corollary 3), [[T ]]g and S(σ) have the same members (Corollary 5) and these are
the “correct” ones (Proposition 1). �

Such completeness cannot be expected at the level of individual solutions. Take, for instance, Γ = x0 : p ⊃
p, . . . , x9 : p ⊃ p. Then S(Γ⇒ p) is the forest N such that N = x0 < N > + · · ·+ x9 < N >, one of whose
members is, say, the decimal expansion of π.

Although full solution spaces may have irrational members, they have “rationality” as a collection, since
essentially—not taking into account contraction phenomena—they are generated by repeating infinitely a
choice from a fixed menu. It is this “rationality” that can be expressed by finitary forests.
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5.5. Special-purpose semantics

With the equivalence theorem above, the general-purpose semantics in form of interpretation [[T ]]gξ for
finitary forests T and suitable environments ξ has demonstrated its usefulness. However, when it comes to
verifying properties of logical sequents through our approach, the full solution spaces given by S(σ) play an
important role.

In fact, when inspecting the proof of Theorem 2 we observe that the considered environments all have form
ξΞ, always mapping fixed-point variables Xρ to full solution spaces S(ρ)—this even true for the extended
environment ξΞ ∪ [Y ρ 7→ N∞], as comes out of the proof that N∞ = S(ρ) by using equations (18), (19) and
the definition of S.

This motivates the more radical step of not only mapping all free fixed-point variables to “their” full
solution space, but any occurrence, free or bound. This gives rise to the special-purpose semantics that was
mentioned in Section 5.1. To recall from above, we introduced it under the name “simplified semantics” in [3,
Definition 15].

Definition 13 (Special-purpose interpretation of finitary forests as forests). For an expression T

of λgfp
Σ , the special-purpose interpretation [[T ]]s is an expression of λcoΣ given by structural recursion on T :

[[Xρ]]s = S(ρ) [[λxA.N ]]s = λxA.[[N ]]s

[[gfp Xρ.
∑
i

Ei]]
s =

∑
i

[[Ei]]
s [[x〈Ni〉i]]s = x〈[[Ni]]s〉i

Note that the base case profits from the sequent annotation at fixed-point variables, and the interpretation of
the gfp -constructor has nothing to do with a greatest fixed point. Of course, this may be “wrong” according
to our understanding of a (greatest) fixed point. So, we have to single out those expressions in λgfp

Σ for which
this interpretation serves its special purpose.

Definition 14 (Proper expressions). An expression T ∈ λgfp
Σ is proper if for any of its subterms T ′ of

the form gfp Xρ.
∑
i

Ei, it holds that [[T ′]]s = S(ρ).

For proper expressions, the special-purpose semantics agrees with the general-purpose semantics we
studied before – for the special case of environments we used in the proof of the equivalence theorem. Of
course, this can only make sense for expressions which have that previous semantics, in other words for
well-bound and regular expressions.

Lemma 26 (Lemma 22 in [3]). Let T be well-bound and ξ be an admissible environment for T such that
for all Xρ ∈ dom(ξ): ξ(Xρ) = S(ρ). If T is proper, then [[T ]]gξ = [[T ]]s.

Corollary 6. For well-bound, closed and proper T , [[T ]]g = [[T ]]s.

The corollary is sufficient for our purposes since F(ρ) is not only well-bound and closed, but also proper,
which is the more difficult part of the following result.

Lemma 27 (Equivalence for special-purpose semantics – Theorem 19 in [3]). Let σ be a sequent
and Ξ as in Definition 12.

1. F(σ; Ξ) is proper.

2. [[F(σ; Ξ)]]s = S(σ).

In particular, [[F(σ; Ξ)]]s is independent of Ξ, and this conforms with the initial motivation for the special-
purpose semantics, as described above, that leaves no room for different interpretations of “purported
solutions” Xi (cf. our discussion right after Definition 12).
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6. Application: analysis of proof search

Given a (proof-)search problem, determined by a given logical sequent, one is usually interested in its
resolution11 (the finding of the solution), what is searched for is a finite solution (a proof), and the unique
analysis done of the problem is the one that results from the success or failure of the search—the given
sequent is or is not provable. In addition, since one wants a finite solution, a layer of algorithmic control
(failure and loop detection, followed by backtracking [14]) has to be added to the purely logical structure of
the search. Finally, this mix of bottom-up proof-search and control is a generic recipe for decision procedures
for the logic at hand.12

How does this picture change, given the representations of proof search developed before? First, we may
separate all the above concerns relating to proof-search problems: we may postpone control considerations, by
giving prominence to solutions rather than proofs; and we may separate analysis from resolution: resolution
is just one possible analysis one can make of the representation of the whole collection of solutions that
we have at our disposal. Second, we obtain decision procedures just by doing analysis of representations
of solution spaces, that is, without “running” the search again: the search is run only once, to generate
the finitary representation of the (full) solution space. Third, the decision algorithms are syntax-directed,
recursive procedures, driven by the syntax of the finitary calculus, avoiding the mentioned mix of bottom-up
proof search and ad hoc algorithmic control.

In this section we give an indication of how the approach to proof search described and justified in the
previous sections, and with the characteristics identified above, can be applied, in the context of implicational
logic and the simply-typed lambda-calculus, to give new answers to well-known problems about proof search,
like decision and counting problems (Section 6.1), to pose and solve new problems (Section 6.2), and to
generalize known theorems (Section 6.3). The material in Section 6.3 is new, while the material sketched in
the other two was detailed elsewhere [3, 4].

6.1. New solutions for old problems

Our finitary representation of full solution spaces F(σ) allows new syntax-directed solutions for inhabitation
and counting problems in simply-typed λ-calculus, as shown in detail in [3]. Here we briefly illustrate these
new solutions.

Given a sequent σ = (Γ⇒ A), let I(σ) denote the set of (η-long β-normal) inhabitants of A relative to
context Γ in λ, i. e., I(σ) := {t ∈ λ | Γ ` t : A in λ}. For T ∈ λcoΣ , let Efin(T ) denote the finite extension of T ,
i. e., Efin(T ) = {t ∈ λ | mem(t, T )}. Observe that, due to Proposition 1.2 and Theorem 2,

I(σ) = Efin(S(σ)) = Efin([[F(σ)]]g).

The inhabitation problem in simply-typed λ-calculus can be formulated as the problem “given sequent
σ, is the set I(σ) nonempty?” (as is well-known, the answer to this question does not depend on whether
all λ-terms are considered or only the β-normal ones or even the η-long β-normal terms). Our solution to
this problem starts by defining two predicates exfin and nofin on expressions in λcoΣ (Figure 5 of [3]), which
are complementary (exfin(T ) iff nofin(T ) does not hold [3, Lemma 20]), and capture emptiness of the set of
inhabitants (nofin(T ) iff Efin(T ) is empty [3, Lemma 21]). Next, we define companion predicates EFP and

NEFP on expressions in λgfp
Σ that are parameterized by a predicate P on sequents satisfying the proviso:

P ⊆ exfin ◦ S and P decidable. The syntax-directed definitions of the two predicates are recalled in Figure 13.
Again these predicates are complementary (EFP (T ) iff NEFP (T ) does not hold [3, Lemma 22]), and the
syntax-directedness of their definitions allows to immediately conclude that they are decidable. Then, the
following holds:

Lemma 28 (Deciding the existence of inhabitants in λ – Theorem 24 of [3]).

11This word here is of course not to be taken in its well-known, technical sense.
12See for instance the textbook proof of decidability of propositional intuitionistic logic in [15]. Already Gentzen’s proof of

decidability for the same logic [16] is based on algorithmic control of proof search; however, in his case, deductive proof search is
employed.
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Figure 13: EFP and NEFP predicates, for P satisfying the proviso: P ⊆ exfin ◦ S and P decidable.

P (σ)

EFP (Xσ)

EFP (N)

EFP (λxA.N)

EFP (Ej)

EFP (gfpXσ.
∑
iEi)

∀i, EFP (Ni)

EFP (x〈Ni〉i)

¬P (σ)

NEFP (Xσ)

NEFP (N)

NEFP (λxA.N)

∀i, NEFP (Ei)

NEFP (gfpXσ.
∑
iEi)

NEFP (Nj)

NEFP (x〈Ni〉i)

Figure 14: FFP and NFFP predicates, for P satisfying the proviso: P ⊆ finfin ◦ S and P decidable.

P (σ)

FFP (Xσ)

FFP (N)

FFP (λxA.N)

∀i, FFP (Ei)

FFP (gfpXσ.
∑
iEi)

∀i, FFP (Ni)

FFP (x〈Ni〉i)
NEF?(Nj)

FFP (x〈Ni〉i)

¬P (σ)

NFFP (Xσ)

NFFP (N)

NFFP (λxA.N)

NFFP (Ej)

NFFP (gfpXσ.
∑
iEi)

NFFP (Nj) ∀i, EF?(Ni)

NFFP (x〈Ni〉i)

1. For any T ∈ λgfp
Σ well-bound, proper and closed, EFP (T ) iff exfin([[T ]]s).

2. EF∅(F(σ)) iff exfin(S(σ)) iff I(σ) is non-empty.

3. The problem, “given σ, is I(σ) non-empty” is decided by deciding EF∅(F(σ)).

Summing up, the inhabitation problem of simply-typed lambda-calculus can be decided by first computing
F(σ), and then traversing its structure to decide EF∅(F(σ)). The result allows definitions of sharper versions
of the predicates EF and NEF that are still decidable: EF? := EFP EF

∗
and NEF? := NEFP EF

∗
for P EF

∗ := EF∅ ◦ F
(which meets the proviso of Figure 13 thanks to Lemma 28.2 and decidability of EF∅(F(σ))). The main result
on these predicates is Lemma 27 of [3] that, without any condition on T , we have EF?(T ) iff exfin([[T ]]s).

An easy consequence (that also uses Lemma 28.2) for EF? we need in this paper, is that, if N =
gfpXρ.

∑
iEi with N proper (but not necessarily closed), then EF?(N) is equivalent to EF∅(F(ρ)).

A second consequence needed for this paper makes use of Lemma 27.2 (more precisely, the remark
immediately after the lemma): for all sequents σ and declarations Ξ and Ξ′, EF?(F(σ; Ξ)) iff EF?(F(σ; Ξ′)),
which can in particular be used for empty Ξ′.

Following the same steps, but making use of the already obtained decidable predicates EF? and NEF?, a
syntax-directed solution can be construed also for the not so well-known problem “given a sequent σ, is I(σ)
finite” (studied for example in [17, 5]). So, we define complementary predicates inffin and finfin on expressions
in λcoΣ such that finfin(T ) iff Efin(T ) [3, Figure 7, Lemmas 28 and 29]. Then we define the companion,

complementary predicates FFP and NFFP on expressions in λgfp
Σ , parameterized by a predicate P on sequents

satisfying the proviso: P ⊆ finfin ◦ S and P decidable. Again, to appreciate the syntax-directedness of these
definitions we recall them in Figure 14.

Lemma 29 (Deciding type finiteness in λ – Theorem 33 of [3]).

1. For any T ∈ λgfp
Σ well-bound, proper and closed, FFP (T ) iff finfin([[T ]]s).

2. FF∅(F(σ)) iff finfin(S(σ)) iff I(σ) is finite.

3. The problem, “given σ, is I(σ) finite” is decided by deciding FF∅(F(σ)).

One can then also define [3, Definition 35] sharper versions of the predicates FF and NFF that are still
decidable: FF? := FFP FF

∗
and NFF? :=NFFP FF

∗
for P FF

∗ := FF∅ ◦ F (which meets the proviso of Figure 14 thanks
to Lemma 29.2 and decidability of FF∅(F(σ))). A generalization of this construction for other notions of
finiteness is found in [4, Definition 4.17]. However, we will not even make use of FF? in the remainder of this
paper.
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In [3], we show that the decision of finiteness of simple types can be supplemented with a syntax-directed
procedure to count the number of inhabitants (when there are finitely many of them). This is done through a

counting function #(T ). In its finitary version (defined only for a subset of λgfp
Σ – the so-called head-variable

controlled expressions – but big enough to contain all the finitary representations of full solution spaces
F(σ)), #(T ) has the following extremely simple definition:

#(Xσ) := 0 #(gfpXσ.
∑
iEi) :=

∑
i #(Ei)

#(λxA.N) := #(N) #(x〈Ni〉i) :=
∏
i #(Ni)

Then the following instance of [3, Theorem 42] is obtained:

Lemma 30 (Counting theorem). If I(σ) is finite then #(F(σ)) is the cardinality of I(σ).

6.2. New questions asked and answered

The “finiteness” of a simple type A usually means the finiteness of the collection of its inhabitants (the
meaning taken just above). However, as shown in [4], this concept of finiteness is just an instance of a
“generalized” concept of finiteness that emerges when a simple type is viewed through its full solution space,
and solutions are taken as first-class citizens. This generalization encompasses other rather natural concepts
of “finiteness” for simple types, such as, finiteness of any solution of A (i. e., the collection of all solutions
of A contains only (finite) λ-terms), or finiteness of the full solution space itself (i. e., the forest S(⇒ A)
is a finite expression), and one may ask how these concepts relate, or whether the new concepts are still
decidable.

The generalized concept of finiteness is defined through a parametrized predicate finΠ on expressions in
λcoΣ , where the parameter Π is again a predicate on expressions in λcoΣ [4, Figure 5]. Exploring this concept,
one may conclude that: finiteness of the full solution space implies finiteness of all solutions, which in turn
implies (much less obviously) finiteness of the collection of inhabitants [4, Proposition 3.1]. Following the
methodology explained above to decide exfin(S(σ)) and finfin(S(σ)), also the generalized finiteness predicate
finΠ(S(σ)) is shown to be decidable (for Π subject to some mild conditions) [4, Theorem 4.3]. This, in
particular, implies decidability of the two alternative concepts of finiteness of simple types described above.

An ingredient needed to establish decidability of finΠ(S(σ)) is a separate result establishing decidability
of the predicate nosol(S(σ)), which holds when σ has no solution (finite or infinite) [4, Theorem 4.2]. This
result also has a different application, the definition of the pruned solution space of a sequent - the one where
branches of the full solution space that are leading to no solution are chopped off. Then, the following version
of König’s lemma for simple types holds: a simple type has an infinite solution exactly when the pruned
solution space is infinite [4, Theorem 4.5].

6.3. New results from old ones

It happened to us that, when trying to prove a well-known theorem with our tools, a generalization of the
results suggested itself. The theorem is one by Ben-Yelles [17] (see also Hindley’s book [5, Theorem 8D9])
about monatomic types, i. e., types where only occurrences of a single atom are allowed.

Definition 15 (Infinity-or-nothing).

1. We say T ∈ λgfp
Σ has the infinity-or-nothing property (abbreviated as T is i.o.n.) if EF?(T ) implies

NFF†(T ), where NFF† := NFFP† with P† := NEF∅ ◦ F . (Note that P† meets the required proviso of
Figure 14: (i) we already observed that NEF∅ ◦ F is decidable; (ii) P†(σ) implies finfin(S(σ)) (thanks to
Lemmas 28.2 and 29.2, this is equivalent to the obviously true requirement: I(σ) empty implies I(σ)
finite).

2. Sequent σ is an i.o.n. sequent if F(σ) is an i.o.n. finitary forest.

3. A is an i.o.n. type if ⇒ A is an i.o.n. sequent.
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As a first simple observation, we have that N i.o.n. implies λxA.N i.o.n. (the abstraction case of EF? can
be inverted, and there is a matching abstraction case for NFF†). We remark that every Xρ is i.o.n., since
EF?(X

ρ) and NFF†(X
ρ) both boil down to EF∅(F(ρ)) (due to the complementarity of the two predicates in

Figure 13). Of course, this exploits the uncanonical setting with P† as parameter to NFF. Had one taken
NFF? =NFFFF∅◦F instead (as introduced after Lemma 28 above), the implication would have been equivalent
to the wrong implication that I(ρ) non-empty implies I(ρ) infinite. Also notice that the definition of T i.o.n.
for finitary forests that are not closed (where fixed-point variables Xρ are the extreme case) is rather of a
technical nature (to be used to get proofs by induction through). Since the parameters for the predicates do

not play a role for well-bound, proper and closed expressions of λgfp
Σ (by Lemma 28.1 and Lemma 29.1), we

have that for those T , T is i.o.n. iff EF∅(T ) implies NFF∅(T ).
The name of the property just introduced is justified by the following result.

Lemma 31. Let σ be i.o.n. Then I(σ) is either empty or infinite, in other words: if I(σ) is non-empty,
then it is infinite. Similarly for an i.o.n. type A.

Proof If I(σ) is non-empty, then by Lemma 28.2, EF∅(F(σ)). By monotonicity of EF in its parameter,
we get EF?(F(σ)). Since σ is i.o.n., this gives NFF†(F(σ)). Since NFF is antitone in its parameter, we get
NFF∅(F(σ)), hence Lemma 29.2 and the complementarity of the predicates in Figure 14 yield infinity of I(σ).

�

We now identify sufficient conditions with syntactic flavor for the i.o.n. property. The first one is over
finitary forests and concerns occurrences of variables: roughly, in a sum, we need to see an alternative
that does not consist of a “shallow” variable, i. e., a naked variable with empty tuple, and that the tuple
components correspond to solution spaces of inhabited sequents (when representing solution spaces) among
which one recursively satisfies the same criterion.

Definition 16 (Deep finitary forests, sequents, and types).

1. An expression T in λgfp
Σ is called deep if this can be derived by the following inductive definition:

• A typed fixed-point variable Xρ is deep.

• λxA.N is deep if N is deep.

• gfpXρ.
∑
iEi is deep if EF∅(F(ρ)) implies that there is a deep summand Ei.

• x〈N1, . . . , Nk〉 is deep if EF?(Nj) for all 1 ≤ j ≤ k, and Nj is deep for some 1 ≤ j ≤ k (hence
k > 0 and the head variable x can be considered as being deeply inside).

2. A sequent σ is called deep if F(σ) is a deep finitary forest.

3. A type A is called deep if ⇒ A is a deep sequent.

Theorem 4 (Deep sequents/types are i.o.n.). Every deep sequent σ is an i.o.n. sequent. Hence, every
deep type A is an i.o.n. type.

Proof We have to prove that for every sequent σ, F(σ) deep implies F(σ) i.o.n. More generally, we prove
for every sequent σ and vector Ξ of declarations as in Definition 12: if F(σ; Ξ) is deep, then it has the i.o.n.
property. The proof is by induction on the structure of the finitary forest F(σ; Ξ).

In case the if-guard in the definition of F holds, F(σ; Ξ) is a possibly multiply lambda-abstracted
fixed-point variable Xρ, thus a deep finitary forest. As argued after Definition 15, Xρ is i.o.n., and
lambda-abstractions preserve this property. Hence, F(σ; Ξ) is i.o.n.

Otherwise, we use the symbols of Definition 12, but abbreviate by N the outer fixed-point expression,
headed by gfpY ρ, with ρ = ∆ ⇒ p (where ∆ = Γ, z1 : A1 · · · zn : An), so that F(σ; Ξ) = λzA1

1 · · · zAnn .N .
By assumption, F(σ; Ξ) is deep, hence so is N . Therefore: if EF∅(F(ρ)), then there is a deep summand

E relative to some (y : ~B ⊃ p) ∈ ∆. We want to show that F(σ; Ξ) is i.o.n. Assume EF?(F(σ; Ξ)). Then
also EF?(N). We have to show that NFF†(F(σ; Ξ)). Since F(σ; Ξ) is proper, so is its subexpression N . By
the “easy consequence” mentioned after Lemma 28, we get EF∅(F(ρ)) from EF?(N). Therefore, there is a
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deep summand E := y〈F(∆ ⇒ Bj ; Ξ, Y : ρ)〉j . To show NFF†(F(σ; Ξ)), it suffices to show NFF†(E). Let
Nj := F(∆ ⇒ Bj ; Ξ, Y : ρ) for all j. Since E is deep, we have EF?(Nj) for all j, and there is j∗ s. t. Nj∗

is deep. Nj∗ is a sub-expression of F(σ; Ξ), hence the induction hypothesis applies, by which Nj∗ is i.o.n.,
hence also NFF†(Nj∗). By definition of NFF, we obtain NFF†(E), as desired. �

We will now identify a class of deep types: this is our second example of a syntactic restriction that
guarantees the i.o.n. property.

Let A = ~A ⊃ p. We say p is the target atom of A and that the ~A are the argument types of A. Let
σ = (Γ ⇒ A), with Γ = {x1 : C1, · · · , xn : Cn}. Put Aσ := ~C ⊃ ~A ⊃ p (the order of the Ci’s does not
matter). In particular, if σ is ⇒ A, then Aσ = A.

Definition 17 (Generalized triple negation). 1. Let us say that a type of the form A ⊃ p is a
negation at p and that a type of the form (A ⊃ p) ⊃ p is a double negation at p.

2. We introduce the notion of generalized double negation at p: this is any type of the form ~B ⊃ p with
non-empty ~B so that each of the argument types Bi has target atom p.

3. A type A = ~A ⊃ p is called a generalized triple negation (abbrev: g.t.n.) if one of the argument types
Ai is a generalized double negation at p.

4. A sequent σ is a g.t.n. if Aσ is a g.t.n. (this is indifferent to the order of context formulas used for
defining Aσ).

For example p ⊃ p and (q ⊃ p) ⊃ p ⊃ p are generalized double negations at p. As examples of g.t.n.’s,
we mention (p ⊃ p) ⊃ p (only an infinite solution) and (p ⊃ p) ⊃ p ⊃ p (infinitely many inhabitants
corresponding to the natural numbers).

Lemma 32 (Sequents/types with generalized triple negation are deep). If σ is a g.t.n., then σ is
deep. Hence, every g.t.n. type A is deep.

Proof Assume that σ is a g.t.n. We will prove more than only that σ is deep, i. e., F(σ) is deep. More
generally, we prove for every vector Ξ of declarations as in Definition 12 that F(σ; Ξ) is deep. The proof is
by induction on the structure of the finitary forest F(σ; Ξ).

In case the if-guard in the definition of F holds, F(σ; Ξ) is a possibly multiply lambda-abstracted
fixed-point variable Xρ, thus a deep finitary forest, so we do not need the assumption that σ is a g.t.n.

Otherwise, we use the symbols of Definition 12, but abbreviate by N the outer fixed-point expression,
so that F(σ; Ξ) = λzA1

1 · · · zAnn .N . By assumption, σ is a g.t.n., and this means Aσ is a g.t.n., but we
can assume that Aσ is the same formula as Aρ, for ρ := ∆ ⇒ p, as usual. By definition of generalized

triple negation, there is a double negation at p among the formulas of ∆. Let (y : ~B ⊃ p) ∈ ∆ be the

corresponding association with non-empty ~B and so that each of the argument types Bj has target atom p.
Let Nj := F(∆⇒ Bj ; Ξ, Y : ρ) for all j. In order to have that F(σ; Ξ) is deep, we need that N is deep. We
therefore assume that EF∅(F(ρ)) and show that the summand E := y〈Nj〉j is deep. We even show for all j

that Nj is deep and that EF?(Nj) holds. Since ~B is non-empty, this in particular yields a j∗ s. t. Nj∗ is deep.
Fix some j. Nj is a sub-expression of F(σ; Ξ), hence the induction hypothesis applies and gives that Nj is
deep provided ∆⇒ Bj is a g.t.n., but this is obvious since the target atom of Bj is still p, and the double
negation at p among the formulas of ∆ is still available. It remains to show EF?(Nj). From the assumption
EF∅(F(ρ)) and Lemma 28.2, we get an inhabitant of ρ = ∆⇒ p. By vacuous lambda-abstractions, this gives
an inhabitant of ∆⇒ Bj (again because the target atom of Bj is p). By virtue of the same theorem, this
gives EF∅(F(∆⇒ Bj)). By monotonicity of EF in its parameter, this can be weakened to EF?(F(∆⇒ Bj)),
and by the “second consequence” of the main result on EF? mentioned after Lemma 28, this is equivalent to
EF?(Nj). �

Theorem 5 (G.t.n.’s are i.o.n.). Let A be a generalized triple negation. Then A has either 0 or infinitely
many inhabitants.

Proof Immediate consequence of Theorem 4 and Lemmas 31 and 32. �
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We now obtain the theorem by Ben-Yelles [17] ([5, Theorem 8D9]) about monatomic types. The original
proof and the textbook proof were as a consequence of a more difficult result called Stretching Lemma. But
here we see the theorem about monatomic types is just an instance of the more general phenomenon captured
by our Theorem 5.

Corollary 7 (Monatomic inhabitation). Let A = ~A ⊃ p be a monatomic type. If A is flat, that is, each

Ai is p, then A has exactly n inhabitants where n is the length of ~A. Otherwise, A has either 0 or infinitely
many inhabitants.

Proof The first case is immediate (this includes the case when n = 0). The second case is an instance of
Theorem 5: for monatomic types A, A is a g.t.n. iff A is non-flat. �

7. Final remarks

Contribution. We are developing a comprehensive approach to reductive proof search that is naturally
integrated with the Curry-Howard isomorphism: the lambda-terms used to represent proofs are seen co-
inductively in order to capture (possibly infinite) solutions of search problems. But this Curry-Howard
representation is just a convenient definition of the structures generated by proof search. An effective analysis
has to be conducted in an accompanying, equivalent, finitary representation, which may be seen as the
main technical contribution. The role of formal sums also stands out, specially in connection with the new
operation of decontraction. Also noteworthy is both the design of the finitary calculus (with its combination
of formal sums, fixed points, and a relaxed form of fixed-point variable binding) and its typing system, which
uses the relaxed form of binding to detect cycles in proof search, and which is sound and complete w. r. t. a
declarative semantics into coinductive forests.

This infrastructure was put to use in the study of proof search, as detailed elsewhere [3, 4]. A brief
indication of the results there obtained was given in Section 6, together with a fresh example of the
infrastructure at work in obtaining a generalization of a well-known theorem. Our approach has proved so far
to be robust, comprehensive, and innovative. Robust because we could rely on it to obtain many results about
proof search, including the benchmark results about decidability of inhabitation. Comprehensive because
with the approach we were able to address a wide range of questions, from decision and counting problems
to so-called coherence theorems, which is unusual if not unprecedented in the literature. Innovative because
we obtained new solutions for old problems, but we were also led to investigate and solve new problems,
like those stemming from the consideration of solutions instead of just proofs, and to obtain new results
when trying to prove old ones, like in the case of monatomic inhabitation. As detailed in Section 6, the
innovative aspect of our applications and solutions can be summarized in these characteristics: (1) Separation
of concerns; (2) Run the proof search only once; (3) Syntax-directedness; (4) Solutions and solution spaces as
first-class citizens.

In order to test the comprehensiveness of our approach, we have already successfully applied it to
the case of full intuitionistic propositional logic as described in [18] (actually even via a more elaborate
polarized intuitionistic logic [19]), developing coinductive and finitary representations of the full solution
spaces, establishing their equivalence and obtaining decidability of inhabitation in a form that is analogous
to the predicate EF∅ ◦ F of Lemma 28 (and that thus factors through a recursive predicate on finitary
expressions). As we anticipated, and similarly to this paper, the main theorem, establishing the equivalence
of representations, rests on the subformula property of the object logic. In the present paper, we preferred
to explore a simple case study (proof search in LJT ) in order separate the complexities of the proposed
approach for proof search from the complexities of the object logic.

Related work. In the context of logic programming with classical first-order Horn clauses, the use
of coinductive structures is seen in [20], in order to provide a uniform algebraic semantics for both finite
and infinite derivations by SLD-resolution. Building on the the type-theoretical approach to resolution
documented in [21], an attempt to give semantics for a large class of infinite derivations is seen in [22]:
here, the central tool is a type system, called corecursive resolution (CR), for a language of proof terms
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possibly containing fixpoints, and equipped with an operational semantics. A theorem about the operational
equivalence with resolution is attempted, but it only captures a limited use of the fixed point operator
(“simple loops”). In a later work [23], reductive proof search in a sequent calculus for uniform proofs is
targeted, instead of resolution. A system called coinductive uniform proofs (CUP) is proposed, for first-order
and higher-order coinductive theories, again only allowing a limited used of fixpoints, this time without
proof terms, but with a declarative semantics into Herbrand models. In our approach the coinductive forests
representing the full search spaces are not built by a particular algorithm and constitute a semantic universe.
Our finitary system, including the typing system, plays the role that CR or CUP play for the approaches
above, the role of a “logic of coinductive proofs”. But our finitary system, besides the already mentioned
soundness and completeness, has other distinctive properties: no limitation in the nesting of fixpoints; the
use of arbitrary formulas as “coinductive hypotheses”, coming from the fact that no essential restriction is
imposed on the sequents attached to these fixpoints (the atomic restriction being considered as inessential

since the context can be freely expanded to accommodate hypotheses for the premisses ~A in a formula of
form ~A ⊃ p). These comparisons seem valuable, despite the fact that we are restricted to the implicational
fragment of propositional logic, and the evidence that the first-order case brings unexpected results [24].

In [25] we find a comprehensive approach to proof search, where the generalization of proofs to searches
(or “reductions”) is accounted for semantically. Parigot’s λµ-calculus is used to represent proofs in classical
and intuitionistic sequent calculus, but no indication is given on how such terms could represent searches.

In Section 1.3.8 of [10] we find a list of types, for each of which the set of inhabitants is described through
an “inhabitation machine”. This list covers among others all our examples in Example 1 with the exception
of INFTY and DNPEIRCE. We invite the reader to compare those descriptions in graphical presentation in
the cited book with our succinct presentations of the solution spaces worked out in Section 3 and Section 4
(see Examples 3, 5, 9, and 16). While our expressions do not display the types of the subexpressions, they
are explicit about when a variable gets available for binding (in their example (vii), their variable x, that
corresponds to our y in Example 16, looks as if it was available from the outset), and our expressions are
even more explicit about the generation process for new names (the book speaks about “new incarnations”)
using standard lambda abstractions and the decontraction operator. While our presentations of solution
spaces in Section 3 and Section 4 are still on the informal level of infinitary terms with meta-level fixed
points, and for that reason may seem far from a “machine” for the generation of inhabitants, the finitary
expressions we obtained in Example 17 and Example 18 with the machinery of Section 5 compare in the
same way with the inhabitation machines of [10] and are proper syntactic elements and can thus qualify as
“machine” descriptions of the process of obtaining the inhabitants (and even the infinite solutions—notice
that infinite solutions are not addressed at all in the description of inhabitation machines in [10]).

The work [26] also studies mathematical structures for representing proof search, and can partly be seen
as offering a realisation of the intuitive description of the inhabitation machines in [10]. Similarly to our
work, [26] handles search for normal inhabitants in the simply-typed lambda-calculus. However, the methods
of [26] are very different from ours. Their methods come from automata and language theory, and proof
search is represented through automata with a non-standard form of register, as a way to avoid automata
with infinite alphabets, and still meet the need for a supply of infinitely many bound variables in types like
DNPEIRCE or the “monster” type (cf. our discussion after Example 1). Unlike in our work, infinite solutions
are not a concern of the approach in [26], but this approach is concerned with computational complexity and
is capable of obtaining the usual PSPACE bound for the decision of the inhabitation problem.

Besides the approach just mentioned, the literature offers a rich variety of other approaches to handle the
search space determined by a type and its collection of inhabitants and to address inhabitation, counting
or enumeration problems in simply-typed lambda-calculus or extensions of it [17, 5, 27, 28, 29, 30, 31]. We
briefly consider these approaches below.

To the best of our knowledge, [17] (nicely revisited in [5]) is the first work to address the question of
enumerating all inhabitants (in long normal form) of a simple type. (Next we refer to the presentation of the
approach in [5, 8C]). The approach is very different from ours, since it does not explicitly build a structure
representing the full collection of inhabitants of a type. Instead, it develops an iterative search algorithm,
that takes a type and may run forever, and at each stage produces a finite collection of normal form schemes
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(lambda-terms with meta-variables), so that any inhabitant of the type can be extracted from one of these
schemes.

Context-free grammars are used in [27] to represent the collection of inhabitants (in long normal form) of a
simple type. Although (finite) context-free grammars suffice to capture inhabitants obeying the total discharge
convention (forbidding multiple variables with the same type, or, in the logical reading, forbidding multiple
assumptions of the same formula), an infinite grammar is required to capture the full set of inhabitants (due
to the potential need for a supply of infinitely many bound variables, as alluded to above when relating
to [26]). Grammars are also used in [28] to enumerate in two stages all inhabitants of a type in simply-typed
lambda-calculus (and in certain fragments of system F). The first stage builds a context-free grammar
description of the collection of schemes of a given type. (Schemes are the proof terms of a so-called sequent
calculus with brackets LJB, where assumptions in the context are unnamed, thus following the total discharge
convention.) In a second stage, an algorithm extracts the full collection of inhabitants of a type from its
schemes.

The work [29] develops algorithms for counting and enumerating proofs in the context of full propositional
intuitionistic sequent calculus LJT . These algorithms are based on a direct representation of the search space
of a sequent via directed graphs. (Roughly speaking, a sequent corresponds to a vertex that has outgoing
edges to vertices with that sequent and a rule that applies to it (bottom-up), and the latter vertices have
outgoing edges to the sequents resulting from the bottom-up application of the rule.) Even if the version of
LJT considered there only allows proofs obeying the total discharge convention (context sequents are sets of
formulas), and this is crucial to guarantee the finiteness of the graph representation, this is the only work we
are aware of that addresses counting and enumeration of proofs for full intuitionistic propositional logic. As
already mentioned, our recent work [18] shows that the coinductive approach developed in this paper is also
applicable to (a system of focused proofs for) full intuitionistic propositional logic. Op. cit. only treats the
problem of type inhabitation and finite inhabitation (relative to focused proofs). However, we anticipate
that also a simple counting function can be achieved analogously to what is briefly mentioned in Section 6.1
(for the implicational fragment), a direction we would like to explore in the future (alongside with other
directions specified below).

[30] is an extensive study of inhabitation in simply-typed lambda-calculus through the formula-tree proof
method, establishing new results and new proofs, in particular, in connection to uniqueness questions. The
method relies on a representation of types as labelled trees called formula trees (where each label identifies
a primitive part of the type), from which proof trees are derived, and in turn allow the extraction of all
inhabitants (in long normal form) of the type. This extraction also involves two stages: the first stage
generates a context-free grammar representation of the inhabitants in so-called standard form (imposing
restrictions on the use of variables in the spirit of the total discharge convention); then, the second stage
extracts finitely many inhabitants from each standard inhabitant (if any), producing the full collection of
inhabitants of the type. The question of uniqueness of inhabitation in simply-typed lambda-calculus is also
addressed in [31]. This work uses yet a very different tool: game semantics. Connecting typings with arenas
and inhabitants with winning strategies for arenas, inhabitation questions can be recast in terms of game
semantics. For example, [31] offers a new characterization of principal typings in simply-typed lambda-calculus
through games. Actually, in [32] one can find precise connections between this game semantics approach and
the formula-tree proof method for addressing inhabitation in simply-typed lambda-calculus.

Since the above-mentioned work [17, 5, 27, 28, 29, 30, 31] is concerned with inhabitation (finite solutions)
only, naturally they do not share with us the goal of having a mathematical representation of the full solution
space, and a treatment of infinite solutions. Another distinctive feature of our work is that, as we stay within
the lambda-calculus paradigm, we can profit from its binding mechanism, and avoid the need to restrict to
inhabitants under total discharge convention, or the need for a two-stage process to capture the full collection
of long normal forms. Our representation of the entire space of solutions as a first-class citizen of a finitary
lambda-calculus immediately offers the possibility of its structural analysis, and allows a new take on a wide
range of questions related to inhabitation in simply-typed lambda-calculus, as explained in Section 6.

Only seemingly related work. Logics with fixed points or inductive definitions, as for example in [33],
admit infinite or “circular” proofs, which are infinite “pre-proofs” enjoying an extra global, semantic condition
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to ensure that only valid conclusions are allowed. In addition, the proofs of these logics have alternative
(sometimes equivalent) finite representations as graphs with cycles (e. g., trees with back edges). Despite
superficial similarity, bear in mind the several differences relatively to what is done in the present paper:
first, there is the conceptual difference between solution and proof; second, in our simple object logic LJT ,
proofs are the finite solutions (hence trivially filtered amongst solutions), and therefore infinite solutions
never correspond to globally correct reasoning; third, fixed points are not present in the object logic, but
rather in the finitary calculus and its typing system: the latter, when seen as a “logic of coinductive proofs”,
is a meta-logic—a logic about the proof search process determined by LJT .

Future work. We would like to profit from the finitary representation of a (full) solution space to
extract individual solutions. As suggested in Section 2.2, this can be done by pruning the solution space, an
operation already studied in [4] but only for coinductive representations (with the specific goal of obtaining
the version of König’s Lemma for simple types mentioned in Section 6.2). We expect unfolding of fixed points
to play also a fundamental role in the process of extraction of individual solutions. These ingredients should
provide a base for the accounting of algorithmic control in proof search through rewriting.

We would like to further test the comprehensiveness of our coinductive approach to proof search on
other logical or type-theoretical settings. For example, it could be interesting to test our methodology on
classical logic, for which there is already work in the context λµ-calculus [34], or on the challenging setting of
intersection types, whose general inhabitation problem is undecidable, but where relevant decidable fragments
have been identified [35, 36]. Of course, it will be interesting and important to test also our coinductive
approach in the context of first-order logic. Recall that coinductive structures are already employed in [23]
to give a proof-theoretic account of Horn clauses (even for coinductive theories), but the attainment of
representations of solutions and of entire solution spaces with a rich collection of properties (like the one
seen in this paper for intuitionistic implication) is likely to pose new questions.
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Appendix A. Technical appendix on regularity of finitary terms

In Section 5, we insisted that we do not confine our investigation to trivially regular terms. This is
directly imposed by Definition 12, as we will see next.
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Example 19 (A not trivially regular term). Assume three different atoms p, q, r, set Γ := y1 : q ⊃
p, y2 : (r ⊃ q) ⊃ p, x : r and Ξ := X : Γ⇒ q. Then Definition 12 yields

F(Γ⇒ p; Ξ) = gfp Y Γ⇒p.y1〈XΓ⇒q〉+ y2〈λzr.XΓ,z:r⇒q〉

Fixed-point variable X occurs free in this expression with two different sequents as types, hence the expression
is not trivially regular.

Definition 12 even leads us to consider trivially regular terms with regular but not trivially regular
subterms, hidden under a greatest fixed-point construction:

Example 20 (Hidden irregularity). Consider the following modification of the previous example: add
the binding y : p ⊃ q to Γ. Then, the above calculation of F(Γ⇒ p; Ξ) comes to the same result. And we
calculate

F(Γ⇒ q) = gfpXΓ⇒q.y〈F(Γ⇒ p; Ξ)〉

Hence, X with two different sequents as types has to be bound by the outer fixed-point operator.

The following notion may be of further use:

Definition 18 (Strong regularity in λgfp
Σ ). An expression T in λgfp

Σ is strongly regular, if all subexpres-
sions of T (including T ) are regular.

We can even strengthen Corollary 4.

Corollary 8. F(Γ⇒ C; Ξ) is strongly regular.

Proof Regularity is already expressed in Corollary 4. Concerning the regularity of the subexpressions,
lambda-abstraction does not influence on regularity, and in the recursive case of the definition of F(Γ⇒ C; Ξ),
the same ξΞ,Y :σ is admissible for all the occurring subterms, hence also for the summands that are bound by
the gfp operation. �
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