José Espírito Santo

Ralph Matthes
email: matthes@irit.fr

Luís Pinto

A Coinductive Approach to Proof Search through Typed Lambda-Calculi

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Proof theory starts with the observation that a proof is more than just the truth value of a theorem. A valid theorem can have many proofs, and several of them can be interesting. In this paper, we somehow extend this to the limit and study all proofs of a given proposition. Of course, who studies proofs can also study any of them (or count them, if there are only finitely many possible proofs, or try to enumerate them in the countable case). But we do this study somehow simultaneously: we introduce a language to express the "full solution space" of proof search. And since we focus on the generative aspects of proof search, it would seem awkward to filter out failed proof attempts from the outset. This does not mean that we pursue impossible paths in the proof search (which would hardly make sense) but that we allow to follow infinite paths. An infinite path does not correspond to a successful proof, but it is a structure of locally correct proof steps, generated by the bottom-up application of inference rules (the perspective of reductive proof theory). In other words, we use coinductive syntax to model all locally correct proof figures. This gives rise to a not necessarily wellfounded search tree. However, to keep the technical effort simpler, we have chosen a logic where this tree is finitely branching, namely the implicational fragment of intuitionistic propositional logic with a proof system given by the cut-free fragment of the sequent calculus LJT , introduced in [START_REF] Herbelin | A λ-calculus structure isomorphic to a Gentzen-style sequent calculus structure[END_REF] as the typed calculus λ. Actually, we will consider the variant of LJT where axioms are restricted to atomic formulas, and, since we do not consider the cut rule, the system is isomorphic to the system of simply-typed long normal forms in lambda-calculus which throughout this paper we will denote by λ.

Lambda terms or variants of them (expressions that may have bound variables) are a natural means to express proofs (an observation that is called the Curry-Howard isomorphism) in implicational logic. Proof alternatives (locally, there are only finitely many of them since our logic has no quantifier that ranges over infinitely many individuals) can be formally represented by a finite sum of such solution space expressions, and it is natural to consider those sums up to equivalence of the set of the alternatives. Since whole solution spaces of (possibly infinite) proof trees are being modeled, we call these coinductive terms forests.

By their coinductive nature, forests are no proper syntactic objects: they can be defined by all mathematical (meta-theoretic) means and are thus not "concrete", as would be expected from syntactic elements. This freedom of definition will be demonstrated and exploited in the canonical definition (Definition 1) of forests as solutions to the task of proving a logical sequent (a formula A in a given context Γ). In a certain sense, nothing is gained by this representation: although one can calculate on a case-by-case basis the forest for a formula of interest and see that it is described as fixed point of a system of equations (involving auxiliary forests as solutions for the other meta-variables that appear in those equations), an arbitrary forest can only be observed to any finite depth, without ever knowing whether it is the expansion of a regular cyclic graph structure (the latter being a finite structure).

Therefore, a coinductive representation is more like a semantics, a mathematical definition; in particular, one cannot extract algorithms from an analysis based on it. For this reason, an alternative, finitary representation of solution spaces is desired, and we develop, for intuitionistic implication logic, one such representation in the form of a ("normal", i. e., inductive) typed lambda-calculus. Besides formal sums (to express choice in the search procedure), this calculus has fixed points, to capture cyclic structure; moreover, fixed-point variables enjoy a relaxed form of binding, since cycle structure has to be captured up to the inference rule of contraction.

Our main result is that the forests that appear as full solution spaces of logical sequents can be interpreted as semantics of a typed term in this finitary typed lambda-calculus. For the Horn fragment (where nesting of implications to the left is disallowed), this works very smoothly without surprises ([2, Theorem 15]). The full implicational case, however, needs some subtleties to capture redundancy that comes from the introduction of several hypotheses that suppose the same formula-hypotheses that would be identified by applications of the inference rule of contraction. In the finitary calculus, a relaxed form of binding is adopted for the fixed-point variables over which the greatest fixed points are formed; and the interpretation of such finite expressions in terms of forests needs, in the full case, a special operation, defined on forests, that we call decontraction (contraction bottom-up1). Without this operation, certain repetitive patterns in the full solution spaces due to the presence of negative occurrences of implications could not be matched on the semantical side. With it, we obtain the finitary representation (Theorem 2).

This result lays the foundation for an original approach to proof search. Given a sequent, proof search is run once, not to solve a certain problem (e. g., deciding if the sequent is provable), but to generate the finitary representation of the entire solution space. This representation becomes thus available for later use (and reuse), in whatever a posteriori analysis we wish to carry out (e. g., solve a decision or counting problem); and the analysis consists typically in giving the finitary term representing the solution space to a recursive predicate or function, whose definition is driven by the syntax of the finitary calculus. The potential of this methodology has been proved elsewhere [3,[START_REF] Santo | Decidability of several concepts of finiteness for simple types[END_REF], in the study of proof search in LJT and the simply-typed λ-calculus. But here we will offer new results in the same vein, namely extensive generalizations of the so-called "monatomic theorem" [START_REF] Hindley | Basic Simple Type Theory[END_REF].

This paper is a substantially revised and extended version of our first workshop paper [START_REF] Santo | A coinductive approach to proof search[END_REF] 2 on this topic. Relatively to this work, the main novel aspects of this paper are:

1. The development of a typing system for the untyped finitary system λ gfp Σ of [START_REF] Santo | A coinductive approach to proof search[END_REF] (called λ gfp Σ in the present paper). The typing system controls the mentioned relaxed form of binding of fixed-point variables that allows the detection of cycles in proof search. It can be seen as a logic of coinductive proofs, whose soundness and completeness we will prove here.

2. An in-depth analysis of decontraction. This operation is bound to play a central role in reductive proof search, but surprisingly has never been properly studied. We lay down in this paper the basic results of its theory. 3. The revision of the technical details leading to the main theorem of [START_REF] Santo | A coinductive approach to proof search[END_REF] (Theorem 24), in light of the refinements allowed by the novel typing system, leading to the revised form as Theorem 2 below. [START_REF] Santo | Decidability of several concepts of finiteness for simple types[END_REF]. An illustration of the potential that our methodology has in the study of proof search in LJT and the simply-typed λ-calculus, exemplified with a new extensive generalization of the monatomic theorem mentioned before.

This paper grew out of our technical report [START_REF] Santo | A coinductive approach to proof search through typed lambda-calculi[END_REF] to which two subsequent journal publications [3,[START_REF] Santo | Decidability of several concepts of finiteness for simple types[END_REF] refer. It is also meant as a replacement for that technical report, so that future readers of these journal articles would rather consult the present paper. However, from the list above, only item 3 is needed for this purpose, the other developments deepen the understanding of the concepts and thus are a genuine contribution in this paper (not considering that technical report as a publication). Still, also the main theorem of the workshop paper [START_REF] Santo | A coinductive approach to proof search[END_REF] has not yet been published in archival quality and thus appears here in such quality for the first time.

The paper is organized as follows. Section 2 recalls the system LJT /λ and elaborates on proof search in this system. Section 3 develops the coinductive representation of solution spaces for LJT /λ. Section 4 studies the operation of decontraction. Section 5 develops the finitary calculus and the finitary representation of full solution spaces. Section 6 is dedicated to applications to proof search in LJT and inhabitation problems in λ. Section 7 concludes, also discussing related and future work.

Background

We start by introducing our presentation of the base system λ, of simply-typed long normal forms in lambda-calculus, which, as mentioned before (and explained later), is in Curry-Howard correspondence with cut-free LJT [START_REF] Herbelin | A λ-calculus structure isomorphic to a Gentzen-style sequent calculus structure[END_REF].

Simply-typed λ-calculus, reduced to normal forms

Letters p, q, r are used to range over a base set of propositional variables (which we also call atoms). Letters A, B, C are used to range over the set of formulas (= types) built from propositional variables using the implication connective (that we write A ⊃ B) that is parenthesized to the right. Throughout the paper, we will use the fact that any implicational formula can be uniquely decomposed as A 1 ⊃ A 2 ⊃ • • • ⊃ A k ⊃ p with k ≥ 0, written in vectorial notation as A ⊃ p. For example, if the vector A is empty the notation means simply p, and if A = A 1 , A 2 , the notation means A 1 ⊃ (A 2 ⊃ p).

A term of λ (also referred to as a proof term) is either a typed lambda-abstraction or a variable applied to a possibly empty list of terms. For succinctness, instead of writing lists as a second syntactic category, we will use the informal notation t 1 , . . . , t k (meaning if k = 0), abbreviated t i i if there is no ambiguity on the range of indices. So, λ-terms are given by the following grammar:

(terms) t, u ::= λx A .t | x t 1 , . . . , t k where a countably infinite set of variables ranged over by letters w, x, y, z is assumed. Note that in lambda-abstractions we adopt a domain-full presentation (a. k. a. Church-style syntax), annotating the bound variable with a formula. As is common-place with lambda-calculi, we will identify terms up to α-equivalence, i. e., names of bound variables may be consistently changed, and this is not considered as changing the term. The term constructor x t 1 , . . . , t k is usually called application. When n = 0 we simply write the variable x.

The terms are obviously in one-to-one correspondence with β-normal "ordinary" lambda-terms, the only difference being the explicit tupling of argument terms to variables in the λ syntax.

We will view contexts Γ as finite sets of declarations x : A, where no variable x occurs twice. The context Γ, x : A is obtained from Γ by adding the declaration x : A, and will only be written if x is not declared in Γ. Context union is written as concatenation Γ, ∆ for contexts Γ and ∆ if Γ ∩ ∆ = ∅. The letters Γ, ∆, Θ are

t : B Γ λx A .t : A ⊃ B RIntro (x : B ⊃ p) ∈ Γ ∀i, Γ t i : B i Γ x t i i :
p LVecIntro used to range over contexts, and the notation dom(Γ) stands for the set of variables declared in Γ. We will write Γ(x) for the type associated with x for x ∈ dom(Γ), hence viewing Γ as a function on dom(Γ). Context inclusion Γ ⊆ ∆ is just set inclusion.

As usual, in this presentation of λ there is only one form of sequent, namely Γ t : A. We call a sequent atomic when A is an atom. (Note however that this contrasts to LJT /λ [START_REF] Herbelin | A λ-calculus structure isomorphic to a Gentzen-style sequent calculus structure[END_REF] where two forms of sequents are used, as lists of terms are treated formally.) The rules of λ for deriving sequents are in Figure 1. LVecIntro presupposes that the indices for the t i range over 1, . . . , k and that B = B 1 , . . . , B k , for some k ≥ 0. Such obvious constraints for finite vectors will not be spelt out in the rest of the paper.

In the particular case of k = 0, in which (x : p) ∈ Γ is the only hypothesis of LVecIntro, we type variables (with atoms). In fact, viewed in terms of the system LJT /λ, LVecIntro is a derived rule, combining logical steps of contraction, left implication, and axiom, the latter being atomic, formed with atom p.

Note that the conclusion of the LVecIntro rule is an atomic sequent. This is not the case in LJT /λ [START_REF] Herbelin | A λ-calculus structure isomorphic to a Gentzen-style sequent calculus structure[END_REF], where list sequents can have a non-atomic formula on the right-hand side. In the variant of cut-free LJT /λ we adopted, the only rule available for deriving an implication is RIntro. A consequence of this restriction is that the space of proofs is reduced, allowing only uniform proofs [START_REF] Miller | Uniform proofs as a foundation for logic programming[END_REF], and all the logical steps of LJT underlying LVecIntro are only required with atomic right-hand side (both in the conclusion and in the rightmost premise). Still, our atomic restriction in LVecIntro will not cause loss of completeness of the system for intuitionistic implication. This restriction is typically adopted in systems tailored for proof search, as for example systems of focused proofs. In fact, our presentation of LJT /λ corresponds to a focused backward chaining system where all atoms are asynchronous (see e. g. [START_REF] Liang | Focusing and polarization in linear, intuitionistic, and classical logic[END_REF]). A consequence of the atomic restriction of LVecIntro (specifically, of an atomic axiom) in λ is that it does not type all β-normal forms, but only those in η-long β-normal form (see, e. g., §8A7 of the book [START_REF] Hindley | Basic Simple Type Theory[END_REF], where these terms are called simply long β-nf 's, and §8A8 of op. cit. for an argument of why any β-normal form can be η-expanded to a long β-nf).

Reductive proof search for λ

We consider proof search problems given by a context Γ and an implicational formula A. We express them as logical sequents Γ ⇒ A, corresponding to sequents of λ without proof terms. Γ ⇒ A is nothing but the pair consisting of Γ and A, but which is viewed as a problem description: to search for proofs of formula A in context Γ. We use the letter σ to communicate logical sequents but allow ourselves to speak of sequent σ in the interest of a lighter language. Even though the system λ is a focused sequent calculus, reductive proof search on λ has well identified points where choices are needed [START_REF] Dyckhoff | Proof search in constructive logics[END_REF]. This is readily seen in such a simple setting as ours, where only implication is considered. Observing the rules in Figure 1, one concludes that implications have to be decomposed by RIntro until an atom is obtained; here, in order to apply LVecIntro, a choice has to be made as to which assumption x is to be picked from the context, generating a control branching of the process (if there is no x to choose, we mark the choice point with failure); at each choice, several search sub-problems are triggered, one for each B i , generating a different branching of the process, more of a conjunctive nature. 3In all, a search forest is generated, which is pruned to a tree, once a choice is made at each choice point. Such trees we call solutions (of the proof-search problem posed by the given sequent). Sequents with solutions are called solvable. Since the search forest is a structure where all solutions are superimposed, we also call it solution space.

Finite solutions are exactly the proofs in λ (hence the provable sequents are solvable); but solutions need not be finite. For instance, given the sequent σ = (f : p ⊃ p, x : p ⇒ p), we can apply forever the LVecIntro rule with variable f if we wish, producing an infinite solution. But σ also has finite solutions, hence is provable. On the other hand, the solvable sequent f : p ⊃ p ⇒ p has a unique infinite solution, hence is not provable.

Example 1.

The illustrating examples of this paper are with the following types.

• BOOLE := p ⊃ p ⊃ p, an encoding of the Boolean values as λx p .λy p .x and λx p .λy p .y. This example illustrates that we obtain different solutions when using the differently labeled (with x and with y) hypotheses for p. We do not apply the so-called total discharge convention and stay plainly in the spirit of lambda-calculus.

• INFTY := (p ⊃ p) ⊃ p, which is obviously uninhabited in lambda-calculus (as would be the type p alone), but, as mentioned before, has a unique infinite solution (see Example 2).

• CHURCH := (p ⊃ p) ⊃ p ⊃ p, the type of Church numerals λf p⊃p .λx p .f n x , n ≥ 0. As mentioned above, there is also the solution with an infinite repetition of f 's.

• PEIRCE := ((p ⊃ q) ⊃ p) ⊃ p with different atoms p and q (the Peirce formula, in particular when reading q as falsity), which is a classical tautology but not one of minimal logic and therefore uninhabited in lambda-calculus.

• DNPEIRCE := (PEIRCE ⊃ q) ⊃ q, which is provable in minimal logic and therefore inhabited in lambda-calculus (already studied in [START_REF] Santo | A coinductive approach to proof search[END_REF]).

• THREE := ((p ⊃ p) ⊃ p) ⊃ p, the simplest type of rank 3 (the nesting depth) which has inhabitants of the form λx.x λy

1 .x λy 2 .x • • • λy n .y i • • • , n ≥ 1 and 1 ≤ i ≤ n.
(The types (p ⊃ p) ⊃ p of x and p of all y k have been omitted for presentation purposes.) Notice that THREE is PEIRCE with identification of the two atoms. It may be seen as a simplification of the DNPEIRCE example.

Some of our examples are also covered in Section 1.3.8 of [START_REF] Barendregt | Lambda Calculus with Types, Perspectives in Logic[END_REF]. Notice that they write BOOLE as 1 2 (their example (i)), CHURCH as 1 → 0 → 0 (their example (iv)) and THREE as 3 (their example (vii)) in that book. PEIRCE is their example (iii).

The type THREE ⊃ p ⊃ p is example (viii) in Section 1.3.8 of the cited book, and is called the "monster". Since THREE is PEIRCE with identification of the two atoms p, q, the monster type is similarly resembling DNPEIRCE, but of rank 4 (while the latter has rank 5). For us, both types are equally challenging, insofar as both require an infinite supply of bound variables for enumerating their (normal) inhabitants, which is why we did not include the monster type in our sample of examples.

Coinductive representation of proof search

In this section we develop a coinductive representation of solutions and of solution spaces. This representation combines two ideas: the coinductive reading of the syntax of proofs, and the adoption of formal sums (in the case of solution spaces). Formal sums allow the definition of the operation of decontraction, which will play a crucial role in the relationship to the finitary representation of solution spaces to be developed in the next section.

Representation of solutions: the λ co -system

We introduce now λ co , a coinductive extension of λ. Its expressions are formed without any consideration of well-typedness and will be the raw syntax that underlies possibly non-wellfounded proofs, i. e., solutions.

The raw syntax of these expressions is presented as follows

N ::= co λx A .N | x N 1 , . . . , N k , Figure 2: Typing rules of λ co Γ, x : A N : B Γ λx A .N : A ⊃ B RIntro co (x : B ⊃ p) ∈ Γ ∀i, Γ N i : B i Γ x N i i : p LVecIntro co
yielding the terms of system λ co (read coinductively, as indicated by the index co)-still with finite tuples N i i , which is why we will call these expressions rather coterms.

We consider a coinductive definition of syntax with binding as a base concept, but the reader might appreciate a concrete set-theoretic construction. The terms of λ are then construed as finite trees, with the grammar elements λx A and x • 1 , . . . , • k on the nodes (where the latter includes with the case k = 0 also the leaves of the tree). And these trees are identified modulo α-equivalence. The coinductive reading is then based on finite and infinite trees, again with these node decorations. If we disregard variable binding for the moment, this construction can be seen as metric completion of the finite terms (see, e. g., [START_REF]Term Rewriting Systems[END_REF]Sect. 12.2]). To take into account variable binding with its necessity to identify α-equivalent terms, we can just follow the description of infinitary lambda-calculus in [START_REF]Term Rewriting Systems[END_REF]Sect. 12.4]. Even though the coterms may be infinite, all the positions in them are of finite length, and a definition of α-equivalence by recursion on the lengths of positions can be given. This allows to define a metric on α-equivalence classes and then to identify the α-equivalence classes of coterms as metric completion of the α-equivalence classes of finite terms. Besides incorporating the identification of coterms that only differ in the naming of their bound variables, we consider as equal terms that finitely decompose in the same way, which is to say that their successive deconstruction (not taking into account consistent differences in names of bound variables) according to the grammar must proceed the same way, and this to arbitrary depth. In the described set-theoretic construction, this just means that they are α-equivalent finite or infinite trees, which is an extensional concept (that does not depend on how that infinite tree has been generated by an effective program). Thus, the natural notion of equality that we are using is bisimilarity modulo α-equivalence. Following mathematical practice, this is still written as plain equality (in type theory, it would have to be distinguished from definitional equality / convertibility and from propositional equality / Leibniz equality and would be a coinductive binary relation).

Since the raw syntax is interpreted coinductively, also the typing rules have to be interpreted coinductively, which is symbolized by the double horizontal line in Figure 2, a notation that we learnt from [START_REF] Nakata | A proof pearl with the fan theorem and bar induction -walking through infinite trees with mixed induction and coinduction[END_REF]. (Of course, the formulas/types stay inductive.). This defines when Γ N : A holds for a finite context Γ, a coterm N and a type A, and the only difference to the rules in Figure 1 is their coinductive reading and their reference to coinductively defined terms. When Γ N : A holds, we say N is a solution of σ, when σ = Γ ⇒ A. The set-theoretic counterpart of coinductive typing derivations consists of finite and infinite trees that are suitably labelled with the data of applications of the typing rules. No extra identification of α-equivalent derivations is needed, and we anyway do not consider identity of proofs for our purposes.

In the rest of the paper, we will gloss over such set-theoretic interpretations of coinductive concepts.

Example 2. Consider it ∞ := λf p⊃p .N with the coterm N the infinitely repeated application of f , i. e., on the top level, N has an application node with variable f and just one argument, and the latter is the same as N (and it does not even make sense to ask what comes after this infinite succession of applications of f). In other words, N is the unique coterm that is solution of the equation N = f N . Using coinduction on the typing relation, we can easily show it ∞ : INFTY, and hence find a (co)inhabitant of a formula that does not correspond to a theorem in most logics.

Another view of the typing system of Figure 2 is a coinductive definition of which logical sequents Γ ⇒ A are solvable: they are those for which a coterm N exists such that Γ N : A is coinductively derivable by these two rules-where the syntax of N traces the rule applications, hence N is just the evidence for the existence of a coinductive derivation in a system similar to Figure 2, but without proof terms in the sequents. However, there is no requirement of having a program generating the tree corresponding to the coterm N that is merely meant to exist. Constructive witnesses for derivability-however for sets of solutions instead of individual solutions-will be studied in the finitary system of Section 5.

Alts

As expected, the restriction of the typing relation to the finite λ-terms coincides with the typing relation of the λ system:

Lemma 1. For any t ∈ λ, Γ t : A in λ iff Γ t : A in λ co .
Proof By induction on t, and using inversion of typing in λ.

After having recalled the coinductive reading of syntax with variable binding and what typing means for it, we now move to original material.

Representation of solution spaces: the λ co

Σ system We now come to the coinductive representation of whole search spaces in λ. The set of coinductive cut-free λ-terms with finite numbers of elimination alternatives is denoted by λ co Σ and is given by the following grammar:

(terms)

N ::= co λx A .N | E 1 + • • • + E n (elim. alternatives) E ::= co x N 1 , . . . , N k
where both n, k ≥ 0 are arbitrary. The terms of λ co Σ are also called forests. If we do not want to specify the syntactic category (terms or elimination alternatives), we consider them just as expressions and generically name them T , to reflect their nature as terms in a wide sense.

Note that summands cannot be lambda-abstractions. 4 We will often use i E i instead of E 1 +• • •+E n -in generic situations or if the dependency of E i on i is clear, as well as the number of elements. If n = 0, we write O for

E 1 + • • • + E n . If n = 1, we write E 1 for E 1 + • • • + E n (
in particular this injects the category of elimination alternatives into the category of (co)terms) and do as if + was a binary operation on (co)terms. However, this will always have a unique reading in terms of our raw syntax of λ co Σ . In particular, this reading makes + associative and O its neutral element.

The coinductive typing rules of λ co Σ are the ones of λ co , together with the rule given in Figure 3, where the sequents for coterms and elimination alternatives are not distinguished notationally.

Notice that Γ O : p for all Γ and p. This phenomenon makes an alternative view analogously to the one described for system λ co after Example 2 rather uninteresting. Atoms should not be seen as a kind of coinductive consequence of the rules governing implication. Later in this section, we will introduce the notion of membership in forests, and O obviously will then not have any members according to that definition. However, this kind of emptiness is undecidable in general, hence the forests in the derivations do play an important role for any interpretation of derivations.

Since, like the coterms, forests are not built in finitary ways from finitary syntax (although the number of elimination alternatives is always finite, as is the number of elements of the tuples), their most natural notion of equality is again bisimilarity modulo α-equivalence. However, in forests, we even want to neglect the precise order of the summands and their (finite) multiplicity. We thus consider the sums of elimination alternatives as if they were sets of alternatives, i. e., we further assume that + is symmetric and idempotent. This means, in particular, that this identification is used recursively when considering bisimilarity (anyway recursively modulo α-equivalence). This approach is convenient for a mathematical treatment but would be less so for a formalization on a computer: It has been shown by Picard and the second author [START_REF] Picard | Permutations in coinductive graph representation[END_REF] that bisimulation up to permutations in unbounded lists of children can be managed in a coinductive type even with the interactive proof assistant Coq, but it did not seem feasible to abstract away from the number of occurrences of an alternative (which is the meaning of idempotence of + in presence of symmetry), where multiplicity depends on the very same notion of equivalence that is undecidable in general.

As for λ co , we just use mathematical equality for this notion of bisimilarity on expressions of λ co Σ , and so the sums of elimination alternatives can plainly be treated as if they were finite sets of elimination alternatives (given by finitely many elimination alternatives of which several might be identified through bisimilarity).

We are now heading for a concise description of the full (as explained later) solution spaces for logical sequents by means of our extended coinductive syntax.

Definition 1 (Full solution spaces). The function S, which takes a sequent σ = (Γ ⇒ A) and returns a forest, is given corecursively as follows: In the case of an implication,

S(Γ ⇒ A ⊃ B) := λx A .S(Γ, x : A ⇒ B) .
In the case of an atom p, for the definition of S(Γ ⇒ p), let y i : A i be the i-th declaration in some enumeration of Γ with A i of the form B i ⊃ p. Let B i = B i,1 , . . . , B i,ki . Define N i,j := S(Γ ⇒ B i,j). Then, E i := y i N i,j j , and finally, S(Γ ⇒ p)

:= i E i .
This is more sloppily written as

S(Γ ⇒ p) := (y: B⊃p)∈Γ y S(Γ ⇒ B j) j .
In this manner, we can even write the whole definition in one line:

S(Γ ⇒ A ⊃ p) := λ x : A. (y: B⊃p)∈∆ y S(∆ ⇒ B j) j (1)
with ∆ := Γ, x : A. The usual convention on bound variables ensures that (x's are fresh enough so that) ∆ is a context.

This definition has to be read with Proposition 1 in mind that will be stated and proven later in this section and that guarantees that all and only the solutions of a logical sequent σ are in a precise sense contained in S(σ).

A crucial element (for the succinctness of this definition and the rather structure-oriented further analysis) is that RIntro is the only way to prove an implication, hence that the leading lambda-abstractions are inevitable. Then, the extended (finite) context ∆ is traversed to pick variables y with formulas of the form B ⊃ p, thus with the right atom p in the conclusion. And this spawns tuples of search spaces, for all the B j , again w. r. t. the extended context ∆. Notice that this is a well-formed definition: for every sequent σ, S(σ) is a forest, regardless of the result of proof search for the given sequent σ, and this forest has the type prescribed by σ: Lemma 2 (Type soundness of S). Given Γ and A, the typing Γ S(Γ ⇒ A) : A holds in λ co Σ . In particular, all free variables of S(Γ ⇒ A) are declared in Γ.

Let us illustrate the function S at work with some examples.

Example 3. One sees immediately that S(⇒ BOOLE) = λx p .λy p .x + y.

Example 4. Observe that S(⇒ INFTY) = it ∞ (applying our notational conventions, and reflecting the fact that there is a unique alternative at each sum). In other words, it ∞ solves the same equation as is prescribed for S(⇒ INFTY), and so it is the solution (modulo =).

N 0 = S(⇒ DNPEIRCE) = λx PEIRCE⊃q .N 1 N 1 = S(x ⇒ q) = x N 2 N 2 = S x ⇒ PEIRCE = λy (p⊃q)⊃p .N 3 N 3 = S(x, y ⇒ p) = y N 4 N 4 = S(x, y ⇒ p ⊃ q) = λz p .N 5 N 5 = S(x, y, z ⇒ q) = x N 6 N 6 = S x, y, z ⇒ PEIRCE = λy (p⊃q)⊃p 1 .N 7 N 7 = S(x, y, z, y 1 ⇒ p) = y N 8 + z + y 1 N 8 N 8 = S(x, y, z, y 1 ⇒ p ⊃ q) = λz p 1 .N 9 N 9 = S(x, y, z, y 1 , z 1 ⇒ q)
Example 5. Consider the sequent ⇒ CHURCH. We have:

Church := S(⇒ CHURCH) = λf p⊃p .λx p .S(f : p ⊃ p, x : p ⇒ p)
Now, observe that S(f : p ⊃ p, x : p ⇒ p) = f S(f : p ⊃ p, x : p ⇒ p) + x is asked for. We identify S(f : p ⊃ p, x : p ⇒ p) as the (unique) solution as a forest for N of the equation N = f N + x. Using ν as means to communicate solutions of fixed-point equations on the meta-level5 , we have

S(⇒ CHURCH) = λf p⊃p .λx p .ν N.f N + x
By unfolding of the fixed point and by making a choice at each of the elimination alternatives, we can collect from this coterm as the finitary solutions of the sequent all the Church numerals (λf p⊃p .λx p .f n x with n ∈ N 0), together with the infinitary solution λf p⊃p .λx p .ν N.f N (corresponding to always making the f -choice at the elimination alternatives). Example 6. We consider now an example without nested implications (in the Horn fragment). Let Γ = x : p ⊃ q ⊃ p, y : q ⊃ p ⊃ q, z : p, with p = q. Note that the full solution spaces of p and q relative to this sequent are mutually dependent and they give rise to the following system of equations: N p = x N p , N q + z N q = y N q , N p and so we have S(Γ ⇒ p) = ν N p .x N p , ν N q .y N q , N p + z S(Γ ⇒ q) = ν N q .y N q , ν N p .x N p , N q + z Whereas for p we can collect one finite solution (z), for q we can only collect infinite solutions.

Example 7. Let us consider DNPEIRCE of Example 1. When q is viewed as absurdity, PEIRCE is Peirce's law, and thus DNPEIRCE can be viewed as double negation of Peirce's law. We have the calculation in Figure 4 (where in sequents we omit formulas on the left-hand side). Now, in N 9 observe that y, y 1 both have type (p ⊃ q) ⊃ p and z, z 1 both have type p, and we are back at N 5 but with the duplicates y 1 of y and z 1 of z. Later, we will call this duplication phenomenon decontraction, and we will give a finitary description of N 0 and, more generally, of all S(σ) (again, see Theorem 2). Of course, by taking the middle alternative in N 7 , we obtain a finite proof, showing that DNPEIRCE is provable in λ.

mem(λx A .M, λx A .N) ∀i, mem(M i , N i) mem(x M i i , x N i i) mem(M, E j) mem(M, i E i) Example 8.
For completeness, we describe the beginning of the calculations for THREE (for PEIRCE see Example 9). S(⇒ THREE) = λx (p⊃p)⊃p .x λy p .N , abbreviating N for S(x : (p ⊃ p) ⊃ p, y : p ⇒ p). Then, N = x λz p .N + y, with N = S(x : (p ⊃ p) ⊃ p, y : p, z : p ⇒ p). We could further unravel the definition and provide a description of S(⇒ THREE) up to any finite depth, but we prefer a more symbolic solution in Section 5 which exploits decontraction in the same way as for the preceding example.

We give a membership semantics for expressions of λ co Σ in terms of sets of terms in λ co . More precisely, the membership relations mem(M, N) and mem(M, E) are contained in λ co × λ co Σ and λ co × Eλ co Σ respectively (where Eλ co Σ stands for the set of elimination alternatives of λ co Σ) and are given coinductively by the rules in Figure 5. In particular there is no M such that mem(M, O). In this sense, O is an empty solution space, but there are many others, such as λx A .O and x O . These three forests are pairwise distinct, i. e., not bisimilar. We do thus not identify forests having the same members (and examples can be given that even have the same types in the same contexts).

We allow ourselves a small interlude: A natural question is if one can avoid O as subexpression of a forest, so that having an empty solution space does not "come as a surprise" but is visible from the outset: having O at the root. As far as full solution spaces S(σ) are concerned, there is a refined definition involving the concepts developed in Section 5 of the present paper that can achieve forests of that special form, and this leads to a "König's lemma for simple types" [START_REF] Santo | Decidability of several concepts of finiteness for simple types[END_REF]Theorem 4.25] saying that those obtained forests are infinite iff σ has an infinite solution. In other words, those forests cannot accumulate an infinite amount of nodes that "in the end" turn out not to contribute anything to a solution. This being said, it does not seem feasible to develop a theory of solution spaces without having O as a building block. End of the interlude.

Coterms have the types of the forests they are members of.

Lemma 3 (Soundness w.r.t. membership semantics).

1. For N ∈ λ co , T ∈ λ co Σ , if Γ T : A in λ co Σ and mem(N, T) then Γ N : A in λ co . 2. For t ∈ λ, T ∈ λ co Σ , if Γ T : A in λ co Σ and mem(t, T) then Γ t : A in λ.
Proof We just prove the first statement, the second statement follows immediately from the first by virtue of Lemma 1.

It suffices to show for

N ∈ λ co , N ∈ λ co Σ , if Γ N : A in λ co
Σ and mem(N, N) then Γ N : A in λ co (replacing expression T by term N), since from this follows easily the result for elimination alternatives (replacing

T by E ∈ λ co Σ). Let R := {(Γ, N, A) | ∃N ∈ λ co Σ • mem(N, N) ∧ Γ N : A}
By coinduction, to prove that this relation is contained in the typing relation of λ co , it suffices to show that it is closed backward relatively to the rules defining that typing relation-which means, roughly speaking, that for each element of R there is a typing rule which produces such element from premisses in R. This is the most fundamental principle of coinduction for coinductively defined predicates. It exploits that the coinductively defined predicate is maximal among the post-fixedpoints of the set operator underlying the coinductive definition. In our present application of the principle, we need to show that for any (Γ, N, A) ∈ R, one of the following holds:

1. A = A 0 ⊃ A 1 , N = λx A0 .N 1 , and (Γ,x : A 0 , N 1 , A 1) ∈ R; 2. A = p,
and there is y : B ⊃ p ∈ Γ so that N = y N i i , and, for all i, (Γ,

N i , B i) ∈ R.
Let (Γ, N, A) ∈ R. Then mem(N, N) and Γ N : A, for some N ∈ λ co Σ . The proof proceeds by case analysis on A.

Case A = A 0 ⊃ A 1 . By definition of the typing relation, we must have N = λx A0 .N 1 and Γ, x : A 0 N 1 : A 1 , for some N 1 ; and by definition of mem, we must have N = λx A0 .N 1 , and mem(N 1 , N 1), for some N 1 ; therefore, (Γ,x : A 0 , N 1 , A 1) ∈ R, by definition of R.

Case A = p. By definition of the typing relation, we have N = j E j and Γ E j : p, for all j. Then, by definition of mem, we must have, mem(N, E j), for some j. Let E j = y N i i . Again by definition of mem, N = y N i i , with mem(N i , N i) for all i. Since Γ y N i i : p, we must have, again by definition of the typing relation, y : B ⊃ p ∈ Γ and Γ N i : B i for all i. Hence, for all i, (Γ , N i , B i) ∈ R, by definition of R.

Now, we prove that in fact, for any search problem σ = Γ ⇒ A, the members of S(σ) are exactly the solutions of σ.

Proposition 1 (Soundness and completeness of full solution spaces).

1. For N ∈ λ co , mem(N, S(Γ ⇒ A)) iff Γ N : A in λ co . 2. For t ∈ λ, mem(t, S(Γ ⇒ A)) iff Γ t : A in λ.

Proof

We prove the first statement in detail as a further example of coinductive reasoning, the second statement follows immediately from the first by virtue of Lemma 1.

"If" (stating completeness, i. e., that the S function indeed gathers all solutions). Consider the relations

R 1 := {(N, S(Γ ⇒ A)) | Γ N : A} R 2 := {(x N i i , x S(Γ ⇒ B i) i) | (x : B 1 , • • • , B k ⊃ p) ∈ Γ ∧ Γ x N 1 , . . . , N k : p}
It suffices to show that R 1 ⊆ mem, but this cannot be proven alone since mem is defined simultaneously for coterms and elimination alternatives. We also prove R 2 ⊆ mem, and to prove both by coinduction on the membership relations, it suffices to show that the relations R 1 , R 2 are closed backward relatively to the rules defining the membership predicate, that is:

1. for any (M, N) ∈ R 1 , one of the following holds:

(a) (M, N) = (λx A .M , λx A .N), and (M , N) ∈ R 1 ; (b) N = i E i
, and for some i, (M, E i) ∈ R 2 ;

2. for any (M, E) ∈ R 2 , M = x M i i , and E = x N i i , and for all i, (M i , N i) ∈ R 1

1. Take an arbitrary element of R 1 , i. e., take (M, S(Γ ⇒ A)) s. t. Γ M : A. One of the following happens:

i) A = A 0 ⊃ A 1 , M = λx A0 .M , and Γ, x : A 0 M : A 1 ; ii) A = p,
and there is y : B ⊃ p ∈ Γ so that M = y M i i , and, for all i, Γ M i : B i .

Case i). Note that S(Γ ⇒

A) = λx A0 .S(Γ, x : A 0 ⇒ A 1). So, in order to prove (1a), we need to show (M , S(Γ, x : A 0 ⇒ A 1)) ∈ R 1 , which follows from Γ, x : A 0 M : A 1 . Case ii). Note that S(Γ ⇒ A) = z: C⊃p∈Γ z S(Γ ⇒ C j) j . So, since y : B ⊃ p ∈ Γ, for the proof of (1b), it suffices to show (M, y S(Γ ⇒ B i) i) ∈ R 2
, which holds because y : B ⊃ p ∈ Γ and Γ y M i i : p (the latter being a consequence of y : B ⊃ p ∈ Γ, and Γ M i : B i , for all i).

2. Take an arbitrary element of R 2 . So, it must be of the form (x

N i i , x S(Γ ⇒ B i) i) s.t. (x : B ⊃ p) ∈ Γ and Γ x N i i : p. From the latter follows Γ N i : B i , for all i. So, by definition of R 1 , (N i , S(Γ ⇒ B i)) ∈ R 1 , for all i.
"Only if" (stating soundness, i. e., that the S function only collects solutions). Follows from Lemmas 2 and 3.

[Γ /Γ](λx A .N) = λx A .[Γ /Γ]N [Γ /Γ] i E i = i [Γ /Γ]E i [Γ /Γ] z N i i = z [Γ /Γ]N i i if z / ∈ dom(Γ) [Γ /Γ] z N i i = (w:A)∈∆z w [Γ /Γ]N i i if z ∈ dom(Γ) Example 9.
Let us consider the case of Peirce's law that is not valid intuitionistically. We have (for p = q):

S(⇒ PEIRCE) = λx (p⊃q)⊃p .x λy p .O
The fact that we arrived at O and found no elimination alternatives on the way annihilates the coterm and implies there are no terms in the full solution space of ⇒ PEIRCE (hence no proofs, nor even infinite solutions).

Decontraction

In this section, divided into three subsections, we introduce and study the decontraction operation on forests. The main result of this section is Lemma 13, in the third subsection, because of its role in the proof of Theorem 2-the main theorem of the paper. Lemma 13 shows that decontraction is the right operation to apply to a full solution space T = S(Γ ⇒ C) to express the effect on the full solution space of growing the context Γ to an inessential extension Γ -this growth is made precise below and denoted by Γ ≤ Γ . Before, in the second subsection, the more general situation, where T is any expression in λ co Σ (not necessarily a full solution space) is analyzed in Lemma 9, a result that shows in what sense decontraction witnesses the inversion of the inference rule of contraction. Finally, inversion of contraction is related to (and follows from) a kind of inversion of substitution, whose most general form is contained in Lemma 7, to be found already in the first subsection.

The decontraction operation on forests, denoted [Γ /Γ]N , is defined only when Γ ≤ Γ . Roughly speaking, the decontraction effect at the level of forests is to add new elimination alternatives, made possible by the presence of more variables in Γ . This effect is best seen in the last clause of Definition 3 (in Figure 6) that applies the decontraction operation to a single elimination alternative.

Definition 2. 1. |Γ| = {A | there is x s. t. (x : A) ∈ Γ}. 2. Γ ≤ Γ if Γ ⊆ Γ and |Γ| = |Γ |.
Notice that |Γ| has only one element for each type occurring in the declarations of Γ. It thus abstracts away from multiple hypotheses of the same formula.

Definition 3 (Decontraction for forests). Let Γ ≤ Γ . For T an expression of λ co Σ , we define [Γ /Γ]T by corecursion as described in Figure 6. In the last defining clause, A := Γ(z) and

∆ z := {(z : A)} ∪ (Γ \ Γ).
The usual convention on bound variables applies, which requires in the first clause that the name x is chosen so that it does not appear in Γ .

The effect of the last clause is to replace the summand z N i i with z of type Γ(z) according to Γ with the sum of all w N i i that receive this type according to the potentially bigger context Γ , excluding the other variables of Γ but including the case w = z, and to continue the operation corecursively in the argument terms. 6Lemma 4. If mem(M, T) and Γ ≤ Γ then mem(M, [Γ /Γ]T).

Proof A coinductive proof can confirm the obvious intuition of the effect of decontraction: either a summand is maintained, with corecursive application of decontraction to the subterms, or it is replaced by a sum with even extra summands.

Lemma 5. [Γ/Γ]T = T .
Proof Obvious coinduction for all expressions.

We formally extend the decontraction data from contexts to sequents σ. (This overloading of the operation will only be used in the next section.)

Definition 4 (Decontraction for sequents). Let σ = (Γ ⇒ A) and σ = (Γ ⇒ A). 1. σ ≤ σ if Γ ≤ Γ and A = A ; 2. if σ ≤ σ , then [σ /σ]T := [Γ /Γ]T .

Decontraction and substitution

Decontraction is a form of undoing substitution, in the following sense (N ∈ λ co):

mem(N, [Γ, x : A, y : A/Γ, x : A][x/y]N) (2)
In fact, we prove a stronger result. Let

[x/x 1 , • • • , x n]N denote [x/x 1] • • • [x/
x n]N . We will even allow ourselves to abbreviate x 1 , • • • , x n by x, when variable n is in the context of discourse.

Lemma 6 (Undoing substitution -a general principle).

For N ∈ λ co , T ∈ λ co Σ , mem([x 1 /x 1 , • • • , x n]N, T) ⇒ mem(N, [Γ, x 1 : A, . . . , x n : A/Γ, x 1 : A]T) .
Proof Obviously, it suffices to show the statement with a term N in place of the expression T . This will follow from R 1 below being included in the membership relation with terms as second argument. Let ∆ := Γ, x 1 : A and ∆ := Γ, x 1 : A, . . . , x n : A. Let

R 1 := {(N, [∆ /∆]N) | mem([x 1 / x]N, N)} R 2 := {(z N i i , z [∆ /∆]N i i) | ∀i, mem(N i , [∆ /∆]N i) ∈ R 1 }
We argue by coinduction on membership. The proof obligations named (1)(a), (1)(b), and (2) in the proof of Proposition 1 are renamed here Ia, Ib, and II, respectively.

Let (N, [∆ /∆]N) ∈ R 1 , hence mem([x 1 / x]N, N) . (3)
We have to show that Ia or Ib holds. We proceed by case analysis of N .

Case N = λz.N 0 . Then mem(λz.[x 1 / x]N 0 , N), hence, by definition of membership, we must have N = λz.N 0 and mem([

x 1 / x]N 0 , N 0) , (4) hence
[∆ /∆]N = λz.[∆ /∆]N 0 . From (4) and definition of R 1 we get (N 0 , [∆ /∆]N 0) ∈ R 1 , so Ia holds. Otherwise, that is, if N is not a lambda-abstraction, then the same is true of [x 1 / x]N , hence (3) implies that N = j E j , with mem([x 1 / x]N, E j) (5)
for some j, hence

[∆ /∆]N = j [∆ /∆]E j . (6)
[x/x 1](λx A .N) = λx A .[x/x 1]N [x/x 1] i E i = i [x/x 1]E i [x/x 1] z N i i = z [x/x 1]N i i if z = x 1 [x/x 1] x 1 N i i = n j=1 x j [x/x 1]N i i
To fulfil Ib, we need (N, E) ∈ R 2 , for some summand E of (6). From (5) and the definition of membership we must have N = z N i i , for some z, hence

[x 1 / x]N = w [x 1 / x]N i i , (7)
with w a variable determined by z and x as follows: if z ∈ {x 1 , . . . , x n }, then w = x 1 , else w = z. Facts (5) and (7) give E j = w N i i and, for all i,

mem([x 1 / x]N i , N i) , (8) hence
(N i , [∆ /∆]N i) ∈ R 1 . (9)
Now we will see that z [∆ /∆]N i i is a summand of [∆ /∆]E j , sometimes the unique one. There are two cases:

First case:

z ∈ {x 1 , . . . , x n }. Then [∆ /∆]E j = n k=1 x k [∆ /∆]N i i , since w = x 1 . Second case: otherwise, w = z. Now, by definition of decontraction, z [∆ /∆]N i i is always a summand of [∆ /∆](z N i i), and the latter is [∆ /∆]E j since w = z.
Therefore, z [∆ /∆]N i i is a summand of sum [START_REF] Santo | A coinductive approach to proof search through typed lambda-calculi[END_REF]. Moreover, (N, z [∆ /∆]N i i) ∈ R 2 by definition of R 2 and (9). So Ib holds. Now let (z The result of a decontraction [Γ,

N i i , z [∆ /∆]N i i) ∈ R 2 . Proof obligation II is fulfilled, as (N i , [∆ /∆]N i) ∈ R 1 holds for all i, by definition of R 2 .
x 1 : A, • • • , x n : A/Γ, x 1 : A]T
, where Γ has no declarations with type A, does not depend on Γ nor A, so it deserves a lighter notation as [x 1 + • • • + x n /x 1]T . We will even allow ourselves to abbreviate

x 1 + • • • + x n by
x, when variable n is in the context of discourse. This particular case of the operation satisfies the equations in Figure 7. For this particular case, we get a pleasing formula: Lemma 7 (Undoing substitution -a tighter result for a special case).

For N ∈ λ co , T ∈ λ co Σ , mem([x 1 /x 1 , • • • , x n]N, T) ⇔ mem(N, [x 1 + • • • + x n /x 1]T) , provided x i / ∈ F V (T), i = 2, . . . , n.
Proof "Only if". Particular case of Lemma 6. "If". Let φ(T) denote the proviso on T . Let

R 1 := {([x 1 / x]N, N) | φ(N) ∧ mem(N, [x/x 1]N)} R 2 := {(z [x 1 / x]N i i , z N i i) | ∀i, ([x 1 / x]N i , N i) ∈ R 1 }
We argue by coinduction on membership and thus obtain the "if" part with T replaced by N , from which the general case immediately follows. The proof obligations named (1)(a), (1)(b), and (2) in the proof of Proposition 1 are renamed here Ia, Ib, and II, respectively. Let ([

x 1 / x]N, N) ∈ R 1 , hence φ(N) and mem(N, [x/x 1]N) . (10)
The proof proceeds by case analysis of N .

Case N = λz.N 0 , so [x 1 / x]N = λz.[x 1 / x]N 0 . By [START_REF] Barendregt | Lambda Calculus with Types, Perspectives in Logic[END_REF] and definitions of membership and of

[x/x 1]N , N = λz.N 0 , hence φ(N 0) (because z is not one of x 2 , • • • , x n), [x/x 1]N = λz.[x/x 1]N 0 and mem(N 0 , [x/x 1]N 0) . (11)
So ([[START_REF]Term Rewriting Systems[END_REF] and φ(N 0), which completes proof obligation Ia.

x 1 / x]N 0 , N 0) ∈ R 1 , by definition of R 1 ,
Case N = z N i i . Then [x 1 / x]N = y [x 1 / x]N i i , with y = x 1 when z ∈ {x 1 , . . . ,
x n }, and y = z otherwise. From [START_REF] Barendregt | Lambda Calculus with Types, Perspectives in Logic[END_REF] and definitions of membership and of [x/x 1]N , one gets N = j E j , hence φ(E j) for all j, and

[x/x 1]N = j [x/x 1]E j .
In order to fulfil proof obligation Ib, we need ([x 1 / x]N, E) ∈ R 2 , for some summand E of N . From (10) again, we get, for some j,

mem(z N i i , [x/x 1]E j) . (12)
Let E j = w N i i , hence φ(N i) for all i. We now have two cases: 12) we get, for some k,

First case: w = x 1 . Then [x/x 1]E j = n k=1 x k [x/x 1]N i i . From (
mem(z N i i , x k [x/x 1]N i i) (13)
hence, for all i,

mem(N i , [x/x 1]N i) . (14)
From (13), z = x k , hence y = x 1 . We prove ([

x 1 / x]N, E j) ∈ R 2 , that is (x 1 [x 1 / x]N i i , x 1 N i i) ∈ R 2 . By definition of R 2 , we need ([x 1 / x]N i , N i) ∈ R 1
, for all i. This follows from [START_REF] Howe | Two loop detection mechanisms: A comparison[END_REF], φ(N i) and the definition of 12), z = w; from φ(E j) and w = x 1 , z / ∈ {x 1 , . . . , x n }. Still from [START_REF] Nakata | A proof pearl with the fan theorem and bar induction -walking through infinite trees with mixed induction and coinduction[END_REF], we get again (14) and now ([

R 1 . Second case: w = x 1 . Then [x/x 1]E j = w [x/x 1]N i i . From (
x 1 / x]N, E j) = (z [x 1 / x]N i i , z N i i) ∈ R 2 follows as before. Let (z [x 1 / x]N i i , z N i i) ∈ R 2 , hence proof obligation II holds by definition of R 2 .
The proviso about variables x 2 , • • • , x n in the previous lemma is necessary for the "if" implication. Otherwise, one has the following counter-example: n := 2, N := x 2 , and

T = x 2 . N is a member of [x 1 + x 2 /x 1]T = x 2 but x 1 = [x 1 /x 1 , x 2]N is not a member of T .

Decontraction and contraction

Decontraction is related to the inference rule of contraction. By contraction we mean the rule in the following lemma.

Lemma 8 (Contraction). In system λ the following rule is admissible and invertible:

Γ, x : A, y : A t : B Γ, x : A [x/y]t : B .
That is: for all t ∈ λ, Γ, x : A, y :

A t : B iff Γ, x : A [x/y]t : B.
Proof Routine induction on t, using inversion of RIntro and LVecIntro.

If Γ ≤ Γ , then, from a proof of Γ ⇒ B, we get a proof of Γ ⇒ B by a number of contractions. The following result justifies the terminology "decontraction".

Lemma 9 (Decontraction and types). Let T be an expression of

λ co Σ and Γ ∪ ∆ be a context. If Γ ∪ ∆ T : B and Γ ≤ Γ then Γ ∪ ∆ [Γ /Γ]T : B.
Proof (Notice that we exceptionally consider not necessarily disjoint unions of contexts. This is immaterial for the proof but will be needed in Lemma 19.) Immediate by coinduction. 7In particular, if Γ u : B in λ and Γ ≤ Γ , then indeed Γ [Γ /Γ]u : B -but [Γ /Γ]u is not guaranteed to be a proof (i. e., a term in λ).

Example 11. Let Γ := {f : p ⊃ p ⊃ q, x : p}, Γ := {f : p ⊃ p ⊃ q, x : p, y : p}, and u := f x, x , hence Γ ≤ Γ and Γ u : q. Then, [Γ /Γ]u = f x + y, x + y , and the given particular case of the previous lemma entails Γ f x + y, x + y : q. The term f x + y, x + y is no λ-term, but rather has several members. Due to Lemma 7, these are exactly the (four, in this case) t ∈ λ such that [x/y]t = u. Thanks to Lemma 8, it follows that each member t of f x + y, x + y satisfies Γ t : q.

On the other hand, if T in Lemma 9 is the full solution space S(Γ ⇒ B) (rather than a mere member u of it), then [Γ /Γ]T is indeed the full solution space S(Γ ⇒ B) -but we have to wait until Lemma 13 to see the proof.

Example 12. Continuing Example 11, since S(Γ ⇒ q) = u, one has [Γ /Γ]S(Γ ⇒ q) = f x + y, x + y . Lemma 13 will guarantee that f x + y, x + y (a term obtained from u by decontraction) is the full solution space S(Γ ⇒ q). Thanks to Proposition 1, one sees again that each member of t of f x + y, x + y satisfies Γ t : q.

Decontraction and full solution spaces

The intuitive idea of the next notion is to capture saturation of sums, so to speak.

Definition 5 (Maximal decontraction). Let T ∈ λ co Σ and Γ be a context. 1. Consider an occurrence of x in T . Consider the traversed lambda-abstractions from the root of T to the given occurrence of x, and let y A1 1 , . . . , y An n be the respective variables. We call Γ, y 1 : A 1 . . . , y n : A n the local extension of Γ for the given occurrence of x.

T in λ co

Σ is maximally decontracted w. r. t. Γ if: (a) all free variables of T are declared in Γ; and (b) every occurrence of a variable x in T is as head of a summand x N i i in a sum in which also y N i i is a summand (modulo bisimilarity), for every variable y that gets the same type as x in the local extension of Γ for the occurrence of x.

Lemma 10 (Full solution spaces are maximally decontracted). Given sequent Γ ⇒ C, the full solution space S(Γ ⇒ C) is maximally decontracted w. r. t. Γ.

Proof By coinduction. For the variable occurrences that are on display in the one-line formula (1) for S(Γ ⇒ A ⊃ p)-that is, for each of the y's that are head variables of the displayed summands-the local context is ∆ = Γ, x : A, and if y 1 and y 2 have the same type in ∆ with target atom p, both variables appear as head variables with the same lists of argument terms. For variable occurrences hidden in the j-th argument of some y, we use two facts: (i) the j-th argument is maximally decontracted w. r. t. ∆ by coinductive hypothesis; (ii) ∆ collects the variables λ-abstracted on the path from the root of the term to the root of j-th argument.

Example 13. Let Γ := {z : p}, ∆ := Γ, x : p, N := λx p .z and N := λx p .z + x . The term N is not maximally decontracted w. r. t. Γ. Intuitively, the sum z is not saturated, as it does not record all the alternative proofs of ∆ ⇒ p. Hence N cannot be the full solution space S(Γ ⇒ p ⊃ p) -the latter is N , hence N is maximally decontracted w. r. t. Γ, by the previous lemma. The output of decontraction [Γ/Γ]N (being N) is not maximally decontracted8 . We will be interested mostly in applying decontraction to already maximally decontracted terms, e. g., full solution spaces. Proof Easy coinduction.

The disjointness condition of the previous lemma is rather severe. It can be replaced by maximal decontraction of the given term.

Lemma 12. If Γ , ∆ is a context, Γ ≤ Γ and T is maximally decontracted w. r. t. Γ, ∆, then [Γ , ∆/Γ, ∆]T = [Γ /Γ]T .
Proof By coinduction. The proof then boils down to showing for any subterm z N i i of T , if a w = z is found according to the last clause of the definition of decontraction with [Γ , ∆/Γ, ∆], then one can also find w according to the last clause of the definition of decontraction with [Γ /Γ]. Assume such a w. Since it comes from the last clause, we have z ∈ dom(Γ, ∆) (hence, by the usual convention on the naming of bound variables, z is even a free occurrence in T), and (w : (Γ, ∆)(z)) ∈ Γ \ Γ. If z ∈ dom(Γ), then we are obviously done. Otherwise, z ∈ dom(∆), and so (w : ∆(z)) ∈ Γ \ Γ. Since |Γ | = |Γ|, there is (x : ∆(z)) ∈ Γ. Since T is maximally decontracted w. r. t. Γ, ∆, the subterm z N i i is one summand in a sum which also has the summand x N i i , and for the latter summand, the last clause of the definition of decontraction with [Γ /Γ] can be used with (w : Γ(x)) ∈ Γ \ Γ.

Corollary 1. If Γ , ∆ is a context, Γ ≤ Γ , then [Γ , ∆/Γ, ∆]S(Γ, ∆ ⇒ C) = [Γ /Γ]S(Γ, ∆ ⇒ C).
Proof Combine the preceding lemma with Lemma 10. 9The following main result of this section says that the full solution space w. r. t. an inessential extension of a context is obtained by applying the decontraction operation to the full solution space corresponding to the original context.

Lemma 13 (Decontraction and full solution spaces

). If Γ ≤ Γ then S(Γ ⇒ C) = [Γ /Γ](S(Γ ⇒ C)). Proof Let R := {(S(Γ ⇒ C), [Γ /Γ](S(Γ ⇒ C))) | Γ ≤ Γ , C arbitrary}.
We prove that R is closed backward relative to the notion of bisimilarity taking sums of alternatives as if they were sets. From this, we conclude R ⊆=.

S(Γ ⇒

C) = λz A1 1 • • • z An n . (z: B⊃p)∈∆ z S(∆ ⇒ B j) j (15)
and

[Γ /Γ](S(Γ ⇒ C)) = λz A1 1 • • • z An n . (y: B⊃p)∈∆ (w:∆(y))∈∆ y w [Γ /Γ]S(∆ ⇒ B j) j (16
)
where ∆ := Γ, z 1 : A 1 , . . . , z n : A n , ∆ := Γ , z 1 : A 1 , . . . , z n : A n , for y ∈ dom(Γ), ∆ y := {(y : ∆(y))}∪(Γ \Γ), and for y = z i , ∆ y = {(y : ∆(y))}.

From Γ ≤ Γ we get ∆ ≤ ∆ , hence

(S(∆ ⇒ B j), [∆ /∆]S(∆ ⇒ B j)) ∈ R ,
which fits with the summands in (16) since, by Corollary 1, [∆ /∆]S(∆ ⇒ B j) = [Γ /Γ]S(∆ ⇒ B j). To conclude the proof, it suffices to show that (i) each head-variable z that is a "capability" of the summation in (15) is matched by a head-variable w that is a "capability" of the summation in [START_REF] Gentzen | Investigations into logical deduction[END_REF]; and (ii) vice-versa.

(i) Let z ∈ dom(∆). We have to exhibit y ∈ dom(∆) such that (z : ∆(y)) ∈ ∆ y . First case: z ∈ dom(∆). Then, (z : ∆(z)) ∈ ∆ z . So we may take y = z. Second and last case: z ∈ dom(Γ) \ dom(Γ). By definition of Γ ≤ Γ , there is y ∈ dom(Γ) such that (z : Γ(y)) ∈ Γ . Since Γ(y) = ∆(y) and z / ∈ dom(∆), we get (z : ∆(y)) ∈ ∆ y .

(ii) We have to show that, for all y ∈ dom(∆), and all (w : ∆(y)) ∈ ∆ y , (w : ∆(y)) ∈ ∆ . But this is immediate.

Notice that we cannot expect that the summands appear in the same order in [START_REF] Sørensen | Lectures on the Curry-Howard Isomorphism[END_REF] and [START_REF] Gentzen | Investigations into logical deduction[END_REF]. Therefore, we are obliged to use symmetry of +. It is even convenient to disregard multiplicity, as seen in the following example. . Taken together, these calculations contradict the strengthening of Lemma 13 without idempotence of +, when the parameters Γ, Γ , of the lemma are taken as Θ, Θ , and they also contradict the analogous strenghtening of Corollary 1 when the parameters Γ, Γ , ∆, C of the corollary are as given here.

The summand-wise and therefore rather elegant definition of decontraction is the root cause for this blow-up of the decontracted terms. However, mathematically, there is no blow-up since we identify (x + y) + (z + y) with x + y + z, as they represent the same set of elimination alternatives.

In the light of Lemma 10, Lemma 13 shows that S(Γ ⇒ C), which is maximally decontracted w. r. t. Γ, only needs the application of the decontraction operation [Γ /Γ] for Γ ≤ Γ to obtain a term that is maximally decontracted w. r. t. Γ .

Example 15 (Example 7 continued). Thanks to Lemma 13, N 9 is obtained by decontraction from N 5 :

N 9 = [x : •, y : (p ⊃ q) ⊃ p, z : p, y 1 : (p ⊃ q) ⊃ p, z 1 : p / x : •, y : (p ⊃ q) ⊃ p, z : p]N 5 ,
where the type of x has been omitted. Hence, N 6 , N 7 , N 8 and N 9 can be eliminated, and N 5 can be expressed as the (meta-level) fixed point:

N 5 = ν N.x λy (p⊃q)⊃p 1 .y λz p 1 .[x, y, z, y 1 , z 1 /x, y, z]N + z + y 1 λz p 1 .
[x, y, z, y 1 , z 1 /x, y, z]N , now missing out all types in the decontraction operation(s). Finally, we obtain the closed forest S(⇒ DNPEIRCE) = λx PEIRCE⊃q .x λy (p⊃q)⊃p .y λz p .N 5

This representation also makes evident that, by exploiting the different decontracted copies of y, there are infinitely many M ∈ λ co \λ such that mem(M, S(⇒ DNPEIRCE)), in other words, ⇒ DNPEIRCE has infinitely many infinite solutions. Visibly, the only infinite solution is obtained by choosing always the left alternative, creating infinitely many vacuous bindings, thus it can be described as λx (p⊃p)⊃p .N 0 with N 0 = x λ p .N 0 (where is the name of choice for a variable that has no bound occurrences).

We have now seen succinct presentations of the full solution spaces of all of the examples in Example 1. Although described with few mathematical symbols, they are still on the informal level of infinitary terms with meta-level fixed points, but this will be remedied by a finitary system in the next section.

A typed finitary system for solution spaces

In this section we develop a finitary lambda-calculus to represent solution spaces of proof search problems in λ. The main points in the design of the calculus are:

1. λ is extended with fixed-point variables and formal greatest fixed points, as well as formal sums; 2. Fixed-point variables stand for spaces of solutions; 3. Fixed-point variables are typed by logical sequents; 4. A relaxed form of binding of fixed-point variables has to be allowed, and controlled through the typing system.

The calculus is called finitary because its terms are generated inductively; and its terms are called finitary forests due to the presence of formal sums. There is a semantics of the finitary forests, by way of an interpretation into forests. The relaxed form of binding is matched, on the semantical side, by the special operation of decontraction. This is developed in the first subsection, with the typing system only coming in the second subsection. To each sequent, one can associate a finitary forest (third subsection) whose interpretation is the forest that represents the full solution space of the sequent: this is our foundational theorem (fourth subsection), showing the completeness of the semantics w. r. t. those forests that represent solution spaces. The fifth and final subsection presents a variation of the semantics, that will be needed in the applications described in Section 6.

The untyped system λ gfp

Σ

The set of inductive cut-free lambda-terms with finite numbers of elimination alternatives, and a fixed-point operator is denoted by λ gfp Σ and is given by the following grammar (read inductively):

(terms)

N ::= λx A .N | gfp X ρ .E 1 + • • • + E n | X ρ (elim. alternatives) E ::= x N 1 , . . . , N k
where X is assumed to range over a countably infinite set of fixed-point variables (also letters Y , Z will range over them), and where, as for λ co Σ , both n, k ≥ 0 are arbitrary. We extend our practice established for λ co Σ of writing the sums E 1 + • • • + E n in the form i E i for n ≥ 0. Also the tuples continue to be communicated as N i i . As for λ co Σ , we will identify expressions modulo symmetry and idempotence of +, thus treating sums of elimination alternatives as if they were the set of those elimination alternatives. Again, we will write T for expressions of λ gfp Σ , i. e., for terms and elimination alternatives. In the term formation rules, letter ρ appears. It is supposed to stand for "restricted" logical sequents in that we require them to be atomic, i. e., of the form Γ ⇒ p with atomic conclusion. Henceforth, this restriction is indicated when using the letter ρ, possibly with decorations. Let FPV (T) denote the set of free occurrences of typed fixed-point variables in T , defined with the expected cases as follows: FPV (X ρ) := {X ρ }, FPV (λx A .N) := FPV (N), FPV (x N 1 , . . . , N k) := FPV (N 1) ∪ . . . ∪ FPV (N k). However, in gfp X ρ . i E i the fixed-point construction gfp binds all free occurrences of X ρ in the elimination alternatives E i , not just X ρ , as long as ρ ≤ ρ . To be precise, the definition is as follows:

FPV (gfp X ρ .E 1 + • • • + E n) := FPV (E 1) ∪ . . . ∪ FPV (E n) \ {X ρ | ρ atomic logical sequent and ρ ≤ ρ }
In fact, the sequent ρ serves a different purpose than being the precise type of bound fixed-point variables X, see below on well-bound expressions that require at least that only X ρ with ρ ≤ ρ are free in the body of the gfp-abstraction with binding variable X ρ .

In the sequel, when we refer to finitary forests we have in mind the terms of λ gfp Σ . The fixed-point operator is called gfp ("greatest fixed point") to indicate that its semantics is (now) defined in terms of infinitary syntax, but there, fixed points are unique. Hence, the reader may just read this as "the fixed point".

We next present a general-purpose interpretation of expressions of λ gfp Σ in terms of the coinductive syntax of λ co Σ (using the ν operation on the meta-level). We stress its general purpose by putting g as upper index to the semantics brackets. This is for contrast with the special-purpose interpretation we introduced under the name "simplified semantics" in our subsequent work [3] and that will be presented at the end of this Section 5. The general-purpose interpretation of finitary forests is based on the same ideas as our original interpretation [START_REF] Santo | A coinductive approach to proof search[END_REF] but is more precise on the conditions that guarantee its well-definedness. (Nonetheless, in the cited paper, no problem arises with the less precise definitions since only representations of full solution spaces were interpreted, see below.)

We call an expression T trivially regular if FPV (T) has no duplicates: A set S of typed fixed-point variables is said to have no duplicates if the following holds: if X ρ1 , X ρ2 ∈ S, then ρ 1 = ρ 2 . In other words: X does not appear with two different types in S. We do not confine our investigation to trivially regular expressions, see Appendix A for an example where we require more flexibility.

Definition 6 (Regularity in λ

gfp Σ). Let T ∈ λ gfp Σ .
T is regular if for all fixed-point variable names X, the following holds: if X ρ ∈ FPV (T) for some sequent ρ, then there is a sequent ρ 0 such that, for all X ρ ∈ FPV (T), ρ 0 ≤ ρ .

Obviously, every trivially regular T is regular (using ρ 0 := ρ and reflexivity of ≤ since ρ = ρ). Trivially, every closed T , i. e., with FPV (T) = ∅, is trivially regular.

As is to be expected, interpretation of expressions of λ gfp Σ is done with the help of environments, a notion which will be made more precise than in [START_REF] Santo | A coinductive approach to proof search[END_REF]. Since interpretations of T only depend on the values of the environment on FPV (T), we rather assume that environments are partial functions with a finite domain. Hence, an environment ξ is henceforth a partial function from typed fixed-point variables X ρ to (co)terms of λ co Σ with finite domain dom(ξ) that has no duplicates (in the sense made precise above).

The interpretation function will also be made partial: [[T]] g ξ will only be defined when environment ξ is admissible for T : Definition 7 (Admissible environment). An environment ξ is admissible for expression T of λ gfp Σ if for every X ρ ∈ FPV (T), there is an X ρ ∈ dom(ξ) such that ρ ≤ ρ .

Notice that the required sequent ρ in the above definition is unique since ξ is supposed to be an environment. This observation even implies the following characterization of regularity: Lemma 14. T ∈ λ gfp Σ is regular iff there is an environment ξ that is admissible for T .

Proof Obvious.

We have to add a further restriction before defining the interpretation function:

Definition 8 (Well-bound expression). We call an expression T of λ gfp Σ well-bound iff for any of its subterms gfp X ρ . i E i and any free occurrence of X ρ in any E i , ρ ≤ ρ .

According to our definition of FPV , an expression that is not well-bound has a subterm N := gfp X ρ . i E i such that FPV (N) contains some X ρ that "escapes" the binding because ρ ≤ ρ does not hold. Finitary forests we will construct to represent search spaces therefore ought to be well-bound, and this will be strengthened in Lemma 18 to a question of typability.

Definition 9 (General-purpose interpretation of finitary forests as forests). For a well-bound expression T of λ gfp

Σ , the interpretation [[T]] g ξ for an environment ξ that is admissible for T is given by structural recursion on T in Figure 8. Notice that the case of gfp uses the extended environment ξ ∪ [X ρ → N] that is admissible for E i thanks to our assumption of well-boundness. (Moreover, by renaming X, we may suppose that there is no X ρ in dom(ξ).) The meta-level fixed point over N is well-formed since every elimination alternative starts with a head/application variable, and all occurrences of N in the summands are thus guarded by constructors for elimination alternatives, and therefore the fixed-point definition is productive (in the sense of producing more and more data of the fixed point through iterated unfolding) and uniquely determines a forest, unlike an expression of the form ν N.N that does not designate a forest and would only come from the syntactically illegal term gfp X ρ .X ρ .

[[X ρ]] g ξ = [ρ /ρ]ξ(X ρ) for the unique ρ ≤ ρ with X ρ ∈ dom(ξ) [[gfp X ρ . i E i]] g ξ = ν N. i [[E i]] g ξ∪[X ρ →N] [[λx A .N]] g ξ = λx A .[[N]] g ξ [[x N i i]] g ξ = x [[N i]] g ξ i
We better not use the shorthand [[•]] g ξ with the placeholder for the expression from λ gfp Σ to be interpreted since the question of admissibility of ξ depends on the actual argument T .

The interpretation [[T]] g ξ only depends on the values of ξ for arguments X ρ for which there is a sequent ρ such that X ρ ∈ FPV (T). In more precise words, the interpretations [[T]] g ξ and [[T]] g ξ coincide whenever ξ and ξ agree (already w. r. t. definedness) on all typed fixed-point variables X ρ for which there is a sequent ρ such that X ρ ∈ FPV (T).

If T is closed, i. e., FPV (T) = ∅, then the empty function is an admissible environment for T , and the environment index in the interpretation is left out, hence the interpretation is abbreviated to [[T]] g . Anyway, the interpretation of a closed T does not depend on the environment.

If no X ρ occurs free in i E i for any sequent ρ , we allow ourselves to abbreviate the finitary forest gfp X ρ . i E i as i E i . Thanks to our observation above on the dependence of

[[T]] g ξ on ξ, we have [[i E i]] g ξ = i [[E i]] g ξ .

Typing system for λ gfp

Σ

We now have finitary means to represent solution spaces, in other words, the finitary forests of λ gfp Σ can now serve as witnesses for the existence of suitable forests (terms of λ co Σ) that arise as their general-purpose semantics. According to the idea of the Curry-Howard correspondence, these witnesses appear as the proof objects that are being typed in a typing system that is to be understood as a constructive deductive system for solution spaces. Due to the semantics into forests of λ co Σ , this deductive system, when seen as a logic, is a "logic of coinductive proofs"-or rather a "logic of coinductive proof spaces", due to the use of sums.

The main desiderata for the typing system we are about to introduce are soundness and completeness in the following sense: Soundness means that if a proof object T is typed in the typing system by a certain sequent, then the semantics of T is a forest in λ co Σ whose members are proofs (more generally, solutions) of that sequent. Completeness means that every sequent types a proof object T such that its semantics is a forest in λ co Σ whose members are exactly all proofs (more generally, solutions) of that sequent. The deductive system we are introducing is in the form of a typing system for λ gfp Σ , and it is given through inference rules for deriving sequents of the general form Ξ Γ T : B, shown in Figure 9. Here are some explanations of the figure. The first context Ξ has the form ---→ X : ρ, so fixed-point variables are typed by atomic sequents. The sequents accumulated in Ξ are the "coinductive hypotheses" of the typing derivation, when the latter is seen as a proof in the "logic of coinductive proofs". The first typing rule in Figure 9 implies that fixed-point variables enjoy a relaxed form of binding.

The context Ξ is such that no fixed-point variable name X occurs twice (there is no condition concerning duplication of sequents). So, Ξ can be (and will be) seen as a partial function, and Ξ, when regarded as a set of typed fixed-point variables, has no duplicates. If Ξ is empty, then we write Γ T : B instead of Ξ Γ T : B.

Lemma 15 (Weakening

). If Ξ Γ T : B, Ξ ⊆ Ξ and Γ ⊆ Γ then Ξ Γ T : B.
Proof Obvious since, for the Ξ argument, there is only look-up, and for the Γ argument, weakening is directly built into the rules concerning fixed-point variables and goes through inductively for the others.

(X : ρ) ∈ Ξ ρ ≤ ρ = (Θ ⇒ p) Θ ⊆ Γ Ξ Γ X ρ : p for all i, Ξ, X : ρ Γ E i : p ρ = (Θ ⇒ p) Θ ⊆ Γ Ξ Γ gfp X ρ . i E i : p Ξ Γ, x : A N : B Ξ Γ λx A .N : A ⊃ B (x : B ⊃ p) ∈ Γ for all i, Ξ Γ N i : B i Ξ Γ x N i i : p Lemma 16. If Ξ Γ
T : B then the free term variables of T are in dom(Γ).

Notice that the free term variables of X Γ⇒p are dom(Γ) and that dom(Γ) enters the free term variables of gfpX Γ⇒p . i E i .

Proof Induction on T .

Lemma 17. If Ξ Γ T : B and X ρ ∈ FPV (T) then there is a sequent ρ such that (X : ρ) ∈ Ξ and ρ ≤ ρ .

Proof Induction on T .

Corollary 2. If Ξ Γ

T : B, and ξ is a partial function from typed fixed-point variables X ρ to (co)terms of λ co Σ with domain Ξ, then ξ is an environment, and it is admissible for T .

As a consequence of the last lemma, we obtain by induction on T :

Lemma 18 (Typable terms are well-bound). If Ξ Γ T : B then T is well-bound.

Proof Induction on T .

Definition 10 (Well-typed environment). An environment ξ is well-typed w. r. t. context Γ if for all X Θ⇒q ∈ dom(ξ), Θ ⊆ Γ and Γ ξ(X Θ⇒q) : q (in λ co Σ).

Lemma 19 (Soundness of the typing system for λ gfp Σ w.r.t. the general-purpose interpretation). Let Ξ Γ T : B in λ gfp Σ and ξ be a well-typed environment w. r. t. Γ with dom(ξ

) = Ξ. Then Γ [[T]] g ξ : B in λ co Σ . In particular (for empty Ξ), if Γ T : B in λ gfp Σ , then Γ [[T]] g : B in λ co Σ .
A proof sketch is as follows: Induction on T , using Lemma 9 in the base case of a fixed-point variable and using an embedded coinduction in the case of a greatest fixed point. To see how this works intuitively, we set T := gfp X ρ . i E i and assume Ξ Γ T : p, which comes in particular from Ξ Γ E i : p for all i, with Ξ := Ξ, X :

ρ. By definition, [[T]] g ξ = i [[E i]] g ξ , with ξ := ξ ∪ [X ρ → [[T]] g ξ].
Our goal is to show that Γ [[T]] g ξ : p. Since the typing relation is coinductive, we spawn a coinduction for this goal. It suffices to show for every i that Γ [[E i]] g ξ : p. For this, we apply the induction hypothesis on Ξ Γ E i : p and the environment ξ that is well-typed w. r. t. Γ and has the right domain. Well-typedness demands in particular that Γ ξ (X ρ) : p, but this is Γ [[T]] g ξ : p that we assumed coinductively. And this reasoning is not circular since the appeal to the coinductive hypothesis in the so constructed argument for the typing judgement is guarded through the application of typing rules. This application of guarded coinduction is still peculiar since the goal to be proved enters the provisos of the lemma. However, a rather straightforward argument depending on "observation depth" can be given, which we will develop now.

A n N : B Γ n+1 λx A .N : A ⊃ B (x : B ⊃ p) ∈ Γ ∀i, Γ n N i : B i Γ n+1 x N i i : p ∀i, Γ n E i : p Γ n+1 i E i : p Γ 0 T : A
Definition 11 (Typability in λ co Σ with observation depth). We define for n ≥ 0 the n-typability relation Γ n T : A with the same data Γ, T and A as for typability in λ co Σ , by recursion on n. The recursive definition is presented in the style of inductive derivation rules in Figure 10.

The first three rules take up the coinductive rules for typing in λ co Σ but replace the coinductive reading by the descent from index n + 1 to n when read backwards. The last rule expresses that if we are interested in observations up to depth 0 only, every forest is accepted. Hence index 0 does not stand for an observation at the root but for no observation at all. Lemma 20 (Antitonicity of n-typability). Given a context Γ, a formula A and a forest T . Then for all n ≥ 0, if Γ n+1 T : A then Γ n T : A.

Proof Obvious induction on n.

We refine Lemma 9 to n-typability.

Lemma 21 (Closedness under decontraction of n-typability). Let T be an expression of λ co

Σ and Γ ∪ ∆ be a context. If Γ ∪ ∆ n T : B and Γ ≤ Γ then the following holds:

1. If T is a term N , then Γ ∪ ∆ n [Γ /Γ]N : B; 2. If T is an elimination alternative E, then Γ ∪ ∆ n E : B holds for every summand E of [Γ /Γ]E.
Proof Simultaneous induction on n (the formulation is general enough to get the induction through).

We will use this lemma for Γ ⊆ ∆ and terms N , hence in the following form:

If ∆ n N : B and Γ ≤ Γ ⊆ ∆, then ∆ n [Γ /Γ]N : B.
Since n-typability simply counts derivation depths of typability and the rules only have finitely many premisses (even if their number is unbounded), we regain typability if n-typability holds for all n.

Lemma 22 (Inductive characterization of typability in λ co Σ). Given a context Γ, a formula A and a forest T . Then Γ T : A iff Γ n T : A for all n ≥ 0.

Proof From left to right: induction on n. From right to left: the usual coinductive argument, exploiting antitonicity to put together indices obtained for the finitely many premisses.

Lemma 23 (Ramification of Lemma 19). Let Ξ Γ

T : B in λ gfp Σ and ξ be an environment with dom(ξ) = Ξ such that for all X Θ⇒q ∈ dom(ξ), Θ ⊆ Γ. Then, the following implication holds for all n ≥ 0:

If for all X Θ⇒q ∈ dom(ξ), Γ n ξ(X Θ⇒q) : q, then Γ n [[T]] g ξ : B.
Proof Let us denote by A n (ξ) the assumption of the implication to prove, for all n ≥ 0. The proof is by induction on T (equivalently, on the derivation of Ξ Γ T : B).

Case T = X ρ . Then B = p, (X : ρ) ∈ Ξ, ρ = (Θ ⇒ p) ≤ (Θ ⇒ p) = ρ with Θ ⊆ Γ. Recall that ρ ≤ ρ is equivalent to Θ ≤ Θ . Let n ≥ 0 and assume A n (ξ), in particular Γ n ξ(X ρ) : p. By Lemma 21, since ξ(X ρ) is a term of λ co Σ , we get Γ n [Θ /Θ](ξ(X ρ)) : p, but [Θ /Θ](ξ(X ρ)) = [ρ /ρ](ξ(X ρ)) = [[T]] g ξ . Case T = gfp X ρ . i E i , with ρ = (θ ⇒ p). Then B = p, Θ ⊆ Γ
and for all i, Ξ Γ E i : p, with Ξ := Ξ, X : ρ. We prove the announced implication by induction on n. The case n = 0 is trivial by the definition of 0-typability. We thus assume as side induction hypothesis that A n (ξ) implies Γ n [[T]] g ξ : p. We assume A n+1 (ξ) and have to show Γ n+1 [[T]] g ξ : p. As in the proof sketch for Lemma 19,

[[T]] g ξ = i [[E i]] g ξ , with ξ := ξ ∪ [X ρ → [[T]] g ξ].
Let i be one of the indices. We have to show that Γ n [[E i]] g ξ : p. We apply the main induction hypothesis for E i , with the derivation Ξ Γ E i : p and environment ξ which satisfies the global condition for the environment in the lemma since for X Θ⇒p ∈ dom(ξ) \ dom(ξ), we also have Θ ⊆ Γ. It thus remains to show A n (ξ). We already assumed A n+1 (ξ), hence by Lemma 20, we also have A n (ξ), and the side induction hypothesis ensures Γ n [[T]] g ξ : p, but the latter is Γ n ξ (X ρ) : p. This was the missing verification to pass from A n (ξ) to A n (ξ).

The other cases require no technical intricacies and use Lemma 20 and the admissible rule of context weakening for n-typability (in the case of lambda-abstraction).

By virtue of both directions of Lemma 22, Lemma 19 follows from its ramification.

By composing the soundness properties of the general-purpose interpretation and the membership semantics of Section 3 we obtain the following result, which says that, if T is typable in the typing system for λ gfp Σ , then [[T]] g only has "correct" members (finite or infinite).

Theorem 1 (Soundness of the typing system for λ gfp Σ). If Γ T : B in λ gfp Σ , then:

1. For N ∈ λ co , if mem(N, [[T]] g) then Γ N : A in λ co . 2. For t ∈ λ, if mem(t, [[T]] g) then Γ t : A in λ.
Proof By Lemmas 3 and 19.

Finitary representation of full solution spaces

Full solution spaces for λ can be shown to be finitary, with the help of the finitary representation mapping F(σ; Ξ), which we introduce now.

Definition 12 (Finitary representation of full solution spaces). Let Ξ :=

---→ X : ρ be a vector of m ≥ 0 declarations (X i : ρ i) with ρ i = Θ i ⇒ q i where no fixed-point variable name occurs twice. The definition of F(Γ ⇒ A ⊃ p; Ξ) is as follows:

If, for some

1 ≤ i ≤ m, p = q i , Θ i ⊆ Γ and |Θ i | = |Γ| ∪ {A 1 , . . . , A n }, then F(Γ ⇒ A ⊃ p; Ξ) := λz A1 1 • • • z An n .X ρ i ,
where i is taken to be the biggest such index. 10 Otherwise,

F(Γ ⇒ A ⊃ p; Ξ) := λz A1 1 • • • z An n .gfp Y ρ . (y: B⊃p)∈∆ y F(∆ ⇒ B j ; Ξ, Y : ρ) j
where, in both cases, ∆ := Γ, z 1 : A 1 , . . . , z n : A n with a context z 1 : A 1 , . . . , z n : A n of "fresh" variables (not occurring in Γ or any Θ i), and ρ := ∆ ⇒ p. In the latter case, Y is tacitly supposed not to occur in Ξ (otherwise, the extended list of declarations would not be well-formed).

Notice that, in the first case, the leading lambda-abstractions bind variables in the type superscript ρ of X i , and that the condition Θ i ⊆ Γ-and not Θ i ⊆ ∆-underlines that the fresh variables z 1 , . . . , z n cannot be consulted although their types enter well into the next condition

|Θ i | = |Γ| ∪ {A 1 , . . . , A n }, which is equivalent to |Θ i | = |∆| (of which only |Θ i | ⊇ |∆| needs to be checked).
The first case represents the situation when the full solution space is already captured by a purported solution X i for the sequent Θ i ⇒ p with the proper target atom, with all hypotheses in Θ i available in Γ and, finally, no more formulas available for proof search in the extended current context ∆ than in Θ i . Hence, the purported solution X i only needs to be

F(⇒ A) = λx A0⊃q .N 1 N 1 = gfp X x⇒q 1 .x F(x ⇒ A 0 ; X 1) F(x ⇒ A 0 ; X 1) = λy (p⊃q)⊃p .N 3 N 3 = gfp X x,y⇒p 2 .y F(x, y ⇒ p ⊃ q; X 1 , X 2) F(x, y ⇒ p ⊃ q; X 1 , X 2) = λz p .N 5 N 5 = gfp X x,y,z⇒q 3 .x F(x, y, z ⇒ A 0 ; X 1 , X 2 , X 3) F(x, y, z ⇒ A 0 ; X 1 , X 2 , X 3) = λy (p⊃q)⊃p 1 .N 7 N 7 = gfp X x,y,z,y1⇒p 4 . y F(x, y, z, y 1 ⇒ p ⊃ q; X 1 , X 2 , X 3 , X 4) + z+ y 1 F(x, y, z, y 1 ⇒ p ⊃ q; X 1 , X 2 , X 3 , X 4) F(x, y, z, y 1 ⇒ p ⊃ q; X 1 , X 2 , X 3 , X 4) = λz p 1 .N 9 N 9 = X x,y,z,y1,z1⇒q
3 expanded by decontraction in order to cover the full solution space for ρ (as will be confirmed by Theorem 2). That F indeed is a total function will be proven below in Lemma 24.

In the sequel, we will omit the second argument Ξ to F in case Ξ is the empty vector of declarations (m = 0 in the definition).

Note that, whenever one of the sides of the following equation is defined according to the first or second case, then so is the other, and the equation holds (of course, it is important to use variables z i that are fresh w. r. t. Ξ):

F(Γ ⇒ A ⊃ p; Ξ) = λz A1 1 • • • z An n .F(Γ, z 1 : A 1 , . . . , z n : A n ⇒ p; Ξ)
Example 17 (Examples 7 and 15 continued). We calculate the finitary forest representing the full solution space for the twice negated Peirce formula A := DNPEIRCE, writing A 0 for PEIRCE. The successive steps are seen in Figure 11 where we continue with the omission of formulas in the left-hand sides of sequents.

For brevity, we do not repeat the sequents associated with the fixed-point variables. The names of intermediary terms are chosen for easy comparison with Example 7. The fixed-point variables X 1 , X 2 and X 4 thus have no occurrences in F(⇒ A), and, as announced before, we will omit them in our resulting finitary forest F(⇒ DNPEIRCE) = λx PEIRCE⊃q .x λy (p⊃q)⊃p .y λz p .N 5 with N 5 = gfp X x,y,z⇒q

3

.x λy (p⊃q)⊃p 1

.y λz p 1 .X x,y,z,y1,z1⇒q 3 + z + y 1 λz p 1 .X x,y,z,y1,z1⇒q 3 , still omitting the formulas in the left-hand sides of the sequents.

Example 18. For the other examples, we have the following representations.

• F(BOOLE) = λx p .λy p .x + y.

• F(INFTY) = λf p⊃p .gfp X f :p⊃p⇒p .f X f :p⊃p⇒p . • F(CHURCH) = λf p⊃p .λx p .gfp X ρ .f X ρ + x with ρ := f : p ⊃ p, x : p ⇒ p.
• F(PEIRCE) = λx (p⊃q)⊃p .x λy p .O (using O for the empty sum under the omitted gfp).

• F(THREE) = λx (p⊃p)⊃p .x λy p .gfp Y ρ1 .x λz p .Y ρ2 + y with ρ 1 := x : (p ⊃ p) ⊃ p, y : p ⇒ p, ρ 2 := x : (p ⊃ p) ⊃ p, y : p, z : p ⇒ p, hence ρ 1 ≤ ρ 2 .

Notice that for INFTY, CHURCH and THREE, the presentation of the full solution spaces had already been brought close to this format thanks to cycle analysis that guided the unfolding process, and Theorem 2 below ensures that this works for any sequent.

Notice that yet more detailed invariants could be established above (under the same restrictions we were allowed to ask for without loss of generality): Θ 1 ⊆ . . . ⊆ Θ m would also be preserved under reduction, as well as that the last Θ m is Γ, unless m = 0. Yet another invariant is that all q i are in |Γ| sub . All of them can be trivially initiated with empty Ξ and thus are observed in F(σ).

Also notice that, while the growing size of Ξ is our argument for termination, an implementation for calculating F(σ) would rather not store all of Ξ in its recursive calls: as soon as a reduction occurs where |∆| is a strict superset of |Γ|, it is clear that the if-case of Definition 12 can never apply for some element in Ξ in the recursive calculation of F(∆ ⇒ B j ; Ξ, Y : ρ), so (the old) Ξ does not need to be stored in those further recursive calls.

An important objective of the typing system in Section 5.2 is attained by the following result:

Lemma 25 (Finitary representation is well-typed).

Ξ Γ F(Γ ⇒ C; Ξ) : C .
In particular, Γ F(Γ ⇒ C) : C.

Proof By structural recursion on the obtained finitary forest F(Γ ⇒ C; Ξ). Notice that the context weakening built into the gfp rule in Figure 9 is not needed for this result (i. e., Θ and Γ of that rule can always agree).

Corollary 3 (Finitary representation is well-bound). F(σ; Ξ) is well-bound, and F(σ) is closed.

Proof Use Lemma 18 for the first part. Notice that this is needed to argue that free fixed-point variables of F(σ; Ξ) have necessarily names that occur in Ξ. But we can just apply Lemma 17 for empty Ξ to obtain the second part.

5.4. Equivalence of representations and completeness of the typing system for λ gfp Σ Now, we establish the result on the equivalence of the coinductive and inductive representations of the full solution spaces. For this, we need that forests are identified not only up to bisimilarity, because of the rather rough way decontraction operates that takes identification up to symmetry and idempotence of the sum operation for the elimination alternatives for granted. The proof below is a revision of the proof of [2, Theorem 24] in the light of the new notion of environments and their admissibility w. r. t. a term, but with the help from the typing system for finitary forests.

Theorem 2 (Equivalence). For any sequent σ, [[F(σ)]] g = S(σ).

Proof

For a vector Ξ = ---→ X : ρ satisfying the requirements in Definition 12, the mapping ξ Ξ obtained by setting ξ Ξ (X ρi i) := S(ρ i) is an environment. By Corollary 3, F(σ; Ξ) is well-bound. Moreover, using Corollary 2, we have that ξ Ξ is admissible for F(σ; Ξ). Therefore, [[F(σ; Ξ)]] g ξΞ is well-defined. We will show that [[F(σ; Ξ)]] g ξΞ = S(σ) -whose right-hand side is independent from Ξ, and thus also its left-hand side. The theorem follows by taking for Ξ the empty vector, since by convention the empty environment is omitted from the notation for the general-purpose interpretation. (Anyway, by Corollary 3, F(σ) is closed and thus its general-purpose interpretation does not depend on an environment.)

The proof is by structural induction on the term F(σ; Ξ). Let σ = Γ ⇒ A ⊃ p and ∆ := Γ, z 1 : A 1 , . . . , z n : A n , as in Definition 12. We will again assume that ρ i is given as Θ i ⇒ q i . Case p = q i and Θ i ⊆ Γ and |Θ i | = |∆|, for some 1 ≤ i ≤ m, which implies ρ i ≤ (∆ ⇒ p) (*). The proof of this case is completed in Figure 12.

The inductive case is essentially an extension of the inductive case in [2, Theorem 15] for the Horn fragment. In this other case, we calculate as follows.

LHS = λz A1 1 • • • z An n .N ∞
, where N ∞ is the unique solution of the following equation where ρ := ∆ ⇒ p. Now observe that, by inductive hypothesis (applied to the subexpressions F(∆ ⇒ B j ; Ξ, Y : ρ) of F(σ; Ξ)), the following equations (19) and (20) are equivalent.

N ∞ = (y: - → B ⊃p)∈∆ y [[F(∆ ⇒ B j ; Ξ, Y : ρ)]] g ξΞ∪[Y ρ →N ∞] j (18)
LHS = λz A1 1 • • • z An n .[[X ∆⇒p i]] g ξΞ (by definition) = λz A1 1 • • • z An n .[(∆ ⇒ p)/ρ i]ξ Ξ (X ρi i) (by definition and (*) above) = λz A1 1 • • • z An n .[(∆ ⇒ p)/ρ i]S(ρ i) (by definition of ξ Ξ) = λz A1 1 • • • z An n .S(∆ ⇒ p) (by
S(ρ) = (y: - → B ⊃p)∈∆ y [[F(∆ ⇒ B j ; Ξ, Y : ρ)]] g ξ (Ξ,Y :ρ) j (19)
S(ρ) = (y: - → B ⊃p)∈∆ y S(∆ ⇒ B j) j (20)
By definition of S(ρ), (20

) holds; since ξ (Ξ,Y :ρ) = ξ Ξ ∪ [Y ρ → S(ρ)] and because of (19), S(ρ) is the solution N ∞ of (18). Therefore LHS = λz A1 1 • • • z An n .S(ρ)
, and the latter is RHS by definition of S(Γ ⇒ A ⊃ p).

Corollary 4. F(σ; Ξ) is regular.

Proof By Lemma 14, F(σ; Ξ) is regular since ξ Ξ in the proof above is admissible for it.

See Appendix A for an even stronger result than regularity.

Corollary 5. For every M ∈ λ co , mem(M, [[F(σ)]] g) iff mem(M, S(σ)).

Proof Immediate consequence of Theorem 2. Obviously, membership is not affected by bisimilarity (modulo α-equivalence and our identifications for the sum operation).

The equivalence theorem is the last building block for the announced completeness result on the typing system of λ gfp Σ , which says that, in that typing system, any sequent has an inhabitant T such that the members of [[T]] g are exactly the "correct" ones (finite or infinite).

Theorem 3 (Completeness of the typing system of λ gfp Σ). For every logical sequent σ = Γ ⇒ A, there is a closed finitary forest T such that Γ T : A and:

1. For N ∈ λ co , mem(N, [[T]] g) iff Γ N : A in λ co . 2. For t ∈ λ, mem(t, [[T]] g) iff Γ t : A in λ.
Proof Take T := F(σ). Its recursive definition does terminate (Lemma 24), T receives the right type (Lemma 25), T is closed (Corollary 3), [[T]] g and S(σ) have the same members (Corollary 5) and these are the "correct" ones (Proposition 1). Such completeness cannot be expected at the level of individual solutions. Take, for instance, Γ = x 0 : p ⊃ p, . . . , x 9 : p ⊃ p. Then S(Γ ⇒ p) is the forest N such that N = x 0 < N > + • • • + x 9 < N >, one of whose members is, say, the decimal expansion of π.

Although full solution spaces may have irrational members, they have "rationality" as a collection, since essentially-not taking into account contraction phenomena-they are generated by repeating infinitely a choice from a fixed menu. It is this "rationality" that can be expressed by finitary forests.

Special-purpose semantics

With the equivalence theorem above, the general-purpose semantics in form of interpretation [[T]] g ξ for finitary forests T and suitable environments ξ has demonstrated its usefulness. However, when it comes to verifying properties of logical sequents through our approach, the full solution spaces given by S(σ) play an important role.

In fact, when inspecting the proof of Theorem 2 we observe that the considered environments all have form ξ Ξ , always mapping fixed-point variables X ρ to full solution spaces S(ρ)-this even true for the extended environment ξ Ξ ∪ [Y ρ → N ∞], as comes out of the proof that N ∞ = S(ρ) by using equations (18), [START_REF] Santo | The polarized λ-calculus[END_REF] and the definition of S.

This motivates the more radical step of not only mapping all free fixed-point variables to "their" full solution space, but any occurrence, free or bound. This gives rise to the special-purpose semantics that was mentioned in Section 5.1. To recall from above, we introduced it under the name "simplified semantics" in [3, Definition 15]. Definition 13 (Special-purpose interpretation of finitary forests as forests). For an expression T of λ gfp Σ , the special-purpose interpretation [[T]] s is an expression of λ co Σ given by structural recursion on T :

[[X ρ]] s = S(ρ) [[λx A .N]] s = λx A .[[N]] s [[gfp X ρ . i E i]] s = i [[E i]] s [[x N i i]] s = x [[N i]] s i
Note that the base case profits from the sequent annotation at fixed-point variables, and the interpretation of the gfp-constructor has nothing to do with a greatest fixed point. Of course, this may be "wrong" according to our understanding of a (greatest) fixed point. So, we have to single out those expressions in λ gfp Σ for which this interpretation serves its special purpose.

Definition 14 (Proper expressions). An expression T ∈ λ gfp

Σ is proper if for any of its subterms T of the form gfp X ρ .

i E i , it holds that [[T]] s = S(ρ).
For proper expressions, the special-purpose semantics agrees with the general-purpose semantics we studied before -for the special case of environments we used in the proof of the equivalence theorem. Of course, this can only make sense for expressions which have that previous semantics, in other words for well-bound and regular expressions.

Lemma 26 (Lemma 22 in [3]

). Let T be well-bound and ξ be an admissible environment for T such that for all

X ρ ∈ dom(ξ): ξ(X ρ) = S(ρ). If T is proper, then [[T]] g ξ = [[T]] s .
Corollary 6. For well-bound, closed and proper T ,

[[T]] g = [[T]] s .
The corollary is sufficient for our purposes since F(ρ) is not only well-bound and closed, but also proper, which is the more difficult part of the following result.

Lemma 27 (Equivalence for special-purpose semantics -Theorem 19 in [3]). Let σ be a sequent and Ξ as in Definition 12.

1. F(σ; Ξ) is proper. 2. [[F(σ; Ξ)]] s = S(σ).
In particular, [[F(σ; Ξ)]] s is independent of Ξ, and this conforms with the initial motivation for the specialpurpose semantics, as described above, that leaves no room for different interpretations of "purported solutions" X i (cf. our discussion right after Definition 12).

Application: analysis of proof search

Given a (proof-)search problem, determined by a given logical sequent, one is usually interested in its resolution 11 (the finding of the solution), what is searched for is a finite solution (a proof), and the unique analysis done of the problem is the one that results from the success or failure of the search-the given sequent is or is not provable. In addition, since one wants a finite solution, a layer of algorithmic control (failure and loop detection, followed by backtracking [START_REF] Howe | Two loop detection mechanisms: A comparison[END_REF]) has to be added to the purely logical structure of the search. Finally, this mix of bottom-up proof-search and control is a generic recipe for decision procedures for the logic at hand. 12How does this picture change, given the representations of proof search developed before? First, we may separate all the above concerns relating to proof-search problems: we may postpone control considerations, by giving prominence to solutions rather than proofs; and we may separate analysis from resolution: resolution is just one possible analysis one can make of the representation of the whole collection of solutions that we have at our disposal. Second, we obtain decision procedures just by doing analysis of representations of solution spaces, that is, without "running" the search again: the search is run only once, to generate the finitary representation of the (full) solution space. Third, the decision algorithms are syntax-directed, recursive procedures, driven by the syntax of the finitary calculus, avoiding the mentioned mix of bottom-up proof search and ad hoc algorithmic control.

In this section we give an indication of how the approach to proof search described and justified in the previous sections, and with the characteristics identified above, can be applied, in the context of implicational logic and the simply-typed lambda-calculus, to give new answers to well-known problems about proof search, like decision and counting problems (Section 6.1), to pose and solve new problems (Section 6.2), and to generalize known theorems (Section 6.3). The material in Section 6.3 is new, while the material sketched in the other two was detailed elsewhere [3, 4].

New solutions for old problems

Our finitary representation of full solution spaces F(σ) allows new syntax-directed solutions for inhabitation and counting problems in simply-typed λ-calculus, as shown in detail in [3]. Here we briefly illustrate these new solutions.

Given a sequent σ = (Γ ⇒ A), let I(σ) denote the set of (η-long β-normal) inhabitants of A relative to context Γ in λ, i. e., I(σ) := {t ∈ λ | Γ t : A in λ}. For T ∈ λ co Σ , let E fin (T) denote the finite extension of T , i. e., E fin (T) = {t ∈ λ | mem(t, T)}. Observe that, due to Proposition 1.2 and Theorem 2,

I(σ) = E fin (S(σ)) = E fin ([[F(σ)]] g).
The inhabitation problem in simply-typed λ-calculus can be formulated as the problem "given sequent σ, is the set I(σ) nonempty?" (as is well-known, the answer to this question does not depend on whether all λ-terms are considered or only the β-normal ones or even the η-long β-normal terms). Our solution to this problem starts by defining two predicates exfin and nofin on expressions in λ co Σ (Figure 5 of [3]), which are complementary (exfin(T) iff nofin(T) does not hold [3, Lemma 20]), and capture emptiness of the set of inhabitants (nofin(T) iff E fin (T) is empty [3, Lemma 21]). Next, we define companion predicates EF P and NEF P on expressions in λ gfp Σ that are parameterized by a predicate P on sequents satisfying the proviso: P ⊆ exfin • S and P decidable. The syntax-directed definitions of the two predicates are recalled in Figure 13. Again these predicates are complementary (EF P (T) iff NEF P (T) does not hold [3, Lemma 22]), and the syntax-directedness of their definitions allows to immediately conclude that they are decidable. Then, the following holds: Lemma 28 (Deciding the existence of inhabitants in λ -Theorem 24 of [3]).

EF P (E j) EF P (gfpX σ . i E i) ∀i, EF P (N i) EF P (x N i i) ¬P (σ) NEF P (X σ) NEF P (N) NEF P (λx A .N) ∀i, NEF P (E i) NEF P (gfpX σ . i E i) NEF P (N j) NEF P (x N i i)
Figure 14: FF P and NFF P predicates, for P satisfying the proviso: P ⊆ finfin • S and P decidable.

P (σ) FF P (X σ) FF P (N) FF P (λx A .N) ∀i, FF P (E i) FF P (gfp X σ . i E i) ∀i, FF P (N i) FF P (x N i i) NEF (N j) FF P (x N i i) ¬P (σ) NFF P (X σ) NFF P (N) NFF P (λx A .N) NFF P (E j) NFF P (gfp X σ . i E i) NFF P (N j) ∀i, EF (N i) NFF P (x N i i)
1. For any T ∈ λ gfp Σ well-bound, proper and closed, EF P (T) iff exfin([[T]] s). 2. EF ∅ (F(σ)) iff exfin(S(σ)) iff I(σ) is non-empty. 3. The problem, "given σ, is I(σ) non-empty" is decided by deciding EF ∅ (F(σ)).

Summing up, the inhabitation problem of simply-typed lambda-calculus can be decided by first computing F(σ), and then traversing its structure to decide EF ∅ (F(σ)). The result allows definitions of sharper versions of the predicates EF and NEF that are still decidable: EF := EF P EF * and NEF := NEF P EF * for P EF * := EF ∅ • F (which meets the proviso of Figure 13 thanks to Lemma 28.2 and decidability of EF ∅ (F(σ))). The main result on these predicates is Lemma 27 of [3] that, without any condition on T , we have EF (T) iff exfin([[T]] s).

An easy consequence (that also uses Lemma 28.2) for EF we need in this paper, is that, if N = gfpX ρ . i E i with N proper (but not necessarily closed), then EF (N) is equivalent to EF ∅ (F(ρ)).

A second consequence needed for this paper makes use of Lemma 27.2 (more precisely, the remark immediately after the lemma): for all sequents σ and declarations Ξ and Ξ , EF (F(σ; Ξ)) iff EF (F(σ; Ξ)), which can in particular be used for empty Ξ .

Following the same steps, but making use of the already obtained decidable predicates EF and NEF , a syntax-directed solution can be construed also for the not so well-known problem "given a sequent σ, is I(σ) finite" (studied for example in [START_REF] Ben-Yelles | Type assignment in the lambda-calculus: syntax & semantics[END_REF][START_REF] Hindley | Basic Simple Type Theory[END_REF]). So, we define complementary predicates inffin and finfin on expressions in λ co Σ such that finfin(T) iff E fin (T) [3, Figure 7, Lemmas 28 and 29]. Then we define the companion, complementary predicates FF P and NFF P on expressions in λ gfp Σ , parameterized by a predicate P on sequents satisfying the proviso: P ⊆ finfin • S and P decidable. Again, to appreciate the syntax-directedness of these definitions we recall them in Figure 14. One can then also define [3, Definition 35] sharper versions of the predicates FF and NFF that are still decidable: FF := FF P FF * and NFF := NFF P FF * for P FF * := FF ∅ • F (which meets the proviso of Figure 14 thanks to Lemma 29.2 and decidability of FF ∅ (F(σ))). A generalization of this construction for other notions of finiteness is found in [START_REF] Santo | Decidability of several concepts of finiteness for simple types[END_REF]Definition 4.17]. However, we will not even make use of FF in the remainder of this paper.

In [3], we show that the decision of finiteness of simple types can be supplemented with a syntax-directed procedure to count the number of inhabitants (when there are finitely many of them). This is done through a counting function #(T). In its finitary version (defined only for a subset of λ gfp Σ -the so-called head-variable controlled expressions -but big enough to contain all the finitary representations of full solution spaces F(σ)), #(T) has the following extremely simple definition:

#(X σ) := 0 #(gfpX σ . i E i) := i #(E i) #(λx A .N) := #(N) #(x N i i) := i #(N i)
Then the following instance of [3, Theorem 42] is obtained:

Lemma 30 (Counting theorem). If I(σ) is finite then #(F(σ)) is the cardinality of I(σ).

New questions asked and answered

The "finiteness" of a simple type A usually means the finiteness of the collection of its inhabitants (the meaning taken just above). However, as shown in [START_REF] Santo | Decidability of several concepts of finiteness for simple types[END_REF], this concept of finiteness is just an instance of a "generalized" concept of finiteness that emerges when a simple type is viewed through its full solution space, and solutions are taken as first-class citizens. This generalization encompasses other rather natural concepts of "finiteness" for simple types, such as, finiteness of any solution of A (i. e., the collection of all solutions of A contains only (finite) λ-terms), or finiteness of the full solution space itself (i. e., the forest S(⇒ A) is a finite expression), and one may ask how these concepts relate, or whether the new concepts are still decidable.

The generalized concept of finiteness is defined through a parametrized predicate fin Π on expressions in λ co Σ , where the parameter Π is again a predicate on expressions in λ co Σ [4, Figure 5]. Exploring this concept, one may conclude that: finiteness of the full solution space implies finiteness of all solutions, which in turn implies (much less obviously) finiteness of the collection of inhabitants [START_REF] Santo | Decidability of several concepts of finiteness for simple types[END_REF]Proposition 3.1]. Following the methodology explained above to decide exfin(S(σ)) and finfin(S(σ)), also the generalized finiteness predicate fin Π (S(σ)) is shown to be decidable (for Π subject to some mild conditions) [START_REF] Santo | Decidability of several concepts of finiteness for simple types[END_REF]Theorem 4.3]. This, in particular, implies decidability of the two alternative concepts of finiteness of simple types described above.

An ingredient needed to establish decidability of fin Π (S(σ)) is a separate result establishing decidability of the predicate nosol(S(σ)), which holds when σ has no solution (finite or infinite) [START_REF] Santo | Decidability of several concepts of finiteness for simple types[END_REF]Theorem 4.2]. This result also has a different application, the definition of the pruned solution space of a sequent -the one where branches of the full solution space that are leading to no solution are chopped off. Then, the following version of König's lemma for simple types holds: a simple type has an infinite solution exactly when the pruned solution space is infinite [4, Theorem 4.5].

New results from old ones

It happened to us that, when trying to prove a well-known theorem with our tools, a generalization of the results suggested itself. The theorem is one by Ben-Yelles [START_REF] Ben-Yelles | Type assignment in the lambda-calculus: syntax & semantics[END_REF] (see also Hindley's book [5, Theorem 8D9]) about monatomic types, i. e., types where only occurrences of a single atom are allowed.

Definition 15 (Infinity-or-nothing).

1. We say T ∈ λ gfp Σ has the infinity-or-nothing property (abbreviated as T is i.o.n.) if EF (T) implies NFF † (T), where NFF † := NFF P † with P † := NEF ∅ • F. (Note that P † meets the required proviso of Figure 14: (i) we already observed that NEF ∅ • F is decidable; (ii) P † (σ) implies finfin(S(σ)) (thanks to Lemmas 28.2 and 29.2, this is equivalent to the obviously true requirement: I(σ) empty implies I(σ) finite). As a first simple observation, we have that N i.o.n. implies λx A .N i.o.n. (the abstraction case of EF can be inverted, and there is a matching abstraction case for NFF †). We remark that every X ρ is i.o.n., since EF (X ρ) and NFF † (X ρ) both boil down to EF ∅ (F(ρ)) (due to the complementarity of the two predicates in Figure 13). Of course, this exploits the uncanonical setting with P † as parameter to NFF. Had one taken NFF = NFF FF ∅ •F instead (as introduced after Lemma 28 above), the implication would have been equivalent to the wrong implication that I(ρ) non-empty implies I(ρ) infinite. Also notice that the definition of T i.o.n. for finitary forests that are not closed (where fixed-point variables X ρ are the extreme case) is rather of a technical nature (to be used to get proofs by induction through). Since the parameters for the predicates do not play a role for well-bound, proper and closed expressions of λ gfp Σ (by Lemma 28.1 and Lemma 29.1), we have that for those T , T is i.o.n. iff EF ∅ (T) implies NFF ∅ (T).

The name of the property just introduced is justified by the following result.

Lemma 31.

Let σ be i.o.n. Then I(σ) is either empty or infinite, in other words: if I(σ) is non-empty, then it is infinite. Similarly for an i.o.n. type A.

Proof If I(σ) is non-empty, then by Lemma 28.2, EF ∅ (F(σ)). By monotonicity of EF in its parameter, we get EF (F(σ)). Since σ is i.o.n., this gives NFF † (F(σ)). Since NFF is antitone in its parameter, we get NFF ∅ (F(σ)), hence Lemma 29.2 and the complementarity of the predicates in Figure 14 yield infinity of I(σ).

We now identify sufficient conditions with syntactic flavor for the i.o.n. property. The first one is over finitary forests and concerns occurrences of variables: roughly, in a sum, we need to see an alternative that does not consist of a "shallow" variable, i. e., a naked variable with empty tuple, and that the tuple components correspond to solution spaces of inhabited sequents (when representing solution spaces) among which one recursively satisfies the same criterion.

Definition 16 (Deep finitary forests, sequents, and types).

An expression T in λ gfp

Σ is called deep if this can be derived by the following inductive definition:

• A typed fixed-point variable X ρ is deep. • λx A .N is deep if N is deep. • gfp X ρ . i E i is deep if EF ∅ (F(ρ)) implies that there is a deep summand E i . • x N 1 , . . . , N k is deep if EF (N j)
for all 1 ≤ j ≤ k, and N j is deep for some 1 ≤ j ≤ k (hence k > 0 and the head variable x can be considered as being deeply inside).

= ∆ ⇒ p (where ∆ = Γ, z 1 : A 1 • • • z n : A n), so that F(σ; Ξ) = λz A1 1 • • • z An n .N .
By assumption, F(σ; Ξ) is deep, hence so is N . Therefore: if EF ∅ (F(ρ)), then there is a deep summand E relative to some (y : B ⊃ p) ∈ ∆. We want to show that F(σ; Ξ) is i.o.n. Assume EF (F(σ; Ξ)). Then also EF (N). We have to show that NFF † (F(σ; Ξ)). Since F(σ; Ξ) is proper, so is its subexpression N . By the "easy consequence" mentioned after Lemma 28, we get EF ∅ (F(ρ)) from EF (N). Therefore, there is a

We now obtain the theorem by Ben-Yelles [START_REF] Ben-Yelles | Type assignment in the lambda-calculus: syntax & semantics[END_REF] ([5, Theorem 8D9]) about monatomic types. The original proof and the textbook proof were as a consequence of a more difficult result called Stretching Lemma. But here we see the theorem about monatomic types is just an instance of the more general phenomenon captured by our Theorem 5.

Corollary 7 (Monatomic inhabitation). Let A = A ⊃ p be a monatomic type. If A is flat, that is, each A i is p, then A has exactly n inhabitants where n is the length of A. Otherwise, A has either 0 or infinitely many inhabitants.

Proof The first case is immediate (this includes the case when n = 0). The second case is an instance of Theorem 5: for monatomic types A, A is a g.t.n. iff A is non-flat.

Final remarks

Contribution. We are developing a comprehensive approach to reductive proof search that is naturally integrated with the Curry-Howard isomorphism: the lambda-terms used to represent proofs are seen coinductively in order to capture (possibly infinite) solutions of search problems. But this Curry-Howard representation is just a convenient definition of the structures generated by proof search. An effective analysis has to be conducted in an accompanying, equivalent, finitary representation, which may be seen as the main technical contribution. The role of formal sums also stands out, specially in connection with the new operation of decontraction. Also noteworthy is both the design of the finitary calculus (with its combination of formal sums, fixed points, and a relaxed form of fixed-point variable binding) and its typing system, which uses the relaxed form of binding to detect cycles in proof search, and which is sound and complete w. r. t. a declarative semantics into coinductive forests.

This infrastructure was put to use in the study of proof search, as detailed elsewhere [3,[START_REF] Santo | Decidability of several concepts of finiteness for simple types[END_REF]. A brief indication of the results there obtained was given in Section 6, together with a fresh example of the infrastructure at work in obtaining a generalization of a well-known theorem. Our approach has proved so far to be robust, comprehensive, and innovative. Robust because we could rely on it to obtain many results about proof search, including the benchmark results about decidability of inhabitation. Comprehensive because with the approach we were able to address a wide range of questions, from decision and counting problems to so-called coherence theorems, which is unusual if not unprecedented in the literature. Innovative because we obtained new solutions for old problems, but we were also led to investigate and solve new problems, like those stemming from the consideration of solutions instead of just proofs, and to obtain new results when trying to prove old ones, like in the case of monatomic inhabitation. As detailed in Section 6, the innovative aspect of our applications and solutions can be summarized in these characteristics: (1) Separation of concerns; (2) Run the proof search only once; (3) Syntax-directedness; (4) Solutions and solution spaces as first-class citizens.

In order to test the comprehensiveness of our approach, we have already successfully applied it to the case of full intuitionistic propositional logic as described in [START_REF] Santo | Coinductive proof search for polarized logic with applications to full intuitionistic propositional logic[END_REF] (actually even via a more elaborate polarized intuitionistic logic [START_REF] Santo | The polarized λ-calculus[END_REF]), developing coinductive and finitary representations of the full solution spaces, establishing their equivalence and obtaining decidability of inhabitation in a form that is analogous to the predicate EF ∅ • F of Lemma 28 (and that thus factors through a recursive predicate on finitary expressions). As we anticipated, and similarly to this paper, the main theorem, establishing the equivalence of representations, rests on the subformula property of the object logic. In the present paper, we preferred to explore a simple case study (proof search in LJT) in order separate the complexities of the proposed approach for proof search from the complexities of the object logic.

Related work. In the context of logic programming with classical first-order Horn clauses, the use of coinductive structures is seen in [START_REF] Komendantskaya | Coalgebraic derivations in logic programming[END_REF], in order to provide a uniform algebraic semantics for both finite and infinite derivations by SLD-resolution. Building on the the type-theoretical approach to resolution documented in [START_REF] Fu | Operational semantics of resolution and productivity in Horn clause logic[END_REF], an attempt to give semantics for a large class of infinite derivations is seen in [START_REF] Fu | Proof relevant corecursive resolution[END_REF]: here, the central tool is a type system, called corecursive resolution (CR), for a language of proof terms possibly containing fixpoints, and equipped with an operational semantics. A theorem about the operational equivalence with resolution is attempted, but it only captures a limited use of the fixed point operator ("simple loops"). In a later work [START_REF] Basold | Coinduction in uniform: Foundations for corecursive proof search with Horn clauses[END_REF], reductive proof search in a sequent calculus for uniform proofs is targeted, instead of resolution. A system called coinductive uniform proofs (CUP) is proposed, for first-order and higher-order coinductive theories, again only allowing a limited used of fixpoints, this time without proof terms, but with a declarative semantics into Herbrand models. In our approach the coinductive forests representing the full search spaces are not built by a particular algorithm and constitute a semantic universe. Our finitary system, including the typing system, plays the role that CR or CUP play for the approaches above, the role of a "logic of coinductive proofs". But our finitary system, besides the already mentioned soundness and completeness, has other distinctive properties: no limitation in the nesting of fixpoints; the use of arbitrary formulas as "coinductive hypotheses", coming from the fact that no essential restriction is imposed on the sequents attached to these fixpoints (the atomic restriction being considered as inessential since the context can be freely expanded to accommodate hypotheses for the premisses A in a formula of form A ⊃ p). These comparisons seem valuable, despite the fact that we are restricted to the implicational fragment of propositional logic, and the evidence that the first-order case brings unexpected results [START_REF] Komendantskaya | The new normal: We cannot eliminate cuts in coinductive calculi, but we can explore them[END_REF].

In [START_REF] Pym | Reductive Logic and Proof-search: Proof Theory, Semantics, and Control[END_REF] we find a comprehensive approach to proof search, where the generalization of proofs to searches (or "reductions") is accounted for semantically. Parigot's λµ-calculus is used to represent proofs in classical and intuitionistic sequent calculus, but no indication is given on how such terms could represent searches.

In Section 1.3.8 of [START_REF] Barendregt | Lambda Calculus with Types, Perspectives in Logic[END_REF] we find a list of types, for each of which the set of inhabitants is described through an "inhabitation machine". This list covers among others all our examples in Example 1 with the exception of INFTY and DNPEIRCE. We invite the reader to compare those descriptions in graphical presentation in the cited book with our succinct presentations of the solution spaces worked out in Section 3 and Section 4 (see Examples 3, 5, 9, and 16). While our expressions do not display the types of the subexpressions, they are explicit about when a variable gets available for binding (in their example (vii), their variable x, that corresponds to our y in Example 16, looks as if it was available from the outset), and our expressions are even more explicit about the generation process for new names (the book speaks about "new incarnations") using standard lambda abstractions and the decontraction operator. While our presentations of solution spaces in Section 3 and Section 4 are still on the informal level of infinitary terms with meta-level fixed points, and for that reason may seem far from a "machine" for the generation of inhabitants, the finitary expressions we obtained in Example 17 and Example 18 with the machinery of Section 5 compare in the same way with the inhabitation machines of [START_REF] Barendregt | Lambda Calculus with Types, Perspectives in Logic[END_REF] and are proper syntactic elements and can thus qualify as "machine" descriptions of the process of obtaining the inhabitants (and even the infinite solutions-notice that infinite solutions are not addressed at all in the description of inhabitation machines in [START_REF] Barendregt | Lambda Calculus with Types, Perspectives in Logic[END_REF]).

The work [START_REF] Schubert | Automata theoretic account of proof search[END_REF] also studies mathematical structures for representing proof search, and can partly be seen as offering a realisation of the intuitive description of the inhabitation machines in [START_REF] Barendregt | Lambda Calculus with Types, Perspectives in Logic[END_REF]. Similarly to our work, [START_REF] Schubert | Automata theoretic account of proof search[END_REF] handles search for normal inhabitants in the simply-typed lambda-calculus. However, the methods of [START_REF] Schubert | Automata theoretic account of proof search[END_REF] are very different from ours. Their methods come from automata and language theory, and proof search is represented through automata with a non-standard form of register, as a way to avoid automata with infinite alphabets, and still meet the need for a supply of infinitely many bound variables in types like DNPEIRCE or the "monster" type (cf. our discussion after Example 1). Unlike in our work, infinite solutions are not a concern of the approach in [START_REF] Schubert | Automata theoretic account of proof search[END_REF], but this approach is concerned with computational complexity and is capable of obtaining the usual PSPACE bound for the decision of the inhabitation problem.

Besides the approach just mentioned, the literature offers a rich variety of other approaches to handle the search space determined by a type and its collection of inhabitants and to address inhabitation, counting or enumeration problems in simply-typed lambda-calculus or extensions of it [START_REF] Ben-Yelles | Type assignment in the lambda-calculus: syntax & semantics[END_REF][START_REF] Hindley | Basic Simple Type Theory[END_REF][START_REF] Takahashi | Normal proofs and their grammar[END_REF][START_REF] Dowek | Enumerating proofs of positive formulae[END_REF][START_REF] Wells | Graph-based proof counting and enumeration with applications for program fragment synthesis[END_REF][START_REF] Broda | On long normal inhabitants of a type[END_REF][START_REF] Bourreau | Game semantics and uniqueness of type inhabitance in the simply-typed λ-calculus[END_REF]. We briefly consider these approaches below.

To the best of our knowledge, [START_REF] Ben-Yelles | Type assignment in the lambda-calculus: syntax & semantics[END_REF] (nicely revisited in [START_REF] Hindley | Basic Simple Type Theory[END_REF]) is the first work to address the question of enumerating all inhabitants (in long normal form) of a simple type. (Next we refer to the presentation of the approach in [5, 8C]). The approach is very different from ours, since it does not explicitly build a structure representing the full collection of inhabitants of a type. Instead, it develops an iterative search algorithm, that takes a type and may run forever, and at each stage produces a finite collection of normal form schemes (lambda-terms with meta-variables), so that any inhabitant of the type can be extracted from one of these schemes.

Context-free grammars are used in [START_REF] Takahashi | Normal proofs and their grammar[END_REF] to represent the collection of inhabitants (in long normal form) of a simple type. Although (finite) context-free grammars suffice to capture inhabitants obeying the total discharge convention (forbidding multiple variables with the same type, or, in the logical reading, forbidding multiple assumptions of the same formula), an infinite grammar is required to capture the full set of inhabitants (due to the potential need for a supply of infinitely many bound variables, as alluded to above when relating to [START_REF] Schubert | Automata theoretic account of proof search[END_REF]). Grammars are also used in [START_REF] Dowek | Enumerating proofs of positive formulae[END_REF] to enumerate in two stages all inhabitants of a type in simply-typed lambda-calculus (and in certain fragments of system F). The first stage builds a context-free grammar description of the collection of schemes of a given type. (Schemes are the proof terms of a so-called sequent calculus with brackets LJB, where assumptions in the context are unnamed, thus following the total discharge convention.) In a second stage, an algorithm extracts the full collection of inhabitants of a type from its schemes.

The work [START_REF] Wells | Graph-based proof counting and enumeration with applications for program fragment synthesis[END_REF] develops algorithms for counting and enumerating proofs in the context of full propositional intuitionistic sequent calculus LJT . These algorithms are based on a direct representation of the search space of a sequent via directed graphs. (Roughly speaking, a sequent corresponds to a vertex that has outgoing edges to vertices with that sequent and a rule that applies to it (bottom-up), and the latter vertices have outgoing edges to the sequents resulting from the bottom-up application of the rule.) Even if the version of LJT considered there only allows proofs obeying the total discharge convention (context sequents are sets of formulas), and this is crucial to guarantee the finiteness of the graph representation, this is the only work we are aware of that addresses counting and enumeration of proofs for full intuitionistic propositional logic. As already mentioned, our recent work [START_REF] Santo | Coinductive proof search for polarized logic with applications to full intuitionistic propositional logic[END_REF] shows that the coinductive approach developed in this paper is also applicable to (a system of focused proofs for) full intuitionistic propositional logic. Op. cit. only treats the problem of type inhabitation and finite inhabitation (relative to focused proofs). However, we anticipate that also a simple counting function can be achieved analogously to what is briefly mentioned in Section 6.1 (for the implicational fragment), a direction we would like to explore in the future (alongside with other directions specified below).

[30] is an extensive study of inhabitation in simply-typed lambda-calculus through the formula-tree proof method, establishing new results and new proofs, in particular, in connection to uniqueness questions. The method relies on a representation of types as labelled trees called formula trees (where each label identifies a primitive part of the type), from which proof trees are derived, and in turn allow the extraction of all inhabitants (in long normal form) of the type. This extraction also involves two stages: the first stage generates a context-free grammar representation of the inhabitants in so-called standard form (imposing restrictions on the use of variables in the spirit of the total discharge convention); then, the second stage extracts finitely many inhabitants from each standard inhabitant (if any), producing the full collection of inhabitants of the type. The question of uniqueness of inhabitation in simply-typed lambda-calculus is also addressed in [START_REF] Bourreau | Game semantics and uniqueness of type inhabitance in the simply-typed λ-calculus[END_REF]. This work uses yet a very different tool: game semantics. Connecting typings with arenas and inhabitants with winning strategies for arenas, inhabitation questions can be recast in terms of game semantics. For example, [START_REF] Bourreau | Game semantics and uniqueness of type inhabitance in the simply-typed λ-calculus[END_REF] offers a new characterization of principal typings in simply-typed lambda-calculus through games. Actually, in [START_REF] Alves | A short note on type-inhabitation: Formula-trees vs. game semantics[END_REF] one can find precise connections between this game semantics approach and the formula-tree proof method for addressing inhabitation in simply-typed lambda-calculus.

Since the above-mentioned work [START_REF] Ben-Yelles | Type assignment in the lambda-calculus: syntax & semantics[END_REF][START_REF] Hindley | Basic Simple Type Theory[END_REF][START_REF] Takahashi | Normal proofs and their grammar[END_REF][START_REF] Dowek | Enumerating proofs of positive formulae[END_REF][START_REF] Wells | Graph-based proof counting and enumeration with applications for program fragment synthesis[END_REF][START_REF] Broda | On long normal inhabitants of a type[END_REF][START_REF] Bourreau | Game semantics and uniqueness of type inhabitance in the simply-typed λ-calculus[END_REF] is concerned with inhabitation (finite solutions) only, naturally they do not share with us the goal of having a mathematical representation of the full solution space, and a treatment of infinite solutions. Another distinctive feature of our work is that, as we stay within the lambda-calculus paradigm, we can profit from its binding mechanism, and avoid the need to restrict to inhabitants under total discharge convention, or the need for a two-stage process to capture the full collection of long normal forms. Our representation of the entire space of solutions as a first-class citizen of a finitary lambda-calculus immediately offers the possibility of its structural analysis, and allows a new take on a wide range of questions related to inhabitation in simply-typed lambda-calculus, as explained in Section 6.

Only seemingly related work. Logics with fixed points or inductive definitions, as for example in [33], admit infinite or "circular" proofs, which are infinite "pre-proofs" enjoying an extra global, semantic condition to ensure that only valid conclusions are allowed. In addition, the proofs of these logics have alternative (sometimes equivalent) finite representations as graphs with cycles (e. g., trees with back edges). Despite superficial similarity, bear in mind the several differences relatively to what is done in the present paper: first, there is the conceptual difference between solution and proof; second, in our simple object logic LJT , proofs are the finite solutions (hence trivially filtered amongst solutions), and therefore infinite solutions never correspond to globally correct reasoning; third, fixed points are not present in the object logic, but rather in the finitary calculus and its typing system: the latter, when seen as a "logic of coinductive proofs", is a meta-logic-a logic about the proof search process determined by LJT .

Future work. We would like to profit from the finitary representation of a (full) solution space to extract individual solutions. As suggested in Section 2.2, this can be done by pruning the solution space, an operation already studied in [START_REF] Santo | Decidability of several concepts of finiteness for simple types[END_REF] but only for coinductive representations (with the specific goal of obtaining the version of König's Lemma for simple types mentioned in Section 6.2). We expect unfolding of fixed points to play also a fundamental role in the process of extraction of individual solutions. These ingredients should provide a base for the accounting of algorithmic control in proof search through rewriting.

We would like to further test the comprehensiveness of our coinductive approach to proof search on other logical or type-theoretical settings. For example, it could be interesting to test our methodology on classical logic, for which there is already work in the context λµ-calculus [START_REF] David | Counting proofs in propositional logic[END_REF], or on the challenging setting of intersection types, whose general inhabitation problem is undecidable, but where relevant decidable fragments have been identified [START_REF] Bucciarelli | The inhabitation problem for non-idempotent intersection types[END_REF][START_REF] Dudenhefner | Intersection type calculi of bounded dimension[END_REF]. Of course, it will be interesting and important to test also our coinductive approach in the context of first-order logic. Recall that coinductive structures are already employed in [START_REF] Basold | Coinduction in uniform: Foundations for corecursive proof search with Horn clauses[END_REF] to give a proof-theoretic account of Horn clauses (even for coinductive theories), but the attainment of representations of solutions and of entire solution spaces with a rich collection of properties (like the one seen in this paper for intuitionistic implication) is likely to pose new questions.

Figure 1 :

 1 Figure 1: Typing rules of λ Γ, x : At : B Γ λx A .t : A ⊃ B RIntro (x : B ⊃ p) ∈ Γ ∀i, Γ t i : B i Γ x t i i : p LVecIntro

Figure 3 :

 3 Figure 3: Extra typing rule of λ co Σ w. r. t. λ co ∀i, Γ E i : p Γ i E i : p

Figure 4 :

 4 Figure 4: Steps towards calculating S(⇒ DNPEIRCE)

Figure 5 :

 5 Figure 5: Membership relations

Figure 6 :

 6 Figure 6: The decontraction operation on forests

Figure 7 :

 7 Figure 7: Corecursive equations governing [x/x 1]

Fact (2)

 2 follows from the previous lemma by taking n = 2, x 1 = x, x 2 = y and T = [x 1 /x 1 , x 2]N . The converse of the implication in Lemma 6 fails if other declarations with type A exist in Γ. Example 10. Let Γ := {z : A}, ∆ := Γ, x : A, ∆ := Γ, x : A, y : A, N := y and T := z. Then N is a member of [∆ /∆]T , since [∆ /∆]T = z + y, but [x/y]N = x and x is not a member of T .

Lemma 11 .

 11 If |Γ \ Γ| and |∆| are disjoint, Γ , ∆ is a context and Γ ≤ Γ then [Γ , ∆/Γ, ∆]T = [Γ /Γ]T .

Example 14 .

 14 Let Γ := x : p, Γ := Γ, y : p, ∆ := z : p, Θ := Γ, ∆, Θ := Γ , ∆ and C := p. Then S(Θ ⇒ C) = x + z and S(Θ ⇒ C) = x + y + z. This yields [Θ /Θ]S(Θ ⇒ C) = (x + y) + (z + y) and [Γ /Γ]S(Θ ⇒ C) = (x + y) + z, where parentheses are only put to indicate how decontraction has been calculated

Example 16 (

 16 Example 8 continued). Likewise, Lemma 13 shows that, with the notation of Example 8 and omitting the types in the decontraction operation, N = [x, y, z/x, y]N , hence S(⇒ THREE) = λx (p⊃p)⊃p .x λy p .νN.x λz p .[x, y, z/x, y]N + y

Figure 8 :

 8 Figure 8: Definition of general-purpose interpretation

Figure 9 :

 9 Figure 9: Typing system for λ gfp Σ

Figure 10 :

 10 Figure 10: Typing rules with observation depth of λ co Σ

Figure 11 :

 11 Figure 11: Steps towards calculating F (⇒ DNPEIRCE)

Figure 12 :

 12 Figure 12: Part (iii) of first main case in proof of Theorem 2

 Lemma 13 and (*)) = RHS (by definition)

Figure 13 :

 13 Figure13: EF P and NEF P predicates, for P satisfying the proviso: P ⊆ exfin • S and P decidable. P (σ) EF P (X σ)

Lemma 29 (1 .

 291 Deciding type finiteness in λ -Theorem 33 of [3]). For any T ∈ λ gfp Σ well-bound, proper and closed, FFP (T) iff finfin([[T]] s). 2. FF ∅ (F(σ)) iff finfin(S(σ)) iff I(σ) is finite. 3.The problem, "given σ, is I(σ) finite" is decided by deciding FF ∅ (F(σ)).

 2. Sequent σ is an i.o.n. sequent if F(σ) is an i.o.n. finitary forest. 3. A is an i.o.n. type if ⇒ A is an i.o.n. sequent.

 Proof We have to prove that for every sequent σ, F(σ) deep implies F(σ) i.o.n. More generally, we prove for every sequent σ and vector Ξ of declarations as in Definition 12: if F(σ; Ξ) is deep, then it has the i.o.n. property. The proof is by induction on the structure of the finitary forest F(σ; Ξ).In case the if-guard in the definition of F holds, F(σ; Ξ) is a possibly multiply lambda-abstracted fixed-point variable X ρ , thus a deep finitary forest. As argued after Definition 15, X ρ is i.o.n., and lambda-abstractions preserve this property. Hence, F(σ; Ξ) is i.o.n.Otherwise, we use the symbols of Definition 12, but abbreviate by N the outer fixed-point expression, headed by gfpY ρ , with ρ

2. A sequent σ is called deep if F(σ) is a deep finitary forest. 3. A type A is called deep if ⇒ A is a deep sequent.

Theorem 4 (Deep sequents/types are i.o.n.). Every deep sequent σ is an i.o.n. sequent. Hence, every deep type A is an i.o.n. type.

This operation was called co-contraction in[START_REF] Santo | A coinductive approach to proof search[END_REF].

Note however that in the present paper we do not treat separately the Horn fragment, as we do in[START_REF] Santo | A coinductive approach to proof search[END_REF].

Of course, this is all too reminiscent of or-and and-branching in logic programming. But we are not confined to the Horn fragment.

The division into two syntactic categories also forbids the generation of an infinite sum (for which n = 2 would suffice had the categories for N and E been amalgamated).

This notation does not imply any form of designating or even programming the fixed point by a suitable language; we allow all mathematical means to justify the existence of the fixed point as a forest, and for this we have the underlying set-theoretic view as (equivalence classes of) potentially infinite trees at our disposal.

In the workshop version[START_REF] Santo | A coinductive approach to proof search[END_REF], we had a more "aggressive" version of decontraction (called co-contraction in that paper) that did not exclude the other variables of Γ in the last clause, and for which we further added the binding x : A to Γ and Γ in the corecursive call in the lambda-abstraction case. On solutions, these differences are immaterial, c. f. the example after Lemma 10.

With this lemma in place, invertibility in Lemma

follows from general reasons. Take N = t in fact (2) and then apply this lemma and Lemma 3.

This is in contrast with the definition of co-contraction in[START_REF] Santo | A coinductive approach to proof search[END_REF], which outputs maximally decontracted terms, e. g., [Γ/Γ]N = N in this case.

The notion of being maximally decontracted is not essential for this paper. Only this corollary will be used in the sequel, and it could also be proven directly, in the style of the proof of the following lemma. For this to work smoothly, the statement should be generalized to: If Γ , ∆, Θ is a context, Γ ≤ Γ , then [Γ , ∆/Γ, ∆]S(Γ, ∆, Θ ⇒ C) = [Γ /Γ]S(Γ, ∆, Θ ⇒ C).

In the original definition [2, Definition 22 of function N], the need for this disambiguation was neglected, with an insufficient extra condition that no sequent occurs twice among the ρ i .

This word here is of course not to be taken in its well-known, technical sense.

See for instance the textbook proof of decidability of propositional intuitionistic logic in[START_REF] Sørensen | Lectures on the Curry-Howard Isomorphism[END_REF]. Already Gentzen's proof of decidability for the same logic[START_REF] Gentzen | Investigations into logical deduction[END_REF] is based on algorithmic control of proof search; however, in his case, deductive proof search is employed.

Acknowledgements. José Espírito Santo and Luís Pinto are both funded by Portuguese Funds through FCT -Fundação para a Ciência e a Tecnologia, within the Projects UIDB/00013/2020 and UIDP/00013/2020. Ralph Matthes had been funded by the Climt project (ANR-11-BS02-016 of the French Agence Nationale de la Recherche). All authors had been partially funded by COST action CA15123 EUTYPES.

Strictly speaking, Definition 12 is not justified since the recursive calls do not follow an obvious pattern that guarantees termination. The following lemma spells out the measure that is recursively decreasing in the definition of F.

To this end, we introduce some definitions. Given a finite set A of formulas

A sub := {B | there exists A ∈ A such that B is subformula of A} .

We say A is subformula-closed if A sub = A. A stripped sequent is a pair (B, A), where B is a finite set of formulas. A stripped restricted sequent additionally has that A is an atom. If σ = Γ ⇒ A, then its stripping |σ| denotes the stripped sequent (|Γ|, A). We say (B, A) is over A if B ∪ {A} ⊆ A. There are size(A) := a • 2 k stripped restricted sequents over A, if a (resp. k) is the number of atoms (resp. formulas) in A.

Lemma 24 (Termination of F). For all sequents σ and vectors Ξ as in Definition 12, the finitary forest

Proof As in the definition, we consider a sequent σ of the form Γ ⇒ C with C = A ⊃ p. Let us call recursive call a "reduction"

where the if-guard in Definition 12 fails; ∆ and ρ are defined as in the same definition; and, for some y, (y : B ⊃ p) ∈ ∆. We want to prove that every sequence of recursive calls from F(Γ ⇒ C; Ξ) is finite.

Observe that the context of the first argument to F is monotonically increasing during any sequence of recursive calls: in the reduction, one passes from Γ to its extension ∆ by fresh variables. Since only fresh variables are added to Γ, this means that whenever for some i, Θ i is not a subset of Γ in the original call to F, this will hold of all the further contexts occurring in the recursive calls. In other words, the if-guard in Definition 12 fails forever, hence X i will not enter the result of the computation. Therefore, without loss of generality, we may assume that for all i, Θ i ⊆ Γ. Trivially, this condition is then inherited to the recursive calls: for 1 ≤ i ≤ m, Θ i ⊆ Γ ⊆ ∆, and Θ m+1 = ∆ which is the context in the new first argument of F.

In the original definition [2, Definition 22 of function N], it was required that no sequent occurs twice among the (Θ i ⇒ q i) = ρ i . Of course, if ρ j = ρ i with j < i, then the first case of the definition of F will not take into account X j : ρ j (since the biggest i with the required properties is chosen), hence it will never be taken into account. Therefore, without loss of generality, we may assume that all ρ i are different.

But we can do better: Since we may already assume that for all i, Θ i ⊆ Γ, we infer from |ρ j | = |ρ i | with j < i that the first case of the definition of F will not take into account X j : ρ j (for the same reason as before). Therefore, without loss of generality, we may assume that all the stripped (restricted) sequents |ρ i | are different, in other words, size(Ξ) = m, where m ≥ 0 is the length of vector Ξ and size(Ξ) is the number of elements of |Ξ| and |Ξ| := {|ρ| : ρ ∈ Ξ}. Also this condition is inherited to the recursive calls: Since Θ i ⊆ Γ for all i, if |ρ| = |Θ i | for some i ≤ m, the first clause of Definition 12 would have applied, but we assumed to be in the recursive case. As a consequence of this extra assumption, the first clause of the definition will never be with two possible indices i out of which the biggest would have to be chosen.

Let A := (|Γ| ∪ {C, q 1 , . . . , q m }) sub . By our assumptions, the strippings of σ and all ρ i are over A. In particular, m ≤ size(A).

We will now show that for subformula closed A, if the strippings of σ and all ρ i are over A, then this also holds for the arguments F is called with in the recursive call:

Since in subsequent recursive calls, the strippings of the arguments are all over A, we continue to have m ≤ size(A) for all subsequent lengths m of the second argument of F. Of course, this is a fixed bound on the recursion depth which is therefore finite. Put differently, termination is guaranteed since the measure size(A) -m ≥ 0 strictly decreases.

We have justified the definition of F(σ) for all sequents σ.

deep summand E := y F(∆ ⇒ B j ; Ξ, Y : ρ) j . To show NFF † (F(σ; Ξ)), it suffices to show NFF † (E). Let N j := F(∆ ⇒ B j ; Ξ, Y : ρ) for all j. Since E is deep, we have EF (N j) for all j, and there is j * s. t. N j * is deep. N j * is a sub-expression of F(σ; Ξ), hence the induction hypothesis applies, by which N j * is i.o.n., hence also NFF † (N j *). By definition of NFF, we obtain NFF † (E), as desired.

We will now identify a class of deep types: this is our second example of a syntactic restriction that guarantees the i.o.n. property.

Let A = A ⊃ p. We say p is the target atom of A and that the A are the argument types of

Definition 17 (Generalized triple negation).

1. Let us say that a type of the form A ⊃ p is a negation at p and that a type of the form (A ⊃ p) ⊃ p is a double negation at p. 2. We introduce the notion of generalized double negation at p: this is any type of the form B ⊃ p with non-empty B so that each of the argument types B i has target atom p. Proof Assume that σ is a g.t.n. We will prove more than only that σ is deep, i. e., F(σ) is deep. More generally, we prove for every vector Ξ of declarations as in Definition 12 that F(σ; Ξ) is deep. The proof is by induction on the structure of the finitary forest F(σ; Ξ).

A type

In case the if-guard in the definition of F holds, F(σ; Ξ) is a possibly multiply lambda-abstracted fixed-point variable X ρ , thus a deep finitary forest, so we do not need the assumption that σ is a g.t.n.

Otherwise, we use the symbols of Definition 12, but abbreviate by N the outer fixed-point expression, so that F(σ;

By assumption, σ is a g.t.n., and this means A σ is a g.t.n., but we can assume that A σ is the same formula as A ρ , for ρ := ∆ ⇒ p, as usual. By definition of generalized triple negation, there is a double negation at p among the formulas of ∆. Let (y : B ⊃ p) ∈ ∆ be the corresponding association with non-empty B and so that each of the argument types B j has target atom p. Let N j := F(∆ ⇒ B j ; Ξ, Y : ρ) for all j. In order to have that F(σ; Ξ) is deep, we need that N is deep. We therefore assume that EF ∅ (F(ρ)) and show that the summand E := y N j j is deep. We even show for all j that N j is deep and that EF (N j) holds. Since B is non-empty, this in particular yields a j * s. t. N j * is deep. Fix some j. N j is a sub-expression of F(σ; Ξ), hence the induction hypothesis applies and gives that N j is deep provided ∆ ⇒ B j is a g.t.n., but this is obvious since the target atom of B j is still p, and the double negation at p among the formulas of ∆ is still available. It remains to show EF (N j). From the assumption EF ∅ (F(ρ)) and Lemma 28.2, we get an inhabitant of ρ = ∆ ⇒ p. By vacuous lambda-abstractions, this gives an inhabitant of ∆ ⇒ B j (again because the target atom of B j is p). By virtue of the same theorem, this gives EF ∅ (F(∆ ⇒ B j)). By monotonicity of EF in its parameter, this can be weakened to EF (F(∆ ⇒ B j)), and by the "second consequence" of the main result on EF mentioned after Lemma 28, this is equivalent to EF (N j).

Theorem 5 (G.t.n.'s are i.o.n.). Let A be a generalized triple negation. Then A has either 0 or infinitely many inhabitants.

Proof Immediate consequence of Theorem 4 and Lemmas 31 and 32.

Appendix A. Technical appendix on regularity of finitary terms

In Section 5, we insisted that we do not confine our investigation to trivially regular terms. This is directly imposed by Definition 12, as we will see next.

Example 19 (A not trivially regular term). Assume three different atoms p, q, r, set Γ := y 1 : q ⊃ p, y 2 : (r ⊃ q) ⊃ p, x : r and Ξ := X : Γ ⇒ q. Then Definition 12 yields F(Γ ⇒ p; Ξ) = gfp Y Γ⇒p .y 1 X Γ⇒q + y 2 λz r .X Γ,z:r⇒q Fixed-point variable X occurs free in this expression with two different sequents as types, hence the expression is not trivially regular.

Definition 12 even leads us to consider trivially regular terms with regular but not trivially regular subterms, hidden under a greatest fixed-point construction:

Example 20 (Hidden irregularity). Consider the following modification of the previous example: add the binding y : p ⊃ q to Γ. Then, the above calculation of F(Γ ⇒ p; Ξ) comes to the same result. And we calculate F(Γ ⇒ q) = gfp X Γ⇒q .y F(Γ ⇒ p; Ξ)

Hence, X with two different sequents as types has to be bound by the outer fixed-point operator.

The following notion may be of further use:

Definition 18 (Strong regularity in λ gfp Σ). An expression T in λ gfp Σ is strongly regular, if all subexpressions of T (including T) are regular.

We can even strengthen Corollary 4. Proof Regularity is already expressed in Corollary 4. Concerning the regularity of the subexpressions, lambda-abstraction does not influence on regularity, and in the recursive case of the definition of F(Γ ⇒ C; Ξ), the same ξ Ξ,Y :σ is admissible for all the occurring subterms, hence also for the summands that are bound by the gfp operation.