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In this article, we consider the radial Dunkl geometric case k = 1 corresponding to flat Riemannian symmetric spaces in the complex case and we prove exact estimates for the positive valued Dunkl kernel and for the radial heat kernel.

Dans cet article, nous considérons le cas géométrique radial de Dunkl k = 1 correspondant aux espaces symétriques riemanniens plats dans le cas complexe et nous prouvons des estimations exactes pour le noyau de Dunkl à valeur positive et pour le noyau de chaleur radial.

Introduction and notations

Finding good estimates of Dunkl heat kernels is a challenging and important subject, developed recently in [START_REF] Anker | Harmonic Functions,Conjugate Harmonic Functions and the Hardy Space H 1 in the Rational Dunkl Setting[END_REF]. Establishing estimates of the heat kernels is equivalent to estimating the Dunkl kernel as demonstrated by equation (2.3) below.

In this paper we prove exact estimates in the W -radial Dunkl geometric case of multiplicity k = 1, corresponding to Cartan motion groups and flat Riemannian symmetric spaces with the ambient group complex G, the Weyl group W and the root system A n .

We study for the first time the non-centered heat kernel, denoted p W t (X, Y ), on Riemannian symmetric spaces and we provide its sharp estimates. Exact estimates were obtained in [START_REF] Anker | Heat Kernel and Green Function Estimates on Noncompact Symmetric Spaces[END_REF] in the centered case Y = 0 for all Riemannian symmetric spaces.

We provide exact estimates for the spherical functions ψ λ (X) in the two variables X, λ when λ is real and, consequently, for the heat kernel p W t (X, Y ) in the three variables t, X, Y . We recall here some basic terminology and facts about symmetric spaces associated to Cartan motion groups.

Let G be a semisimple Lie group and let g = k ⊕ p be the Cartan decomposition of G. We recall the definition of the Cartan motion group and the flat symmetric space associated with the semisimple Lie group G with maximal compact subgroup K. The Cartan motion group is the semi-direct product G 0 = K p where the multiplication is defined by (k 1 , X 1 ) • (k 2 , X 2 ) = (k 1 k 2 , Ad(k 1 )(X 2 ) + X 1 ). The associated flat symmetric space is then M = p G 0 /K (the action of G 0 on p is given by (k, X) • Y = Ad(k)(Y ) + X).

The spherical functions for the symmetric space M are then given by ψ λ (X) = K e λ(Ad(k)(X)) dk where λ is a complex linear functional on a ⊂ p, a Cartan subalgebra of the Lie algebra of G. To extend λ to X ∈ Ad(K)a = p, one uses λ(X) = λ(π a (X)) where π a is the orthogonal projection with respect to the Killing form (denoted throughout this paper by •, • ). Note that in [START_REF] Helgason | The bounded spherical functions on the Cartan motion group[END_REF][START_REF] Helgason | Differential Geometry, Lie Groups and Symmetric spaces[END_REF][START_REF] Helgason | Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions[END_REF], λ is replaced by i λ.

Throughout this paper, we usually assume that G is a semisimple complex Lie group. The complex root systems are respectively A n for n ≥ 1 (where p consists of the n × n hermitian matrices with trace 0), B n for n ≥ 2 (where p = i so(2 n + 1)), C n for n ≥ 3 (where p = i sp(n)) and D n for n ≥ 4 (where p = i so(2 n)) for the classical cases and the exceptional root systems

E 6 , E 7 , E 8 , F 4 and G 2 .
The radial heat kernel is considered with respect to the invariant measure µ(dY

) = π 2 (Y ) dY on M , where π(Y ) = α>0 α(Y ).
Note also that in the curved case M 0 = G/K, the spherical functions for the symmetric space M 0 are then given by

φ λ (e X ) = K e (λ-ρ)H(e X k) dk
where ρ is the half-sum of the roots counted with their multiplicities and H(g) is the abelian component in the Iwasawa decomposition of g: g = k e H(g) n.

Estimates of spherical functions and of the heat kernel

We will be developing a sharp estimate for the spherical function ψ λ (X). We introduce the following useful convention. We will write f (t, X, λ) g(t, X, λ) in a given domain of f and g if there exists constants C 1 > 0 and C 2 > 0 independent of t, X and

λ such that C 1 f (t, X, λ) ≤ g(t, X, λ) ≤ C 2 g(t, X, λ) in the domain of consideration.
We conjecture the following global estimate for the spherical function in the complex case.

Conjecture 2.1. On flat Riemannian symmetric spaces with complex group G, we have

ψ λ (X) e λ,X α>0 (1 + α(λ)α(X)) , λ ∈ a + , X ∈ a + .
Remark 2.2. Recall that, denoting δ(X) = α>0 sinh 2 α(X), we have

φ λ (e X ) = π(X) δ 1/2 (X) ψ λ (X). (2.1) Since δ 1/2 (X)
e ρ(X) π(X)/ α>0 (1 + α(X)) in the complex case, Conjecture 2.1 therefore becomes

φ λ (e X ) e (λ-ρ)(X) α>0 1 + α(X) 1 + α(λ)α(X) (2.2)
in the curved complex case. Let us compare the estimate (2.2) we conjecture for φ λ with the one obtained in [START_REF] Narayanana | Asymptotics of Harish-Chandra expansions, bounded hypergeometric functions associated with root systems, and applications[END_REF], cf. also [START_REF] Schapira | Contributions to the hypergeometric function theory of Heckman and Opdam: sharp estimates, Schwartz space, heat kernel[END_REF]. The estimates in [START_REF] Narayanana | Asymptotics of Harish-Chandra expansions, bounded hypergeometric functions associated with root systems, and applications[END_REF] apply in all the generality of hypergeometric functions of Heckman and Opdam. The authors show that there exists constants C 1 (λ) > 0, C 2 (λ) > 0 such that

C 1 (λ) e (λ-ρ)(X) α>0, α(λ)=0 (1 + α(X)) ≤ φ λ (e X ) ≤ C 2 (λ) e (λ-ρ)(X) α>0, α(λ)=0 (1 + α(X)).
Given (2.1), corresponding estimates clearly also hold in the flat case for ψ λ (X). The interest of our result, in the case A n , lies in the fact that our estimate is universal in both λ and X.

The results of [START_REF] Narayanana | Asymptotics of Harish-Chandra expansions, bounded hypergeometric functions associated with root systems, and applications[END_REF][START_REF] Schapira | Contributions to the hypergeometric function theory of Heckman and Opdam: sharp estimates, Schwartz space, heat kernel[END_REF] and our estimates in the A n case strongly suggest that the Conjecture 2.1 is true for any complex root system.

Note that asymptotics of ψ λ (t X) when λ and X are singular and t → ∞ were proven in [START_REF] Graczyk | Integral Kernels on Complex Symmetric Spaces and for the Dyson Brownian Motion[END_REF] for all classical complex root systems and the systems F 4 and G 2 .

Consider the relationship between the Dunkl kernel E k (X, Y ) and the Dunkl heat kernel p t (X, Y ), as given in [10, Lemma 4.5]

p t (X, Y ) = 1 2 γ+d/2 c k t -d 2 -γ e -|X| 2 -|Y | 2 4t E k X, Y 2t , (2.3) 
where γ is the number of positive roots and the constant c k is the Macdonald-Mehta-Selberg integral. The formula (2.3) remains true for the W -invariant kernels p W t and E W . In the geometric cases k = 1 2 , 1 and 2, by [START_REF] Jeu | Paley-Wiener theorems for the Dunkl transform[END_REF], the W -invariant formula (2.3) translates in a similar relationship between the spherical function ψ λ and the heat kernel p W t (X, Y ):

p W t (X, Y ) = 1 2 γ+d/2 c k t -d 2 -γ e -|X| 2 -|Y | 2 4t ψ X Y 2t . (2.4) 
A simple direct proof of (2.4) for k = 1 is given in [4, Remark 2.9]. Equation (2.4) and Conjecture 2.1 bring us to an equivalent conjecture for the heat kernel p W t (X, Y ). Conjecture 2.3. We have

p W t (X, Y ) t -d 2 e -|X-Y | 2 4t α>0 (t + α(X) α(Y ))
.

Consider also the relationship between the heat kernel p W t (X, Y ) and the heat kernel pW t (X, Y ) in the curved case. We have

pW t (X, Y ) = e -|ρ| 2 t π(X) π(Y ) δ 1/2 (X) δ 1/2 (Y ) p W t (X, Y ). (2.5)
This relation follows directly from the fact that the respective radial Laplacians and radial measures are π -1 L a • π and π(X) dX in the flat case and δ -1/2 (L a -|ρ| 2 ) • δ 1/2 and δ(X) dX in the curved case (L a stands for the Euclidean Laplacian on a).

In the curved complex case, Conjecture 2.3 becomes

pW t (X, Y ) e -|ρ| 2 t t -d 2 e -ρ(X+Y ) α>0 (1 + α(X)) (1 + α(Y )) (t + α(X) α(Y ) e -|X-Y | 2 4t
.

Remark 2.4. In [START_REF] Graczyk | Potential kernels for radial Dunkl Laplacians[END_REF], sharp estimates of W -invariant Poisson and Newton kernels in the complex Dunkl case were obtained, by exploiting the method of construction of these W -invariant kernels by alternating sums. When a root system Σ acts in R d , the sharp estimates of [START_REF] Graczyk | Potential kernels for radial Dunkl Laplacians[END_REF] have the common form

K W (X, Y ) K R d (X, Y ) α>0 (|X -Y | 2 + α(X) α(Y )) , X, Y ∈ a + , (2.6) 
where

K W (X, Y ) is the W -invariant kernel in Dunkl setting and K R d (X, Y ) is the classical kernel on R d .
Let us observe a common pattern in the appearance of the classical kernels K R d and of products of roots α(X) α(Y ) in formulas (2.6) and of the Fourier kernel e λ,X and the classical Gaussian heat kernel and of products α(λ)α(X) in the estimates given in Conjecture 2.1 and Conjecture 2.3.

Proof of Conjecture in some cases

We start with a practical result.

Proposition 2.5. Let α i be the simple roots and let A α i be such that X, A α i = α i (X) for X ∈ a. Suppose X ∈ a + and w ∈ W \ {id}. Then we have

Y -w Y = r i=1 2 a w i (Y ) |α i | 2 A α i (2.7)
where a w i is a linear combination of positive simple roots with non-negative integer coefficients for each i.

Proof. Refer to [START_REF] Graczyk | Potential kernels for radial Dunkl Laplacians[END_REF].

Remark 2.6. Note that a w i (Y )/|α i | 2 is bounded by C max k |α k (Y )|
where C is a constant depending only on w ∈ W and, ultimately, on W .

Corollary 2.7. Let Y ∈ a + and w ∈ W . Consider the decomposition (2.7) of Y -wY . If a w k (Y ) = 0 then α k appears in a w k , i.e. a w k = r i=1 n i α i with n k > 0.
Proof. Refer to [START_REF] Graczyk | Potential kernels for radial Dunkl Laplacians[END_REF].

Proposition 2.8. Let δ > 0. Suppose α i (λ) α j (X) ≤ δ for all i, j. Then ψ λ (X) e λ(X) (the constants involved only depend on δ).

Proof. Let K(X, Y ) be the kernel of the Abel transform. Recall that K(X, Y ) dY is a probability measure supported on C(X), the convex envelope of the orbit W • X. Notice that

e w min λ(X) ≤ ψ λ (X) = C(X) e λ(Y ) K(X, Y ) dY ≤ e λ(X) (2.8)
where w min is the element of the Weyl group giving the minimum value of w λ(X). Now, using Proposition 2.5 and Remark 2.6 with Y = λ, we see that for any w ∈ W e λ(X) ≥ e w λ(X) = e wλ-λ,X e λ,X =

r i=1 e -2 a w i (λ) |α i | 2 α i (X) e λ,X ≥ r i=1 e -2 C (max k α k (λ)) α i (X) e λ,X ≥ r i=1 e -2 C δ e λ,X .
Remark 2.9. This case and this method apply for any radial Dunkl case; it suffices to replace K(X, Y ) dY by the so-called Rösler measure µ X (dY ) in the integral in (2.8), see [START_REF] Rösler | Positivity of Dunkl's intertwining operator[END_REF].

Proposition 2.10. A spherical function ψ λ (X) on M is given by the formula

ψ λ (X) = π(ρ) 2 γ π(λ) π(X) w∈W (w)e wλ,X , (2.9) 
where ρ = 1 

ψ λ (X)
e λ(X) π(λ)π(X) .

We are assuming here that |α i | ≥ 1 for each i.

Proof. Suppose w ∈ W is not the identity. In that case, a w i (λ) is not equal to 0 for some i. By Proposition 2.5 with y = λ and Corollary 2.7, λ(X)

-w λ(X) ≥ 2 a w i (λ) α i (X)/|α i | 2 ≥ 2 α i (λ) α i (X) ≥ log |W |.
Each term e wλ,X in the alternating sum (2.9) corresponding to w = id is bounded by e -log |W | e λ(X) = e λ(X) /|W |. Hence, since only half the terms in the sum are negative,

|W | e λ(X) ≥ w∈W (w)e wλ,X ≥ e λ(X) - |W | 2 e λ(X) /|W | = 1 2 e λ(X) .
3 The conjecture in the case of the root system A n

We will prove the conjecture in the case of the root system of type A.

Theorem 3.1. In the case of the root system of type A n in the complex case, we have

ψ λ (e X ) e λ,X i<j (1 + (λ i -λ j ) (x i -x j )) , λ, X ∈ a + . (3.1) Corollary 3.2. φ λ (e X ) e (λ-ρ)(X) i<j 1 + x i -x j 1 + (x i -x j ) (λ i -λ j ) , p W t (X, Y ) t -d 2 e -|X-Y | 2 4t i<j (t + (x i -x j ) (y i -y j )) , pW t (X, Y ) e -|ρ| 2 t t -d 2 e -ρ(X+Y ) i<j (1 + x i -x j ) (1 + y i -y j ) (t + (x i -x j ) (y i -y j )) e -|X-Y | 2 4t
.

We recall (refer to [START_REF] Sawyer | A Laplace-Type Representation of the Generalized Spherical Functions Associated with the Root Systems of Type A[END_REF]) the following iterative formula for the spherical functions of type A in the complex case. Here we do not assume that the elements of the Lie algebra have trace 0. Here the Cartan subalgebra a for the root system A n-1 is isomorphic to R n . For λ, X ∈ a + ⊂ R n , we have

ψ λ (e X ) = e λ(X) if n = 1 and ψ λ (e X ) = (n -1)! e λn n k=1 x k ( i<j (x i -x j )) -1 x n-1 xn • • • x 1 x 2 ψ λ 0 (e Y ) (3.2) i<j<n (y i -y j ) dy 1 • • • dy n-1
where λ 0 (U ) = n-1 k=1 (λ k -λ n ) u k . Remark 3.3. Formula (3.2) represents the action of the root system A n-1 on R n . If we assume n k=1 x k = 0 = n k=1 λ k , we have then the action of the root system A n-1 on R n-1 . We can also consider the action of A n-1 on any R m with m ≥ n -1 by considering formula (2.9) and deciding on which entries x k , the Weyl group W = S n acts. These considerations do not affect the conclusion of Theorem 3.1.

Approximate factorization for A n

Before proving the conjecture in the case A n , we will prove an interesting "factorization".

Proposition 3.4. For n ≥ 1, consider the root system A n on R n+1 . Let λ, X ∈ a + ⊂ R n+1 and X = [X 1 , . . . , X n ]. Define I (n) = I (n) (λ; X) = xn x n+1 x n-1 xn • • • x 2 x 3 x 1 x 2 e -λ 0 (X -Y ) i<j<n (y i -y j ) (λ i -λ j ) 1 + (y i -y j ) (λ i -λ j ) dy 1 dy 2 • • • dy n .
Then the following approximate factorization holds

I (n) n k=1 I (n) k (3.3)
where

I (n) 1 = x 1
x 2

e -(λ 1 -λ n+1 ) (x 1 -y 1 ) dy 1 and

I (n) k = x k x k+1 e -(λ k -λ n+1 ) (x k -y k ) k-1 j=1 (x j -y k ) (λ j -λ k ) 1 + (x j -y k ) (λ j -λ k ) dy k for 1 < k ≤ n.
Proof. Since u/(1 + u) is an increasing function, we clearly have

I (n) ≤ xn x n+1 x n-1 xn • • • x 2 x 3 x 1 x 2 e -λ 0 (X -Y ) i<j<n (x i -y j ) (λ i -λ j ) 1 + (x i -y j ) (λ i -λ j ) dy 1 dy 2 • • • dy n .
On the other hand,

I (n) ≥ xn (xn+x n+1 )/2
x n-1

(x n-1 +xn)/2 • • • x 2 (x 2 +x 3 )/2 x 1 (x 1 +x 2 )/2 e -λ 0 (X -Y ) i<j<n (y i -y j ) (λ i -λ j ) 1 + (y i -y j ) (λ i -λ j ) dy 1 dy 2 • • • dy n ≥ xn (xn+x n+1 )/2
x n-1

(x n-1 +xn)/2 • • • x 2 (x 2 +x 3 )/2 x 1 (x 1 +x 2 )/2 e -λ 0 (X -Y ) i<j<n ((x i + x i+1 )/2 -y j ) (λ i -λ j ) 1 + ((x i + x i+1 )/2 -y j ) (λ i -λ j ) dy 1 dy 2 • • • dy n xn (xn+x n+1 )/2
x n-1

(x n-1 +xn)/2 • • • x 2 (x 2 +x 3 )/2 x 1 (x 1 +x 2 )/2 e -λ 0 (X -Y ) i<j<n (x i -y j ) (λ i -λ j ) 1 + (x i -y j ) (λ i -λ j ) dy 1 dy 2 • • • dy n = = n k=1 x k (x k +x k+1 )/2 e -(λ k -λ n+1 ) (x k -y k ) k-1 j=1 (x j -y k ) (λ j -λ k ) 1 + (x j -y k ) (λ j -λ k ) dy k = n k=1 A (n) k since ((x i + x i+1 )/2 -y j ) (λ i -λ j ) 1 + ((x i + x i+1 )/2 -y j ) (λ i -λ j ) ≤ (x i -y j ) (λ i -λ j ) 1 + (x i -y j ) (λ i -λ j ) while ((x i + x i+1 )/2 -y j ) (λ i -λ j ) 1 + ((x i + x i+1 )/2 -y j ) (λ i -λ j ) ≥ ((x i -y j )/2 (λ i -λ j ) 1 + (x i -y j )/2 (λ i -λ j ) ≥ 1 2 (x i -y j ) (λ i -λ j ) 1 + (x i -y j ) (λ i -λ j ) . Now, let B (n) k = (x k +x k+1 )/2 x k+1 e -(λ k -λ n+1 ) (x k -y k ) k-1 j=1 (x j -y k ) (λ j -λ k ) 1 + (x j -y k ) (λ j -λ k )
dy k and note that I

(n) k = A (n) k + B (n)
k . Now, using the change of variable 2w = x k -y k , we have

B (n) k = 2 (x k -x k+1 )/2 (x k -x k+1 )/4 e -2 (λ k -λ n+1 ) w k-1 j=1 (x j -x k + 2 w) (λ j -λ k ) 1 + (x j -x k + 2 w) (λ j -λ k ) dw ≤ 4 (x k -x k+1 )/2 (x k -x k+1 )/4 e -2 (λ k -λ n+1 ) w k-1 j=1 (x j -x k + w) (λ j -λ k ) 1 + (x j -x k + w) (λ j -λ k ) dw ≤ 4 (x k -x k+1 )/2 0 e -(λ k -λ n+1 ) w k-1 j=1 (x j -x k + w) (λ j -λ k ) 1 + (x j -x k + w) (λ j -λ k ) dw = 4 A (n) k ,
where the last equality comes from the change of variable w = x k -y k in the expression for

A (n) k . Therefore I (n) k = A (n) k + B (n) k ≤ 5 A (n)
k . The result follows. The next proposition gives an inductive way of estimating I (n+1) , knowing I (n) and I (n-1) . Proposition 3.5. Consider the root system

A n+1 on R n+2 . Let λ, X ∈ a + ⊂ R n+2 . Assume α 1 (X) ≥ α n+1 (X). Then I (n+1) (λ; X) I (n) (λ 1 , . . . , λ n , λ n+2 ; x 1 , . . . , x n+1 ) (x 1 -x n+1 )(λ 1 -λ n+1 ) 1 + (x 1 -x n+1 )(λ 1 -λ n+1 ) I (n) (λ 2 , .
. . , λ n+1 , λ n+2 ; x 2 , . . . , x n+2 ) I (n-1) (λ 2 , . . . , λ n , λ n+2 ; x 2 , . . . , x n+1 ) .

Proof. We start with an outline of the proof.

(i) I (n+1) is estimated by a product of n + 1 factors

I (n+1) k (λ; X).
(ii) The product of the first n factors

I (n+1) 1 (λ; X), . . . , I (n+1) n 
(λ; X) give an estimate of the term I (n) (λ 1 , . . . , λ n , λ n+2 ; X ) by Proposition 3.4.

(iii) In the last factor I (n+1) n+1 (λ; X), we "draw off" one term from under the integral, using the additional hypothesis α 1 (X) ≥ α n+1 (X). The remaining integral corresponds to 1) , up to a change of variables (we re-use the idea of (ii)).

I (n) n (λ 2 , . . . , λ n+2 ; x 2 , . . . , x (iv) The last factor I (n) n of I (n) is estimated by I (n) /I (n-
Since x n+2 ≤ y n+1 ≤ x n+1 and x n+1 -

x n+2 ≤ x 1 -x 2 , we get x 1 -x n+1 ≤ x 1 -y n+1 ≤ x 1 -x n+2 ≤ 2(x 1 -x n+1
) and we have

I (n+1) n+1 x n+1 x n+2 e -(λ n+1 -λ n+2 ) (x n+1 -y n+1 ) (x 1 -y n+1 ) (λ 1 -λ n+1 ) 1 + (x 1 -y n+1 ) (λ 1 -λ n+1 ) n j=2 (x j -y n+1 ) (λ j -λ n+1 ) 1 + (x j -y n+1 ) (λ j -λ n+1 ) dy n+1 (x 1 -x n+1 )(λ 1 -λ n+1 ) 1 + (x 1 -x n+1 )(λ 1 -λ n+1 ) x n+1 x n+2 e -(λ n+1 -λ n+2 ) (x n+1 -y n+1 ) n j=2 (x j -y n+1 ) (λ j -λ n+1 ) 1 + (x j -y n+1 ) (λ j -λ n+1 ) dy n+1 .
Hence, noting that

I (n+1) 1 (λ; X) • • • I (n+1) n
(λ; X) I (n) (λ 1 , . . . , λ n , λ n+2 ; X ), we have

I (n+1) (λ; X) I (n) (λ 1 , . . . , λ n , λ n+2 ; X ) (x 1 -x n+1 ) (λ 1 -λ n+1 ) 1 + (x 1 -x n+1 ) (λ 1 -λ n+1 ) x n+1 x n+2 e -(λ n+1 -λ n+2 ) (x n+1 -y n+1 ) n j=2 (x j -y n+1 ) (λ j -λ n+1 ) 1 + (x j -y n+1 ) (λ j -λ n+1 ) dy n+1 .
Finally,

x n+1 x n+2 e -(λ n+1 -λ n+2 ) (x n+1 -y n+1 ) n j=2 (x j -y n+1 ) (λ j -λ n+1 ) 1 + (x j -y n+1 ) (λ j -λ n+1 ) dy n+1 = n k=1
x k+1

x k+2 e -(λ k+1 -λ n+2 ) (x k+1 -y k+1 ) k-1 j=1

(x j+1 -y k+1 ) (λ j+1 -λ k+1 )
1+(x j+1 -y k+1 ) (λ j+1 -λ k+1 ) dy k+1 n-1 k=1

x k+1

x k+2 e -(λ k+1 -λ n+2 ) (x k+1 -y k+1 ) k-1 j=1

(x j+1 -y k+1 ) (λ j+1 -λ k+1 ) 1+(x j+1 -y k+1 ) (λ j+1 -λ k+1 ) dy k+1 = I (n) (λ 2 , . . . , λ n+1 , λ n+2 ; x 2 , . . . , x n+2 ) I (n-1) (λ 2 , . . . , λ n , λ n+2 ; x 2 , . . . , x n+1 ) .
Remark 3.6. When n = 1, the result of Proposition 3.5 remains valid if we set

I (0) = 1.
We now prove our main result.

Proof of Theorem 3.1. We use induction on the rank. In the case of A 1 , we have

ψ λ (e X ) = e λ 2 (x 1 +x 2 ) (x 1 -x 2 ) -1 x 1 x 2 e (λ 1 -λ 2 ) y dy = e λ 2 (x 1 +x 2 ) (x 1 -x 2 ) -1 e (λ 1 -λ 2 ) x 1 -e (λ 1 -λ 2 ) x 2 λ 1 -λ 2 = e λ 1 x 1 +λ 2 x 2 1 -e -(λ 1 -λ 2 ) (x 1 -x 2 ) (λ 1 -λ 2 ) (x 1 -x 2 ) e λ 1 x 1 +λ 2 x 2 1 1 + (λ 1 -λ 2 ) (x 1 -x 2 ) since 1 -e -u u/(1 + u) for u ≥ 0.
Assume that the result is true for A r , 1 ≤ r ≤ n, n ≥ 1. Using (3.2) and the induction hypothesis, we have for r = 1, . . . , n + 1 and λ, X in positive Weyl chamber in R r+1 π(X) π(λ ) e -λ(X) ψ λ ([x 1 , . . . , x r , x r+1 ]) = r! π(λ ) e -λ(X) e λ r+1 r+1 Still using the induction hypothesis, we have

k=1 x k xr x r+1 • • • x 1 x 2 ψ λ 0 (e Y ) i<j<r+1 (y i -y j ) dy 1 • • • dy r xr x r+1 x r-1 xr • • • x 2 x 3 x 1 x 2 e -λ 0 (X -Y ) i<j<r+1 (y i -y j ) (λ i -λ j ) 1 + (y i -y j ) (λ i -λ j ) dy 1 dy 2 • • •
π(X) π(λ ) e -λ(X) ψ [λ 1 ,...,λ r+1 ] ([x 1 , . . . , x r+1 ] = r! I (r) (λ 1 , . . . , λ r+1 ; x 1 , . . . , x r+1 ) π(X) π(λ ) i<j≤r+1 (1 + (λ i -λ j ) (x i -x j )) (3.4) 
for r = 1, . . . , n.

It remains to show that (3.4) holds for r = n + 1, i.e. that

I (n+1) (λ 1 , . . . , λ n+2 ; x 1 , . . . , x n+2 ) π(X) π(λ ) i<j≤n+2 (1 + (λ i -λ j ) (x i -x j ))
.

It is sufficient to prove the last formula under the hypothesis that α 1 (X) ≥ α n+1 (X) since the case α 1 (X) ≤ α n+1 (X) is symmetric. Now, according to Proposition 3.5 and (3.4),

I (n+1) (λ; X) (x 1 -x n+1 )(λ 1 -λ n+1 ) 1 + (x 1 -x n+1 )(λ 1 -λ n+1 ) I (n) (λ 1 , . . . , λ n , λ n+2 ; x 1 , . . . , x n+1 ) I (n) (λ 2 , .
. . , λ n+1 , λ n+2 ; x 2 , . . . , x n+2 ) I (n-1) (λ 2 , . . . , λ n , λ n+2 ; x 2 , . . . , x n+1 )

-1

(x 1 -x n+1 )(λ 1 -λ n+1 ) 1 + (x 1 -x n+1 )(λ 1 -λ n+1 ) i<j≤n+1 (x i -x j ) i<j<n+1 (λ i -λ j ) i<j≤n (1 + (x i -x j ) (λ i -λ j )) n i=1 (1 + (x i -x n+1 ) (λ i -λ n+2 )) 1<i<j≤n+2 (x i -x j ) 1<i<j≤n+1 (λ i -λ j ) 1<i<j≤n+2 (1 + (x i -x j ) (λ i -λ j )) 1<i<j≤n (1 + (x i -x j ) (λ i -λ j )) n i=2 (1 + (x i -x n+1 ) (λ i -λ n+2 )) 1<i<j≤n+1 (x i -x j ) 1<i<j<n+1 (λ i -λ j ) = x 1 -x n+1 x 1 -x n+2 1 + (x 1 -x n+1 ) (λ 1 -λ 2 ) 1 + (x 1 -x n+1 ) (λ 1 -λ 2 ) i<j≤n+2 (x i -x j ) i<j≤n+1 (λ i -λ j ) i<j≤n+2 (1 + (λ i -λ j ) (x i -x j ))
.

The result follows since x 1 -x n+1 x 1 -x n+2 given that x 1 -x 2 ≥ x n+1 -x n+2 . 

∈ a + C 1 e -c 1 |X-Y | 2 /t min{w(B(X, √ t)), w(B(Y, √ t))} ≤ p t (X, Y ) ≤ C 2 e -c 2 |X-Y | 2 /t max{w(B(X, √ t)), w(B(Y, √ t))} (4.1)
where w is the W -invariant reference measure (in our paper w = π(X) 2 dX) and the w-volume of a ball satisfies the estimate ([1, p. 2365])

w(B(X, r)) r n α>0 (r + α(X)) 2k(α) .
The same estimates follow for p W t (X, Y ). Our sharp estimates in Corollary 3.2 for k(α) = 1 in the W -radial case A n suggest that c 1 = c 2 = 1/4 in (4.1) and that products of terms (t+α(X)α(Y )) k(α) are natural in place of separate terms w(B(X, √ t)) and w(B(Y, √ t)). On the other hand, estimates (4.1) and in Corollary 3.2 suggest that the following conjecture is true in the Dunkl setting.

Conjecture 4.1. The Weyl-invariant heat kernel for a root system Σ in R d satisfies the following estimates

p W t (X, Y ) t -d 2 e -|X-Y | 2 4t α>0 (t + α(X)α(Y )) k(α) . (4.2) 
Formula (2.3) then implies that the W -invariant Dunkl kernel satisfies the estimate

E W k (X, Y ) e λ(X) α>0 (1 + α(X) α(λ)) k(α) .
5 Additional formulas for p W t (X, Y )

Let us finish by giving formulas relating the heat kernel p W t (X, Y ) with the spherical functions ψ iλ and φ iλ . These formulas can be useful in further study of the kernel p W t (X, Y ). Proposition 5.1. (a) In the flat Riemannian symmetric case, the following formula holds: where c(λ) is the Harish-Chandra c-function (refer to [START_REF] Helgason | Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions[END_REF] for details). The constant C can be given explicitly.

p W t (X, Y ) = C a e -|λ| 2 t ψ i λ (X) ψ -i λ (Y ) π(λ) 2 dλ, C > 0. ( 5 
Proof. We will prove (b). We show that the right hand side of equation ( 5 Remark 5.2. The heat kernel estimates of h W t (X) = p W t (X, 0) on symmetric spaces ([2] and references therein) are based on the inverse spherical Fourier transform formula which is a special case of (5.2) when Y = 0. Thus one may hope that estimates of p W t (X, Y ) can be deduced from (5.2).

Remark 5.3. The passage from h W t (X) to p W t (X, Y ) is well understood at the group level:

p W t (g, h) = h W t (h -1 g),
which is equivalent to

p W t (X, Y ) = K h W t (e -Y k -1 e X ) dk
and to

p W t (X, Y ) = a h W t (H) k(H, -Y, X) π(H) dH, (5.3) 
where the last formula contains the product formula kernel k which is defined by 

2 α∈Σ

 2 + m α α = α∈Σ + α and γ = |Σ + | is the number of positive roots (refer to [8, Chap. IV, Proposition 4.8 and Chap. II, Theorem 5.35]). Proposition 2.11. Suppose α(λ) α(X) ≥ (log |W |)/2 for all α > 0. Then

  dy r where X = diag[x 1 , . . . , x r ] and λ = [λ 1 , . . . , λ r ]. Using the notation introduced in Proposition 3.4, we have π(X) π(λ ) e -λ(X) ψ [λ 1 ,...,λ r+1 ] ([x 1 , . . . , x r+1 ]) = r! I (r) (λ 1 , . . . , λ r+1 , x 1 , . . . , x r+1 ).

. 1 )

 1 (b) In the curved non-compact Riemannian symmetric case the following formula holdsp W t (X, Y ) = C a * e -(|λ| 2 +|ρ| 2 ) t φ i λ (X) φ -i λ (Y ) dλ |c(λ)| 2(5.2)

. 1 )

 1 satisfies the definition of the heat kernel. For a test function f , consideru(X, t) = C a a e -(|λ| 2 +|ρ| 2 ) t φ i λ (X) φ -i λ (Y ) K |c(λ)| -2 dλ f (Y ) |c(λ)| -2 dY where K |c(λ)| -2 dλ is Plancherel measure.The fact that ∆ u(X, t) = ∂ ∂t u(X, t) where ∆ is the radial Laplacian follows easily from the fact that ∆φ i λ (X) = -(|λ| 2 + |ρ| 2 ) φ i λ (X) and ∂ ∂t e -(|λ| 2 +|ρ| 2 )] t = -(|λ| 2 + |ρ| 2 ) e -|λ| 2 t . Now, using Fubini's theorem, u(X, t) = C K a e -(|λ| 2 +|ρ| 2 ) t a φ -i λ (Y ) f (Y ) |c(λ)| -2 dY φ i λ (X) π(λ) 2 dλ = C K a e -(|λ| 2 +|ρ| 2 ) t f (λ) φ i λ (X) π(λ) 2 dλwhich tends to f (X) as t → 0 by the dominated convergence theorem.

a

  ψ λ (e H ) k(H, X, Y ) π(H) dH = ψ λ (e X ) ψ λ (e Y ) = K ψ λ (e X k e Y ) dk. Similarly, pW t (X, Y ) = a hW t (H) k(H, -Y, X) δ(H) dH,(5.4)where the last formula contains the product formula kernel k which is defined bya φ λ (e H ) k(H, X, Y ) δ(H) dH = φ λ (e X ) φ λ (e Y ) = K φ λ (e X k e Y ) dk.

4

  Comparison with the estimates of Anker et al. in[START_REF] Anker | Harmonic Functions,Conjugate Harmonic Functions and the Hardy Space H 1 in the Rational Dunkl Setting[END_REF].Conjecture for Dunkl settingIn [1, Theorems 4.1 p. 2372 and 4.4, p. 2377] the following estimates were proven for the heat kernel p t (X, Y ) in the Dunkl setting on R n . There exists positive constants c 1 , c 2 , C 1 and C 2 such that for all X, Y