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Abstract—Deep learning has recently improved the perfor-
mance of Speaker Identification (SI) systems. Promising results
have been obtained with Convolutional Neural Networks (CNNs).
This success is mostly driven by the advent of large datasets.
However in the context of decentralized commercial applications,
collection of large amount of training data is not always possible.
In addition, robustness of a SI system is adversely effected by
short utterances. Therefore, in this paper, we propose a novel text-
independent speaker identification system able to identify speak-
ers by learning from only few training short utterances examples.
To achieve this, we combine a two-layer wavelet scattering
network coupled with a CNN. The proposed architecture takes
variable length speech segments. To evaluate the effectiveness
of the proposed approach, Timit and Librispeech datasets are
used in the experiments. Our experiments shows that our hybrid
architecture provides satisfactory results under the constraints
of short and limited number of utterances. These experiments
also show that our hybrid architecture are competitive with the
state of the art.

I. INTRODUCTION

Speaker identification (SI) is an important biometric recog-
nition technology. It is the task of identifying a person, based
on a given speech signal and enrolled speaker records [1]. SI
has gained great popularity in a wide range of applications,
such as access user control, transaction authentication, foren-
sics and personalization. After decades of research, significant
performance improvement has been gained and some SI sys-
tems have been deployed in some practical applications [2],
[3]1, [4]. In spite of these great achievements, current SI
systems perform well only if the enrollment and test utterances
are well matched, otherwise the performance will be seriously
degraded. Moreover, many applications require very good
accuracy even with short duration utterances. However, the
performance of SI systems degrade with short utterances of
about 5-10 seconds [5]. Different studies [6], [7] [8] have
shown that the use of short segments may induce a drastic
drop of the performances of authentication systems. This drop
in performance is mainly due to the low amount of information
on each speaker that is usually extracted from such short
sequences. Speaker identification with only few and short
utterances is thus a challenging problem.

Most of traditional SI systems are based on features relying
on speech production and perception, such as Mel-Frequency
Cepstral Coefficients (MFCCs), and on unsupervised gener-
ative models. During the training phase, MFCC features are
used to train a Gaussian Mixture model (GMM) and to build

an Universal Background Model (UBM) [9]. The GMM-UBM
framework represents the speaker and channel independent
attributes over their Gaussian components. However, it has
been shown [10], [11] that it is beneficial to further process
this vector by extracting intermediate vectors called i-vectors.
During the authentication phase, an i-vector is extracted from a
given speech sample and is compared to the reference i-vector,
either with a simple cosine distance or with more complex
techniques such as Probabilistic Linear Discriminant Anal-
ysis (PLDA) [12]. However, performance of these baseline
methods suffer of sensitivity to lexical variability for short
utterances [13].

Recently, deep learning has appeared in many pattern recog-
nition fields. It has shown remarkable success in many fields
such as image recognition [14] and natural language process-
ing [15]. In speaker identification, a similar trend has been
observed. Deep Neural Networks (DNNs) have been used with
the i-vector framework to compute Baum-Welch statistics [16],
or for frame-level feature extraction [17]. DNNs have also
been proposed for direct discriminative speaker classification,
as witnessed by the recent literature on this topic [18], [19].
Lately, there was an increasing number of studies trying
the use of convolutional neural network [20] in numerous
speech tasks [21], [22]. Some works have proposed to directly
feed networks with spectrogram bins [23], [24] or even with
raw waveforms [25], [26]. Among DNNs, CNNs have the
most suitable architecture for processing raw speech samples,
since weight sharing, local filters, and pooling constitute
precious tools to discover robust and invariant representations.
However, CNNs networks require numerous labeled training
examples along with considerable computational resources
and time to achieve effective learning. In a decentralized
setting where only few labeled data with short duration are
available, the training becomes difficult and requires a lot of
regularization.

Recently, Mallat et al. [27] have proposed Scattering wavelet
networks as a class of Convolutional Neural Networks (CNNs)
with fixed weights. They have largely investigated the wavelet
scattering transform (WST) framework and its properties.
WST possesses the same properties used in CNN to extract
reliable features from data. Additionally, the WST can extract
reliable information at different scaling levels of decompo-
sition. Also, it has been proved that the wavelet scattering
coefficients are more informative than a Fourier transform



when dealing with short variation signals or small deformation
and rotation invariant [28], [29].

Scattering representations can be plugged into any classifi-
cation or regression system, be it shallow or deep. The WST
was tested on handwriting image data to extract the features
where it achieved good performance [28]. WST has enjoyed
significant success in various audio [27] and biomedical [30]
signal classification tasks. WST demonstrated promising re-
sults on the TIMIT dataset for phonetic classification [31] and
recognition [32].

In this paper, we propose a two-stage feature extraction
framework using a two-layer wavelet scattering network cou-
pled with a CNN for SI system. We explore the use of the
WST for feature extraction along with a convolutional neural
network. In this hybrid deep learning network, the use of a
two-stage feature extraction framework can be helpful when
there is a lack of data. This provides features of the same signal
at different scales and captures its dominant energy. Such
advantages could be useful when dealing with short duration
utterances. The proposed network takes variable length speech
segments. It is trained at the frame-level using the extracted
features. The system has been evaluated on both Timit and
Librispeech datasets and it has achieved better results than the
state-of-the-art.

The remainder of this paper is organized as follows. Sec-
tion II presents the wavelet scattering transform. Section III
describes the proposed hybrid architecture, which is composed
in a cascade of a scattering transform and a convolutional
neural network. Section IV discusses the experimental setup
and the corresponding results obtained by the proposed system
as well as the ones provided by related systems.

II. WAVELET SCATTERING TRANSFORM

Convolution Nonlinearity Averaging
(Wavelet ¥(t)) |— (Modulus) > (low-pass filter)
& % (1) &% ()] &% (1)) * 6(1)

Fig. 1. Wavelet scattering transform processes, where x is the input data, 1)
a wavelet function and ¢ an averaging low-pass filter.

To produce a wavelet scattering transform [27] of an input
signal z, three successive operations are required: convolution,
nonlinearity, and averaging as described in Figure 1. The scat-
tering transform coefficients are obtained with the averaging
of wavelet modulus coefficients by a low-pass filter ¢. Let a
wavelet ¢ (t) be a band pass filter with a central frequency
normalized to 1, and ) (t) a wavelet filter bank, which is
constructed by dilating the wavelet:

a(t) = Ap(At) (1

where \ = 2%, Vj € Z and @ is the number of wavelets
per octave.

The bandwidth of the wavelet 1) (t) is of the order é, and
as a result, the filter bank is composed of band pass filters
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Fig. 2. Hierarchical representation of scattering coefficients at multiple
layers [27].

which are centered in the frequency domain in A and have a
frequency bandwidth %

At the zero order, we have a single coefficient given by
Sox(t) = x % ¢(t), which is close to zero for audio signals.
At the first order, we set J; = 8 for speech signals,
which defines wavelets having the same frequency resolution
as mel-frequency filters. Approximate mel-frequency spectral
coefficients are obtained by averaging the wavelet modulus
coefficients with ¢:

Srx(t, ) = |z x x| * o(t) 2

The second order coefficients capture the high-frequency
amplitude modulations occurring at each frequency band of
the first layer and are obtained by:

Szi(t, )‘17)‘2) = ||5C*¢/\1|*1/1A2|*¢(t) 3)

The wavelets 15, have an octave resolution ()2 which may
be different from Q1. We set Q2 = 1 for speech signals,
to defines wavelets with more narrow time support, which
are better adapted to characterize transients and attacks. We
get a sparse representation which means concentrating the
signal information over as few wavelet coefficients as possible.
These coefficients are averaged by the low pass filter ¢, which
ensures local invariance to time-shifts, as with the first-order
coefficients.

Figure 2 shows the hierarchy of scattering coefficients. This
somewhat resembles to the structure of deep neural networks,
although that in the scattering transform, each layer provides
some output, while the only output of most of deep neural
networks is provided by the last layer. This decomposition on
first and second orders scattering coefficients is applied to the
time domain signals. Second order features are normalized by
first order features, to ensure that the higher order of scattering
depends on the amplitude modulation component of the speech
signal. The first and second orders of the scattering transform
are concatenated to form a scattering feature vector for a
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Fig. 3. The proposed Hybrid Wavelet Scattering Transform Convolutional
Neural Network (HWSTCNN) architecture.

given frame. The scattering features include log-mel features
as well as higher order features to preserve the greatest details
in the speech signal [27]. This representation is invariant to
time shifts and is stable to deformations. Hence, to ensure
invariability to frequency translation on a logarithmic scale
like translation of speaker formants, a scattering transform is
performed along log-frequency. The logarithm is applied to
each coefficients of the scattering feature vector. It is thus
locally translation invariant in time and log frequency, and
stable to time and frequency deformations.

III. HYBRID NETWORK ARCHITECTURE

An ideal model for SI system should take variable length
speech segments and produce a discriminating output descrip-
tor. The distance between descriptors of different speakers
must be larger than those of the same speaker. To satisfy all
mentioned properties, Figure 3 shows the proposed Hybrid
Wavelet Scattering Transform Convolutional Neural Network
(HWSTCNN). The network consists of two parts: feature
extraction and frame level embedding. The scattering network
is coupled with convolutional layers to extract frame level
features, and dense classification layer to construct speaker
frame embedding.

The network is shown in Figure 3 and described in more
details in the following paragraphs. The proposed architec-
ture consists in two scattering network layers, namely, Scat-
Layer, three 2D convolutional layers, and one fully connected
layer. Scat-Layer performs scattering wavelet transform on

TABLE I
HWSTCNN ARCHITECTURE. EACH ROW SPECIFIES THE # OF
CONVOLUTIONAL FILTERS, THEIR SIZES, AND THE # FILTERS.

Layer name Hybrid model Output

Input —— n X1

ScatNet layer —_— ns Xnyg X1

Convl block conv2D, 1 x 3 x 1,16 ns X ny X 16
bn
relu

Pooling maxpool, 1 X 2, stride | ns X nf/2 X 16
(2,1)

Conv2 block conv2D, 1 x 3 X 16,32 ns X ny/2 x 32
bn
relu

Pooling maxpool, 1 X 2, stride ng X nf/4 X 32
(2,1)

Conv3 block conv2D, 1 x 3 x 32,64 ns X ny/4 x 64
bn
relu

Pooling maxpool, 1 X 2, stride | ns X ny/8 x 64
(2,1)

Embedding fc,nsp 1 x1Xnsp

Loss softmax —_

overlapping frames (500ms with 125ms skip rate) in time-
domain signal. After the Scat-Layer, three convolutional layers
are followed by one fully connected layer. Standard CNN
pipeline (pooling, batch normalization, ReLU activation) was
employed. Final softmax layer performs speaker classification.

ScatNet layer is composed of two scattering wavelet trans-
form layers. The first layer contains 8 Gabor wavelets per
octave and the second has 1 Morlet wavelet per octave. This
configuration was chosen to match the frequency resolution of
Mel filters at the first level. The second order of the scattering
transform recovers the lost information. Averaging window
length was set to 32ms. Later, coefficients are normalized
and log-transformed. Therefore, the representation of speech
signal using the first and the second orders of the scattering
transform extends the MFCC representation and doesn’t loose
information. These scattering coefficients are computed using
a publicly available toolbox [27].

Each convolutional layer is formed by a 2D filter of length 3
and batch normalization. They are followed by a max-pooling
layer, with pooling size 1 x 2 and stride 1 x 2. The number of
filters is respectively 16, 32 and 64. A fully connected layer
with ng, hidden neurons, where 7, is the number of speakers
to be identified, is connected to categoral softmax layer. The
softmax produces a probability distribution per frame over the
target speakers in the dataset.

We use rectified linear units as activation functions in all
layers. Stochastic gradient descent was used as an optimizer
with a learning rate of 0.001 and 0.9 momentum. The network
is trained with mini batches of size 64 for 10 epochs. The
proposed architecture is shown in Figure 3 and details such
as the number of filters and kernel sizes are summarized in
Table I. This architecture takes raw speech frames with time-
windows of 500ms and with a skip rate of 125ms to produce
speaker embedding at frame-level. The amount of parameters
in this neural network is 18,1 millions which is less than the



actual state-of-the-art, as it will be shown in the next sections.
Coupling a scattering network with a convolutional network
for building our hybrid architecture can reduce the instabilities
in the first layers as the wavelet scattering transform is stable
and non-expansive. By reducing the variability at feature
extraction stage, the proposed hybrid architecture can generate
discriminative feature information at frame level. This hybrid
architecture has the capability to reduce the required depth and
spatial dimension of the deep learning networks, which makes
the strength of using both scattering transform and CNN.

Signal classification y
Mean Pooling
Softmax probabilities
vectors 1 e PN cee ynb

Classification of

Hybrid Wavelet Scattering Transform Convolutional Neural Network
the frames

Set of overlapping frames

Fig. 4. Hybrid Wavelet Scattering Transform Convolutional Neural Network.

In the testing phase of our system, a speech utterance X to
be classified is divided into n; overlapping frames of length
ny. Each frame shares the first part with the previous frame
and the last part with the next frame. Each frame X is fed to
our HWSTCNN to predict the frame speaker label. Softmax
probabilities y¥ = Pr(s|X;) are calculated to estimate if the
frame X, is from the speaker s; among the ng, speakers.
These speaker membership probabilities y; € R™s» constitute
a vector for each frame i. Finally, the mean membership
probability vector § of the whole utterances is given by the
mean of all the stored probability vectors computed per frame.
The estimated speaker label for the whole speech utterance
X corresponds to the speaker of maximum of probability:
label = argmax;c ,, %’ with g/ the j column of the
# vector and ng, the total number of speakers.

Figure 4 describes the process of labeling speech utter-
ances. Speech frames are first fed into our HWSTCNN to
predict frame speaker probability vectors. These frame-level
predictions are then aggregated into a whole-utterance-level
prediction using the mean of the obtained softmax frame-level
probabilities. Therefore the speaker’s probabilities prediction
is initially made per frame and thereafter is converted into a
final single speaker vector probability for the whole utterance.
Finally, the estimated speaker label corresponds to the one
that has the highest probability among the ones of the average
vector probability .
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Distribution of the utterance lengths in Timit and Librispeech

IV. EXPERIMENTS

This section describes the experiments and the results ob-
tained with our approach and related systems.

A. Dataset and experimental setting

Two datasets are used in the experiments, TIMIT [33] and
LibriSpeech [34].

o The TIMIT dataset contains studio quality recordings of
630 speakers (192 female, 438 male), sampled at 16 kHz,
covering the eight major dialects of American English.
Each speaker reads ten phonetically rich sentences. We
consider only 462 speakers from TIMIT. We use only 8
sentences for each speaker, the “SX” (5 sentences) and
the “SI” (3 sentences). These 8 sentences are different
from one another, and different across speakers. The
“SX” sentences have an average duration of 3.2 seconds
while “SI” sentences have an average duration of 2.9
seconds. The “SX” sentences are used to train the system,
while the “SI” sentences are used to test. The TIMIT
dataset is considered as a challenging task for end to
end systems due to its very limited amount of available
training data (less than 5 hours).

o The LibriSpeech database consists in audio books read-
out-loud by 2484 speakers, 1283 male and 1201 female
volunteers who recorded their voices spontaneously. The
speech signal is usually clean, but the recording device
and channel conditions vary a lot between different
utterances and speakers. We decided to keep 7 utterances
of each speaker for training, and 3 utterances as a fixed
test set for evaluation.

In Timit and Librispeech datasets, the total duration of
training sentences is about 12-15 seconds for each speaker
and test sentences duration is about of 2-5 seconds. Figure 5
shows the distribution of the utterances durations. The average
duration was of 4s, the minimum was of 1s, and the maximum
was of 17s. Utterances with durations of less than 4 seconds
represented about 87% of the data.



PARTITION OF UTTERANCES FOR THE SPEAKER IDENTIFICATION TASK.

TABLE II

Train Test Total number | Total Duration
Timit 2310 1386 3696 3h15mn
Librispeech | 17388 | 7452 22356 22h45mn

Table II presents utterances partition for training and testing
for both datasets. This partition has been also used in original
implantation of SincNet [35].

To validate the effectiveness of our model, we built 8 kHz
and 16 kHz versions of our system. Timit and Librispeech
datasets are downsampled to 8 kHz. Finally, we use 3-fold
cross-validation to evaluate the performance of the proposed
system on Librispeech dataset.

Experiments are conducted on the full and short length
conditions. We do not apply any pre-processing to the raw
waveforms, such as pre-emphasis, silence removal, detection
and removal of unvoiced speech. Hence, non speech intervals
at the beginning and end of each sentence are conserved.
Scattering transform is computed up to depth 2 with speech
frames of 500ms. The first layer contains 8 Gabor wavelets
per octave while the second one has 1 Morlet wavelet per
octave. The size of the averaging window is set to 32ms. Later,
coefficients are normalized and log-transformed. Stochastic
gradient descent is used as an optimizer with a learning rate of
0.001 and 0.9 momentum. The network is trained with mini
batches of size 64 for 10 epochs. Our implementation is based
on Scatnet [27] and deep learning Matlab toolboxes.

B. Related systems

In order to evaluate the performance of our proposed
system, two alternative state-of-the-art systems were investi-
gated: SincNet [35] and CNN-Raw [36] systems for speaker
identification.

« SincNet is a novel end-to-end neural network architec-
ture, that directly receives raw waveforms as input. The
first 1D convolutional layer of SincNet is composed by
Sinc functions. SincNet convolves the waveform with a
set of parametric sinc functions that implement band-pass
filters. The filters are initialized using the Mel-frequency
filter bank and their low and high cutoff frequencies
are adapted with standard back-propagation as any other
layer. The first layer performs Sinc based convolutions,
using 80 filters of length 251. The remaining two layers
use 60 filters of length 5. Next, three fully-connected
layers composed of 2048 neurons and normalized with
batch normalization are applied. All hidden layers use
leaky-ReLLU non-linearity. Frame-level binary classifica-
tion is performed by applying a softmax classifier and
cross-entropy criteria [35].

o In the CNN-Raw system, the raw waveform is fed directly
to the first layer. Three convolution layers are used to
perform the feature mapping. Each convolution layer is
composed of 80 filters followed by a max pooling. Next,
three fully-connected layers composed of 2048 neurons

and normalized with batch normalization are applied.
All hidden layers use leaky-ReLU non-linearities. Frame-
level binary classification is performed by applying a
softmax classifier and cross-entropy criteria [36].

SincNet and CNN-raw systems perform silence detection
technique to remove non-speech intervals at the beginning
and end of each sentence. Sentences with internal silences
lasting more than 125 ms were split into multiple chunks.
Both networks are trained with 2900 epochs and batches of
size 128 on Librispeech dataset. The number of parameters
in CNN-raw is about 27.6 millions while the one of SincNet
is about 26.5 millions. Table III summarizes the number of

TABLE III
NUMBER OF PARAMETERS AND EPOCHS FOR OUR SYSTEM AND RELATED
SYSTEMS.

SincNet | CNN | HWSTCNN
[ Parameters x10° 26,5 27,6 18,1

learning parameters of all tested methods. We observe that
the number of learning parameters required by our method is
lower than the ones of SincNet and CNN-Raw by about 33%.

TABLE IV
IDENTIFICATION ACCURACY RATE (%) OF THE PROPOSED HWSTCNN ON
8K AND 16K DATA TRAINED AND TESTED WITH FULL UTTERANCES.

8k 16k
LibriSpeech | 97.38 | 99.28
TIMIT 8593 | 98.12

C. Results

In order to evaluate our proposed speaker identification
system we use the identification accuracy rate which is equal
to the number of correct identifications over the number of
speakers to test. In Table IV, we report the effect of sampling
frequency on system performance. As expected, results show
that our system performs better on 16 kHz than 8 kHz
data. However, let us note that the correct identification rates
decrease by only 2% between 16KHz and 8KHz data. Our
system remains thus competitive for low sampling frequency
rate. The table shows that the effect of coupling the first con-
volution layer of CNN with WST, improves the identification
performance.

Correct identification rates for different methods are shown
in Table V. Results are compared on both TIMIT and Lib-
rispeech datasets. Results from this table shows that our
hybrid network obtains significant robustness on both datasets.
Our system outperforms both SincNet and CNN-Raw systems
under Librispeech dataset. It achieves a relative improvement
of about 0.37% over CNN-raw and 0.35% over SincNet. For
the TIMIT dataset, our system achieves 98.12 % accuracy.
However, both SincNet and CNN-Raw outperform our pro-
posed system. Both these approaches of Sincnet and CNN-raw
use signal pre-processing techniques, they use silence removal



technique to detect speech segments. In our case, no pre-
procesing is performed and the original voice signal is directly
fed to the system. Evaluation of our proposed system with
the same pre-processing on database TIMIT gives 97.81%.
This decrease is due to the limited amount of data in training
and testing. Indeed, the processed TIMIT dataset has a total
duration of only 2h35mn.

TABLE V
IDENTIFICATION ACCURACY RATE (%) OF THE PROPOSED HWSTCNN
AND RELATED SYSTEMS TRAINED AND TESTED WITH FULL UTTERANCES.

LibriSpeech | TIMIT
CNN-raw 98.91 98.62
SincNet-raw 98.93 99.13
HWSTCNN 99.28 98.12
TABLE VI

IDENTIFICATION ACCURACY RATE (%) OF THE PROPOSED HWSTCNN
AND RELATED SYSTEMS TRAINED WITH EQUAL PARAMETERS ON
LIBRISPEECH.

CNN-raw
98.91

HWSTCNN
99.46

SincNet-raw
98.93

[ full-full

We further investigate the performances of our system in
Table VI. We use the same deep CNN architecture used in
Sincnet. This architecture is much deeper than the one we have
considered and this augments the number of parameters, as
seen in Table III. An increase of 0.17% is proved in accuracy
performance. This experiment shows however the benefit of
using the scattering transform, as better results are obtained
by replacing the SincNet filters with the scattering transform.
HWSTCNN converges faster after about 10 epochs of training
and achieves better end task performance. Whereas SincNet
and CNN-raw converge after about 1500 epochs of training.

TABLE VII
IDENTIFICATION ACCURACY RATE (%) OF THE PROPOSED HWSTCNN ON
LIBRISPEECH DATASET TRAINED AND TESTED WITH DIFFERENT
UTTERANCES DURATIONS.

Train utterance duration
Test 8s 12s full
1.5s | 96.86 | 97.20 97.38
3s 98.76 | 98.93 98.97
full | 99.12 | 99.25 99.28

We report in Table VII the effect of training utterances
duration per speaker on performances. We split the training
data to obtain a total duration of 8s or 12s per speaker. Full
train duration is about 14s. This table depicts the correct identi-
fication rates for 1.5s, 3s and full duration of testing utterances.
We observe that the proposed methods obtains significant
robustness, which indicates that the proposed method is able
to extract speaker identity features in different training and
testing conditions. Our system gives higher accuracy rate for
all conditions of short-utterance task. As shown in Table VII,
varying the number of samples per speaker and thus the total
duration for training induces a variation of only 0.15% of the

accuracy. On the other hand, using 3s duration instead of 1.5s
induces an small increase of the accuracy of about 0.5%. Our
system is thus able to construct discriminating speakers models
with few number of training data but provides better results
with test samples of at least 3s.

TABLE VIII
IDENTIFICATION ACCURACY RATE (%) OF THE PROPOSED HWSTCNN
AND RELATED SYSTEMS TRAINED ON LIBRISPEECH DATASET AND
TESTED WITH DIFFERENT UTTERANCES DURATIONS.

SincNet-raw | CNN-raw HWSTCNN
1.5s-full 91.51 94.28 97.38
3s-full 97.57 96.87 98.97
TABLE IX

IDENTIFICATION ACCURACY RATE (%) OF THE PROPOSED HWSTCNN
AND RELATED SYSTEMS TRAINED ON TIMIT DATASET AND TESTED WITH
DIFFERENT UTTERANCES DURATIONS.

SincNet-raw | CNN-raw HWSTCNN
1.5s-full 97.40 80.00 91.41
3s-full 98.70 97.47 97.76

Tables VIII and IX show accuracy results for Librispeech
and TIMIT datasets with different short utterance durations.
It reveals that the proposed HWSTCNN gets the highest
average accuracy on the Librispeech dataset. With a speech
duration of 3s, HWSTCNN yields 2.1% and 1.4% of rel-
ative improvement over CNN-raw and SincNet respectively.
Moreover, HWSTCNN accuracy with speech duration of 1.5s
yields 3.1% and 5.87% of relative improvement over CNN-
raw and SincNet respectively. For the TIMIT dataset, table IX
shows that our proposed system outperforms CNN-raw with
both speech duration. However for this dataset our results are
less good than SincNet. We believe that adding more layers
to our model could further improve our results.

TABLE X
IDENTIFICATION ACCURACY RATE (%) OF THE PROPOSED HWSTCNN
AND RELATED SYSTEMS TRAINED AND TESTED ON LIBRISPEECH DATASET
WITH 3-FOLD CROSS-VALIDATION.

Foldl | Fold2 | Fold3 | Average | Std Dev
CNN-raw 98.71 98.67 | 98.88 98.75 0.11
SincNet-raw 98.73 | 98.63 | 98.86 98.74 0.12
HWSTCNN 98.78 | 98.71 | 98.89 98.79 0.09

For method validation, 3-fold cross-validation is performed
to verify the accuracy and generalization capabilities of our
proposed HWSTCNN. Table X shows accuracy of our pro-
posed method and related methods under 3-fold cross vali-
dation. The mean accuracy for our model HWSTCNN using
3-fold cross-validation is 98.79%. The table highlights that
HWSTCNN outperforms the other models, showing a relative
improvement of about 0.4% over SincNet and CNN-raw. To
assess the statistical significance between the obtained results
of the compared methods, a significance level of 0.05 was
used, that is, when the p-value is less than 0.05, the perfor-
mance difference of two methods is statistically significant.



HWSTCNN achieved a statistically significance of 3.34% and
7.36% respectively with SincNet and CNN-raw.

V. CONCLUSION

In this paper, we have proposed HWSTCNN a speaker
identification system that learns speaker discriminating in-
formation directly from raw speech signals using scattering
wavelet transform and CNNs. We have explored the potential
advantage of WST in extracting robust speaker representation.
We have demonstrated that by coupling CNN with scattering
wavelet network, we are able to compute a stable descrip-
tion of speaker identity information. Experimental results on
TIMIT and Librispeech corpuses have shown that the proposed
system can achieve dominant results in clean condition with
limited amount of data. We have shown the effectiveness of
our hybrid architecture for speaker identification with different
utterances duration used in training and testing phases. Our
results show that our hybrid model is competitive with SincNet
and CNN-raw methods on the same databases. Beyond exten-
sively experiments and performance improvements, combining
WST and CNN demonstrates the efficacy of the scattering
wavelet layer in learning merged feature and enabling a better
and lossless latent representation of the speech signal. These
results show significant promise for considerable improvement
in speaker identification and in speaker verification which we
plan to study in future works. In future work, we would like
to evaluate HWSTCNN on other popular speaker recognition
tasks, such as speaker verification and explore other dataset
such as VoxCeleb. Inspired by the promising results obtained
in this paper, this work could be extended in future works to
other tasks, such as emotion recognition, speech separation,
and music processing.
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