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Unfitted hybrid high-order methods for the wave equation

Erik Burman∗ Omar Duran† Alexandre Ern‡

November 10, 2021

Abstract

We design an unfitted hybrid high-order (HHO) method for the wave equation. The
wave propagates in a domain where a curved interface separates subdomains with different
material properties. The key feature of the discretization method is that the interface can
cut more or less arbitrarily through the mesh cells. We address both the second-order formu-
lation in time of the wave equation and its reformulation as a first-order system. We prove
H1-error estimates for a space semi-discretization in space of the second-order formulation,
leading to optimal convergence rates for smooth solutions. Numerical experiments illustrate
the theoretical findings and show that the proposed numerical schemes can be used to simu-
late accurately the propagation of acoustic waves in heterogeneous media, with meshes that
are not fitted to the geometry. For the second-order formulation, the implicit, second-order
accurate Newmark scheme is used for the time discretization, whereas (diagonally-implicit
or explicit) Runge–Kutta schemes up to fourth-order accuracy are used for the first-order
formulation. In the explicit case, we study the CFL condition on the time step and observe
that the unfitted approach combined with local cell agglomeration leads to a comparable
condition as when using fitted meshes.

Mathematics Subjects Classification. 65M12, 65M60, 74J10, 74S05.
Keywords. Hybrid high-order methods, unfitted mesh, error analysis, wave equation, hetero-
geneous media

1 Introduction

The accurate numerical approximation of wave phenomena is important in many applications.
In particular, in medical imagining problems such as photo acoustic tomography, or geophysical
applications involving seismic waves, it is paramount to be able to accurately approximate wave
propagation through heterogeneous materials in domains with complex geometry. Two examples
from geophysics are solid layers with varying wave speed on the one hand and solid domains
with fluid inclusions on the other hand. It is also important to be able to handle problems
where the ratio between the characteristic length scale of the domain and the wave length is
large, which is typically the case for high frequency problems in medical applications or the
propagation of seismic waves over large distances. Moreover, the geometry can be given by
measurements, have curved boundaries or even be an unknown of the problem. These design
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constraints indicate the need for a method that can handle heterogeneous material parameters (or
models), propagates waves with low dissipation and dispersion, and is flexible for the integration
of complex geometries.

To obtain a method that meets the above requirements, we herein combine the unfitted hybrid
high-order (HHO) method introduced in [10] for elliptic interface problems and further developed
in [6] with the HHO methods for wave equations recently proposed and studied numerically in
[8] and analyzed in the space semi-discrete case in [9]. The high-order approximation of the
method allows for good accuracy and low dispersion, while the unfitted character allows for
great flexibility in the integration of interface geometries. In the context of stationary elliptic
interface problems, the method can handle heterogeneous physical parameters and is robust for
high-contrast problems. In this work, we handle the heterogeneous setting but do not explore
the robustness with respect to high contrast. Finally, static condensation allows for an efficient
numerical solution of the system by the local elimination of all the unknowns attached to the
mesh cells.

HHO methods were introduced in [18] for linear diffusion problems and in [17] for locking-free
linear elasticity. These methods rely on a pair of unknowns, combining polynomials attached
to the mesh faces and to the mesh cells, and the cell unknowns can be eliminated locally by
a static condensation procedure. HHO methods were bridged to hybridizable discontinuous
Galerkin (HDG) methods and to nonconforming virtual element methods (ncVEM) in [13]. HHO
methods also share similar devising principles with weak Galerkin (WG) methods [38]. In the
unfitted HHO method, interfaces or boundaries are allowed to cut through the cells in a general
fashion. The interface conditions are then integrated at the cell level. To avoid instabilities
arising due to interface cell intersections resulting in very small or anisotropic sub-cells, a local
cell-agglomeration algorithm has been designed in [6], drawing on earlier ideas from [25, 10].
Notice that the cell-agglomeration procedure crucially exploits the polyhedral features of HHO
methods.

In the case of fitted meshes, HHO methods applied to the wave equation were devised and in-
vestigated numerically in [8], where in particular the significant improvement of solution quality
for heterogeneous problems obtained by high-order approximation was showcased. The methods
were analyzed in [9], leading to H1-error estimates decaying with rate O(hk+1) for smooth solu-
tions and L2-error estimates decaying with rateO(hk+2) (assuming full elliptic regularity pickup).
Here, k denotes the polynomial order of the skeletal unknowns. Numerical investigations of the
method applied to the elastic wave equations were also reported. In the present paper, we focus
on the propagation of acoustic waves in heterogeneous media using unfitted meshes. Considering
both the second-order scalar wave equation and its first-order system formulation, we design
unfitted HHO methods. In the case of the second-order form with space semi-discretization, we
propose an error analysis in the H1-norm, drawing on the ideas of [9] for the fitted HHO method
applied to the wave equation. The analysis shows that the unfitted HHO method has accuracy
similar to the fitted version discussed above. In the numerical section, we show, by comparing
with the fitted method, that the perturbation introduced by the unfitted geometry is moderate.

Many numerical methods exist for the semi-discretization in space of the wave equation.
High-order continuous finite elements (cG) are reviewed, e.g., in [16]. Discontinuous Galerkin
(dG) methods have been successfully applied to the wave equation, written either as a first-order
system [22, 28] or in its original second-order formulation in time [24]. Hybridizable dG (HDG)
methods have been devised in [29, 32] for the first-order formulation, whereas the second-order
formulation in time has been considered in [30, 14] with an eye toward conservation properties.
The convergence analysis of HDG schemes has been performed in [15] in the time-continuous case
and in [23] by considering a Petrov–Galerkin time discretization. The design of HDG methods for
geophysical applications and with special focus on the coupling of acoustics and elastodynamics
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was considered in [37]. Unfitted methods for wave equations were first introduced in [33] using
cG and the cutFEM framework [7], with ghost penalty stabilization [5] to ensure the robustness
with respect to the interface position. The extension to high-order cG methods was considered
in [34] and an extension to elastodynamics in [35]. A cut finite element method using cG and
lumped mass explicit time stepping was proposed in [11] using discrete extension operators that
generalize the cG agglomeration procedure of [2]. The use of hybridized nonconforming unfitted
methods is much less explored. Recently, a numerical study of the use of local time-stepping as
an alternative to cell agglomeration in the context of cut hybrid discontinuous Galerkin methods
(placing degrees of freedom on the boundary) was proposed in [31].

This paper is organized as follows. In Section 2, we present the model problem. In Section 3,
we introduce the unfitted HHO method and the tools from [10, 6] that are used for its formulation
and analysis. The application of the framework to the wave equation is considered in Section
4 for the second-order formulation in time and in Section 5 for the first-order formulation. In
Section 6, we perform the error analysis, focusing for brevity on the second-order formulation.
In Section 7, we discuss numerical results to verify the convergence rates predicted by the theory.
We also study the integration for curved interfaces to ensure that the results are not polluted
by under-resolved geometry. Then we consider different methods for the time discretization: the
implicit, second-order accurate Newmark scheme for the second-order formulation and Runge–
Kutta (RK) schemes up to fourth-order accuracy (diagonally-implicit or explicit) for the first-
order formulation. We compare the performances of the fitted and the unfitted methods on a
model problem with a flat interface for which a semi-analytical solution is available at least over
a certain time window. We then consider a curved interface and compare the results of the
unfitted method using various time integration schemes, including a study of the CFL condition
for the explicit RK schemes. Finally, we draw some conclusions in Section 8.

2 Model problem

Let Ω be a polyhedral domain in Rd, d ∈ {2, 3} (open, bounded, connected, Lipschitz subset
of Rd) with boundary ∂Ω. Let J := (0, Tf) be the time interval with Tf > 0. We use standard
notation for the Lebesgue, Sobolev, and Bochner–Sobolev spaces. Boldface notation is used
for vectors and vector-valued fields. For a subset S ⊂ Rd, we denote (·, ·)S the L2(S)-inner
product with appropriate Lebesgue measure and ‖·‖S the induced norm. For a weight function
φ ∈ L∞(Ω) taking positive values uniformly bounded from below away from zero, we use the

shorthand notation ‖·‖φ;S := ‖φ 1
2 ·‖S , together with a similar notation for vector-valued fields.

Consider a partition of Ω into two disjoint subdomains Ω = Ω1 ∪ Ω2 with the interface
Γ := ∂Ω1 ∩ ∂Ω2. The interface Γ is assumed to be a smooth (d−1)-dimensional manifold of class
C2 that is not self-intersecting. Our goal is to approximate the solution p : J × (Ω1 ∪ Ω2) → R
of the following acoustic wave propagation problem with interface:

1

κ
∂ttp−∇·

(
1

ρ
∇p
)

= f in J × (Ω1 ∪ Ω2), (1a)

[[p]]Γ = 0, [[ 1
ρ∇p]]Γ·nΓ = 0 on J × Γ, (1b)

p(0) = p0, ∂tp(0) = v0, in Ω, (1c)

p = 0, on J × ∂Ω, (1d)

where the homogeneous Dirichlet boundary condition (1d) is considered for simplicity. The data
are f ∈ L2(J ;L2(Ω)), p0 ∈ H1

0 (Ω), and v0 ∈ H1
0 (Ω). For simplicity, we assume that the material

parameters κ and ρ are constant in each subdomain Ωi, i ∈ {1, 2}, and we set κi := κ|Ωi and
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ρi := ρ|Ωi . Recall that ci :=
(
κi
ρi

) 1
2 is the wave speed in each subdomain Ωi. The unit normal

vector nΓ to Γ conventionally points from Ω1 to Ω2 where the numbering of the subdomains
corresponds to ρ1 ≥ ρ2. For a smooth enough function v defined on Ω1 ∪ Ω2, we denote its
jump across Γ as [[v]]Γ := v|Ω1

− v|Ω2
. Notice that we could also consider the more general jump

conditions [[p]]Γ = gD ∈ L2(J ;H
1
2 (Γ)) and [[ 1

ρ∇p]]Γ·nΓ = gN ∈ L2(J ;L2(Γ)).

3 Setting for unfitted HHO methods

In this section, we introduce the notation for unfitted meshes and define the key ingredients for
the unfitted HHO method.

3.1 Unfitted meshes

Let (Th)h>0 be a sequence of meshes of Ω. The meshes can have cells that are polyhedra in Rd
with planar faces, and hanging nodes are also possible. The mesh cells are taken to be open sets
in Rd. For all T ∈ Th, hT denotes the diameter of the cell T and nT the unit normal on ∂T
pointing outward T . We set conventionally h := maxT∈Th hT . The mesh sequence is assumed
to be shape-regular, i.e., for all h > 0, Th admits a matching simplicial sub-mesh T ′h such that
any cell (or face) of T ′h is a subset of a cell (or face) of Th, and there exists a mesh-regularity
parameter ρ > 0 such that for all h > 0, all T ∈ Th, and all S ∈ T ′h such that S ⊂ T , we have
ρhS ≤ rS and ρhT ≤ hS , where rS denotes the inradius of the simplex S. The mesh faces are
collected in the set Fh.

Let us define the partition Th = T 1
h ∪ T Γ

h ∪ T 2
h , where the subsets

T ih := {T ∈ Th | T ⊂ Ωi} ∀i ∈ {1, 2}, (2a)

T Γ
h := {T ∈ Th | T ∩ Γ 6= ∅}, (2b)

collect respectively the mesh cells inside the subdomain Ωi, i ∈ {1, 2} (the uncut cells), and those
cut by the interface Γ (the cut cells). For every cut cell T ∈ T Γ

h and all i ∈ {1, 2}, we define

T i := T ∩ Ωi, TΓ := T ∩ Γ. (3)

For all i ∈ {1, 2}, the boundary ∂(T i) of the sub-cell T i is decomposed as

∂(T i) := (∂T )i ∪ TΓ, (∂T )i := ∂T ∩ (Ωi \ Γ). (4)

To unify the notation, for every uncut cell T ∈ T ih , i ∈ {1, 2}, we set

T i := T, T ı̄ := ∅, (∂T )i := ∂T, (∂T )ı̄ := ∅, TΓ := ∅, (5)

where ı̄ := 3− i (so that 1̄ = 2 and 2̄ = 1).
For a subset S ⊂ Rd consisting of one mesh (sub)cell or one mesh (sub)face, we denote P`(S)

(resp. P`(S;Rd)) the space composed of the restriction to S of scalar-valued (resp. vector-valued)
polynomials of total degree at most ` ≥ 0. Whenever S = ∅, we abuse the notation by writing
P`(S) := {0} and (·, ·)L2(S) := 0.

Three assumptions on the mesh are needed. The first one quantifies how well the interface
cuts the mesh cells, the second one quantifies how well the mesh resolves the interface and the
third one requires the mesh not to be excessively graded. In the sequel, B(x, r) denotes the ball
of center x and radius r.
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Assumption 3.1 (Cut cells). There is δ ∈ (0, 1) such that, for all T ∈ T Γ
h and all i ∈ {1, 2},

there is x̃T i ∈ T i such that B(x̃T i , δhT ) ⊂ T i.

Assumption 3.2 (Resolving Γ). There is γ ∈ (0, 1) such that, for all T ∈ T Γ
h , there is a point

x̌T ∈ Rd such that setting T † := B(x̌T , γ
−1hT ) we have the following properties: (i) T ⊂ T †;

(ii) for all s ∈ TΓ, d(x̌T , TsΓ) ≥ γhT , where TsΓ is the tangent plane to Γ at the point s; (iii)
For all F ∈ F∂T , there is xF ∈ T † such that d(xF , F ) ≥ γhT .

Assumption 3.3 (Mild mesh grading). For all T ∈ Th, let the neighboring layers ∆j(T ) ⊂ Rd

be defined by induction as ∆0(T ) := T and ∆j+1(T ) := {T ′ ∈ Th | T ′∩∆j(T ) 6= ∅} for all j ∈ N.
There is n0 ∈ N such that for all T ∈ Th, the ball T † introduced in Assumption 3.2 satisfies
T † ⊂ ∆n0

(T ).

It is shown in [10, 6] that if the mesh is fine enough, it is possible to devise a cell agglomeration
procedure so that, choosing the parameter δ small enough (depending on the regularity parameter
ρ), Assumption 3.1 is fulfilled. It is shown in [10, Lemma 6.1] that if the mesh is fine enough
with respect to the curvature of the interface, the points (i) and (ii) of Assumption 3.2 hold true.
Moreover the point (iii) of this assumption can be established by invoking the shape-regularity
of the mesh as shown in the proof of [10, Lemma 3.3]. The role of Assumption 3.1 in the analysis
is to provide discrete (inverse) inequalities in the cut cells (see [10, Lemma 3.4] and [6, Lemma
3.4] for proofs). The role of Assumption 3.2 is to provide a multiplicative trace inequality that
is needed to establish optimal approximation properties on the faces and on the interface within
the cut cells (see [10, Lemma 3.3] for the proof).

Lemma 3.4 (Discrete inverse inequalities). Let Assumption 3.1 be fulfilled. Let ` ∈ N. There
is cdisc, depending on ρ, δ, and `, such that, for all T ∈ Th, all i ∈ {1, 2} and all vT i ∈ P`(T i),
the following inequalities hold true:

• (Discrete trace inequality) ‖vT i‖∂(T i) ≤ cdisch
− 1

2

T ‖vT i‖T i .

• (Discrete inverse inequality) ‖∇vT i‖T i ≤ cdisch
−1
T ‖vT i‖T i .

• (Discrete Poincaré inequality) Assuming that (vT i , 1)B(x̃Ti ,hT ) = 0, we have ‖vT i‖T i ≤
cdischT ‖∇vT i‖T i .

Lemma 3.5 (Multiplicative trace inequality). Let Assumption 3.2 be fulfilled. There is cmtr > 0,
depending on ρ and γ, such that for all T ∈ Th, all v ∈ H1(T †), and all i ∈ {1, 2},

‖v‖∂(T i) ≤ cmtr

(
h
− 1

2

T ‖v‖T † + ‖v‖
1
2

T †
‖∇v‖

1
2

T †

)
. (6)

In what follows, we use the convention A . B to abbreviate the inequality A ≤ CB for
positive real numbers A and B, where the constant C only depends on the polynomial degree
k ≥ 0, the mesh parameters ρ, δ, γ and n0, and the above constants cdisc and cmtr.

3.2 Discrete unknowns for unfitted HHO methods

Let k ≥ 0 be the polynomial degree used in the unfitted HHO method. For every uncut cell
T ∈ T ih , i ∈ {1, 2}, the local discrete HHO unknowns are a pair of functions: one polynomial of
degree at most (k + 1) attached to the cell T and one polynomial of degree at most k attached
to each face F ∈ F∂T , where F∂T comprises all the faces composing the boundary ∂T of the cell
T . We use the notation

v̂T := (vT , v∂T ) ∈ Pk+1(T )× Pk(F∂T ), (7)
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with Pk(F∂T ) :=×F∈F∂T
Pk(F ). For every cut cell T ∈ T Γ

h , we double the HHO unknowns, so
as to have the usual HHO unknowns available on each sub-cell, up to the interface Γ where there
are no unknowns. Thus, the local HHO unknowns in every cut cell T ∈ T Γ

h are

v̂T := (vT 1 , vT 2 , v(∂T )1 , v(∂T )2) ∈ V̂T := Pk+1(T 1)× Pk+1(T 2)× Pk(F(∂T )1)× Pk(F(∂T )2), (8)

where F(∂T )i := {F i := F∩Ωi | F ∈ F∂T } is the collection of the (sub)faces composing (∂T )i and

Pk(F(∂T )i) :=×F i∈F(∂T )i
Pk(F i), i ∈ {1, 2}. It is also convenient to regroup the local unknowns

on each side of the interface by means of the notation v̂T i := (vT i , v(∂T )i) ∈ Pk+1(T i)×Pk(F(∂T )i),
i ∈ {1, 2}. The HHO unknowns are shown in Fig. 1, where the number of bullets represents the
number of degrees of freedom attached to each geometric entity. The left panel of Fig. 1 shows
three uncut cells, the central panel shows three cut cells, and the right panel shows the result of
local agglomeration for the three cut cells. To unify the notation between cut and uncut cells,
we define V̂T as in (8) for every uncut cell T ∈ T ih , i ∈ {1, 2}. With this abuse of notation, we
have v̂T := (vT , 0, v∂T , 0) for all T ∈ T 1

h and v̂T := (0, vT , 0, v∂T ) for all T ∈ T 2
h .

Figure 1: Local HHO unknowns for k = 0. Left: three uncut cells; center: three cut cells; right:
the three cut cells after local agglomeration into one polyhedral cell. Each bullet represents one
basis function, and the red dashed line represents the interface Γ.

3.3 Local gradient reconstruction

As usual in HHO methods, a key ingredient is a local gradient reconstruction operator. In
every cut cell T ∈ T Γ

h , there are two gradient reconstruction operators Gk
T i : V̂T → Pk(T i;Rd),

i ∈ {1, 2} (an alternative choice is to reconstruct the gradient in ∇Pk+1(T i) in the spirit of
the original HHO method [18, 17]; the present choice is more suitable in view of extensions to
nonlinear problems). For every cut cell T ∈ T Γ

h and every v̂T ∈ V̂T , letting [[vT ]]Γ := vT 1 − vT 2 ,
we set

(Gk
T 1(v̂T ), q)T 1 := (∇vT 1 , q)T 1 + (v(∂T )1 − vT 1 , q·nT )(∂T )1 − ([[vT ]]Γ, q·nΓ)TΓ , (9)

(Gk
T 2(v̂T ), q)T 2 := (∇vT 2 , q)T 2 + (v(∂T )2 − vT 2 , q·nT )(∂T )2 , (10)

for all q ∈ Pk(T 1;Rd) in (9) and all q ∈ Pk(T 2;Rd) in (10). Notice thatGk
T 2(v̂T ) only depends on

v̂T 2 , whereas Gk
T 1(v̂T ) depends on both v̂T 1 and v̂T 2 owing to the jump term on the right-hand

side of (9). The difference in the reconstruction between the two subdomains is not essential here
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since we do not explore the strongly contrasted case, and one can also consider the reconstruction
discussed in [6, Sec. 2.5]. Using the above conventions on the notation, we use the same definitions
for every uncut cell T ∈ T ih , i ∈ {1, 2}, leading to (Gk

T i(v̂T ), q)T i := (∇vT i , q)T i + (v(∂T )i −
vT i , q·nT )(∂T )i for all q ∈ Pk(T i;Rd), and Gk

T ı̄(v̂T ) := 0. Recalling that T i := T and (∂T )i :=

∂T , Gk
T i(v̂T ) corresponds to one of the possible HHO gradient reconstructions in the fitted case

(see, e.g., [4, 1]).

4 Wave equation: second-order formulation

In this section, we show how to apply the unfitted HHO method to the second-order formulation
in time of the acoustic wave equation. Let us set for all i ∈ {1, 2},

VT i := ×
T∈Th

Pk+1(T i), VFi := ×
F∈Fh

Pk(F i). (11)

We define the global discrete spaces

V̂h := VT × VF , VT := VT 1 × VT 2 , VF := VF1 × VF2 . (12)

For all v̂h ∈ V̂h, we write v̂h = (vT , vF ) with vT = (vT 1 , vT 2) ∈ VT and vF = (vF1 , vF2) ∈ VF .
Moreover, for all T in Th, we denote v̂T := (vT 1 , vT 2 , v(∂T )1 , v(∂T )2) the local components of v̂h

respectively attached to T 1, T 2, (∂T )1, and (∂T )2. We denote V̂h0 the subspace of V̂h where all
degrees of freedom attached to the faces composing ∂Ω are null.

The global discrete bilinear form is assembled cellwise by summing the contributions of local
discrete bilinear forms. For all T ∈ Th and all v̂T , ŵT ∈ V̂T , we set

bT (v̂T , ŵT ) :=
∑

i∈{1,2}

{
(Gk

T i(v̂T ),Gk
T i(ŵT ))ρ−1

i ;T i + sT i(v̂T i , ŵT i)
}

+ sΓ
T (v̂T , ŵT ), (13)

with

sT i(v̂T i , ŵT i) := (ρihT )−1
(

Πk
(∂T )i(vT i − v(∂T )i), wT i − w(∂T )i

)
(∂T )i

, (14)

sΓ
T (v̂T , ŵT ) := (ρ1hT )−1([[vT ]]Γ, [[wT ]]Γ)TΓ , (15)

where Πk
(∂T )i denotes the L2-orthogonal projector onto Pk(F(∂T )i). Notice that the role of sT i

is to weakly enforce the matching between cell- and face-based HHO unknowns in all the faces
inside the subdomains, whereas the role of sΓ

T is to weakly enforce the first jump condition in (1b).

We next define the global bilinear form bh : V̂h × V̂h → R such that

bh(v̂h, ŵh) :=
∑
T∈Th

bT (v̂T , ŵT ) = (Gk
T (v̂h),Gk

T (ŵh))ρ−1;Ω + sh(v̂h, ŵh) + sΓ
h(v̂h, ŵh), (16)

with the global reconstruction operator such that Gk
T (v̂h)|T i := GT i(v̂T ) for all T ∈ Th, all

i ∈ {1, 2}, and all v̂h ∈ V̂h, and the global stabilization bilinear forms such that sh(v̂h, ŵh) :=∑
T∈Th

∑
i∈{1,2} sT i(v̂T i , ŵT i) and sΓ

h(v̂h, ŵh) :=
∑
T∈Th s

Γ
T (v̂T , ŵT ).

The space semi-discrete HHO scheme for the second-order wave equation consists of finding
p̂h := (pT , pF ) ∈ C2(J ; V̂h0) such that for all t ∈ J ,

(∂ttpT (t), qT ) 1
κ ;Ω + bh(p̂h(t), q̂h) = (f(t), qT )Ω, (17)
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for all q̂h := (qT , qF ) ∈ V̂h0. The initial conditions for (17) only concern pT and are as follows:

pT (0)|Ωi = Πk+1
T i (p0|Ωi), ∂tpT (0)|Ωi = Πk+1

T i (v0|Ωi), i ∈ {1, 2}, (18)

where Πk+1
T i is the L2-orthogonal projection onto VT i , i ∈ {1, 2}. The boundary condition is

encoded in the fact that p̂h(t) ∈ V̂h0 for all t ∈ J . Notice that since the space semi-discrete
solution is smooth in time, (17) holds at the initial time which implies that pF (0) ∈ VF is
uniquely determined by the equations bh((pT (0), pF (0)), (0, qF )) = 0 for all qF ∈ VF with pT (0)
specified in (18) and the boundary condition enforcing to zero the components of pF (0) attached
to the boundary faces.

Let NT := dim(VT ) and NF := dim(VF ). Let (PT (t),PF (t)) ∈ RNT ×NF be the (time-
dependent) component vectors of the space semi-discrete solution p̂h(t) := (pT (t), pF (t)) ∈ V̂h0

once bases {ϕi}1≤i≤NT and {ψj}1≤j≤NF for VT and VF , respectively, have been chosen. Let
FT (t) ∈ RNT have components given by Fi(t) := (f(t), ϕi)Ω for all t ∈ J and all 1 ≤ i ≤ NT .
The algebraic realization of (18) is as follows: For all t ∈ J ,[

MT T 0
0 0

] [
∂ttPT (t)
•

]
+

[
KT T KT F
KFT KFF

] [
PT (t)
PF (t)

]
=

[
FT (t)

0

]
, (19)

with the mass matrix MT T associated with the inner product in L2( 1
κ ; Ω) and the cell basis

functions, and the symmetric positive-definite stiffness matrix with blocks KT T , KT F , KFT ,
KFF associated with the bilinear form bh and the cell and face basis functions. The bullet stands
for ∂ttPF (t) which is irrelevant owing to the structure of the mass matrix. The matrices MT T
and KT T are block-diagonal, but not the matrix KFF since the components attached to faces
belonging to the same cell are coupled together. Notice also that the sizes of the diagonal blocks
MT T and KT T are different for the uncut and the cut cells.

Remark 4.1 (Fitted case). In the fitted case, the above HHO method has been devised in [8].
Moreover, using the ideas from [13] to bridge HHO and HDG methods, this method can be
connected to the space semi-discrete HDG formulation from [14]. Notice that unfitted HHO
methods use a mixed-order polynomial setting where the polynomials attached to the cells are one
order higher than those attached to the faces. The stabilization bilinear form (14) on the faces
inside each subdomain amounts to the Lehrenfeld–Schöberl HDG stabilization [26, 27].

5 Wave equation: first-order formulation

In this section, we apply the unfitted HHO method to the first-order formulation in time of the
acoustic wave equation. The first-order formulation is classically obtained by introducing two
auxiliary variables, the scalar velocity v := ∂tp and the dual variable σ := 1

ρ∇p. This leads to
the following coupled PDEs: ρ∂tσ −∇v = 0

1

κ
∂tv −∇·σ = f

in J × (Ω1 ∪ Ω2), (20)

together with the boundary condition v = 0 on J × Γ and the initial conditions v(0) = v0 and
σ(0) = 1

ρ∇p0 in Ω. The jump conditions become [[v]]Γ = 0 and [[σ]]Γ·nF = 0 on Γ.

In the space semi-discrete case, one approximates v by a hybrid unknown v̂h ∈ C1(J ; V̂h0)
and σ by a cellwise unknown σT ∈ C1(J ;WT ) where

WT := WT 1 ×WT 2 , WT i := ×
T∈Th

Pk(T i;Rd). (21)
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The space semi-discrete problem reads as follows: For all t ∈ J ,{
(∂tσT (t), τT )ρ;Ω − (GT (v̂h(t)), τT )Ω = 0,

(∂tvT (t), wT ) 1
κ ;Ω + (σT (t),GT (ŵh))L2(Ω) + s̃h(v̂h(t), ŵh) + s̃Γ

h(v̂h(t), ŵh) = (f(t), wT )Ω,

(22)
for all (τT , ŵh) ∈WT ×V̂h0, together with the initial conditions σT (0) = 1

ρGT (Πk+1
T (p0),Πk

F (p0))

and v(0) = Πk+1
T (v0), whereGT is defined in Section 4, Πk+1

T := (Πk+1
T 1 ,Πk+1

T 2 ), Πk
F := (Πk

F1 ,Πk
F2),

Πk+1
T i is the L2-orthogonal projection onto VT i , and Πk

Fi that onto VFi , i ∈ {1, 2}. More-
over, the stabilization bilinear forms are s̃h(v̂h, ŵh) :=

∑
T∈Th s̃T (v̂T , ŵT ) and s̃Γ

h(v̂h, ŵh) :=∑
T∈Th s̃

Γ
T (v̂T , ŵT ), with (compare with (14)-(15))

s̃T (v̂T , ŵT ) :=
∑

i∈{1,2}

τ̃(∂T )i

(
Πk

(∂T )i(vT i − v(∂T )i), wT i − w(∂T )i

)
(∂T )i

, (23)

s̃Γ
T (v̂T , ŵT ) := τ̃TΓ([[vT ]]Γ, [[wT ]]Γ)TΓ . (24)

We consider two possible values for the stabilization weights. When using implicit time-stepping
schemes, we set τ̃(∂T )i := `Ω

ci
(ρihT )−1 and τ̃TΓ := `Ω

c1
(ρ1hT )−1 (in short, τ̃∂T = O(h−1)), where

`Ω := diam(Ω) is a global length scale introduced to remain dimensionally consistent. Instead,
when using explicit time-stepping schemes, we set τ̃(∂T )i := (ρici)

−1 and τ̃TΓ := (ρ1c1)−1 (in
short, τ̃∂T = O(1)). These choices are motivated as follows. For implicit schemes, τ̃∂T = O(h−1)
has been observed in [8] to produce more accurate solutions than τ̃∂T = O(1). For explicit
schemes, the discussion in Section 7.4 will show that τ̃∂T = O(h−1) leads to an unfavorable
quadratic scaling with respect to h in the CFL time-step restriction, whereas τ̃∂T = O(1) leads
to the expected first-order scaling.

Let MT := dim(WT ) = dNk
T and {ζi}1≤i≤MT be the chosen basis for WT . Let ZT (t) ∈ RMT

and (VT (t),VF (t)) ∈ RNT ×NF be the component vectors of σT (t) ∈ WT and v̂h(t) ∈ V̂h0,
respectively. Let MσT T be the mass matrix associated with the inner product in L2(ρ; Ω) and
the basis functions {ζi}1≤i≤MT , and recall that the mass matrix MT T and the right-hand side
vector F(t) are defined in Section 4. Let ST T , ST F , SFT , SFF be the four blocks composing
the matrix representing the stabilization bilinear form s̃h + s̃Γ

h (s̃Γ
h only contributes to the block

ST T ). Let GT ∈ RMT ×NT and GF ∈ RMT×NF be the (rectangular) matrices representing the
gradient reconstruction operator. The algebraic realization of (22) is as follows: For all t ∈ J ,MσT T 0 0

0 MT T 0
0 0 0

∂tZT (t)
∂tVT (t)
•

+

 0 −GT −GF
G†T ST T ST F
G†F SFT SFF

ZT (t)
VT (t)
VF (t)

 =

 0
FT (t)

0

 , (25)

where the bullet stands for ∂tVF (t) which is irrelevant owing to the structure of the mass matrix.
Notice that the third equation in (25) implies that

SFFVF (t) = −(G†FZT (t) + SFT VT (t)), (26)

and that the sub-matrix SFF is symmetric positive-definite. A crucial observation is that this
sub-matrix is additionally block-diagonal, so that (26) is very cheap to invert.

Remark 5.1 (Fitted case). In the fitted case, the above HHO method has been devised in [8].
Owing to [13], this method can be bridged to the space semi-discrete HDG formulation from [29].
Notice though that [29] considers an equal-order setting for the cell and face unknowns and a
stability weight τ̃∂T = O(1).

9



6 Error analysis for the second-order in time formulation

This section is devoted to the error analysis of the unfitted HHO method for the second-order
formulation in time of the acoustic wave equation. The analysis combines ideas from [10, 6]
concerning the stability and consistency of unfitted HHO methods with ideas from [9] concerning
the analysis of fitted HHO methods for the wave equation. These latter ideas in turn draw on
the error analysis from [20, 3] for continuous finite elements applied to the wave equation. We
assume that the assumptions stated in Section 3.1 hold true.

6.1 Stability, approximation, and consistency

We equip the space V̂h0 with the norm

‖v̂h‖2V̂h0
:=

∑
T∈Th

∑
i∈{1,2}

{
‖∇vT i‖2ρ−1

i ;T i
+ (ρihT )−1‖v(∂T )i − vT i‖2(∂T )i

}
+ (ρ1hT )−1‖[[vT ]]Γ‖2TΓ .

(27)
We have the following important stability result [6, Lem. 3.6] (which only requires Assump-
tion 3.1): There are 0 < α ≤ ω < +∞ such that

α‖v̂h‖2V̂h0
≤ bh(v̂h, v̂h) ≤ ω‖v̂h‖2V̂h0

, ∀v̂h ∈ V̂h0. (28)

The error analysis hinges on a suitable error decomposition defined by some approximation
of the exact solution. To this purpose, following [6], we assume that there is a real number
ν ∈ ( 1

2 , k + 1] such that the exact solution satisfies p|Ωi ∈ C1(J ;H1+ν(Ωi)), i ∈ {1, 2}. The
regularity properties of the solution to the homogeneous wave equation are well understood (see,
e.g., [21, Sec. 7.2.3]). In contrast, fewer results are available in the heterogeneous case. For
two infinite media separated by a hyperplane, regularity results are studied in [36] (see, e.g.,
Theorem 2.7.3 therein), but we are not aware of regularity results established for more general
settings as the one considered herein. Assuming that the above regularity result nonetheless
holds true, our analysis then invokes stable extension operators Ei : H1+ν(Ωi) → H1+ν(Rd).
For all v ∈ H1(Ω1 ∪ Ω2) with vi := v|Ωi and all T ∈ Th, we then define

Ik+1
T i (vi) := (Πk+1

T †
(Ei(vi)|T †))|T i ∈ Pk+1(T i), (29)

ÎkT (v) := (Ik+1
T 1 (v1), Ik+1

T 2 (v2),Πk
(∂T )1(v1),Πk

(∂T )2(v2)) ∈ V̂T , (30)

where Πk+1
T †

denotes the L2-orthogonal projector onto Pk+1(T †). Note that we do not project

using the sub-cell T i but the larger set T † from Assumption 3.2 so as to invoke the optimal
approximation properties of Ik+1

T i (see for instance [10, Lemma 5.6]). Indeed, if this assumption
is fulfilled, we have for all v ∈ L2(Ω) such that vi ∈ H1+ν(Ωi), i ∈ {1, 2}, and all T ∈ Th,

‖vi − Ik+1
T i (vi)‖T i + h

1
2

T ‖vi − I
k+1
T i (vi)‖(∂T )i + hT ‖∇(vi − Ik+1

T i (vi))‖T i
. h1+ν

T |Ei(vi)|H1+ν(T †), (31)

h
1
2

T ‖[[v − I
k+1
T (v)]]Γ‖TΓ . h1+ν

T

∑
j∈{1,2}

|Ej(vj)|H1+ν(T †). (32)

The global operator Îkh is built locally by using the operators ÎkT defined in (30), and the cell

component of Îkh is denoted Ik+1
T with its restrictions to each subdomain denoted Ik+1

T i , i ∈ {1, 2}.
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Let v ∈ H1(Ω) be such that vi ∈ H1+ν(Ωi), i ∈ {1, 2}, and B(v) := −∇·
(

1
ρ∇v

)
∈ L2(Ω).

The consistency of the discrete bilinear form bh is measured by the linear form δh(v; ·) ∈ (V̂h0)′

such that
δh(v; q̂h) := (B(v), qT )Ω − bh(Îkh(v), q̂h), ∀q̂h ∈ V̂h0. (33)

Then it is shown in [6, Lem. 3.9] that

‖δh(v; ·)‖(V̂h0)′
:= sup

q̂h∈V̂h0\{0}

|δh(v; q̂h)|
‖q̂h‖V̂h0

. |v|∗,h, (34)

with

|v|2∗,h :=
∑
T∈Th

∑
i∈{1,2}

{
ρ−1
i

(
‖γ(v)‖2T i + hT ‖γ(v)‖2(∂T )i

)}
+ ρ−1

1 hT ‖γ(v)‖2TΓ

+
∑
T∈Th

∑
i∈{1,2}

(ρihT )−1‖η(v)‖2(∂T )i + (ρ1hT )−1‖[[η(v)]]Γ‖2TΓ , (35)

and γ(v) := ∇v −GT (Îkh(v)) and η(v)|Ωi := vi − Ik+1
T i (v), i ∈ {1, 2}.

6.2 H1-error estimate

We define the discrete error such that, for all t ∈ J ,

êh(t) := p̂h(t)− Îkh(p(t)). (36)

For a function v̂h ∈ C0(J ; V̂h0), we set ‖v̂h‖C0(0,t;V̂h0)
:= sups∈[0,t] ‖v̂h(s)‖V̂h0

for all t ∈ J . We

also define ΩΓ :=
⋃
T∈T Γ

h
T , ρ[ := min(ρ1, ρ2) = ρ2, ρ] := max(ρ1, ρ2) = ρ1, κ[ := min(κ1, κ2),

and χ := (κ[/ρ])
1
2 .

Theorem 6.1 (H1-error estimate). Let p solve (1) and let p̂h solve (17) with the slightly modified
initial conditions pT (0)|Ωi = Ik+1

T i (p0|Ωi) and ∂tpT (0)|Ωi = Πk+1
T i (v0|Ωi), i ∈ {1, 2}. Assume that

p|Ωi ∈ C3(J ;H1+ν(Ωi)), i ∈ {1, 2}, with ν ∈ ( 1
2 , k + 1]. The following holds for all t ∈ J ,

‖∂tpT − Ik+1
T (∂tp)‖C0(0,t;L2( 1

κ ;Ω)) + ‖p̂h − Îh(p)‖C0(0,t;V̂h0)

.
(
|p|C0(0,t;∗,h) + |∂tp|L1(0,t;∗,h)

)
, (37)

where we have set

|p|C0(0,t;∗,h) := sup
s∈[0,t]

(
|p(s)|∗,h + χ−1`Ω‖∂ttp(s)− Ik+1

T (∂ttp(s))‖ 1
κ ;ΩΓ

)
, (38)

|∂tp|L1(0,t;∗,h) :=

∫ t

0

(
|∂tp(s)|∗,h + χ−1`Ω‖∂tttp(s)− Ik+1

T (∂tttp(s))‖ 1
κ ;ΩΓ

)
ds, (39)

and |·|∗,h is defined in (35). Moreover, we have

‖∂tpT − ∂tp‖C0(0,t;L2( 1
κ ;Ω)) + ‖GT (p̂h)−∇p‖C0(0,t;L2( 1

ρ ;Ω)) . hνΦ(t, p), (40)

with Φ(t, p) := ρ
− 1

2

[

(
|p|L∞(0,t;H1+ν(Ω)) + |∂tp|L1(0,t;H1+ν(Ω))

)
+κ
− 1

2

[ χ−1`Ωh
(
|∂ttp|L∞(0,t;H1+ν(Ω)) +

|∂tttp|L1(0,t;H1+ν(Ω))

)
.
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Proof. Step 1: Error equation. We observe that for all q̂h ∈ V̂h0 and all t ∈ J ,

(∂tteT (t), qT ) 1
κ ;Ω + bh(êh(t), q̂h) = (f(t), qT )Ω − (∂ttI

k+1
T (p(t)), qT ) 1

κ ;Ω − bh(Ikh(p(t)), q̂h)

= (∂ttp(t)− Ik+1
T (∂ttp(t)), qT ) 1

κ ;ΩΓ + δh(p(t); q̂h) =: θh(t; q̂h),

where we used that (∂ttp(t)− Ik+1
T (∂ttp(t)), qT ) 1

κ ;Ω\ΩΓ = 0 and where the linear form δh(p(t); ·)
is defined in (33) and bounded in (34). Invoking the Cauchy–Schwarz inequality and Lemma 6.2
(see below) gives

‖θh(t; ·)‖(V̂h0)′ . |p(t)|∗,h + χ−1`Ω‖∂ttp(t)− Ik+1
T (∂ttp(t))‖ 1

κ ;ΩΓ . (41)

Step 2: Stability argument. We test the error equation with q̂h = ∂têh(t) for all t ∈ J . Owing to
the symmetry of bh and integrating by parts in time on the right-hand side, we infer that

d

dt

{1

2
‖∂teT (t)‖21

κ ;Ω +
1

2
bh(êh(t), êh(t))

}
=

d

dt
θh(t; êh(t))− θ̇(t; êh(t)),

where we have set θ̇(t; ·) := δh(∂tp(t); ·) + (∂tttp(t)− Ik+1
T (∂tttp(t)), ·) 1

κ ;ΩΓ , so that

‖θ̇h(t; ·)‖(V̂h0)′ . |∂tp(t)|∗,h + χ−1`Ω‖∂tttp(t)− Ik+1
T (∂tttp(t))‖ 1

κ ;ΩΓ . (42)

Integrating in time from 0 to t, observing that ∂teT (0) = 0 owing to the initial conditions satisfied
by p̂h, and using the coercivity property (28) gives

1

2
‖∂teT (t)‖21

κ ;Ω +
1

2
α‖êh(t)‖2

V̂h0
≤ θh(t; êh(t))− θh(0; êh(0))−

∫ t

0

θ̇h(s; êh(s))ds+ C‖êh(0)‖2
V̂h0

,

where the last term results from the boundedness of the discrete bilinear form bh on V̂h0 × V̂h0.
Reasoning as in the proof of [9, Thm. 3.1] leads to

1

2
‖∂teT ‖2C0(0,t;L2( 1

κ ;Ω)) +
1

8
α‖êh‖2C0(0,t;V̂h0)

≤ C
(
|θh|2C0(0,t;(V̂h0)′)

+ |θ̇h|2L1(0,t;(V̂h0)′)
+ ‖êh(0)‖2

V̂h0

)
,

with |θh|C0(0,t;(V̂h0)′)
:= sups∈[0,t] ‖θh(s; ·)‖(V̂h0)′ and |θ̇h|L1(0,t;(V̂h0)′)

:=
∫ t

0
‖θ̇h(s; ·)‖(V̂h0)′ds. Still

reasoning as in this proof (where one uses eT (0) = 0) shows that ‖êh(0)‖V̂h0
. |p0|∗,h. Combining

these bounds with the estimates (41)-(42) proves (37).
Step 3: Convergence rates. The estimate (40) follows from (37) and the triangle inequality, after
invoking the approximation properties (31)-(32) and those of the gradient reconstruction from
[6, Lem. 3.8]. Notice that the decay rates are optimal if ν = k + 1.

Lemma 6.2 (Poincaré inequality). We have ‖qT ‖Ω . ρ
1
2

] `Ω‖q̂h‖V̂h0
for all q̂h ∈ V̂h0.

Proof. Let q̂h ∈ V̂h0. There is v ∈ H1(Ω) such that ∇·v = qT and ‖v‖H1(Ω) :=
(
‖v‖2Ω +

`2Ω‖∇v‖2Ω
) 1

2 . `Ω‖qT ‖Ω. Integrating by parts cellwise and re-arranging the terms shows that

‖qT ‖2Ω = (qT ,∇·v)Ω =
∑
T∈Th

∑
i∈{1,2}

{
− (∇qT i ,v)T i + (qT i − q(∂T )i ,v·nT )(∂T )i

}
+
∑
T∈Th

([[qT ]]Γ,v·nΓ)TΓ ,
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where we used that v is single-valued at all the mesh interfaces and that qF vanishes at all
the mesh boundary faces. Recalling the definition (27) of the norm ‖·‖V̂h0

and invoking the
Cauchy–Schwarz inequality gives

‖qT ‖2Ω . ρ
1
2

] ‖q̂h‖V̂h0

( ∑
T∈Th

∑
i∈{1,2}

‖v‖2T i + hT ‖v‖2∂(T i)

) 1
2

.

To bound the last term on the right-hand side, we invoke the multiplicative trace inequality

(6) (applied componentwise) followed by Young’s inequality to infer that h
1
2

T ‖v‖∂(T i) . ‖v‖T † +
hT ‖∇v‖T † for all T ∈ Th and all i ∈ {1, 2}. This yields

‖qT ‖2Ω . ρ
1
2

] ‖q̂h‖V̂h0

( ∑
T∈Th

‖v‖2T † + h2
T ‖∇v‖2T †

) 1
2

.

Since hT ≤ `Ω and owing to Assumption 3.3, we have∑
T∈Th

‖v‖2T † + h2
T ‖∇v‖2T † . ‖v‖

2
H1(Ω),

and we conclude by recalling that ‖v‖H1(Ω) . `Ω‖qT ‖Ω.

Remark 6.3 (Theorem 6.1). The difference in the initial condition between (18) and Theo-
rem 6.1 only concerns the cut cells T ∈ T Γ

h (where the L2-orthogonal projection uses T and
T † respectively). This choice is a consequence of the use of the error decomposition (36) which
implies that eT (t) = pT (t)− Ik+1

T (p(t)) which possibly differs from pT (t)−Πk+1
T (p(t)) in the cut

cells, and in turn, this error decomposition is motivated by the approximation properties (31)-
(32). Using Ik+1

T in lieu of Πk+1
T is also at the origin of the need to invoke the Poincaré inequality

from Lemma 6.2 (leading to the velocity factor χ) and the assumption on the third-order time
derivative of p (instead of the second-order only). Notice though that the perturbation induced on
the factor Φ(t, p) in (40) is of higher order. We believe that these are artifacts of the theoretical
analysis, but leave further exploration of these aspects to future work.

7 Numerical results

In this section, we discuss our numerical results. For the second-order formulation in time (see
Section 4), the time discretization is based on the implicit, second-order accurate Newmark
scheme with parameters (β, γ) = ( 1

4 ,
1
2 ). For the first-order formulation in time (see Section 4),

the time discretization is based on Runge–Kutta (RK) schemes up to fourth-order accuracy. We
consider both singly-diagonally implicit schemes with s stages and order (s+1) with s ∈ {1, 2, 3}
(in short, SDIRK(s, s + 1)) and explicit schemes with s stages and order s with s ∈ {2, 3, 4}
(in short, ERK(s)). The Butcher tableaux of the RK schemes and their algebraic realization
are documented in [8]. Notice that the Newmark scheme is always applied to the second-order
formulation in time of the wave equation, whereas the RK schemes are applied to the first-order
formulation.

7.1 Implementation

The implementation of fitted HHO methods is discussed in [12]. Here, we focus on implementa-
tion aspects related to the unfitted setting.
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Figure 2: Geometric discretization of the interface and the sub-cells in cut cells. The number of
points discretizing the interface is 2nint + 1 with nint ∈ {0, 1, 2, 3} (left to right).

First, some preprocessing operations are performed on the given Cartesian mesh (background
mesh): tagging each geometric entity with an identifier to state whether the object is in Ω1 or Ω2;
searching for those cells and interfaces that are cut by the interface Γ; identifying the cells with
a poor cut and performing a local cell-agglomeration procedure. The agglomeration algorithm is
detailed in [6, Sec. 5.1] and uses a threshold parameter θagg. The cell is flagged as being poorly
cut if the ratio between the area of each sub-cell and the area of the cell falls below the threshold.
Unless stated otherwise, we set θagg := 0.3 in our numerical experiments.

To perform numerical integration in the cut cells and along the interface, a set of points is first
constructed to discretize the interface as a piecewise affine curve. This set of points is defined by
means of a parameter nint so that there are 2nint + 1 points discretizing the interface in each cell.
Using these points, a sub-triangulation is created in each sub-cell. Finally, the quadrature points
and weights are obtained by gathering all the Dunavant [19] quadrature points and weights
for all resulting sub-triangles. Figure 2 shows how the sub-triangulation is constructed when
nint ∈ {0, 1, 2, 3}. Unless stated otherwise, we use nint := 8 in our numerical experiments.

7.2 Convergence tests for implicit schemes

In this section, we verify the convergence rates delivered by the implicit schemes (Newmark
and SDIRK) on smooth solutions in homogeneous media. We also assess the impact of geometry
discretization errors. We consider the two-dimensional domain Ω := (0, 1)2, the final time Tf := 1,
and the material properties are ρ := κ := 1. The material interface is defined by a circular level
set function:

φc(x, y) := (x− xc)2
+ (y − yc)2 − r2, (43)

with r := 1
3 and xc = yc := 1

2 . Two smooth solutions are considered:

p(t, x, y) = t2 sin(πx) sin(πy), (44)

p(t, x, y) = sin(
√

2πt)x(1− x)y(1− y), (45)

where (44) is used to focus on the space discretization error and (45) on the time discretization
error. In both cases, the data f and the initial conditions p0, and v0 are computed accordingly.
We use a sequence of uniformly refined quadrangular meshes of size h := 0.1 × 2−l with l ∈
{0, 1, 2, 3, 4}, and the time step size is set to ∆t := 0.1 × 2−l with l ∈ {0, 1, 2, 3, 4, 5}. In the
following convergence tests, we report the H1- and L2-errors at the final time. Figure 3 (upper
row) reports the convergence in space for the analytical solution (44) and the convergence in
time for the analytical solution (45) using the Newmark scheme. The convergence orders in
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Figure 3: Convergence in space for the analytical solution (44) (left panels), and convergence in
time for the analytical solution (45) (right panels). Top row: Newmark scheme; bottom row:
SDIRK(s, s + 1) scheme with s = 3 in the bottom left panel to study the convergence in space
and s ∈ {1, 2, 3} in the bottom right panel to study the convergence in time (nint := 10).

space match the theoretical predictions for smooth solutions, while the convergence in time is of
second order as expected. The same conclusions are reached when considering SDIRK schemes
(Figure 3, bottom row). Next, we explore the effect of the geometry discretization parameter
nint in Figure 4, both for the Newmark and SDIRK schemes. The results indicate that for the
values nint = {8, 10}, the geometric error is negligible compared to the time discretization error
for the current choices of the time step. Similar experiments (not reported herein for brevity,
see, e.g., [6, Fig. 5.6] for a study on the elliptic interface problem) indicate that given a range
for the mesh size, the parameter nint has to be taken large enough so that the geometric error
does not dominate the space discretization error.

7.3 Fitted-unfitted comparison: heterogeneous case with flat interface

The second test case deals with the propagation of an acoustic wave in a two-dimensional het-
erogeneous domain with a flat interface, so as to allow for the comparison between the fitted and
unfitted HHO methods. The domain is Ω := (− 3

2 ,
3
2 )2, the simulation time is Tf := 1, the inter-
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Figure 4: Impact of the choice of the geometry discretization parameter nint in the convergence
in time for the analytical solution (45); Newmark scheme (left panel) and SDIRK(3, 4) scheme
(right panel).

face is a line located at y = 0, Ω1 is located below the interface and Ω2 above. We consider two
cases for the material properties: the low-contrast case where κ1 := 3, κ2 := 9 and ρ1 = ρ2 = 1
(so that the velocity ratio is c2/c1 =

√
3), and the high-contrast case where κ1 := 3, κ2 := 192

and ρ1 = ρ2 = 1 (so that the velocity ratio is c2/c1 = 8). The source term is f := 0, and the
initial conditions are v0 := 0 and

p0(x, y) := θ exp

(
−π2 r

2

λ2

)
, (46)

with λ := c2
α , α := 10 for the low-contrast case and α := 20 for the high-contrast case, θ := α λ2

2π2 ,

r2 := (x− xc)2
+ (y − yc)2

, xc := 0, and yc := 2
3 . The initial condition corresponds to a Ricker

wave centered at the point (xc, yc) ∈ Ω2. The wave first propagates in Ω2, then is partially
transmitted to Ω1 and later it is also reflected at the boundary of Ω. A semi-analytical solution
is available until the wave is reflected at the boundary of Ω, and can be calculated using the
gar6more2d software.1 The semi-analytical solution is based on a reformulation of the problem
with zero initial conditions and a Dirac source term with a time delay of 0.15 (this value is tuned
to match the choice of the parameter θ above).

In our comparisons between the numerical predictions using HHO and the semi-analytical
solution, we track the two Cartesian components of σ = 1

ρ∇p at two sensors, one located at the

point S1 := ( 3
4 ,−

1
3 ) in Ω1 and one located at the point S2 := ( 3

4 ,
1
3 ) in Ω2. The comparison with

the semi-analytical solution remains valid until the waves reflected at ∂Ω reach one of the sensors
(this happens at about t∗1 ≈ 0.8 for S1 and t∗2 ≈ 0.6 for S2 in the low-contrast case and at about
t∗1 ≈ 0.3 for S1 and t∗2 ≈ 0.1 for S2 in the high-contrast case). For the numerical predictions, we
compare the fitted HHO method from [8] (termed Fit-HHO in the plots) and the unfitted HHO
method developed herein (termed Cut-HHO in the plots). The size of the fitted mesh is h = 1

32 or
h = 1

64 , and we consider the polynomial degrees k ∈ {1, 2, 3}. In the low-contrast case, we always
use h = 1

32 , whereas in the high-contrast case, we always use h = 1
32 for the Newmark scheme and

we compare both mesh sizes for SDIRK(3, 4). The unfitted mesh is created by agglomerating
the 32 or 64 cells located just above and just below the interface. Since the interface is flat,

1see https://gforge.inria.fr/projects/gar6more2d/
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Figure 5: Low-contrast test case. Comparison of the signal σx at the sensor S1 obtained using
the semi-analytical solution, the fitted HHO method (Fit-HHO), and the unfitted HHO method
(Cut-HHO). Left column: Newmark time-stepping; right column: SDIRK(3, 4) time-stepping.
Top row: k = 1; central row: k = 2; bottom row: k = 3. h = 1

32 for both schemes.

we can take nint = 0. For the signal at the sensors, we use the reconstructed gradient in the
second-order formulation, and the cell component of σT in the first-order formulation. The time
discretization employs either the Newmark scheme (time steps ∆t = 0.1 × 2−7 for low contrast
and ∆t = 0.1× 2−9 for high contrast) or the SDIRK(3, 4) scheme (time step ∆t = 0.1× 2−5 for
low contrast and ∆t = 0.1× 2−6 for high contrast).

The results are reported in Figure 5 (low contrast) and in Figure 6 (high contrast) for the
x-component at the sensor S1 (the conclusions are similar for the y-component and for the signals
recorded at S2). We observe in both cases (low and high contrast) that for the Newmark scheme,
the choice k = 1 for the polynomial order leads to fairly large errors. The situation is improved
for k = 2, although some oscillations remain, whereas the agreement with the semi-analytical
solution is excellent for k = 3. We also notice that the results obtained with the fitted HHO
method present somewhat less pronounced oscillations than with the unfitted HHO method,
although the differences are not very significant and disappear by increasing the polynomial
degree. Concerning SDIRK(3, 4), the accuracy is always very good in the low-contrast case. In
the high-contrast case, when using the coarser mesh with h = 1

32 , the signals for k ∈ {1, 2} feature
some spurious oscillations (both for the fitted and unfitted approaches), but these oscillations
disappear for k = 3. Additional numerical experiments (not shown here for brevity, see Table 2)
indicate that the results are already very accurate for k = 1 when using the finer mesh with
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Figure 6: High-contrast test case. Comparison of the signal σx at the sensor S1 obtained using
the semi-analytical solution, the fitted HHO method (Fit-HHO), and the unfitted HHO method
(Cut-HHO). Left column: Newmark time-stepping; right column: SDIRK(3, 4) time-stepping.
Top row: k = 1; central row: k = 2; bottom row: k = 3. h = 1

64 for Newmark and h = 1
32 for

SDIRK(3, 4).

h = 1
64 .

A more quantitative comparison is provided in Table 1 (low contrast) and in Table 2 (high
contrast), where we report the maximum relative error (in %) for both components of σ over all
the discrete time nodes in the time interval [0, t∗i ] for the sensor Si, i ∈ {1, 2}. The normalization
is computed by using the maximum values in time (in absolute value) obtained for the semi-
analytical solution: the resulting values are 2.95 × 10−2 for σx at S1, 7.05 × 10−2 for σy at S1,
7.13× 10−2 for σx at S2, and 3.17× 10−2 for σy at S2 in the low-contrast case, and 5.11× 10−2

for σx at S1, 5.98× 10−1 for σy at S1, 5.65× 10−1 for σx at S2, and 2.26× 10−1 for σy at S2 in
the high-contrast case. We observe again the significant improvement gained by increasing the
polynomial degree. Moreover, we see that in all cases, the errors incurred with the fitted and
unfitted HHO method are comparable, with slightly better results for the fitted version. Observe
though that the unfitted mesh is produced by agglomerating two adjacent cells, so that the cells
used in the unfitted HHO method are actually two times larger around the interface.
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Newmark Fit-HHO Cut-HHO
Variable and location k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

σx at S1 41.43 6.81 3.90 57.07 20.18 4.76
σy at S1 42.85 7.28 4.08 65.02 23.77 5.70
σx at S2 12.14 3.52 3.34 23.77 6.38 3.43
σy at S2 10.76 3.34 3.33 33.18 6.36 3.32

SDIRK(3, 4) Fit-HHO Cut-HHO
Variable and location k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

σx at S1 12.91 3.67 2.70 12.32 3.60 2.67
σy at S1 11.89 3.54 2.54 10.09 3.73 2.52
σx at S2 3.12 1.48 1.37 3.14 1.45 1.38
σy at S2 2.29 1.61 1.41 2.42 1.57 1.41

Table 1: Low-contrast case. Maximum relative errors (in %) for the components σx and σy
at the two sensors S1 and S2; upper table: Newmark time-stepping; lower table: SDIRK(3, 4)
time-stepping. h = 1

32 for both schemes.

7.4 CFL condition for explicit time-stepping

The use of an ERK(s) scheme for time-stepping is subject to a CFL stability condition. The
goal of this section is to explore this condition. First, we observe that the condition takes the
general form

c]
∆t

hγ
≤ β(s)µ(k), (47)

where c] is the largest velocity in the medium, γ ∈ {1, 2}, β(s) ≈ O(1) is a coefficient that
depends on the number of stages, and µ(k) is a coefficient that depends on the mesh geometry
and the polynomial degree k (and is expected to scale as (k + 1)−1). To compute the coefficient
µ(k), we compute numerically on various meshes the largest eigenvalue, say λmax(h, k), of the
generalized spectral problem AX = λMX, where A and M are the stiffness and mass matrices
appearing in the algebraic realization (25) of the space semi-discrete HHO formulation with
polynomial degree k ≥ 0. The exponent γ and the coefficient µ(k) are then determined so that
µ(k) ≈ h−γλmax(h, k)−1 is h-independent.

In this section, we take Ω := (0, 1)2 and uniform material properties. We consider uniform
Cartesian meshes of size h = 0.1 × 2−l with l ∈ {0, 1, 2, 3, 4}. First, we consider a flat interface
as in the previous section and compare the values obtained for the fitted and unfitted HHO
methods. In both cases, our results show (somewhat expectedly) that γ = 1 if the stabilization
weight is τ̃∂T = O(1) and γ = 2 if the stabilization weight is τ̃∂T = O(h−1) (see Section 5 for the
definition of the weights). This result corroborates that using τ̃∂T = O(1) is much more effective
in the context of ERK(s) schemes than using τ̃∂T = O(h−1), and only the former value is used
in the rest of this work. Table 3 reports the value of µ(k) obtained for the polynomial orders
k ∈ {0, 1, 2, 3} for the fitted and unfitted HHO methods. The dependence on the polynomial
order is close to (k + 1)−1 as expected. Moreover, the ratio of the values of µ(k) for fitted and
unfitted HHO is moderate, confirming that the use of the unfitted approach does not really
degrade the CFL condition on the time step. Next, we consider a circular interface. The first
five panels in Figure 7 (from left to right, top to bottom) highlight the agglomerated cells
on the five meshes considered (the agglomeration parameter is set to θagg = 0.3). The sixth
panel (bottom right) reports the reciprocal of the maximum eigenvalue, λmax(h, k)−1, on all
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Newmark Fit-HHO Cut-HHO
Variable and location k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

σx at S1 2.64 0.65 0.35 3.10 0.67 0.41
σy at S1 28.01 6.31 3.76 30.55 5.64 4.25
σx at S2 2.61 0.87 0.43 1.62 0.74 0.38
σy at S2 9.63 4.58 1.35 10.87 4.71 1.23

SDIRK(3, 4) Fit-HHO Cut-HHO
Variable and location k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

σx at S1 0.4363 0.2423 0.0199 0.4179 0.1834 0.0192
σy at S1 6.1923 0.2929 0.1325 6.0324 0.2785 0.1281
σx at S2 0.1064 0.0034 0.0026 0.1075 0.0024 0.0016
σy at S2 0.0485 0.0135 0.0125 0.0460 0.0143 0.0125

Table 2: High-contrast case. Maximum relative errors (in %) for the components σx and σy
at the two sensors S1 and S2; upper table: Newmark time-stepping; lower table: SDIRK(3, 4)
time-stepping. h = 1

64 for both schemes.

k 0 1 2 3
Fit-HHO 0.118 0.0522 0.0338 0.0229
Cut-HHO 0.0765 0.0373 0.0232 0.0159

Ratio 1.5 1.4 1.5 1.4

Table 3: Coefficient µ(k) for polynomial orders k ∈ {0, 1, 2, 3} and the fitted HHO method
(Fit-HHO), the unfitted HHO method (Cut-HHO) together with the ratio of the two values.

the meshes and for the polynomial orders k ∈ {0, 1, 2, 3}. We observe that despite the slight
irregularity of the agglomeration process as the meshes are refined, the reciprocal of the maximum
eigenvalue essentially behaves as h−1. The resulting value of µ(k) is reported in Table 4 for the
agglomeration parameters θagg ∈ {0.1, 0.3, 0.5}. As expected, there is a slight increase in µ(k)
as the agglomeration parameter θagg is decreased since lower values of θagg favor the presence of
cells with worse cuts. However, we see that the impact is moderate since, for instance, the value
of µ(k) for θagg = 0.1 is only about 2.5 times worse than the value for θagg = 0.5. Interestingly,
the value of the ratio is fairly independent of the polynomial degree. Another interesting result
is reported in [35] for the elastic wave equation discretized in space using continuous cut finite
elements with a Nitsche-based coupling; therein, stabilization based on least-squares penalty on
the jumps of normal derivatives is introduced to temper bad cuts, and a cut-independent CFL
condition is reported.

7.5 Comparison of implicit and explicit schemes

The goal of this test case is to compare the computational efficiency of the three time-stepping
schemes (Newmark, SDIRK(3, 4), and ERK(4)) on a test case where the interface has a more
complex shape than above. Specifically, we employ the following flower-like level set function:

φf (x, y) := (x− a)2 + (y − b)2 − r2 − c cos(ncθ), (48)

with a = b := 0, r := 1, c := 1
5 and nc := 8. For this test case, we consider the same physical

settings as in Section 7.3 in the case of low contrast, except for the location of the initial pulse
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Figure 7: Agglomerated cells for the circular interface on a sequence of successively refined
Cartesian meshes of size h = 0.1× 2−l with l ∈ {0, 1, 2, 3, 4} (from left to right, top to bottom).
Bottom right panel: reciprocal of the maximum eigenvalue, λmax(h, k)−1, on all the meshes and
for the polynomial orders k ∈ {0, 1, 2, 3}.

which is now xc = yc := 0. The sub-domain Ω2 is the one located inside the flower-like interface,
whereas the sub-domain Ω1 is located outside. Since a semi-analytical solution is no longer
available, we compute a reference solution by using SDIRK(3, 4) time-stepping on a Cartesian
mesh of size h := 2−6, a time step ∆t := 0.1× 2−8, and polynomial order k := 3. Figure 8 shows
the agglomerated cells on the meshes used in the numerical tests (left panel, h := 2−5) and to
compute the reference solution (right panel, h := 2−6). Figure 9 illustrates the propagation of
the wave across the flower-like interface and the reflections at the boundary. The selected time
values are t ∈ {0.25, 0.5, 1.0}.

In order to compare the time-stepping schemes, we set the order of the HHO space semi-
discretization to k := 3 and we select the value of the time-step for each implicit scheme in such
a way that the accuracy of the signal corresponding to σx and σy at two sensors is of comparable
accuracy. One sensor is located at the point S1 := (1.2, 1) in Ω1 and the other one is located at
the point S2 := ( 1

3 ,
2
3 ) in Ω2. To refer to the level of time refinement, we write ∆tl := 0.1× 2−l

with l ∈ {4, . . . , 9} and report the integer l. The mesh-size is h := 2−5 for RK schemes and
h := 2−6 for the Newmark scheme; indeed, the space discretization errors tend to be a bit larger
for the Newmark scheme since it handles second-order differential operators in space. Figure 10
reports the signal corresponding to σx at the two sensors (similar results are obtained for σy)
for the Newmark and the SDIRK(3, 4) schemes with polynomial orders k ∈ {1, 2, 3}. These
results corroborate the benefits of using a high polynomial degree (here, k = 3). A more detailed
overview of the errors for both signals at both sensors can be found in Table 5 which displays
the maximum relative errors (in %) over the time window t ∈ [0, 1] for the components σx and
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k 0 1 2 3

θagg = 0.5 0.042 0.022 0.014 0.0099
θagg = 0.3 0.030 0.015 0.0094 0.0065

Ratio 1.4 1.5 1.5 1.5
θagg = 0.1 0.017 0.0087 0.0055 0.0039

Ratio 2.5 2.6 2.6 2.5

Table 4: Coefficient µ(k) for polynomial orders k ∈ {0, 1, 2, 3} and the unfitted HHO method
(Cut-HHO) for a circular interface and the agglomeration parameters θagg ∈ {0.1, 0.3, 0.5}. The
ratios are with respect to the value of µ(k) obtained with θagg = 0.5.

Figure 8: Agglomerated cells for the flower-like interface. Left: mesh used for the numerical
comparisons (h := 2−5); right: mesh used to compute the reference solution (h := 2−6).

σy at the two sensors S1 and S2 (the normalization factors are 0.036 for σx at S1, 0.073 for σy at
S1, 0.048 for σx at S2, and 0.029 for σy at S2). In Table 5, we also include results for k = 1 and
a finer mesh so that the total number of coupled unknowns after static condensation is about
the same as for k = 3 (that is, h = 1

90 for Newmark and h = 1
45 for SDIRK(3, 4)). Comparing

the corresponding errors with those obtained with k = 3 (and even for k = 2), we observe again
the benefits of using a higher polynomial degree. The conclusion of this study is that we set the
time refinement level to l = 8 for Newmark and to l = 6 for SDIRK(3, 4), leading to relative
errors below 2% (for Newmark) or 1% (for SDIRK(3, 4)) for the signals at both sensors. Finally,
for the ERK(4) scheme, the time refinement level is dictated by the CFL condition and leads to
l = 9 and to relative errors below 1%.

Table 6 reports some information on the CPU time for the three schemes. We employed the
PARDISO sparse linear solver (Intel MKL library) for the direct solver and the Eigen library
implementation of Bi-CGStab for the iterative solver with tolerance 10−10. The reported time
values represent the total time per step employed on all the CPUs. The executions were per-
formed on a 8-core CPU (2.7 GHz Quad-Core Intel Core i7) with LPDDR3 memory (16 GB
2133 MHz). All the implementations have been compiled with clang including the optimization
level -O3. The results from Table 6 should be considered as indicative of essential trends, as the
current software is not optimized. The first observation is that the efficiency of RK schemes is
higher than that of the Newmark scheme. Moreover, if direct solvers are allowed, the lowest over-
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Figure 9: Flower-like test case: reference solution computing using SDIRK(3, 4) time-stepping
at the times t ∈ {0.25, 0.5, 1.0}.

all runtime (time/step multiplied by the number of steps needed to reach final time) is achieved
by SDIRK(3, 4), whereas if direct solvers are not allowed, the lowest overall runtime is achieved
by ERK(4) despite the need to use a smaller time step due to the CFL condition. Finally, in Ta-
ble 7, we report for various schemes the CPU times [s] spent on the cell agglomeration procedure
and the matrix assembly (we also indicate the total number of coupled unknowns after static
condensation). The main observation is that the time spent on the cell agglomeration procedure
is marginal with respect to the one spent on matrix assembly. Incidentally, we notice that an
additional benefit of using a higher polynomial degree (while keeping approximately constant
the total number of discrete unknowns) is that the cost of cell agglomeration becomes even more
marginal.

8 Conclusions

We have devised unfitted HHO methods to approximate the acoustic wave equation in heteroge-
neous media. The unfitted methodology allows the interface to cut the cells in a general fashion,
whereas the use of high polynomial orders for the space approximation is beneficial to improve
solution accuracy. We have investigated the method theoretically by establishing an H1-error
estimate for the second-order formulation in time, leading to optimal decay rates of the error
for smooth solutions. A thorough numerical study has been performed to assess the influence
of the discretization of the geometry, the comparable accuracy between fitted and unfitted ap-
proaches in the case of a flat interface, and the moderate impact on the CFL condition for
explicit time-stepping schemes when using the unfitted method with a relatively broad range
of cell-agglomeration parameters. Finally, we have illustrated the capabilities of the proposed
methodology in a test case where the interface has a more complex shape and we have per-
formed a comparative study of the efficiency of the various time-stepping schemes. To conclude,
we mention that the present study can be extended in a relatively straightforward manner to
elastodynamics.
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Figure 10: Flower-like test case. Comparison of the signal corresponding to σx at the sensors
S1 (left column) and S2 (right column) for the Newmark scheme (upper row, time refinement
level l = 8) and the SDIRK(3, 4) scheme (bottom row, time refinement level l = 6). The results
obtained with polynomial orders k ∈ {1, 2, 3} are compared to the reference solution.
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