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Abstract

The atomic structure of glassy GeTe4 is obtained in the framework of first-principles

molecular dynamics by considering five different approaches for the description of the elec-

tronic structure within density functional theory. Among these schemes, one is not corrected

by the account of the dispersion forces and it is based on the BLYP exchange correlation (XC)

functional, while all the others are intended to account for the dispersion forces according

to different theoretical strategies. In particular, by maintaining the BLYP expression for the
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XC functional, two of them (BLYP-D2 and BLYP-D3) exploit the Grimme expressions for

the dispersion forces, while the fourth scheme is based on the Maximally Localized Wannier

functions (MLWF). Finally, we also considered the rVV10 functional constructed to include

seamlessly the dispersion part. Our results point out the better performances of the BLYP-D3

and MLWF in terms of comparison with experimental data for the total pair correlation func-

tions, BLYP-D2 and rVV10 being closer to the uncorrected BLYP data. The implications of

such findings are discussed by considering the overall limited impact of dispersion forces on

the atomic structure of glassy GeTe4.

1 Introduction

Two main reasons are at origin of the widespread interest in disordered network forming materials

containing Ge-Te bonded structural units. The first is deeply rooted into the role they play as repre-

sentative systems in phase change materials (PCMs) or in devices prone to applications for optics

and far infrared transmission1,2. These latter exhibit enhanced glass stability as an essential pre-

requisite while PCMs are typically poor glass formers due to their inherent structural instability3.

The second reason is more fundamental, since chalcogenide disordered networks are an excellent

playground for the assessment of bonding properties escaping any clear-cut classification in terms

of standard ionic or covalent bonding. This limitation has been somewhat overcome by invoking

the notion of iono-covalent bonding to describe localized distribution of charges around the atomic

sites coexisting with highly directional bonding4–6. However, the search of a quantitative theo-

retical description remains challenging. The case of Ge-Te glasses is even more elusive. These

systems are not only highly sensitive, within density functional theory (DFT), to the choice of the

exchange-correlation (XC) functional but also, for specific concentrations, to the neglect or the

account of dispersion forces. In a paper devoted to glassy GeTe4, we pointed out that its structure

depends on the combined choice of the XC functional and of dispersion (van der Waals, vdW) cor-

rections6. This work was carried out by relying on the first-principles molecular dynamics (FPMD)

plane waves DFT scheme. In particular, it was demonstrated that the impact of vdW forces is not
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as crucial as the optimal choice of the XC functional (BLYP7,8 turning out to be the preferred one)

but it cannot be neglected a priori as it occurs in the original Kohn-Sham DFT expression.

Such conclusion was reached via the application of the vdW scheme due to Grimme (vdWG),

in the version named D29. A further set of calculations on glassy GeTe4 was motivated by two

considerations10. First, it appeared that a single dispersion scheme cannot be taken as a universal

recipe equally effective for any system, this calling for the account of at least one alternative choice

to compare with. Second, there is some concern on the neglect, in D2-Grimme, of updates in the

dispersion coefficients resulting from the evolution in time of the electronic structure, closer in

spirit to the combined dynamical evolution of ionic and electronic degrees of freedom occurring

in first-principles molecular dynamics (FPMD)11. Accordingly, in Ref. 10, we focused on the

comparison between distinct sets of BLYP data, namely the two already available (not including

dispersion forces, named NovdW and adopting the D2-Grimme scheme, named vdWG) and a third

one, making use of the maximally localized Wannier functions (MLWF) framework (vdWW here-

after), known for exploiting the evolution of the electronic structure when updating the dispersion

coefficients12–15. Taken altogether, the results obtained did not provide unambiguous indications.

In fact, the vdWW strategy produced pair correlation functions agreeing well with the NovdW set

of data but differing from those obtained via vdWG. In turn, vdWG data were in better agreement

with the experimental counterpart. These pieces of evidence call for a more complete analysis,

extended to other vdW schemes, in order to achieve the following goals: a) a more robust conclu-

sion on the impact of the dispersion forces, b) the assessment of the actual improvements induced

by dispersion coefficients adapting to changes in the electronic structure with respect to more em-

pirical ones and, c) some hints on the overall capability of the correction schemes not to modify

artificially the structural data for bonding situations not crucially demanding their explicit account.

This latter point is likely to be quite subtle since one would like to estimate correctly dispersion

forces regardless of their being a priori of limited impact. For instance, in the case of glassy

GeTe4, plausible physico-chemical arguments (i.e. the presence of predominant iono-covalent in-

teractions) indicate that they should not affect substantially structural properties.
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In this paper atomic-scale modelling of glassy GeTe4 is carried out within DFT-FPMD by per-

forming extensive calculations with five different approaches for the description of the dispersion

forces. This new insight considerably improves upon the preliminary report of Ref. 10. We have

accounted not only for two additional vdW schemes but we have also produced new time trajecto-

ries to reach a total number of 11 independent ones. As a result, we have gathered more compelling

information on the changes induced to the network topology by a variety of different treatments of

the long range van des Waals interactions.

This paper is organized as follows. The introduction is followed by section 2 describing our meth-

ods of calculation, comprising the theoretical framework and the technical details of the FPMD

simulations as well as the different schemes employed to account for the dispersion forces. Sec-

tion 3 contains in two different subsections results for the total and the partial pair correlation

functions. Conclusive remarks are collected in section 4.

2 Theoretical Methods

In order to fully appreciate the insight provided by the present investigation and the underlying

methodology, we recall the computational framework employed in Ref. 10. Glassy GeTe4 was

made of 215 atoms (43 Ge, 172 Te) in a supercell of cubic shape with edge 19.24 Å. Such sys-

tem was studied within the Car-Parrinello11 molecular dynamics (CPMD) scheme as implemented

in the CPMD code16, by adopting the exchange functional by Becke7 and the correlation func-

tional by Lee, Yang and Parr8 (BLYP). An energy cutoff of 40 Ry was employed to account for

valence electrons within a plane wave basis set, by restricting the Brillouin zone integration to

the Γ point6,17,18. Other relevant features were the control of the temperatures of the ions and

of the fictitious electronic degrees of freedom via Nosé-Hoover thermostats19–21 and the choice

of an integration step of 5 a.u. (0.121 fs). The Nosé-Hoover chain consisted of two thermostats,

characterized by an oscillation frequency of 6 and 60 THz, respectively.

In regard to the choice of the BLYP exchange-correlation functional, this is rooted into the
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better performances exhibited by this recipe for disordered Ge-based chalcogenides22,23. In par-

ticular, one obtains an improved description of the short range Ge environment corresponding to

an enhanced localized behavior of the electron density. Such effect is predominant over electronic

delocalization that favors the metallic character, a drawback inherent in generalized gradient ap-

proximation approaches based on the uniform electron gas as reference system (as the one due to

the Perdew and Wang24.

Dispersion forces were included by using either the DFT-D2 formula devised by Grimme9 or

by resorting to a recipe (refered to hereafter as vdWW) based on the concept of the maximally lo-

calized Wannier functions (MLWFs)12–15. Briefly, the vdWW scheme can be described by relying

on the following relationships, the first containing the C6,nl coefficients25

EvdW =−∑
n<l

f (rnl)
C6,nl

r6
nl

, (1)

(in which the subscripts n and l run over all atoms or fragments of the system and f (rnl) is a

damping function avoiding unphysical divergence and double counting of correlations at short

range) and the second expressing them in terms of the MLWFs wn(r) as follows

C6,nl =
3

32π3/2

∫
r≤rcut

∫
r′≤rcut

wn(r) ·wl(r′)
wn(r)+wl(r′)

d3r′d3r. (2)

The MLWFs approach allows for an intuitive interpretation of the bonding properties of condensed-

matter systems and are at the heart of the modern theory of polarization26,27. In principle, this

schema is very well suited to provide additional information on the electronic structure character-

izing the different realizations of glassy GeTe4. However, such an extension is outside the scope of
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the present study focused on the correlation between structural properties and different vdW cor-

rection to the Kohn-Sham DFT energy functional. Van der Waals-corrected DFT approaches based

on MLWFs proved to be successful in describing many systems: small molecules, water clusters,

graphite and graphene, water layers interacting with graphite, interfacial water on semiconduct-

ing substrates, hydrogenated carbon nanotubes, molecular solids, the interaction of rare gases and

small molecules with metal surfaces,... (see, for instance, Ref. 28 and references therein). The ML-

WFs approach performs well since it combines the simplicity of the semiempirical formalism with

the accuracy of the first principles approaches. In fact, being based on localized electronic orbitals,

they are well suited to describe small electronic effects following configuration changes, thereby

largely increasing the transferability of the approach (for instance, charge polarization effects are

naturally included).

In the present study, the set of methods to account for dispersion forces is completed by consid-

ering two additional theoretical schemes. We also resorted to a computational package other than

CPMD. More explicitly, FPMD calculations have been performed in the framework of the Quan-

tum Espresso package29–31 by selecting either the Car Parrinello11 or the Born-Oppenheimer (BO)

scheme. This latter amounts to a search of the electronic ground state for each ionic configuration

and is characterized by an integration step of 50 a.u. (1.21 fs).

We have increased the statistical sampling of our analysis by taking advantage of new trajecto-

ries produced for the same system at room temperature, thereby allowing for averages to be taken

by considering previous and new results. As in Ref. 10, trajectories were produced for the BLYP

(NovdW), BLYP-D2 (vdWD2 herafter) and MLWF (vdWW) cases. In addition, we also considered

the Grimme D3 expression (vdWD3 herafter) expected to ensure improved accuracy and range

of applicability with respect to D232. In view of its character of exchange-correlation functional

constructed to include seamlessly the dispersion part, our study has been also extended to FPMD

trajectories produced by using the rVV10 functional (vdWVV)33,34. In fact, unlike the Grimme

and MLWF methods, rVV10 (as its pristine counterpart VV1035) does not feature any separation

between the DFT Kohn-Sham functional and the dispersion part. This makes its use particularly
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appealing in the context of a thorough analysis intended to assess the impact of vdW forces on a

prototypical disordered chalcogenide. Overall, the theoretical tools employed in Ref. 10 and in

the present work can be grouped into three categories: those accounting for dispersion forces via

coefficients reflecting (MLWF) (a) or not reflecting (BLYP-D2 and BLYP-D3) (b) changes in the

electronic structure during the motion and (c) the rVV10 method built as a functional including

dispersion forces via a non-local construction with no analytical separation from the energy func-

tional.

A summary of the different combinations of DFT schemes together with the way FPMD has been

implemented (CP or BO) is given in Table 1.

Table 1: DFT schemes and FPMD methodologies employed in this work and in Ref. 10. CP stands
for Car-Parrinello and BO for Born-Oppenheimer first principles molecular dynamics

CP10 CP BO
NovdW (BLYP) NovdW(BLYP) NovdW(BLYP)

vdWD2(Grimme-D2) vdWD2(Grimme-D2) vdWD2(Grimme-D2)
vdWW(BLYP-MLWF) vdWVV(rVV10) vdWD3(Grimme-D3)

vdWW(BLYP-MLWF) vdWVV(rVV10)

The first column refers to Ref. 10. First of all, the same heating and cooling process are

used to produce a second MLWF(vdWW) simulation run. Concerning the production of the other

trajectories, one configuration at T = 300 K among those exploited in Ref. 10 is taken as the initial

one to initiate two kinds of thermal cycles. In the first (CPMD method) heating has occurred up to

a temperature T = 900 K over 15 ps to allow for significant diffusion, followed by a rapid quench

(in 4 ps) to T = 300 K with statistical averages calculated over 6 ps at this same temperature. In

the second (BO method) one of the previous sets of coordinates at T = 900 K is selected to start

a cooling process lasting 50 ps down to T = 300 K, followed by data collection over a further

trajectory of 20 ps at the same temperature. BLYP-D3 results are available within the FPMD-BO

calculations only.

The availability of a distinct number of equilibrium trajectories (three, two or a single one)

among the different choices for the dispersion forces does not affect the essence of our results.

Indeed, for a specific case, deviations from the mean found when several trajectories are available
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are smaller than the differences occurring among the different schemes.

3 Results and Discussion

3.1 Total pair correlation functions.

In what follows, we concentrate on the total pair correlation function gT(r) obtained as a weighted

linear combination of the three partial pair correlation functions gαβ(r), where α and β denote the

chemical species considered (Ge, Te). The focus will be on a comparative analysis of the pair

correlation functions obtained in the absence (NovdW, BLYP data) and in the presence of disper-

sion forces, these latter expressed in four different forms (vdWD2, BLYP-D2, vdWD3, BLYP-D3,

vdWW, BLYP-MLWF and vdWVV, rVV10).

As a prerequisite, it is instructive to define under which conditions the performances of the different

vdW schemes will be examined. Having in mind the impact of the dispersion forces on the struc-

tural properties, we choose not to account for short range contributions corresponding to distances

up to the first minimum of the pair correlation function, say smaller than 3 Å. For this reason, there

is little that can be added to the fact that the depth of the first minimum observed experimentally

is not entirely reproduced by any of schemes we implemented (see Fig. 1). Overall, quantitative

comparisons and conclusions drawn thereof will not depend on the degree of variability found in

the height and shape of the first peaks in the pair correlation functions, clearly not directly sensitive

to the action of the dispersion forces. Variations of this specific feature can be mostly ascribed to

statistical fluctuations affecting, in the first place, Ge-Ge correlations, the number of Ge atoms be-

ing limited to 43 in our simulations. This is why our set of comparisons are based most exclusively

on the behaviors recorded for distances larger than 3 Å.

For gT(r) we provide a direct comparison among all cases and also the function ∆(exp,tot) that

results from the difference between the various gT(r) and the experimental data. Analogously,

∆(NovdW, tot) is the difference between all calculated gT(r) and the NovdW counterpart. Finally,

the ∆ functions are exploited to calculate the integrals of their absolute values on the range [3−9]
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Å such quantities being inversely proportional to the agreement between two given curves. The

case of gT(r) (Fig. 1) is indicative of small differences between the five different schemes we

considered.

One notes that vdWD3 improves considerably upon vdWD2, both of them performing better than
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Figure 1: gT(r). Comparing the five different schemes employed to account for dispersion forces
with experiments (from Ref. 36) in the case of the total pair correlation function.

the NovdW scheme. Interestingly, vdWW is also closer to experiments than NovdW while vdWVV

is the farthest from the experimental data. A quantitative summary of this analysis is presented in

Table 2 with further evidence given in Fig. 2 (∆(exp,tot) function).

Table 2: Integral of the absolute value of the differences between a given set of data of gT(r) and
the experimental counterpart on the range [3−9] Å.

Functional I|∆(exp,tot)| (a. u.)
BLYP-D3 (vdWD3) 1.044

BLYP-MLWF (vdWW) 1.125
BLYP-D2 (vdWD2) 1.397

BLYP (NowdW) 1.439
rVV10 (vdWVV) 1.864
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Figure 2: gT(r). Difference functions obtained by subtracting the experimental points from each
one of the calculated total pair correlation function. Experiments from Ref. 36.

This analysis is based on the assumption that the experimental curve is the one to be employed

when assessing the reliability of the different strategies to account for vdW contributions. Globally,

it underscores the legitimacy of schemes correcting Kohn-Sham recipes via the use of dispersion

formulas (vdWD3, vdWW) either highly refined (the first) as a posteriori addition to the total energy

or (the second) adapting to the dynamical evolution of the electronic structure.

An additional method to analyze our results consists in taking as reference data those obtained

within the BLYP scheme with no account of dispersion forces. The situation is summarized in

Table 3 again by taking advantage of the integrals of the absolute value of ∆(NovdW, tot), this

function being visualized in Fig. 3.

Results obtained via vdWVV, rVV10 are by far the closest to NovdW, followed by vdWD2.

However, vdWW behaves in a way not too dissimilar. This proves that this scheme is capable of

ensuring a twofold effect. On the one hand, it improves upon BLYP approaching the experimental

results. On the other hand, this occurs without departing drastically from the same BLYP data
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Figure 3: gT(r). Difference functions obtained by subtracting the BLYP (NovdW) points from
each one of the other available (calculated) total pair correlation functions

Table 3: Integral of the absolute value of the differences between a given set of data of gT(r) and
the BLYP (NovdW) data on the range [3−9] Å.

Functional I|∆(NovdW,tot)| (a. u.)
rVV10 (vdWVV) 0.175

BLYP-D2 (vdWD2) 0.515
BLYP-MLWF (vdWW) 0.684

BLYP-D3 (vdWD3) 0.942

in a way that could be interpreted as an artificial effect overestimating the actual correction due

to dispersion forces. This is exactly the pitfall invoked in our previous study10 when comparing

the performance of schemes depending or not depending explicitly on changes of the dispersion

coefficients during the time evolution.

Therefore, it appears that the schemes employed can be grossly classified in two categories, i.e.

those reducing the gap between the experimental data and the NovdW solution(vdWD3, vdWW)

and those closer to NovdW than to the experimental data (vdWVV and to a smaller extent vdWD2).

However, vdWW stands as the best compromise between these two tendencies, under the assump-
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tion that for this specific system one expects both corrections with respect to the mere BLYP

NovdW data and a better agreement with experiments.

3.2 Partial pair correlation function

In the absence of experimental data for the partial pair correlation functions it is instructive to

employ them to complete the analysis relative to the performances of the different schemes when

compared to BLYP NovdW (Fig. 4, 6 and 5).
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Figure 4: GeTe partial pair correlation functions.

In the case of gGeTe(r) the five different profiles shown in Fig. 4 are quite similar, with vdWD3

mostly departing from NovdW for r > 3 Å. This is confirmed by the data on the integrals of the

absolute value of ∆(NovdW, GeTe)(Table 4). The pair correlation function gTeTe(r) (Fig. 5) is

at very origin of the close behavior of NovdW and vdWVV mentioned when considering gT(r),

keeping in mind that this partial pair correlation function bears the largest contribution in the

weighted sum of partials leading to gT(r). For vdWVV the departure from NovdW is very limited
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Figure 5: TeTe partial pair correlation functions.
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Figure 6: GeGe partial pair correlation functions.
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Table 4: Integral of the absolute value of the differences between a given set of data of partial pair
correlation functions and the BLYP (NovdW) data on the range [3−9] Å.

Functional I|∆(NovdW,GeTe)| (a. u.) I|∆(NovdW,TeTe)| (a. u.) I|∆(NovdW,GeGe)| (a. u.)
BLYP-D2 (vdWD2) 0.474 0.617 1.784
BLYP-D3 (vdWD3) 0.914 1.107 3.599

BLYP-MLWF (vdWW) 0.673 0.993 2.210
rVV10 (vdWVV) 0.429 0.227 1.751

in the range considered, with the integral of the absolute value of the corresponding difference

function ∆(NovdW, TeTe) taking the smallest value among the twelve available values in Table

4. The case of gGeGe(r) is the one featuring the largest discrepancies between BLYP NovdW and

the other schemes (see Fig. 6) and yet is the one with the smallest impact on gT(r). Regardless

of the behavior in the region of the first peak, one notices that the height of the second peak is

overestimated (vdWVV, vdWD2) or underestimated (vdWW,vdWD3), while for r > 4 Å once again

vdWVV and vdWD2 are those closer to NovdW. We conclude that the decomposition in the three

partial structure factors helps confirming that there are sizeable differences among the four different

vdW schemes employed in this work to include the dispersion forces. Of particular interest is the

close behavior of NovdW and vdWVV data for Te-Te correlations, keeping in mind that vdWVV is

the only scheme employed including the dispersion contribution directly in the energy functional.

4 Conclusion

Assessing the performances of theoretical recipes for the dispersion forces in a specific case is a

valuable objective in the search of quantitative atomic-scale descriptions. This has been stressed

by recent contribution in the area of DFT methodologies applied to the treatment of long range van

der Waals interactions37–39.

Our selection of glassy GeTe4 proved worthwhile since this system is highly sensitive to the kind

of vdW schemes employed although none of them brings crucial improvements upon the original

DFT-BLYP approach devoid of dispersion contributions. The present work is the third of a series

devoted to the structure of glassy GeTe4 and to the relationship between the structural features,
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expressed via the pair correlation functions, and the account of dispersion forces. In the first paper,

we came to the conclusion that the atomic structure does depend on the choice of the exchange-

correlation functional and, to a minor extent, to the account of dispersion forces6. In the second,

we considered a scheme accounting explicitly for changes in time of the van der Waals coeffi-

cient (Maximally Localized Wannier Functions method)10. Here we aimed at a more complete

analysis of the effect of dispersion forces by relying on four different methods and on large set

of equilibrium FPMD trajectories. Overall, we were able to demonstrate that the best agreement

with experiments in terms of total pair correlation function is obtained by using the D3 or the

MLWF schemes. This is the most straightforward conclusion one can come up with in terms of

an objective analysis of our data. The good performance of the D3 scheme is related to its less

empirical character. In fact, in the D3 method the specific molecular environment is considered by

using atom-pair specific C6 coefficients which include local information in the form of geometry-

motivated, fractional coordinated numbers. For this reason, D3 is certainly closer in spirit to the

MLWF method than its precursor D2.

In view of the expected non negligible and yet limited impact of the dispersion forces on our

specific system, we have also paid attention to the performances of the different recipes in terms of

comparison with the bare BLYP results. In this case, the best result is given by the rVV10 scheme,

i.e. a functional including dispersion forces via a non-local construction in which there is no

analytical separation from the energy functional. Consideration of both criteria (better agreement

with experiments and moderate departure from the original BLYP data with no dispersion) led us to

conclude that the MLWF scheme is the best compromise for situations in which expected changes

due to dispersion forces are deemed to be of limited extent. These considerations are confirmed

by the analysis of the partial pair correlation functions. In summary, this work clearly points out

that the assessment of schemes for the account of the dispersion forces is not necessarily univocal,

although the search of a better comparison with experiments might always appear as a primary

legitimate objective. Our extended analysis and the use of different approaches contribute to a

better understanding of a very subtle and controversial issue fostering a longstanding debate on the
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role and the impact of dispersion forces. The results obtained will prove especially important to

better control bonding situations where the weight of the dispersion forces is smaller in comparison

to other dominant bonding contributions.
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