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With materials of anisotropic electrical conductivity, it is possible to generate a dynamo with a simple
velocity field, of the type precluded by Cowling’s theorems with isotropic materials. Following a previous
study by Ruderman and Ruzmaikin [M. S. Ruderman and A. A. Ruzmaikin, Magnetic field generation in an
anisotropically conducting fluid, Geophys. Astrophys. Fluid Dyn. 28, 77 (1984)], who considered the dynamo
effect induced by a uniform shear flow, we determine the conditions for the dynamo threshold when a solid
plate is sliding over another one, both with anisotropic electrical conductivity. We obtain numerical solutions
for a general class of anisotropy and obtain the conditions for the lowest magnetic Reynolds number, using
a collocation Chebyshev method. In a particular geometry of anisotropy and wave number, we also derive an
analytical solution, where the eigenvectors are just combinations of four exponential functions. An explicit
analytical expression is obtained for the critical magnetic Reynolds number. Above the critical magnetic
Reynolds number, we have also derived an analytical expression for the growth rate showing that this is a “very
fast” dynamo, extrapolating on the “slow” and “fast” terminology introduced by Vainshtein and Zeldovich [S. I.
Vainshtein and Y. B. Zeldovich, Reviews of topical problems: Origin of magnetic fields in astrophysics (turbulent
“dynamo” mechanisms), Sov. Phys. Usp. 15, 159 (1972)].

DOI: 10.1103/PhysRevE.101.033107

I. INTRODUCTION

Dynamo action is now widely accepted as a mechanism
capable of generating the magnetic field of natural objects
such as the Earth, other planets, the Sun, all stars, the
solar wind, the interstellar medium, etc. Since the studies
of Herzenberg [1] and Backus [2], we have had examples
of mathematical dynamos, however those solutions are not
very easy to describe or to teach. The dynamo proposed by
Ponomarenko [3] is perhaps the simplest case. Any simple
dynamo configuration, easy to derive analytically and with an
easy mechanism to grasp, is welcome.

Since the pioneering paper of Cowling [4], we have known
that a magnetic field generated by dynamo action cannot
be too simple. We also know that a velocity field with too
many symmetries cannot sustain dynamo action. For instance,
a planar flow is found to be unable to maintain a dynamo
[5,6]. However, these conclusions are always associated with
a material of isotropic electrical conductivity. For instance,
Ruderman and Ruzmaikin [7] consider a planar shear flow
(uniform shear) and a simple anisotropic tensor of electrical
conductivity, with one direction having a different value than
the other two. They obtain dynamo action with such a simple
shear flow, provided the direction of conductivity anisotropy
is not aligned with the flow direction nor with the direction of
the gradient of the flow. Using an asymptotic approximation,
they show that the configuration is a fast dynamo, i.e., the
growth rate does not vanish as the magnetic Reynolds number
is increased toward infinity.

In the present paper, we also consider a shear flow and a
similar conductivity tensor as in [7]. Our motivation is to ob-
tain the simplest possible configuration, with the simplest pos-
sible analytical derivation of the critical magnetic Reynolds
number. In this respect, we found that the best case is to have
a localized shear (Dirac function) between two “plates” of
uniform velocity, sliding on top of each other. In each plate,
the induction equation—with anisotropic conductivity—leads
to elementary solutions. The global dynamo solution is then
obtained by applying boundary conditions, including continu-
ity conditions at the interface between the plates.

II. CONFIGURATION

We consider two plates of thickness H , put on top of each
other, and sliding relative to each other with a velocity ±U
(see Fig. 1). A frame of reference (x, y, z) is defined with x
along the sliding direction and z along the direction perpen-
dicular to the plates, and y completes the direct orthogonal
Cartesian frame. The origin z = 0 is taken at the interface
between the plates. The plates have an anisotropic electrical
conductivity: one direction, denoted by the unitary vector q,
has a lower conductivity σ1, while the other two perpendicular
principal directions of the conductivity tensor have a large
electrical conductivity σ0.

The unitary vector q relative to the direction of anisotropy
is itself defined through two angles, α and β (see Fig. 2). One,
α, is the angle between the z axis and the vector q while the
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FIG. 1. Two plates of finite and equal thickness H slide on each
other with relative velocity ±U . Each plate has a uniform anisotropic
electrical conductivity, characterized by a lower value in the direction
q. The thin lines drawn on each cross section of the plates correspond
to the directions of large electrical conductivity.

other, β, is the angle between the x axis and the projection of
q onto the (x, y) plane:

qx = cos β sin α, (1)

qy = sin β sin α, (2)

qz = cos α. (3)

The tensor of electrical conductivity � takes the following
form, which is the general form of a positive definite tensor
with two equal eigenvalues (see [7]):

�i j = σ0δi j + (σ1 − σ0)qiq j . (4)

Its inverse, the electrical resistivity tensor R, will actually be
more useful and its expression is the following:

Ri j = 1

σ0
δi j +

(
1

σ1
− 1

σ0

)
qiq j . (5)

The only requirement, from the second law of thermodynam-
ics, is that both σ0 and σ1 have positive values.

q

x

y

z

β

α

FIG. 2. Angles α and β define the orientation of the anisotropy.
The angle between the z axis and q is denoted α while β denotes the
angle between the x axis and the projection of q in the (x, y) plane:
qx = cos β sin α, qy = sin β sin α, and qz = cos α.

III. GOVERNING EQUATIONS

The kinematic dynamo problem is entirely expressed in the
induction equation, governing the evolution of the divergence-
free magnetic field B:

∂B
∂t

= ∇ × (u × B) − ∇ × (η · ∇ × B), (6)

where η = (μ�)−1 is the anisotropic tensor of magnetic diffu-
sivity and μ is the magnetic permeability. We consider mate-
rials without any particular magnetic properties and the mag-
netic permeability is that of vacuum, μ0 = 4π × 10−7 H m−1.

We use the dimensional scales of H , (μ0σ0)−1, H2μ0σ0,
and (μ0σ0H )−1 for distance, magnetic diffusivity, time,
and velocity, respectively, so that the dimensionless in-
duction equation takes the exact same expression as
Eq. (6), except that the dimensionless diffusivity tensor η is
now

ηi j = δi j + η1qiq j, (7)

where η1 = σ0/σ1 − 1 must be larger than −1, since σ0 and
σ1 are only required to be positive. The dimensionless value
of the imposed velocity will correspond to the dimensionless
magnetic Reynolds number, Rm.

The divergence-free magnetic induction B is expressed
using poloidal and toroidal scalars P and T :

B = ∇ × (T ez ) + ∇ × [∇ × (Pez )], (8)

where P and T are the poloidal and toroidal scalar functions.
Because of the invariance of the problem in the x and y
directions and in time t , we look for dynamo solutions as a
series of eigenvectors of the following form:

P = P(z) exp(ikxx + ikyy + γ t ), (9)

T = T (z) exp(ikxx + ikyy + γ t ), (10)

where kx and ky are the (real) wave numbers in the x and y
directions and γ is the growth rate of the mode. A dynamo
mode is obtained when the real part of γ is positive. We
reuse the same symbols P and T for the z-dependent func-
tions entering the expressions for the poloidal and toroidal
parts.

In terms of methods, we solve the induction equation in
each plate, and then consider the boundary conditions apply-
ing to the solutions, including the relative sliding condition
between the plates. So, in a first step, we seek to solve the
induction equation in a domain of uniform dimensionless
velocity U and uniform anisotropy defined from the angles
α and β and from the anisotropic factor η1 [see Eq. (7)]. The
uniform velocity is denoted generically U , but in effect it will
be U for the upper plate and −U for the lower plate. The
induction equation and its curl in the z direction provide two
coupled equations for P and T (see Appendix A):

γ P = − ikxUP +
(

1 + η1
k2

q

k2

)
[P′′ − k2P]

− iη1kqqzT + η1
kqdq

k2
T ′, (11)
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γ T = − ikxUT + T ′′ − k2
(
1 + η1q2

z

)
T

− 2iη1dqqzT
′ + η1

d2
q

k2
T ′′

− iη1qzkq[P′′ − k2P] + η1
kqdq

k2
[P′′′ − k2P′], (12)

where we have introduced the following notations:

k2 = k2
x + k2

y , (13)

kq = kxqy − kyqx, (14)

dq = kxqx + kyqy. (15)

The T equation (12) contains a third derivative P′′′(z), which
requires too many boundary conditions to solve. However, it
can be seen in Eq. (11) that P′′ can be obtained in terms of
P, T , and T ′, so that P′′′ is expressed in terms of P′, T ′, and
T ′′, before it is substituted in Eq. (12), which now takes the
following form:

γ (T − δP′) = − ikxUT + T ′′ − k2T − η1k2q2
z T

− iη1qzdq

2k2 + η1k2
q

k2 + η1k2
q

T ′ + η1
d2

q

k2 + η1k2
q

T ′′

+ ikxδUP′ − iη1qzkq[P′′ − k2P], (16)

with one more notation:

δ = η1kqdq

k2 + η1k2
q

. (17)

Equations (11) and (16) are the basic eigenvalue equations,
that have to be satisfied both in the top plate (subscript t) and
in the bottom plate (subscript b). In addition, Pt , Tt , Pb, and Tb

have to satisfy boundary conditions.

IV. BOUNDARY CONDITIONS

With a second-order differential eigenvalue problem in-
volving four fields, Pt , Tt , Pb, and Tb, we need a total of eight
boundary conditions. They are the following.

(1) T = 0 at the top of the top plate and at the bottom of
the bottom plate: two boundary conditions.

(2) P′ = ∓kP at the top of the top plate and at the bottom
of the bottom plate: two boundary conditions.

(3) T , P, and P′ are continuous at the contact between the
plates: three boundary conditions.

(4) The tangential components of the electrical field are
continuous at the contact between the plates: we shall see that
this corresponds to one boundary condition only (and not two
as expected).

The first condition T = 0 is related to the continuity of the
electric current density. Since there is no electric current in
the free space (air or vacuum) above the top plate or below
the bottom plate, jz must be zero on these boundaries, hence
T = 0 according to (A6):

Tt |z=1 = 0, (18)

Tb|z=−1 = 0. (19)

The second condition P′ = ∓kP is a classical condition
on insulating boundaries. In the semi-infinite spaces above
and below the plates, the harmonic equation P′′ = k2P ap-
plies. However, we restrict the solutions to decay at infinity,
otherwise magnetic energy would come from elsewhere and
the plates might not necessarily be responsible for dynamo
action: this imposes P′ = −kP above and P′ = kP below.
Next, both P and P′ are continuous at the top and bottom
interfaces, due to the continuity of the normal component Bz

(A3) and continuity of the tangential components Bx and By

[see (A1) and (A2) with T continuous from the first boundary
conditions]. Hence, we have

P′
t |z=1 = −kPt |z=1 , (20)

P′
b|z=−1 = kPb|z=−1 . (21)

The third set of boundary conditions results from the conti-
nuity of Bx, By, Bz, and jz at the interface between the sliding
plates (A1), (A2), (A3), and (A6). They impose continuity on
T , P, and P′:

Tt |z=0 = Tb|z=0 , (22)

Pt |z=0 = Pb|z=0 , (23)

P′
t |z=0 = P′

b|z=0 . (24)

The last boundary condition is also related to the interface
between the plates. It concerns the tangential components
of the electric field, E. From Ohm’s law, E = ηj − u × B.
The induction equation states that the curl of E is equal to
−∂B/∂t , which leads to the induction equation (for conduct-
ing materials). Given that the tangential components of E are
already involved in the z component of the curl of E, the bulk
induction equation contains already partly some information
on the continuity of Ex and Ey. It is enough to impose
only one other independent constraint: one possibility is to
impose continuity on the horizontal divergence kxEx + kyEy

(independent of the z curl: kxEy − kyEx). From (A4) and (A5)
the horizontal divergence takes the following expression:

kxEx + kyEy = iη1kqdq[P′′ − k2P] + i
(
k2 + η1d2

q

)
T ′

+ η1qzk
2dqT + kyk2UP. (25)

Continuity of the tangential components of the electric field
can be written

iη1t kqt dqt [P
′′
t |z=0 − k2Pt |z=0] + i

(
k2 + η1t d

2
qt

)
T ′

t |z=0

+ η1t qzt k
2dqt Tt |z=0 + kyk2UPt |z=0

= iη1bkqbdqb[P′′
b |z=0 − k2Pb|z=0] + i

(
k2 + η1bd2

qb

)
T ′

b |z=0

+ η1bqzbk2dqbTt |z=0 − kyk2UPb|z=0. (26)

V. EIGENVALUE PROBLEM

In each plate, the eigenproblem (11) and (16) can be
written under the form of a matrix equation, when P(z)
and T (z) are expanded in a series of (collocation) Cheby-
shev polynomials [8]. Their coefficients Pi and Ti must be
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solutions of

γ

[
I 0

−δD I

][
Pi

Ti

]
=

[
Q R
S T

][
Pi

Ti

]
, (27)

where I is the identity matrix, D is the first-order differentia-
tion matrix (P′

i = Di jPj), and the matrices Q, R, S , and T are
the following:

Q = −ikxUI +
(

1 + η1
k2

q

k2

)
[D2 − k2I], (28)

R = −iη1kqqzI + η1
kqdq

k2
D, (29)

S = ikxδUD − iη1qzkq[D2 − k2I], (30)

T = − ikxUI + D2 − k2(1 + η1q2
z

)
I

− iη1qzdq

2k2 + η1k2
q

k2 + η1k2
q

D + η1
d2

q

k2 + η1k2
q

D2. (31)

When the two plates are considered simultaneously, we have
a global eigenvalue problem involving Pt , Tt , Pb, and Tb:

γ

⎡
⎢⎣

I 0 0 0
−δt D I 0 0

0 0 I 0
0 0 −δbD I

⎤
⎥⎦

⎡
⎢⎣

Pt

Tt

Pb

Tb

⎤
⎥⎦ =

⎡
⎢⎣
Qt Rt 0 0
St Tt 0 0
0 0 Qb Rb

0 0 Sb Tb

⎤
⎥⎦

⎡
⎢⎣

Pt

Tt

Pb

Tb

⎤
⎥⎦. (32)

Top and bottom plates seem to obey independent equations,
however this is going to change when the boundary conditions
are taken into account. We have eight boundary conditions,
meaning that eight of the components of Pt , Tt , Pb, and Tb

are expressed in terms of the others. We have chosen each
of the end Chebyshev points for Pt , Tt , Pb, and Tb. Thus,
the remaining eigenvalue problem only involves the inner
Chebyshev points, and the global matrices are no longer block
diagonal. We symbolically write this final eigenvalue problem
as follows:

γA

⎡
⎢⎣

Pt

Tt

Pb

Tb

⎤
⎥⎦ = B

⎡
⎢⎣

Pt

Tt

Pb

Tb

⎤
⎥⎦. (33)

Under this form, the eigenvalue problem is solved using
a software such as OCTAVE (free software under the GNU
licence). Any eigenmode with eigenvalue of positive real part
is said to be a dynamo solution.

VI. NEUTRAL STABILITY

As an example, we consider the case of a uniform
anisotropy: α = 0.5 rad, β = 0, and η1 = 1000. For each
value of the wave numbers kx and ky, we determine the critical
magnetic Reynolds number and plot it in Fig. 3. When ky = 0,
the critical magnetic Reynolds number is infinite. In a large
domain, 0 < kx < 0.5 and 0.3 < ky < 1.0, the critical mag-
netic Reynolds number is less than about 5. The minimal value
of the critical magnetic Reynolds number, about 3.6, is found
for kx = 0 and ky � 0.62. Figure 3 provides a justification to
restrict the analysis to the case kx = 0 if we are looking for
minimal magnetic Reynolds numbers.

In general, the eigenvalue γ has a nonzero imaginary part
at the critical magnetic Reynolds number [i.e., Re(γ ) = 0
and Im(γ ) �= 0], however when kx = 0 this is not the case
since all eigenvalues are real, unless the magnetic Reynolds
number is above 50 or so, well above the critical value 3.6. For
instance, for the case identified above—kx = 0, α = 0.5 rad,
η1 = 1000, and ky = 0.62—we have been looking numeri-
cally for the minimal Reynolds number leading to at least

one eigenvalue with nonzero imaginary part. We find that we
need a magnetic Reynolds number Rm � 52.6 to observe the
first nonreal eigenvalue and that its real part is about −135,
corresponding to a strongly damped solution.

VII. ANALYTICAL SOLUTION OF THE NEUTRAL
STABILITY FOR kx = 0 AND β = 0

In the particular case of kx = 0 and β = 0, as discussed
in the previous section, the eigenvalues are real around the
lowest critical magnetic Reynolds number. We thus look
specifically for real eigenvalues and it is possible to derive
an analytical expression for the critical magnetic Reynolds
number Rm.

FIG. 3. Critical magnetic Reynolds number, for a uniform
anisotropy (α = 0.5 rad, β = 0, η1 = 1000) in both plates, as a
function of kx and ky.
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FIG. 4. Configuration of uniform anisotropy, with β = 0, so that
the direction of large electrical resistivity lies in the (x, z) plane.

In this section, for simplicity, we restrict the analysis to the
case of equal anisotropy in both plates (see Fig. 4): αt = αb =
α and η1t = η1b (the general case is treated in Appendix B).

With those assumptions, we have dq = 0 and δ = 0, while
kq = −kyqx. In the critical case, Re(γ ) = 0 and since all
eigenvalues are real we also have Im(γ ) = 0, so that the
critical eigenvalue equations can be written

0 =(
1 + η1q2

x

)[
P′′ − k2

y P
] + iη1kyqxqzT, (34)

0 =T ′′ − k2
y T − η1k2

y q2
z T + iη1kyqxqz

[
P′′ − k2

y P
]
. (35)

From the first equation (34), we obtain an explicit expression
of T in terms of P:

T = i
F
ky

[
P′′ − k2

y P
]
, (36)

where we introduce the notation

F =
1
η1

+ q2
x

qxqz
. (37)

Substituting T in Eq. (35) using (36) leads to a fourth-order
ordinary differential equation, with constant coefficients, gov-
erning P:

P′′′′ − [1 + N ]k2
y P′′ + N k4

y P = 0, (38)

where we introduce another notation

N =
1
η1

+ 1
1
η1

+ q2
x

. (39)

The roots of the biquadratic characteristic equation associated
with (38) are easily obtained: ky, −ky,

√
N ky, and −√

N ky.
Using the symmetry of the problem, we look for eigenvectors
of the following form:

Pt = a1ekyz + a2e−kyz + a3e
√
N kyz + a4e−√

N kyz, (40)

Pb = a1e−kyz + a2ekyz + a3e−√
N kyz + a4e

√
N kyz, (41)

where the coefficients a1, a2, a3, and a4 have now to be
determined using the boundary conditions. Note that the order
of the elementary exponentials is different in (40) and (41) in
order to ensure that the combined poloidal function (Pt , Pb) is

an even function of z. We first consider the boundary condition
T = 0 at z = ±1, which, using (36), leads to

a3 = −a4e−2
√
N ky . (42)

Next, the boundary condition kyP + P′ = 0 at z = 1, or equiv-
alently (by symmetry) kyP − P′ = 0 at z = −1, provides

a1 = a4

√
N e−(1+√

N )ky . (43)

We then need to ensure continuity of P and P′ at the interface
between the plates (z = 0). This is automatic for P, as we
made it a continuous even function of z [see (40) and (41)],
and continuity of P′ leads to

a2 = a4

√
N [e−(1+√

N )ky − e−2
√
N ky − 1]. (44)

Continuity of T , given (36) and the previously mentioned
continuity of P, is equivalent to the continuity of P′′, which
is satisfied by construction for the same reason as that of P.
There is only one last condition to consider, that of continuity
of the tangent electric field (26). Now we have expressed the
coefficients of the eigenvector in terms of one scalar, a4. The
last condition will not provide the value of this coefficient (an
eigenvector can be multiplied by any nonzero scalar and is
still an eigenvector) but it will provide the condition of the
existence of such an eigenvector instead. With the simplifying
assumptions used in this section, using (36) and the results
derived up to now (42)–(44), Eq. (26) can be written as

F (N − 1)a4[1 + e−2
√
N ky ] + U

ky
a4

[
2e−(1+√

N )ky

−1 − e−2
√
N ky + 1 − e−2

√
N ky

√
N

]
= 0. (45)

We divide Eq. (45) by a4 and obtain the condition for the
existence of a critical eigenvector. That condition is expressed
as the required value of the velocity U necessary to satisfy
(45), which is then the critical velocity Uc or critical magnetic
Reynolds number [9] Rmc:

Rmc = kyF (N − 1)[1 + e−2
√
N ky ]

1 + e−2
√
N ky

[
1 + 1√

N

] − 1√
N − 2e−(1+√

N )ky
. (46)

Here, the critical magnetic Reynolds number Rmc is expressed
explicitly in terms of ky and the electrical anisotropy F and
N , which are functions of η1, qx, and qz (with the condition
q2

x + q2
z = 1). In Fig. 5, we plot Rmc in (46) as a function

of ky for α = 0.5 (corresponding to qx � 0.47943 and qz �
0.87758) and different values of η1. We can see that as the
ratio of resistivities η1 increases to a large value the critical
curve of the magnetic Reynolds number converges towards
a limiting curve. Its expression can be derived from (46), as
N −→ q2

z /q2
x and F −→ qx/qz:

lim
η1→∞ Rmc =

qz
ky

qx

[
1 + e−2

ky
qx

]
1 + e−2

ky
qx [1 + qx] − qx − 2e−

(
1+ 1

qx

)
ky

. (47)

The critical curves have always a minimal value for some ky,
however it is not possible to obtain its analytical expression.
This is done numerically and we plot in Fig. 6 the minimum
critical magnetic Reynolds number and corresponding wave
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FIG. 5. Analytical critical magnetic Reynolds number, from
Eq. (46), for a uniform anisotropy (α = 0.5 rad, β = 0) in both
plates, as a function of ky, for four values of anisotropy: η1 = 2, 10,
100, and 1000. The limiting case of infinite η1 is also shown.

number, in terms of the angle of the anisotropy α. In the limit
of infinite η1, for small values of α, the wave number kmin

yc is
proportional to α:

kmin
yc � 1.505α. (48)

FIG. 6. Analytical minimal critical magnetic Reynolds number
Rmin

mc , from Eq. (46), for a uniform anisotropy (β = 0) in both plates,
as a function of α, for four values of anisotropy: η1 = 2, 10, 100,
and 1000. The limiting case of infinite η1 is also plotted. The
corresponding wave number kmin

yc is plotted below.

FIG. 7. (a) Analytical eigenvector of both P and T components,
for η1 = 1000, α = 0.5, and the minimal Rmc � 3.6347, attained at
kyc � 0.6225. (b) Isovalues of the eigenvector in the (y, z) plane of
both T and P components for the same parameters.

The absolute minimum critical magnetic Reynolds number
Rmc0 is obtained for infinite η1, in the limit of vanishing α,
and its numerical value is approximately

Rmc0 � 2.609. (49)

Coming back to the eigenvector itself, its analytical expres-
sion (40) and (41), together with (42), (43), (44), and (36),
is plotted in Fig. 7(a). The corresponding contour lines in the
(y, z) plane are shown in Fig. 7(b). The component T vanishes
outside the electrically conducting domain, while P decays
to zero at z = ±∞. Contour lines of T are isolines of the x
component of the magnetic field and isolines of P correspond
to magnetic lines in the (y, z) plane.

VIII. PHYSICAL UNDERSTANDING
OF THE ANALYTICAL DYNAMO

When β = 0 and for a uniform (strong) anisotropy, it is
possible to use hand-waving arguments to understand how
this dynamo is working. The case is shown again on Fig. 8(a),
where the sliding plates are visible and where we have made
visible a single “platelet” of large electrical conductivity
(shaded area). More precisely, we have been considering those
two platelets, one in each sliding plate, that happen to form
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FIG. 8. (a) Same configuration as in Fig. 4, but only one platelet
of high electrical conductivity is shown in each plate. (b) Schematic
electric current circuits (thick solid lines) in the (y, z) plane are la-
beled Ix in the x direction and j in the (y, z) plane. The corresponding
schematic magnetic field is shown (thick dashed lines), B in the
(y, z) plane and bx in the x direction. The pattern is periodic in the
y direction and invariant in the x direction.

a single planar surface at a given time. Let us assume that
a small seed of transverse magnetic field B exists at that
time. By symmetry, it is natural to consider that the transverse
electric field in the y direction is zero. The electric current is
then driven by the induction voltage U × B in the upper plate
and −U × B in the lower plate. If the transverse field B is
localized, the induced electric current will generate a potential
electric field and a current loop will be formed [see Figs. 8(a)
and 8(b)]. The loop of electric current can be decomposed in
a loop in the (y, z) plane—which generates a magnetic field
in the x direction and in longitudinal current tubes in the
x direction—generating a magnetic field in the (y, z) plane,
in particular reinforcing the initial seed magnetic field in
the z direction. Those longitudinal current tubes are parallel,
alternatively in the positive and negative direction. Only two
of them are represented in Fig. 8(b), which corresponds to half
a period of the dynamo solution in the y direction.

If the direction of the sliding plates is reversed, one can
conclude with the same reasoning that the seed magnetic field
is damped by the induced current loop.

Another result of the previous section can be understood
thanks to Fig. 8(a) concerning the optimal wave number of
the critical dynamo modes. In the shaded plane on the figure,
it seems natural that the electric current loop has an aspect
ratio of order 1, and when the angle α becomes small the
size of the shaded area becomes larger. This is the reason
why the optimum wave number goes to zero linearly when
α goes to zero. In addition, when the anisotropy is not very

strong (small values of η1) the electric current “leaks” to the
neighboring platelets instead of running over the whole area
and the resulting current loops are smaller (hence the wave
number ky is larger than in the limit η1 → ∞).

In his original derivation of the impossibility to sustain an
axisymmetric magnetic field (or equivalently a magnetic field
invariant along one direction) by dynamo action, Cowling [4]
uses an argument based on a neutral point in the meridional
plane. This point corresponds to an extremum in the poloidal
scalar, i.e., zero meridional magnetic field. For instance, such
a neutral point can be seen in Fig. 7(b) showing the contours
of P. Its coordinates are (x, y) � (5, 0) [and every half period
(0, 0), (10, 0), . . .]. The argument is that there should be some
electrical current flowing in the x direction at a neutral point
(because of the circulation of B around it) but Ohm’s law
makes it impossible: u × B is zero and there is no electric
potential gradient in this direction [10]. With the anisotropic
electrical conductivity considered in the present paper, it is
the electric potential gradient in the z direction that causes an
electric current to flow in the x direction.

IX. GROWTH RATE OF THE DYNAMO

It is also possible to derive an analytical expression for
the (real) growth rate of this dynamo for supercritical values
of the magnetic Reynolds number. The derivation is done
explicitly [see Eq. (C17) in Appendix C], in the case kx = 0,
η1t = η1b, qyt = qyb = 0, and qxt = qxb (hence qzt = qzb). We
have investigated the optimal growth rate and corresponding
optimal wave number for the particular angle α = 0.5 rad
of anisotropic orientation (β = 0). Using Eq. (C17), we find
numerically for each value of Rm the maximal growth rate
γ and the corresponding wave number ky and plot them
in Fig. 9. For simplicity, we have restricted the plot to the
condition γ > −k2

y , so that the eigenvectors are simple real
exponentials and Eq. (C17) can be inverted to express γ as
a function of Rm. Above Rm � 15 or so, the optimal growth
rate (made dimensionless using U/H , exactly equal to γ /Rm)
and corresponding wave number increase linearly with Rm.
The slope of the optimal growth rate depends on the degree of
anisotropy η1.

For asymptotic large values of Rm, we obtain asymptotic
expressions for the fastest growth rate and corresponding
wave number (see Appendix C). We find that, as Rm is
increased, the dimensionless growth rate increases proportion-
ally to Rm2. Back to dimensional values, this corresponds to a
growth rate proportional to RmU/H , hence increasing linearly
with the electrical conductivity. In the terminology introduced
by Vainshtein and Zeldovich [11], a “fast” dynamo is such
that its growth rate remains finite as Rm (or electrical con-
ductivity) goes to infinity. Thus we suggest that our dynamo
could be called a “very fast” dynamo, with its increasing, un-
bounded, growth rate with Rm (or the electrical conductivity).
In contrast, the uniform shear flow with anisotropic electrical
conductivity [7] leads to a fast dynamo, not very fast. The
derivation of those scalings is shown in Appendix D using a
scaling analysis of the governing equations.

The growth rate of a dynamo mechanism, whether it
is slow, fast, or very fast, is particularly important in the
astrophysical and interstellar context, where the magnetic
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FIG. 9. Optimal growth rate and corresponding wave number ky,
for a uniform anisotropy (α = 0.5 rad, β = 0) in both plates, as a
function of Rm, for five values of anisotropy: η1 = 2, 10, 100, 1000,
and ∞. Note that the growth rate is divided by Rm, which corresponds
to the dimensional growth rate divided by U/H .

Reynolds numbers are very large. If we consider a galaxy,
it is tempting to imagine that the electric conductivity is
anisotropic due to the presence of filaments (see typical
spiral galaxies). Differential Keplerian rotation and spiralling
anisotropy of the electrical conductivity are enough, in princi-
ple, to trigger fast dynamo action. The solar tachocline might
also be a place of application of our dynamo model: shear
localization is present, however it is not so obvious why
electrical conductivity should be anisotropic.

X. CONCLUSIONS

In this paper, we have presented an elementary dynamo so-
lution for an anisotropic electrical conductivity. The velocity
field has a very simple structure, consisting of a solid plate
sliding on another solid plate. The plates must be in electrical
contact. In the dynamo terminology, this is a homogeneous
dynamo, when the anisotropy is identical in both plates. With
an isotropic material, we know that the velocity field must be
rather complex, and cannot be a planar flow. Introducing some
small complexity in the materials properties—the electrical
conductivity anisotropy—allows us to obtain a dynamo effect
with a simple planar flow. Importantly, we have shown that
when the anisotropy is located within the shear plane direction
the lowest critical magnetic Reynolds number for dynamo
action is obtained for modes invariant along the velocity di-
rection. In these cases, we obtain an analytical expression for
the critical magnetic Reynolds number. Moreover, the analysis
is elementary and involves only exponential solutions. It is
then well suited for teaching purposes. Let us note also that
this configuration is quite an efficient dynamo, as the critical
magnetic Reynolds number is low, with a minimum around
2.6 based on the thickness of one plate and half the velocity

difference, or 10.4 based on the thickness of both plates and
total velocity difference. In the supercritical regime, we also
obtain an analytical expression for the growth rate, showing
that the dynamo behaves as a very fast dynamo: its growth
rate increases linearly with electrical conductivity when all
other dimensional parameters are kept constant. Last but not
least, the dynamo mechanism has been analyzed and it is
straightforward to understand the electric current path which
is responsible for sustaining the magnetic field.

Instead of the effect of the anisotropy of electrical con-
ductivity, one might also consider the effect of the anisotropy
of magnetic permeability. Both cases are not mathematically
equivalent, but one may anticipate that this would lead to
the possibility of obtaining simple dynamos with simple ve-
locity fields. A case of heterogeneous magnetic permeability
has been studied in [12], which refers to a previous study
on heterogeneous electrical conductivity [13]. Heterogeneity
and anisotropy are different properties, however they are
somewhat connected: heterogeneity at small scale is some-
times treated macroscopically under the form of large-scale
anisotropy. For instance, the distribution of fractures in rocks
at small scales has been represented as a medium with
anisotropic elastic properties in [14], because the distribution
of heterogeneities is itself anisotropic. Many other anisotropic
properties emerge from the theory of “homogenization” or
“effective medium” in various branches of physics.

Among the previous fluid dynamo experiments, the Von
Karman Sodium (VKS) experiment [15] bears some similari-
ties to our present dynamo model. The spiralling blades of the
rotating disks may correspond to some degree of anisotropy
of the electrical conductivity and there is of course some
differential shear velocity between the bulk of the fluid and
the region near the disks. We should not forget, however, that
the magnetic permeability of the disks plays a role in that
experiment (see [12]), so that electrical conductivity cannot
be the sole parameter to consider. For instance, dynamo action
has been obtained in VKS with different configurations of
iron blades (see Table I in [16]). In the usual “nonscooping”
direction, the critical magnetic Reynolds number is reported
to be equal to 44, while it becomes 60 for straight blades
(purely radial anisotropy) and reaches 68 when the curved
blades rotate in the “scooping” direction.

The configuration we have studied can be tested experi-
mentally. This might be possible with flat composite plates,
made of thin layers of copper and insulating material alter-
natively. It is perhaps easier to consider a variation of the
configuration, which consists in bending the plates in the
direction of the flow and changing them into coaxial cylinders,
in differential rotation, and still in electrical contact. This
axisymmetric dynamo is studied in a companion paper [17].

Our dynamo is somewhat an intermediate device between
experimental homogeneous dynamos and electrical machines,
such as the dynamo built by Siemens [18] and other inventors.
We can then envisage a class of configurations between our
solid dynamo and a purely fluid Couette or Taylor-Couette
dynamo. In the present configuration, the electrical contact
between the two plates can be made using a film of liquid
metal. Suppose that the thickness of the fluid is increased;
the configuration will then evolve from the solid dynamo
presented in this paper to a more complex—potentially
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nonlinear—situation where the fluid electromotive force will
come into play. The attempts to produce experimental fluid
dynamos have been sometimes successful, with the Riga
[19], Karlsruhe [20], and Cadarache [15] dynamos, but were
more often unsuccessful. Using the strategy described above,
one should necessarily have dynamo action for a thin fluid
layer and still have it up to a certain thickness depending
presumably on the capabilities of the setup in terms of velocity
or power available.
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APPENDIX A: DERIVATION OF THE SCALAR
EQUATIONS FOR P AND T

From the poloidal-toroidal decomposition (8) and the form
of the eigenvectors (9) and (10), we obtain the following
(x, y, z) components for the magnetic fields:

Bx = ikxP′ + ikyT, (A1)

By = ikyP′ − ikxT, (A2)

Bz = k2P. (A3)

Its curl is the dimensionless electric current density j = ∇ ×
B:

jx = ikxT ′ − iky[P′′ − k2P], (A4)

jy = ikyT ′ + ikx[P′′ − k2P], (A5)

jz = k2T . (A6)

When multiplied by the (dimensionless) anisotropic diffusiv-
ity tensor (7), we obtain

[ηj]x = i(η1qxdq + kx )T ′ + i(η1qxkq − ky)[P′′ − k2P]

+ η1qxqzk
2T, (A7)

[ηj]y = i(η1qydq + ky)T ′ + i(η1qykq + kx )[P′′ − k2P]

+ η1qyqzk
2T, (A8)

[ηj]z = iη1qz(dqT ′ + kq[P′′ − k2P]) + (
η1q2

z + 1
)
k2T .

(A9)

Its curl is the last term in the induction equation (6):

[∇ × ηj]x = − i(η1qydq + ky)T ′′ − η1(k2qy + kydq)qzT
′

− η1kykqqz[P
′′ − k2P] + ikyk2

(
η1q2

z + 1
)
T

− i(η1qykq + kx )[P′′′ − k2P′], (A10)

[∇ × ηj]y = i(η1qxdq + kx )T ′′ + η1(k2qx + kxdq)qzT
′

+ η1kxkqqz[P
′′ − k2P] − ikxk2

(
η1q2

z + 1
)
T

+ i(η1qxkq − ky)[P′′′ − k2P′], (A11)

[∇ × ηj]z = − η1kqdqT ′ − (
k2 + η1k2

q

)
[P′′ − k2P]

+ iη1kqqzT . (A12)

We need also the z component of the curl of the previous
vector:

[∇ × ∇ × ηj]z = (
1 + η1q2

z

)
k4T + iη1qzkqk2[P′′ − k2P]

− η1kqdq[P′′′ − k2P′] + 2iη1dqqzk
2T ′

− (
k2 + η1d2

q

)
T ′′. (A13)

Let us now consider the electromotive force in the induction
equation. The velocity field, in each plate, consists in a
uniform velocity U in the x direction:

ux = U, (A14)

uy = 0, (A15)

uz = 0. (A16)

From the magnetic field (A1), (A2), and (A3), we compute the
electromotive force u × B:

[u × B]x = 0, (A17)

[u × B]y = −k2UP, (A18)

[u × B]z = ikyUP′ − ikxUT . (A19)

Its curl appears in the induction equation:

[∇ × (u × B)]x = k2
xUP′ + kxkyUT, (A20)

[∇ × (u × B)]y = kxkyUP′ − k2
xUT, (A21)

[∇ × (u × B)]z = −ikxk2UP. (A22)

Finally, we need the z component of the curl of the previous
vector field:

[∇ × ∇ × (u × B)]z = −ikxk2UT . (A23)

We now have all parts of Eqs. (11) and (12). Those equations
correspond to the z component of the induction equation
and its curl, both divided by k2. On the left-hand side of
(11), the time derivative of Bz is γ times (A3), divided by
k2. On the right-hand side, we have the term in (A12) for
magnetic diffusion and (A22) for the electromotive part (all
terms divided by k2). Concerning Eq. (12), the left-hand side
is similarly obtained from (A6) and the right-hand side is
obtained from (A13) and (A23). Again these terms are divided
by k2 in (12).

APPENDIX B: GENERAL ANALYTICAL SOLUTION
FOR kx = 0 AND β = 0

We present here a more general case than in Sec. VII,
where the angle α and degree of anisotropy η1 differ in each
plate. The angle of anisotropic direction is denoted αt and αb

in the top and bottom plate, respectively, while the degree
of anisotropy is η1t and η1b, respectively. Both α and η1 are
uniform within each plate, and the angle β and wave number
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kx are still taken to be zero. In that case, we still observe that
the eigenvalues are real in the numerical results, unless we
consider large magnetic Reynolds numbers (above 50) and
have some eigenvalues with a nonzero imaginary component.
We look for the critical magnetic Reynolds number (zero real
part of the eigenvalue) assuming the imaginary part is zero. In
each plate, Eq. (38) is valid, with N defined in Eq. (39). We
now have a critical eigenvector Pt (Pb) and Nt (Nb) in the top
(bottom) plate. Hence Eqs. (40) and (41) are replaced by

Pt = a1ekyz + a2e−kyz + a3e
√
Nt kyz + a4e−√

Nt kyz, (B1)

Pb = b1e−kyz + b2ekyz + b3e−√
Nbkyz + b4e

√
Nbkyz, (B2)

with

Nt =
1

η1t
+ 1

1
η1t

+ q2
xt

, Nb =
1

η1b
+ 1

1
η1b

+ q2
xb

. (B3)

In each plate, the toroidal component T can still be obtained
from P through Eq. (36). We now have

Tt = i
Ft

ky

[
P′′

t − k2
y Pt

]
, Tb = i

Fb

ky

[
P′′

b − k2
y Pb

]
, (B4)

where we now have

Ft =
1

η1t
+ q2

xt

qxt qzt
, Fb =

1
η1b

+ q2
xb

qxbqzb
. (B5)

Again, applying the boundary conditions will lead us to
obtain the critical magnetic Reynolds number. The boundary
condition T = 0 at z = ±1, using (B4), leads to

a4 = −a3e2ky
√
Nt , b4 = −b3e2ky

√
Nb . (B6)

The conditions kyPt + P′
t = 0 at z = 1 and kyPb − P′

b = 0 at
z = −1 provide

a1 = −a3

√
Nt e

ky (
√
Nt −1), b1 = −b3

√
Nbeky (

√
Nb−1). (B7)

Continuity of P at z = 0 [Pt (0) = Pb(0)], continuity of P′
[P′

t (0) = P′
b(0)], and continuity of T [Tt (0) = Tb(0), using

(B4)] can be written

a1 + a2 + a3 + a4 = b1 + b2 + b3 + b4, (B8)

a1 − a2 +
√
Nt (a3 − a4) = −b1 + b2 −

√
Nb(b3 − b4),

(B9)

Ft (Nt − 1)(a3 − a4) = Fb(Nb − 1)(b3 − b4). (B10)

Using (B6), Eq. (B10) provides

a3Ft (1 − e2ky
√
Nt )(Nt − 1) = b3Fb(1 − e2ky

√
Nb )(Nb − 1),

(B11)

allowing us to express b3 in terms of a3. The sum of (B8) and
(B9) leads to

b2 = a1 + a3

√
Nt + 1

2
+ a4

−√
Nt + 1

2

− b3
−√

Nb + 1

2
− b4

√
Nb + 1

2
, (B12)

while the difference between (B8) and (B9) provides

a2 = b1 − a3
1 − √

Nt

2
− a4

1 + √
Nt

2

+ b3
1 + √

Nb

2
+ b4

1 − √
Nb

2
. (B13)

We now have expressed all coefficients ai and bi in terms of
a single of them, a3. We have one last boundary condition
to consider, related to the continuity of the tangential elec-
tric field (26), which can be written as iT ′

t (0) + kyUPt (0) =
iT ′

b 0 − kyUPb(0). Using (B1) and (B2), this condition leads to

− Ft

√
Nt (Nt − 1)(a3 − a4) + 2

U

ky
(a1 + a2 + a3 + a4)

= Fb

√
Nb(Nb − 1)(b3 − b4). (B14)

Substituting all variables ai and bi in terms of a3, and making
a3 = 1 arbitrarily because an eigenvector is defined up to
a multiplicative factor, we obtain an explicit expression for
the velocity U which is the value of the critical magnetic
Reynolds number Rmc:

Rmc = FtFb(Nt − 1)(Nb − 1)[(1 + e2ky
√
Nt )(1 − e2ky

√
Nb )

√
Nt + (1 + e2ky

√
Nb )(1 − e2ky

√
Nt )

√
Nb]

f (ky,Nt )Fb(Nb − 1)(1 − e2ky
√
Nb ) + f (ky,Nb)Ft (Nt − 1)(1 − e2ky

√
Nt )

ky

2
, (B15)

where the function f is defined as

f (ky,N ) = −
√
N eky (

√
N−1) +

√
N + 1

2
+

√
N − 1

2
e2ky

√
N .

(B16)
It can be checked that the above expression (B15) becomes

exactly (46) when anisotropy is identical in both plates: Nt =
Nb, Ft = Fb.

APPENDIX C: GROWTH RATE OF DYNAMO MODES

Let us now consider the growth rate of the dynamo
modes when the magnetic Reynolds number exceeds the value

corresponding to the neutral stability. We may also consider
lower values of the magnetic Reynolds number, but this case
is less interesting, and potentially more difficult to solve as
will be seen later. The simplest case of uniform anisotropy is
treated here, with η1t = η1b = η1, αt = αb = α, βt = βb = 0,
and kx = 0. We look for purely real eigenvalues, γ , since
the numerical solutions show that the fastest growing modes
possess real eigenvalues indeed, under the assumptions men-
tioned above. Equations (34) and (35) become

γ P =(
1 + η1q2

x

)[
P′′ − k2

y P
] + iη1kyqxqzT, (C1)
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γ T =T ′′ − k2
y T − η1k2

y q2
z T + iη1kyqxqz

[
P′′ − k2

y P
]
. (C2)

From (C1), we obtain T in terms of P:

T = i
F
ky

[
P′′ − k2

y P
] − i

γ

kyη1qxqz
P, (C3)

where F is defined in Eq. (37). Substituting T in (C2), using
(C3) leads to

P′′′′(1 + η1q2
x

) − k2
y P′′

[
γ

k2
y

(
2 + η1q2

x

) + 2 + η1
(
1 + q2

x

)]

+ k4
y P

⎡
⎣(

γ

k2
y

+ 1

)2

+ η1

(
γ

k2
y

+ 1

)⎤
⎦ = 0. (C4)

We look for elementary solutions under the form erz to this
linear differential equation with constant coefficients and ob-
tain four solutions r = r1, r = −r1, r = r3, and r = −r3, with

r2
1 = γ + k2, (C5)

r2
3 = γ + (1 + η1)k2

1 + η1q2
x

. (C6)

When we consider real positive growth rates γ , both r2
1 and r2

3
are real positive, so that we make the assumption that r1 and r3

are real and positive. If the growth rate is slightly negative, this
may still be the case. Obviously the case of strongly negative
values of γ will make r2

1 and r2
3 negative and the solutions will

no longer be real exponentials. We shall not consider the latter
case. The function P is expanded as follows:

P = a1er1z + a2e−r1z + a3er3z + a4e−r3z, (C7)

in the upper plate, while it is supposed to be symmetrical in
the lower plate (so that P is an even function of z). From (C3),
we have

T = k

[
−a1γ̃ er1z + a2γ̃ e−r1z − a3

qz

qx
er3z − a4

qz

qx
e−r3z

]
,

(C8)

where

γ̃ = γ qx

k2
y qz

. (C9)

We consider the same boundary conditions as in Sec. VII, i.e.,
that P′ is zero at z = 0, that T ′ = −kyUP at z = 0, that T = 0
at z = 1, and that P′ + kyP = 0 at z = 1:

r1a1 − r1a2 + r3a3 − r3a4 = 0, (C10)

γ̃ r1(a2 − a1) − qz

qx
r3(a3 − a4) + U (a1 + a2 + a3 + a4) = 0,

(C11)

γ̃ er1 a1 + γ̃ e−r1 a2 + qz

qx
er3 a3 + qz

qx
e−r3 a4 = 0, (C12)

(ky + r1)er1 a1 + (ky − r1)e−r1 a2

+ (ky + r3)er3 a3 + (ky − r3)e−r3 a4 = 0. (C13)

The system above has a nontrivial solution when the determi-
nant of the underlying matrix is zero, which is the condition
for the existence of an eigenvalue. So the equation relating U
(which is also Rm as discussed above and will be denoted as
such in the following) and the governing parameters (includ-
ing here the growth rate γ ) is

∣∣∣∣∣∣∣∣
r1 −r1 r3 −r3

−γ̃ r1+Rm γ̃ r1+Rm − qz

qx
r3+Rm qz

qx
r3+Rm

γ̃ er1 γ̃ e−r1 qz

qx
er3 qz

qx
e−r3

(ky+r1)er1 (ky−r1)e−r1 (ky+r3)er3 (ky−r3)e−r3

∣∣∣∣∣∣∣∣
= 0. (C14)

The second column is replaced by the average of the first and second, while the third is replaced by the average of the third and
fourth: ∣∣∣∣∣∣∣∣

r1 0 r3 0
−γ̃ r1 + Rm Rm − qz

qx
r3 + Rm Rm

γ̃ er1 γ̃ cosh(r1) qz

qx
er3 qz

qx
cosh(r3)

(ky + r1)er1 ky cosh(r1) + r1 sinh(r1) (ky + r3)er3 ky cosh(r3) + r3 sinh(r3)

∣∣∣∣∣∣∣∣
= 0. (C15)

Adding γ̃ times the first line to the second, removing the second column to the fourth, and r3/r1 times the first column to the
third leads finally to∣∣∣∣∣∣∣∣∣∣

r1 0 0 0
0 Rm − qz

qx
r3 + γ̃ r3 0

γ̃ sinh(r1) γ̃ cosh(r1) qz

qx
sinh(r3) − γ̃ r3

r1
sinh(r1) qz

qx
cosh(r3) − γ̃ cosh(r1)

r1 cosh(r1)+ky sinh(r1) r1 sinh(r1)+ky cosh(r1)

[
r3 cosh(r3) + ky sinh(r3)

−r3 cosh(r1) − ky
r3
r1

sinh(r1)

] [
r3 sinh(r3) + ky cosh(r3)

−r1 sinh(r1) − ky cosh(r1)

]
∣∣∣∣∣∣∣∣∣∣
= 0.

(C16)
Its determinant can be expressed analytically and leads to

Rm =
γ̃ cosh(r1)[r3 sinh(r3) + ky cosh(r3)] − qz

qx
cosh(r3)[r1 sinh(r1) + ky cosh(r1)]

γ̃+ qz
qx

γ̃− qz
qx

[cosh(r3) cosh(r1) − 1] + ky
[ sinh(r3 ) cosh(r1 )

r3
− sinh(r1 ) cosh(r3 )

r1

] −
qzr1
qx r3

+γ̃
r3
r1

γ̃− qz
qx

sinh(r3) sinh(r1)
. (C17)
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For large values of γ , both values of r1 and r3 will be large
too and cosh(r1) � sinh(r1) � 0.5er1 (similarly for r3) and the
expression (C17) can be approximated as

Rm � γ̃ r3

1 − r3
r1

. (C18)

This expression may be rearranged as

Rm � qx

qz
k g

( γ

k2
, η1, qx

)
, (C19)

where the function g is defined as

g(x, η1, qx ) = x

√
x+1+η1

1+η1q2
x

1 −
√

x+1+η1

(x+1)(1+η1q2
x )

. (C20)

From (C19), the condition for optimal growth, ∂γ /∂k = 0
leads to

g − 2x
∂g

∂x
= 0, (C21)

which implicitly provides x as a function of η1 and qx. The
condition that Rm is positive is that x > 1/q2

x − 1, from
Eq. (C20). For fixed values of η1 and qx, we have observed
that there is only one solution x0 to Eq. (C21) in the range
]1/q2

x − 1; +∞[. Maintaining that value for x0 implies that
γ ∼ k2 and, from (C19), that Rm ∼ k. Stated otherwise, we
have

k ∼ Rm, (C22)

γ ∼ Rm2, (C23)

modulo a function of η1 (see Appendix D) and qx. This makes
it a very fast dynamo: in dimensional terms the growth rate is
proportional to Rm times U/H . This is faster than the case of
a uniform shear treated in [7], for which the growth rate is just
independent of the electrical conductivity and proportional to
U/H [see their Eq. (11)] for a wave number proportional to
the square root of Rm [see their Eq. (12)]. To the best of our
knowledge, our dynamo is the only example of a “very fast”
dynamo, with a growth rate increasing (and unbounded) as the
electrical conductivity is increased.

APPENDIX D: GROWTH RATES OF THE UNIFORM
AND LOCALIZED SHEAR FLOWS

Let us now write the dynamo equations governing P and T
for a general velocity profile U (z). The idea is to understand
why the dynamo obtained by Ruderman and Ruzmaikin [7] is
a fast dynamo (uniform shear) while our dynamo is very fast
(localized Dirac shear). In Appendix A, only two equations
are changed, (A20) and (A23), and they become, respectively,

[∇ × (u × B)]x = k2
xUP′ + kxkyUT + k2U ′P, (D1)

[∇ × ∇ × (u × B)]z = −ikxk2UT − ikyk2U ′P. (D2)

The eigenvalue equations for P and T , Eqs. (11) and (12), are
written here when kx = 0 and qy = 0, for a general velocity
profile U (z):

γ P = (
1 + η1q2

x

)
[P′′ − k2P] + iη1kyqxqzT, (D3)

γ T = − ikyU
′P + T ′′ − k2

(
1 + η1q2

z

)
T

+ iη1kyqxqz[P
′′ − k2P]. (D4)

In order to analyze the order of magnitude of γ , we shall
consider both limits of small and large values of η1. For small
values of η1 (which is the case considered in [7]), at small
wave number ky, the dominant terms in (D3) and (D4) are

γ P � iη1kyqxqzT, (D5)

γ T � −ikyU
′P. (D6)

Combining both equations and considering that qx and qz are
of order unity leads to an estimate for the growth rate

γ ∼ (
η1k2

yU ′)1/2
, (D7)

increasing with ky. It is then limited by diffusion effects to an
effective magnetic Reynolds number of order unity:

U ′k−2
y ∼ 1. (D8)

In the case of a linear profile [7], U ′ is uniform and its value
is equal to Rm, so that Eqs. (D7) and (D8) lead to

ky ∼ Rm1/2, (D9)

γ ∼ η
1/2
1 Rm. (D10)

In the case of a Dirac function for U ′, as considered in
this paper, an estimate for U ′ is directly related to the wave
number, U ′ ∼ kyRm. Hence Eqs. (D7) and (D8) now lead to

ky ∼ Rm, (D11)

γ ∼ η
1/2
1 Rm2. (D12)

Let us now consider the limit of large values for η1. This limit
has been found to possess a regular limit in the analytical
solution developed in this paper. In this limit, it is useful to
substitute P′′ − k2P in (D4) using (D3) to obtain

γ

[
T − iky

η1qxqz

1 + η1q2
x

P

]
= −ikyU

′P + T ′′ − k2 1 + η1

1 + η1q2
x

T .

(D13)

In the limit of large η1, Eq. (D3) provides a relationship
between P and T (on the right-hand side):

P ∼ k−1
y T . (D14)

For small values of ky, Eq. (D13) leads then to

γ ∼ U ′, (D15)

which is valid until diffusion effects dominate:

k2
y ∼ U ′. (D16)

For the linear profile U ′ ∼ Rm, Eqs. (D15) and (D16) lead to

ky ∼ Rm1/2, (D17)

γ ∼ Rm. (D18)

For the Dirac function U ′ ∼ kyRm, they lead to

ky ∼ Rm, (D19)

γ ∼ Rm2. (D20)
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In summary, the scaling (D9) and (D10) is that of [7] for small
η1. For large η1, we obtain here (D17) and (D18), which we
have checked against the numerical solution of the eigenvalue
problem with a linear velocity profile. Concerning the case of
the Dirac velocity gradient profile studied in this paper, the
scaling has been tested against the exact solution (C17). In all
cases, the growth rate is proportional to η

1/2
1 at small η1 and

then independent of η1 at large values. In all cases, the uniform
gradient leads to a fast dynamo, while the Dirac gradient leads
to a very fast dynamo. This is due to the fact that the velocity
gradient can reach large values when large wave numbers
are considered, which then implies that very fast dynamo
action is confined to a small region near a localized shear
zone.
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