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Sharp Estimates of Radial Dunkl and Heat Kernels in the Complex Case An
P. Graczyk1 and P. Sawyer2

Abstract

In this article, we consider the radial Dunkl geometric case k = 1 corresponding to flat
Riemannian symmetric spaces in the complex case and we prove exact estimates for the
positive valued Dunkl kernel and for the radial heat kernel.

Dans cet article, nous considérons le cas géométrique radial de Dunkl k = 1 correspon-
dant aux espaces symétriques riemanniens plats dans le cas complexe et nous prouvons des
estimations exactes pour le noyau de Dunkl à valeur positive et pour le noyau de chaleur
radial.
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1 Introduction and notations

Finding good estimates of Dunkl heat kernels is a challenging and important subject, developed
recently in [1]. Establishing estimates of the heat kernels is equivalent to estimating the Dunkl
kernel as demonstrated by equation (2.3) below.

In this paper we prove exact estimates in the W -radial Dunkl geometric case of multiplicity
k = 1, corresponding to Cartan motion groups and flat Riemannian symmetric spaces with the
ambient group complex G, the Weyl group W and the root system An.

We study for the first time the non-centered heat kernel, denoted pWt (X, Y ), on Riemannian
symmetric spaces and we provide its sharp estimates. Exact estimates were obtained in [2] in the
centered case Y = 0 for all Riemannian symmetric spaces.

We provide exact estimates for the spherical functions ψλ(X) in the two variables X,λ when
λ is real and, consequently, for the heat kernel pWt (X, Y ) in the three variables t,X, Y .

We recall here some basic terminology and facts about symmetric spaces associated to Cartan
motion groups.

Let G be a semisimple Lie group and let g = k ⊕ p be the Cartan decomposition of G. We
recall the definition of the Cartan motion group and the flat symmetric space associated with
the semisimple Lie group G with maximal compact subgroup K. The Cartan motion group is
the semi-direct product G0 = K o p where the multiplication is defined by (k1, X1) · (k2, X2) =
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(k1 k2,Ad(k1)(X2) +X1). The associated flat symmetric space is then M = p ' G0/K (the action
of G0 on p is given by (k,X) · Y = Ad(k)(Y ) +X).

The spherical functions for the symmetric space M are then given by

ψλ(X) =

∫
K

eλ(Ad(k)(X)) dk

where λ is a complex linear functional on a ⊂ p, a Cartan subalgebra of the Lie algebra of G. To
extend λ to X ∈ Ad(K)a = p, one uses λ(X) = λ(πa(X)) where πa is the orthogonal projection
with respect to the Killing form (denoted throughout this paper by 〈·, ·〉). Note that in [6, 7, 8],
λ is replaced by i λ.

Throughout this paper, we usually assume that G is a semisimple complex Lie group. The
complex root systems are respectively An for n ≥ 1 (where p consists of the n × n hermitian
matrices with trace 0), Bn for n ≥ 2 (where p = i so(2n + 1)), Cn for n ≥ 3 (where p = i sp(n))
and Dn for n ≥ 4 (where p = i so(2n)) for the classical cases and the exceptional root systems
E6, E7, E8, F4 and G2.

The radial heat kernel is considered with respect to the invariant measure µ(dY ) = π2(Y ) dY
on M , where π(Y ) =

∏
α>0 α(Y ).

Note also that in the curved case M0 = G/K, the spherical functions for the symmetric space
M0 are then given by

φλ(e
X) =

∫
K

e(λ−ρ)H(eX k) dk

where ρ is the half-sum of the roots counted with their multiplicities and H(g) is the abelian
component in the Iwasawa decomposition of g: g = k eH(g) n.

2 Estimates of spherical functions and of the heat kernel

We will be developing a sharp estimate for the spherical function ψλ(X). We introduce the
following useful convention. We will write

f(t,X, λ) � g(t,X, λ)

in a given domain of f and g if there exists constants C1 > 0 and C2 > 0 independent of t, X and
λ such that C1 f(t,X, λ) ≤ g(t,X, λ) ≤ C2 g(t,X, λ) in the domain of consideration.

We conjecture the following global estimate for the spherical function in the complex case.

Conjecture 2.1. On flat Riemannian symmetric spaces with complex group G, we have

ψλ(X) � e〈λ,X〉∏
α>0 (1 + α(λ)α(X))

, λ ∈ a+, X ∈ a+.

Remark 2.2. Recall that, denoting δ(X) =
∏

α>0 sinh2 α(X), we have

φλ(e
X) =

π(X)

δ1/2(X)
ψλ(X). (2.1)
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Since δ1/2(X) � eρ(X) π(X)/
∏

α>0 (1 + α(X)) in the complex case, Conjecture 2.1 therefore
becomes

φλ(e
X) � e(λ−ρ)(X)

∏
α>0

1 + α(X)

1 + α(λ)α(X)
(2.2)

in the curved complex case.
Let us compare the estimate (2.2) we conjecture for φλ with the one obtained in [9], cf. also

[13]. The estimates in [9] apply in all the generality of hypergeometric functions of Heckman and
Opdam. The authors show that there exists constants C1(λ) > 0, C2(λ) > 0 such that

C1(λ) e(λ−ρ)(X)
∏
α>0,
α(λ)=0

(1 + α(X)) ≤ φλ(e
X) ≤ C2(λ) e(λ−ρ)(X)

∏
α>0,
α(λ)=0

(1 + α(X)).

Given (2.1), corresponding estimates clearly also hold in the flat case for ψλ(X). The interest of
our result, in the case An, lies in the fact that our estimate is universal in both λ and X.

The results of [9, 13] and our estimates in the An case strongly suggest that the Conjecture
2.1 is true for any complex root system.

Note that asymptotics of ψλ(tX) when λ and X are singular and t → ∞ were proven in [4]
for all classical complex root systems and the systems F4 and G2.

Consider the relationship between the Dunkl kernel Ek(X, Y ) and the Dunkl heat kernel
pt(X, Y ), as given in [10, Lemma 4.5]

pt(X, Y ) =
1

2γ+d/2ck
t−

d
2
−γ e

−|X|2−|Y |2
4t Ek

(
X,

Y

2t

)
, (2.3)

where γ is the number of positive roots and the constant ck is the Macdonald–Mehta–Selberg
integral. The formula (2.3) remains true for the W -invariant kernels pWt and EW . In the geometric
cases k = 1

2
, 1 and 2, by [3], the W -invariant formula (2.3) translates in a similar relationship

between the spherical function ψλ and the heat kernel pWt (X, Y ):

pWt (X, Y ) =
1

2γ+d/2ck
t−

d
2
−γ e

−|X|2−|Y |2
4t ψX

(
Y

2t

)
. (2.4)

A simple direct proof of (2.4) for k = 1 is given in [4, Remark 2.9].
Equation (2.4) and Conjecture 2.1 bring us to an equivalent conjecture for the heat kernel

pWt (X, Y ).

Conjecture 2.3. We have

pWt (X, Y ) � t−
d
2

e
−|X−Y |2

4t∏
α>0 (t+ α(X)α(Y ))

.

Consider also the relationship between the heat kernel pWt (X, Y ) and the heat kernel p̃Wt (X, Y )
in the curved case. We have

p̃Wt (X, Y ) = e−|ρ|
2t π(X) π(Y )

δ1/2(X) δ1/2(Y )
pWt (X, Y ). (2.5)
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This relation follows directly from the fact that the respective radial Laplacians and radial mea-
sures are π−1 La ◦ π and π(X) dX in the flat case and δ−1/2 (La − |ρ|2) ◦ δ1/2 and δ(X) dX in the
curved case (La stands for the Euclidean Laplacian on a).

In the curved complex case, Conjecture 2.3 becomes

p̃Wt (X, Y ) � e−|ρ|
2tt−

d
2 e−ρ(X+Y )

∏
α>0

(1 + α(X)) (1 + α(Y ))

(t+ α(X)α(Y )
e
−|X−Y |2

4t .

Remark 2.4. In [5], sharp estimates of W -invariant Poisson and Newton kernels in the complex
Dunkl case were obtained, by exploiting the method of construction of these W -invariant kernels by
alternating sums. When a root system Σ acts in Rd, the sharp estimates of [5] have the common
form

KW (X, Y ) � KRd
(X, Y )∏

α>0 (|X − Y |2 + α(X)α(Y ))
, X, Y ∈ a+, (2.6)

where KW (X, Y ) is the W -invariant kernel in Dunkl setting and KRd
(X, Y ) is the classical kernel

on Rd. Let us observe a common pattern in the appearance of the classical kernels KRd
and of

products of roots α(X)α(Y ) in formulas (2.6) and of the Fourier kernel e〈λ,X〉 and the classical
Gaussian heat kernel and of products α(λ)α(X) in the estimates given in Conjecture 2.1 and
Conjecture 2.3.

2.1 Proof of Conjecture 2.1 in some cases

We start with a practical result.

Proposition 2.5. Let αi be the simple roots and let Aαi be such that 〈X,Aαi〉 = αi(X) for X ∈ a.
Suppose X ∈ a+ and w ∈ W \ {id}. Then we have

Y − w Y =
r∑
i=1

2
awi (Y )

|αi|2
Aαi (2.7)

where awi is a linear combination of positive simple roots with non-negative integer coefficients for
each i.

Proof. Refer to [5].

Remark 2.6. Note that awi (Y )/|αi|2 is bounded by C maxk |αk(Y )| where C is a constant de-
pending only on w ∈ W and, ultimately, on W .

Corollary 2.7. Let Y ∈ a+ and w ∈ W . Consider the decomposition (2.7) of Y − wY . If
awk (Y ) 6= 0 then αk appears in awk , i.e. awk =

∑r
i=1 niαi with nk > 0.

Proof. Refer to [5].

Proposition 2.8. Let δ > 0. Suppose αi(λ)αj(X) ≤ δ for all i, j. Then ψλ(X) � eλ(X) (the
constants involved only depend on δ).
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Proof. Let K(X, Y ) be the kernel of the Abel transform. Recall that K(X, Y ) dY is a probability
measure supported on C(X), the convex envelope of the orbit W ·X. Notice that

ewmin λ(X) ≤ ψλ(X) =

∫
C(X)

eλ(Y ) K(X, Y ) dY ≤ eλ(X) (2.8)

where wmin is the element of the Weyl group giving the minimum value of w λ(X). Now, using
Proposition 2.5 and Remark 2.6 with Y = λ, we see that for any w ∈ W

eλ(X) ≥ ewλ(X) = e〈wλ−λ,X〉 e〈λ,X〉 =
r∏
i=1

e
−2

awi (λ)

|αi|2
αi(X)

e〈λ,X〉

≥
r∏
i=1

e−2C (maxk αk(λ))αi(X) e〈λ,X〉 ≥
r∏
i=1

e−2C δ e〈λ,X〉.

Remark 2.9. This case and this method apply for any radial Dunkl case; it suffices to replace
K(X, Y ) dY by the so-called Rösler measure µX(dY ) in the integral in (2.8), see [11].

Proposition 2.10. A spherical function ψλ(X) on M is given by the formula

ψλ(X) =
π(ρ)

2γπ(λ) π(X)

∑
w∈W

ε(w)e〈wλ,X〉, (2.9)

where ρ = 1
2

∑
α∈Σ+ mαα =

∑
α∈Σ+ α and γ = |Σ+| is the number of positive roots (refer to [8,

Chap. IV, Proposition 4.8 and Chap. II, Theorem 5.35]).

Proposition 2.11. Suppose α(λ)α(X) ≥ (log |W |)/2 for all α > 0. Then

ψλ(X) � eλ(X)

π(λ)π(X)
.

We are assuming here that |αi| ≥ 1 for each i.

Proof. Suppose w ∈ W is not the identity. In that case, awi (λ) is not equal to 0 for some i.
By Proposition 2.5 with y = λ and Corollary 2.7, λ(X) − w λ(X) ≥ 2 awi (λ)αi(X)/|αi|2 ≥
2αi(λ)αi(X) ≥ log |W |. Each term e〈wλ,X〉 in the alternating sum (2.9) corresponding to w 6= id is
bounded by e− log |W | eλ(X) = eλ(X)/|W |. Hence, since only half the terms in the sum are negative,

|W | eλ(X) ≥
∑
w∈W

ε(w)e〈wλ,X〉 ≥ eλ(X) − |W |
2

eλ(X)/|W | = 1

2
eλ(X).
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3 The conjecture in the case of the root system An

We will prove the conjecture in the case of the root system of type A.

Theorem 3.1. In the case of the root system of type An in the complex case, we have

ψλ(e
X) � e〈λ,X〉∏

i<j (1 + (λi − λj) (xi − xj))
, λ, X ∈ a+. (3.1)

Corollary 3.2.

φλ(e
X) � e(λ−ρ)(X)

∏
i<j

1 + xi − xj
1 + (xi − xj) (λi − λj)

,

pWt (X, Y ) � t−
d
2

e
−|X−Y |2

4t∏
i<j (t+ (xi − xj) (yi − yj))

,

p̃Wt (X, Y ) � e−|ρ|
2t t−

d
2 e−ρ(X+Y )

∏
i<j

(1 + xi − xj) (1 + yi − yj)
(t+ (xi − xj) (yi − yj))

e
−|X−Y |2

4t .

We recall (refer to [12]) the following iterative formula for the spherical functions of type A in
the complex case. Here we do not assume that the elements of the Lie algebra have trace 0. Here
the Cartan subalgebra a for the root system An−1 is isomorphic to Rn. For λ,X ∈ a+ ⊂ Rn, we
have

ψλ(e
X) = eλ(X) if n = 1 and

ψλ(e
X) = (n− 1)! eλn

∑n
k=1 xk (

∏
i<j

(xi − xj))−1

∫ xn−1

xn

· · ·
∫ x1

x2

ψλ0(e
Y ) (3.2)∏

i<j<n

(yi − yj) dy1 · · · dyn−1

where λ0(U) =
∑n−1

k=1 (λk − λn)uk.

Remark 3.3. Formula (3.2) represents the action of the root system An−1 on Rn. If we assume∑n
k=1 xk = 0 =

∑n
k=1 λk, we have then the action of the root system An−1 on Rn−1. We can

also consider the action of An−1 on any Rm with m ≥ n − 1 by considering formula (2.9) and
deciding on which entries xk, the Weyl group W = Sn acts. These considerations do not affect
the conclusion of Theorem 3.1.

3.1 Approximate factorization for An

Before proving the conjecture in the case An, we will prove an interesting “factorization”.

Proposition 3.4. For n ≥ 1, consider the root system An on Rn+1. Let λ,X ∈ a+ ⊂ Rn+1 and
X ′ = [X1, . . . , Xn]. Define

I(n) = I(n)(λ;X) =

∫ xn

xn+1

∫ xn−1

xn

· · ·
∫ x2

x3

∫ x1

x2

e−λ0(X′−Y )

∏
i<j<n

(yi − yj) (λi − λj)
1 + (yi − yj) (λi − λj)

dy1 dy2 · · · dyn.
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Then the following approximate factorization holds

I(n) �
n∏
k=1

I
(n)
k (3.3)

where

I
(n)
1 =

∫ x1

x2

e−(λ1−λn+1) (x1−y1) dy1 and

I
(n)
k =

∫ xk

xk+1

e−(λk−λn+1) (xk−yk)

k−1∏
j=1

(xj − yk) (λj − λk)
1 + (xj − yk) (λj − λk)

dyk for 1 < k ≤ n.

Proof. Since u/(1 + u) is an increasing function, we clearly have

I(n) ≤
∫ xn

xn+1

∫ xn−1

xn

· · ·
∫ x2

x3

∫ x1

x2

e−λ0(X′−Y )
∏
i<j<n

(xi − yj) (λi − λj)
1 + (xi − yj) (λi − λj)

dy1 dy2 · · · dyn.

On the other hand,

I(n) ≥
∫ xn

(xn+xn+1)/2

∫ xn−1

(xn−1+xn)/2

· · ·
∫ x2

(x2+x3)/2

∫ x1

(x1+x2)/2

e−λ0(X′−Y )

∏
i<j<n

(yi − yj) (λi − λj)
1 + (yi − yj) (λi − λj)

dy1 dy2 · · · dyn

≥
∫ xn

(xn+xn+1)/2

∫ xn−1

(xn−1+xn)/2

· · ·
∫ x2

(x2+x3)/2

∫ x1

(x1+x2)/2

e−λ0(X′−Y )

∏
i<j<n

((xi + xi+1)/2− yj) (λi − λj)
1 + ((xi + xi+1)/2− yj) (λi − λj)

dy1 dy2 · · · dyn

�
∫ xn

(xn+xn+1)/2

∫ xn−1

(xn−1+xn)/2

· · ·
∫ x2

(x2+x3)/2

∫ x1

(x1+x2)/2

e−λ0(X′−Y )

∏
i<j<n

(xi − yj) (λi − λj)
1 + (xi − yj) (λi − λj)

dy1 dy2 · · · dyn =

=
n∏
k=1

∫ xk

(xk+xk+1)/2

e−(λk−λn+1) (xk−yk)

k−1∏
j=1

(xj − yk) (λj − λk)
1 + (xj − yk) (λj − λk)

dyk =
n∏
k=1

A
(n)
k

since

((xi + xi+1)/2− yj) (λi − λj)
1 + ((xi + xi+1)/2− yj) (λi − λj)

≤ (xi − yj) (λi − λj)
1 + (xi − yj) (λi − λj)

while

((xi + xi+1)/2− yj) (λi − λj)
1 + ((xi + xi+1)/2− yj) (λi − λj)

≥ ((xi − yj)/2 (λi − λj)
1 + (xi − yj)/2 (λi − λj)

≥ 1

2

(xi − yj) (λi − λj)
1 + (xi − yj) (λi − λj)

.
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Now, let

B
(n)
k =

∫ (xk+xk+1)/2

xk+1

e−(λk−λn+1) (xk−yk)

k−1∏
j=1

(xj − yk) (λj − λk)
1 + (xj − yk) (λj − λk)

dyk

and note that I
(n)
k = A

(n)
k +B

(n)
k .

Now, using the change of variable 2w = xk − yk, we have

B
(n)
k = 2

∫ (xk−xk+1)/2

(xk−xk+1)/4

e−2 (λk−λn+1)w

k−1∏
j=1

(xj − xk + 2w) (λj − λk)
1 + (xj − xk + 2w) (λj − λk)

dw

≤ 4

∫ (xk−xk+1)/2

(xk−xk+1)/4

e−2 (λk−λn+1)w

k−1∏
j=1

(xj − xk + w) (λj − λk)
1 + (xj − xk + w) (λj − λk)

dw

≤ 4

∫ (xk−xk+1)/2

0

e−(λk−λn+1)w

k−1∏
j=1

(xj − xk + w) (λj − λk)
1 + (xj − xk + w) (λj − λk)

dw = 4A
(n)
k ,

where the last equality comes from the change of variable w = xk − yk in the expression for A
(n)
k .

Therefore I
(n)
k = A

(n)
k +B

(n)
k ≤ 5A

(n)
k . The result follows.

The next proposition gives an inductive way of estimating I(n+1), knowing I(n) and I(n−1).

Proposition 3.5. Consider the root system An+1 on Rn+2. Let λ,X ∈ a+ ⊂ Rn+2. Assume
α1(X) ≥ αn+1(X). Then

I(n+1)(λ;X) � I(n)(λ1, . . . , λn, λn+2;x1, . . . , xn+1)
(x1 − xn+1)(λ1 − λn+1)

1 + (x1 − xn+1)(λ1 − λn+1)

I(n)(λ2, . . . , λn+1, λn+2;x2, . . . , xn+2)

I(n−1)(λ2, . . . , λn, λn+2;x2, . . . , xn+1)
.

Proof. We start with an outline of the proof.

(i) I(n+1) is estimated by a product of n+ 1 factors I
(n+1)
k (λ;X).

(ii) The product of the first n factors I
(n+1)
1 (λ;X), . . . , I

(n+1)
n (λ;X) give an estimate of the term

I(n)(λ1, . . . , λn, λn+2;X ′) by Proposition 3.4.

(iii) In the last factor I
(n+1)
n+1 (λ;X), we “draw off” one term from under the integral, using the addi-

tional hypothesis α1(X) ≥ αn+1(X). The remaining integral corresponds to I
(n)
n (λ2, . . . , λn+2;x2, . . . , xn+2).

(iv) The last factor I
(n)
n of I(n) is estimated by I(n)/I(n−1), up to a change of variables (we re-use

the idea of (ii)).
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Since xn+2 ≤ yn+1 ≤ xn+1 and xn+1 − xn+2 ≤ x1 − x2, we get x1 − xn+1 ≤ x1 − yn+1 ≤
x1 − xn+2 ≤ 2(x1 − xn+1) and we have

I
(n+1)
n+1 �

∫ xn+1

xn+2

e−(λn+1−λn+2) (xn+1−yn+1) (x1 − yn+1) (λ1 − λn+1)

1 + (x1 − yn+1) (λ1 − λn+1)
n∏
j=2

(xj − yn+1) (λj − λn+1)

1 + (xj − yn+1

) (λj − λn+1) dyn+1

� (x1 − xn+1)(λ1 − λn+1)

1 + (x1 − xn+1)(λ1 − λn+1)

∫ xn+1

xn+2

e−(λn+1−λn+2) (xn+1−yn+1)

n∏
j=2

(xj − yn+1) (λj − λn+1)

1 + (xj − yn+1) (λj − λn+1)
dyn+1.

Hence, noting that I
(n+1)
1 (λ;X) · · · I(n+1)

n (λ;X) � I(n)(λ1, . . . , λn, λn+2;X ′), we have

I(n+1)(λ;X) � I(n)(λ1, . . . , λn, λn+2;X ′)
(x1 − xn+1) (λ1 − λn+1)

1 + (x1 − xn+1) (λ1 − λn+1)∫ xn+1

xn+2

e−(λn+1−λn+2) (xn+1−yn+1)

n∏
j=2

(xj − yn+1) (λj − λn+1)

1 + (xj − yn+1) (λj − λn+1)
dyn+1.

Finally,∫ xn+1

xn+2

e−(λn+1−λn+2) (xn+1−yn+1)

n∏
j=2

(xj − yn+1) (λj − λn+1)

1 + (xj − yn+1) (λj − λn+1)
dyn+1

=

∏n
k=1

∫ xk+1

xk+2
e−(λk+1−λn+2) (xk+1−yk+1)

∏k−1
j=1

(xj+1−yk+1) (λj+1−λk+1)

1+(xj+1−yk+1) (λj+1−λk+1)
dyk+1∏n−1

k=1

∫ xk+1

xk+2
e−(λk+1−λn+2) (xk+1−yk+1)

∏k−1
j=1

(xj+1−yk+1) (λj+1−λk+1)

1+(xj+1−yk+1) (λj+1−λk+1)
dyk+1

=
I(n)(λ2, . . . , λn+1, λn+2;x2, . . . , xn+2)

I(n−1)(λ2, . . . , λn, λn+2;x2, . . . , xn+1)
.

Remark 3.6. When n = 1, the result of Proposition 3.5 remains valid if we set I(0) = 1.

We now prove our main result.

Proof of Theorem 3.1. We use induction on the rank. In the case of A1, we have

ψλ(e
X) = eλ2 (x1+x2) (x1 − x2)−1

∫ x1

x2

e(λ1−λ2) y dy

= eλ2 (x1+x2) (x1 − x2)−1 e
(λ1−λ2)x1 − e(λ1−λ2)x2

λ1 − λ2

= eλ1 x1+λ2 x2
1− e−(λ1−λ2) (x1−x2)

(λ1 − λ2) (x1 − x2)
� eλ1 x1+λ2 x2

1

1 + (λ1 − λ2) (x1 − x2)
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since 1− e−u � u/(1 + u) for u ≥ 0.
Assume that the result is true for Ar, 1 ≤ r ≤ n, n ≥ 1. Using (3.2) and the induction

hypothesis, we have for r = 1, . . . , n+ 1 and λ,X in positive Weyl chamber in Rr+1

π(X) π(λ′) e−λ(X) ψλ([x1, . . . , xr, xr+1])

= r! π(λ′) e−λ(X) eλr+1
∑r+1
k=1 xk

∫ xr

xr+1

· · ·
∫ x1

x2

ψλ0(e
Y )

∏
i<j<r+1

(yi − yj) dy1 · · · dyr

�
∫ xr

xr+1

∫ xr−1

xr

· · ·
∫ x2

x3

∫ x1

x2

e−λ0(X′−Y )
∏

i<j<r+1

(yi − yj) (λi − λj)
1 + (yi − yj) (λi − λj)

dy1 dy2 · · · dyr

where X ′ = diag[x1, . . . , xr] and λ′ = [λ1, . . . , λr]. Using the notation introduced in Proposition
3.4, we have

π(X) π(λ′) e−λ(X) ψ[λ1,...,λr+1]([x1, . . . , xr+1]) = r! I(r)(λ1, . . . , λr+1, x1, . . . , xr+1).

Still using the induction hypothesis, we have

π(X) π(λ′) e−λ(X) ψ[λ1,...,λr+1]([x1, . . . , xr+1] = r! I(r)(λ1, . . . , λr+1;x1, . . . , xr+1)

� π(X) π(λ′)∏
i<j≤r+1 (1 + (λi − λj) (xi − xj))

(3.4)

for r = 1, . . . , n.
It remains to show that (3.4) holds for r = n+ 1, i.e. that

I(n+1)(λ1, . . . , λn+2;x1, . . . , xn+2) � π(X) π(λ′)∏
i<j≤n+2 (1 + (λi − λj) (xi − xj))

.

It is sufficient to prove the last formula under the hypothesis that α1(X) ≥ αn+1(X) since the
case α1(X) ≤ αn+1(X) is symmetric. Now, according to Proposition 3.5 and (3.4),

I(n+1)(λ;X) � (x1 − xn+1)(λ1 − λn+1)

1 + (x1 − xn+1)(λ1 − λn+1)
I(n)(λ1, . . . , λn, λn+2;x1, . . . , xn+1)

I(n)(λ2, . . . , λn+1, λn+2;x2, . . . , xn+2)
(
I(n−1)(λ2, . . . , λn, λn+2;x2, . . . , xn+1)

)−1

� (x1 − xn+1)(λ1 − λn+1)

1 + (x1 − xn+1)(λ1 − λn+1)∏
i<j≤n+1 (xi − xj)

∏
i<j<n+1 (λi − λj)∏

i<j≤n (1 + (xi − xj) (λi − λj))
∏n

i=1 (1 + (xi − xn+1) (λi − λn+2))∏
1<i<j≤n+2 (xi − xj)

∏
1<i<j≤n+1 (λi − λj)∏

1<i<j≤n+2 (1 + (xi − xj) (λi − λj))∏
1<i<j≤n (1 + (xi − xj) (λi − λj))

∏n
i=2 (1 + (xi − xn+1) (λi − λn+2))∏

1<i<j≤n+1 (xi − xj)
∏

1<i<j<n+1 (λi − λj)

=
x1 − xn+1

x1 − xn+2

1 + (x1 − xn+1) (λ1 − λ2)

1 + (x1 − xn+1) (λ1 − λ2)

∏
i<j≤n+2 (xi − xj)

∏
i<j≤n+1 (λi − λj)∏

i<j≤n+2 (1 + (λi − λj) (xi − xj))
.

The result follows since x1 − xn+1 � x1 − xn+2 given that x1 − x2 ≥ xn+1 − xn+2.
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4 Comparison with the estimates of Anker et al. in [1].

Conjecture for Dunkl setting

In [1, Theorems 4.1 p. 2372 and 4.4, p. 2377] the following estimates were proven for the heat
kernel pt(X, Y ) in the Dunkl setting on Rn. There exists positive constants c1, c2, C1 and C2 such
that for all X, Y ∈ a+

C1e
−c1|X−Y |2/t

min{w(B(X,
√
t)), w(B(Y,

√
t))}
≤ pt(X, Y ) ≤ C2e

−c2|X−Y |2/t

max{w(B(X,
√
t)), w(B(Y,

√
t))}

(4.1)

where w is the W -invariant reference measure (in our paper w = π(X)2dX) and the w-volume of
a ball satisfies the estimate ([1, p. 2365])

w(B(X, r)) � rn
∏
α>0

(r + α(X))2k(α).

The same estimates follow for pWt (X, Y ). Our sharp estimates in Corollary 3.2 for k(α) = 1 in the
W -radial case An suggest that c1 = c2 = 1/4 in (4.1) and that products of terms (t+α(X)α(Y ))k(α)

are natural in place of separate terms w(B(X,
√
t)) and w(B(Y,

√
t)). On the other hand, estimates

(4.1) and in Corollary 3.2 suggest that the following conjecture is true in the Dunkl setting.

Conjecture 4.1. The Weyl-invariant heat kernel for a root system Σ in Rd satisfies the following
estimates

pWt (X, Y ) � t−
d
2

e
−|X−Y |2

4t∏
α>0 (t+ α(X)α(Y ))k(α)

. (4.2)

Formula (2.3) then implies that the W -invariant Dunkl kernel satisfies the estimate

EW
k (X, Y ) � eλ(X)∏

α>0 (1 + α(X)α(λ))k(α)
.

5 Additional formulas for pWt (X, Y )

Let us finish by giving formulas relating the heat kernel pWt (X, Y ) with the spherical functions
ψiλ and φiλ. These formulas can be useful in further study of the kernel pWt (X, Y ).

Proposition 5.1. (a) In the flat Riemannian symmetric case, the following formula holds:

pWt (X, Y ) = C

∫
a

e−|λ|
2t ψi λ(X)ψ−i λ(Y )π(λ)2 dλ, C > 0. (5.1)

(b) In the curved non-compact Riemannian symmetric case the following formula holds

pWt (X, Y ) = C

∫
a∗
e−(|λ|2+|ρ|2) t φi λ(X)φ−i λ(Y )

dλ

|c(λ)|2
(5.2)

where c(λ) is the Harish-Chandra c-function (refer to [8] for details). The constant C can
be given explicitly.
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Proof. We will prove (b). We show that the right hand side of equation (5.1) satisfies the definition
of the heat kernel. For a test function f , consider

u(X, t) = C

∫
a

∫
a

e−(|λ|2+|ρ|2) t φi λ(X)φ−i λ(Y )K |c(λ)|−2 dλ f(Y ) |c(λ)|−2 dY

where K |c(λ)|−2 dλ is Plancherel measure.
The fact that ∆u(X, t) = ∂

∂t
u(X, t) where ∆ is the radial Laplacian follows easily from the

fact that ∆φi λ(X) = −(|λ|2 + |ρ|2)φi λ(X) and ∂
∂t
e−(|λ|2+|ρ|2)] t = −(|λ|2 + |ρ|2) e−|λ|

2t. Now, using
Fubini’s theorem,

u(X, t) = C K

∫
a

e−(|λ|2+|ρ|2) t

[∫
a

φ−i λ(Y ) f(Y ) |c(λ)|−2 dY

]
φi λ(X)π(λ)2 dλ

= C K

∫
a

e−(|λ|2+|ρ|2) t f̃(λ)φi λ(X) π(λ)2 dλ

which tends to f(X) as t→ 0 by the dominated convergence theorem.

Remark 5.2. The heat kernel estimates of hWt (X) = pWt (X, 0) on symmetric spaces ([2] and
references therein) are based on the inverse spherical Fourier transform formula which is a special
case of (5.2) when Y = 0. Thus one may hope that estimates of pWt (X, Y ) can be deduced from
(5.2).

Remark 5.3. The passage from hWt (X) to pWt (X, Y ) is well understood at the group level:

pWt (g, h) = hWt (h−1g),

which is equivalent to

pWt (X, Y ) =

∫
K

hWt (e−Y k−1 eX) dk

and to

pWt (X, Y ) =

∫
a

hWt (H) k(H,−Y,X) π(H) dH, (5.3)

where the last formula contains the product formula kernel k which is defined by∫
a

ψλ(e
H) k(H,X, Y ) π(H) dH = ψλ(e

X)ψλ(e
Y ) =

∫
K

ψλ(e
X k eY ) dk.

Similarly,

p̃Wt (X, Y ) =

∫
a

h̃Wt (H) k̃(H,−Y,X) δ(H) dH, (5.4)

where the last formula contains the product formula kernel k̃ which is defined by∫
a

φλ(e
H) k̃(H,X, Y ) δ(H) dH = φλ(e

X)φλ(e
Y ) =

∫
K

φλ(e
X k eY ) dk.
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