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Abstract

Expectiles induce a law-invariant risk measure that has recently gained popularity in actuar-
ial and financial risk management applications. Unlike quantiles or the quantile-based Expected
Shortfall, the expectile risk measure is coherent and elicitable. The estimation of extreme ex-
pectiles in the heavy-tailed framework, which is reasonable for extreme financial or actuarial risk
management, is not without difficulties; currently available estimators of extreme expectiles are
typically biased and hence may show poor finite-sample performance even in fairly large samples.
We focus here on the construction of bias-reduced extreme expectile estimators for heavy-tailed
distributions. The rationale for our construction hinges on a careful investigation of the asymptotic
proportionality relationship between extreme expectiles and their quantile counterparts, as well as
of the extrapolation formula motivated by the heavy-tailed context. We accurately quantify and
estimate the bias incurred by the use of these relationships when constructing extreme expectile
estimators. This motivates the introduction of a class of bias-reduced estimators whose asymptotic
properties are rigorously shown, and whose finite-sample properties are assessed on a simulation
study and three samples of real data from economics, insurance and finance.

Keywords: Asymmetric least squares, Bias reduction, Expectiles, Extremes, Extrapolation,
Heavy tails, Second-order parameter.

1 Introduction

The αth expectile ξα of an integrable random variable Y is defined as

ξα = arg min
θ∈R

E(ηα(Y − θ)− ηα(Y )), (1)

where ηα(u) = |α − 1{u ≤ 0}|u2 is the so-called expectile check function and 1{·} the indicator
function. Expectiles are L2−analogues of quantiles, which are obtained by minimising asymmetrically
weighted mean absolute deviations (Koenker and Bassett, 1978):

qα ∈ arg min
q∈R

E(ρα(Y − q)− ρα(Y )),

where ρα(u) = |α − 1{u ≤ 0}||u| is the quantile check function. Expectiles, originally introduced
by Newey and Powell (1987) in the context of testing for homoscedasticity and conditional symmetry
of the error distribution in linear regression, are always uniquely defined by their convex optimisa-
tion problem (unlike quantiles, for which uniqueness is only guaranteed if the underlying distribution
function is strictly increasing). They satisfy

α = E[|Y − ξα|1{Y ≤ ξα}]/E|Y − ξα|. (2)

In particular, contrary to quantiles, expectiles are determined by tail expectations rather than tail prob-
abilities. Expectiles induce risk measures which have recently gained substantial traction in the risk
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management context, for several axiomatic and practical reasons, including the fact that they induce
the only risk measure, apart from the simple expectation, defining a law-invariant, coherent (Artzner
et al., 1999) and elicitable (Gneiting, 2011) risk measure, see Bellini et al. (2014) and Ziegel (2016). As
such, a natural backtesting methodology exists for expectiles. Quantiles are indeed elicitable, but not
coherent in general, and are often criticised for missing out on relevant information about distribution
tails because their calculation only depends on the frequency of tail events. The Expected Shortfall,
meanwhile, takes into account the actual values of the risk variable on the tail event and is a coherent
risk measure, but is not elicitable. In financial applications specifically, expectiles are linked through
Formula (2) to the notion of gain-loss ratio, which is well-known in the literature on no good deal
valuation in incomplete markets and is a popular performance measure in portfolio management (see
Bellini and Di Bernardino, 2017, and references therein). Further axiomatic, theoretical and practical
justification for the use of expectiles alongside or instead of the quantile and Expected Shortfall can
be found in, among others, Ehm et al. (2016) and Bellini and Di Bernardino (2017).

Expectile estimation was first considered in Newey and Powell (1987) in the context of linear regression,
and has been developing since then; recent contributions include Sobotka and Kneib (2012) as well
as Holzmann and Klar (2016) and Krätschmer and Zähle (2017) for the estimation of central, non-tail
expectiles of fixed order α. By contrast, probabilistic aspects of extreme expectiles, with α ↑ 1, were
first considered by Bellini et al. (2014) and later Bellini and Di Bernardino (2017). The estimation of
extreme expectiles has been considered even more recently in Daouia et al. (2018, 2019, 2020), where
it is shown that extreme expectiles can be estimated in several ways. The construction of each of
the estimators uses a combination of the heavy-tailed distributional assumption (representing the tail
structure of many financial and actuarial data examples fairly well, see e.g. p.9 of Embrechts et al.
(1997) and p.1 of Resnick (2007)) and a remarkable asymptotic proportionality relationship linking
extreme expectiles to their quantile counterparts. An inspection of the finite-sample results of Daouia
et al. (2018, 2020) reveals that these estimators suffer from substantial finite-sample bias, even though
this is not clear from the asymptotic normality results presented therein. This is of course an issue
if expectiles are to be used widely in the management of extreme risk. Partial answers to this bias
problem are presented in Girard et al. (2020a) and Girard et al. (2020b) in a regression setup; however,
the arguments therein rely on either a simplified setting where one of the leading bias terms can be
shown to vanish, or on a crude asymptotic expansion of the bias term where only the part of the
bias that is in some sense easiest to correct in the conditional setup is removed. To be more specific,
the method of Girard et al. (2020b) is designed to eliminate the source of bias due to the amount of
tail heaviness (which has an important influence in the asymptotic proportionality relationship), but
cannot handle the bias purely due to the second-order framework. It will therefore perform poorly
when this particular source of bias dominates, that is, when the underlying heavy-tailed distribution
is far from the standard Pareto distribution on which the extrapolation procedure is based.

The contribution of this paper is to provide a wide class of automatic, data-driven, second-order fully
bias-reduced versions of the extreme expectile estimators currently available in the literature. This
is done in three steps. First, we briefly recall the construction of extreme expectile estimators at a
level β = βn → 1 such that n → ∞, where n denotes sample size. This construction is based on the
extrapolation of purely empirical expectile estimators at a much lower, intermediate level αn → 1,
with the help of an appropriate tail index estimator, and we highlight how bias may appear from three
sources: from tail index estimation, from intermediate expectile estimation and from the extrapolation
procedure itself through a specific bias term that is common to all extreme expectile estimators con-
structed in this way. Second, in the Hall-Welsh subclass of heavy-tailed models (Hall and Welsh, 1985)
which contains most of the heavy-tailed distributions typically encountered in extreme value analysis,
we provide estimators of this common bias term that we then use to define a first improved version
of the class of extrapolated extreme expectile estimators, fully corrected for extrapolation bias. Third
and last, we discuss the use of bias-reduced estimators of the tail index and intermediate expectile,
as a way to complete the elimination of the bias of our extrapolated estimators. Regarding tail index
estimation, we compare the use of an existing bias-reduced version of the Hill estimator constructed
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in Caeiro et al. (2005) with that of a novel bias-reduced modification of an expectile-based estimator,
the biased version having been studied in Girard et al. (2020b) and Padoan and Stupfler (2020). As
we shall see in our simulation study, the expectile-based tail index estimator allows us to gain accuracy
mostly in those difficult situations where the so-called second-order parameter is close to 0, that is,
when the underlying heavy-tailed distribution is far from the standard Pareto distribution on which
the extrapolation procedure is based. In this sense, we make substantial further gains compared to
the partial bias-correction procedure discussed in Girard et al. (2020b) that cannot handle this case.
The combination of these second and third steps results in a fully bias-reduced class of extrapolated
extreme expectile estimators in our heavy-tailed setting. To make these estimators completely auto-
matic, we introduce a selection rule of the Asymptotic Mean Squared Error-optimal value of the tuning
parameter αn representing the upper sample fraction used in our tail index and expectile estimators as
well as in the extrapolation bias correction term. This results in estimators whose finite-sample perfor-
mance is far superior to that of previously considered estimators in the extreme expectile estimation
literature, as we shall illustrate in our simulation study.

The paper is organised in the following way. Section 2 gives details on our estimation framework
and briefly reviews currently available extreme expectile estimators. Section 3 contains the main
contributions of the paper on the bias-reduced estimation of extreme expectiles; all our methods and
samples of real data are incorporated into the R package Expectrem, currently available at https:

//github.com/AntoineUC/Expectrem, and Section 3.5 explains in detail what this package contains
and how to call our methods. Section 4 showcases the performance of our estimators on a simulation
study. We finally illustrate the practical applicability of our procedures on real samples of economic,
actuarial and financial data in Section 5. More details about the implementation of our methods,
mathematical proofs and a complete set of numerical results from our simulation study are relegated
to the Appendix.

2 State of the art on extreme expectile estimation

We start by describing the existing techniques in extreme expectile estimation. Suppose throughout
that the available data (Y1, . . . , Yn) is made of independent realisations of the random variable Y with
cumulative distribution function F (resp. survival function F = 1−F ). It is assumed that E|Y | <∞,
so that expectiles of Y of any order exist indeed. Our goal is to estimate an extreme expectile of Y ,
i.e. whose order tends to 1 as n→∞.

Intermediate level We start by the case of a so-called intermediate level αn → 1, namely such that
n(1− αn)→∞ as n→∞. Intermediate levels tend to infinity slowly enough that expectiles are well
within the sample and can thus be estimated by purely empirical methods. It was observed by Jones
(1994) that the αnth expectile is actually the quantile of level αn associated with the distribution
function E defined by

E(y) = 1− E(y) =
E[(Y − y)1{Y >y}]

E|Y − y|
.

Recall that the quantile at level αn of the distribution function F is defined as qαn = inf{y ∈ R |F (y) ≥
αn} = inf{y ∈ R |F (y) ≤ 1 − αn}. Intermediate quantiles of F may then be estimated by inverting
the empirical conditional survival function induced by the observations:

q̂αn = inf
{
y ∈ R | F̂n(y) ≤ 1− αn

}
= Yn−bn(1−αn)c,n with F̂n(y) =

1

n

n∑
i=1

1{Yi>y}.

Here Y1,n ≤ Y2,n ≤ · · · ≤ Yn,n are the order statistics associated with (Y1, . . . , Yn). We apply the same
principle to the estimation of the intermediate expectile: replacing population averaging with sample
averaging in the definition of the distribution function E results in the estimator

ξ̂αn = inf
{
y ∈ R | Ên(y) ≤ 1− αn

}
with Ên(y) =

∑n
i=1(Yi − y)1{Yi>y}∑n

i=1 |Yi − y|
.
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This estimator is an unconditional version of the intermediate conditional expectile estimator intro-
duced in Girard et al. (2020b). A straightforward calculation shows that this estimator is exactly the
Least Asymmetrically Weighted Squares (LAWS) estimator studied in Daouia et al. (2018), that is, the
unique solution of the empirical counterpart of the minimisation problem (1):

ξ̂αn = arg min
θ∈R

n∑
i=1

ηαn(Yi − θ). (3)

An alternative estimator can be found, in the heavy-tailed class of distributions we shall focus on
hereafter. Recall that the distribution of Y is heavy-tailed if and only if there exists γ > 0 such that

∀y > 0, lim
t→∞

F (ty)

F (t)
= y−1/γ or equivalently lim

t→∞

q1−(ty)−1

q1−t−1

= yγ .

The tail index γ tunes the tail heaviness of the distribution of Y : if γ > a then E(Y 1/a1{Y >0}) =
∞ (a precise statement is Exercise 1.16 p.35 in de Haan and Ferreira, 2006). Our minimal working
assumption throughout will therefore be that γ < 1 and E(Y−) <∞, where Y− = max(−Y, 0). In this
case, we have the following asymptotic proportionality relationship between expectile and quantile:

lim
α↑1

ξα
qα

= (γ−1 − 1)−γ . (4)

This was first noted by Bellini et al. (2014). This connection suggests the class of indirect estimators

ξαn = (γ−1 − 1)−γ q̂αn = (γ−1 − 1)−γYn−bn(1−αn)c,n (5)

where γ is a consistent estimator of γ.

Extreme level The problem of most relevance in extreme value analysis is to consider the case
of a level βn → 1 such that n(1 − βn) → c < ∞ as n → ∞. In this situation, purely empirical
methods are no longer consistent, and one has to use information about the tail of the data in order
to construct an extrapolation procedure. In the context of expectile estimation, this is made possible
by the heavy-tailed assumption and convergence (4): these entail

ξβn
ξαn
≈ qβn
qαn
≈
(

1− βn
1− αn

)−γ
as n→∞.

We call this approximation the Weissman approximation, after the work of Weissman (1978) on ex-
treme quantile estimation. This justifies introducing the class of semiparametric extrapolating estima-
tors

ξ
?

βn =

(
1− βn
1− αn

)−γ
ξαn (6)

where ξαn is any consistent estimator of ξαn . One immediately deduces from (6) two specific estimators,

replacing ξαn by the LAWS estimator of ξαn or its indirect counterpart; in the latter, the estimator of
γ can be chosen different from the estimator featured in the above extrapolation procedure, although
we shall not pursue this here for the sake of simplicity. One may also construct a weighted combination
of the LAWS-based and indirect estimators, as done in Daouia et al. (2021), although the finite-sample
benefit of doing so can be marginal.

The LAWS-based and indirect estimators unfortunately suffer from a sizeable amount of finite-sample
bias. This is clear from, among others, Figures 3 and 4 in Daouia et al. (2018), where it can be seen
that even for the sample size n = 1,000, and for certain distributions of interest in extreme value
modelling, these estimators have a relative bias of the order of 50%. This means that the estimator
is on average 50% larger than the target extreme expectile. The contributions of this paper, which
we gather in the next section, are a precise quantification of this bias using a standard second-order
refinement of the heavy-tailed condition, and the introduction of automatic bias reduction procedures
whose finite-sample performance will be examined in detail in Sections 4 and 5.
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3 Automatic bias reduction methodology for extreme expec-
tile estimation

3.1 Rationale for our bias correction methods

The construction of the class of extrapolated estimators in (6) relies on the successive use of Equa-
tion (4), in order to approximate a ratio of high expectiles by a ratio of high quantiles at corresponding
levels, and an approximation of this ratio of high quantiles that is warranted by the heavy-tailed as-
sumption. The magnitude of the bias of the extrapolated estimators will therefore be crucially driven
by the rates of convergence and the error terms in these two approximations. A classical device in
extreme value analysis for bias quantification is the following second-order regular variation condition
that refines our initial heavy-tailed assumption.

C2(γ, ρ,A) The survival function F is second-order regularly varying with index −1/γ < 0, second-
order parameter ρ ≤ 0 and a measurable auxiliary function A having constant sign and converging to
0 at infinity, i.e.

∀y > 0, lim
t→∞

1

A(1/F (t))

(
F (ty)

F (t)
− y−1/γ

)
= y−1/γ

yρ/γ − 1

γρ
.

Here and throughout the ratio (ya − 1)/a should be read as log y when a = 0.

An equivalent condition on the tail quantile function t 7→ q1−t−1 is that

∀y > 0, lim
t→∞

1

A(t)

[
q1−(ty)−1

q1−t−1

− yγ
]

= yγ
yρ − 1

ρ
.

See de Haan and Ferreira (2006, Theorem 2.3.9). Numerous examples of commonly used distributions
that satisfy this assumption can be found in Beirlant et al. (2004).

The fundamental argument behind our methodology is that any estimator of the form

ξ
?

βn =

(
1− βn
1− αn

)−γ
ξαn ,

where ξαn is a consistent estimator of ξαn , satisfies

log

(
ξ
?

βn

ξβn

)
= (γ − γ) log

(
1− αn
1− βn

)
+ log

(
ξαn
ξαn

)
− log

([
1− βn
1− αn

]γ
ξβn
ξαn

)
. (7)

Under condition C2(γ, ρ,A) and standard technical assumptions on αn and βn, γ and ξαn have the

same rate of convergence 1/
√
n(1− αn), which is also the rate of convergence of the third (pure bias)

term, see e.g. Theorem 5 in Daouia et al. (2020) and its proof. Since log[(1− αn)/(1− βn)]→∞, the
first term dominates, leading to the common asymptotic distribution obtained independently of the

anchor intermediate estimator ξαn : if
√
n(1− αn)(γ − γ)

d−→ Γ, then√
n(1− αn)

log[(1− αn)/(1− βn)]
log

(
ξ
?

βn

ξβn

)
d−→ Γ. (8)

A naive bias-correction strategy would thus focus on the bias incurred in the estimation of γ, identifiable
through the asymptotic distribution Γ. However, Equation (7) reveals that there are two other potential
sources of bias, which are the estimation of the anchor intermediate expectile ξαn (appearing in the
second term) and the use of the Weissman approximation itself (to control the third term). Our
contribution hereafter is to design fully bias-reduced extreme expectile estimators by eliminating all
of these sources of bias.
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To simplify the exposition, we assume from now on that kn = n(1 − αn) is a sequence of positive
integers, and we rewrite the assumptions αn → 1 and n(1 − αn) → ∞ as kn → ∞ and kn/n → 0.
This choice is motivated by the fact that in quantile estimation, this quantity kn denotes the effective
sample size, i.e. the number of top order statistics eventually used for the estimation. Adopting this
convention will make it easier to state and compare our results with existing results in the extreme
value analysis of heavy tails. This is not a restriction in practice: our estimators of properly extreme
expectiles, having order βn → 1 such that n(1 − βn) → c < ∞, are built on intermediate expectile
estimators whose level αn we are free to choose, and those levels such that kn = n(1−αn) is an integer
constitute a sufficient set of levels to work with.

3.2 Construction of bias-reduced extreme expectile estimators

We construct bias-reduced versions of extrapolated estimators of the form ξ
?

βn in three steps. Our
methods will feature estimators of the second-order parameter ρ, but also estimators of the auxiliary
function A. Estimating this function without any further assumption can be a difficult task; however,
for most of the distributions satisfying condition C2(γ, ρ,A) used for modelling purposes, the function
A takes the form A(t) = bγtρ, for a certain nonzero constant b and ρ < 0. We assume in what follows
that the function A is indeed of this form, which amounts to assuming that the underlying distribution
belongs to the Hall-Welsh class in the sense of Gomes and Pestana (2007). We give a list of examples
of classical heavy-tailed distributions in Table 1, containing among others the distributions we shall
work with in our simulation study, with their respective values of γ, ρ and b.

The function A can then be estimated using consistent estimators γ, b and ρ of γ, b and ρ, respectively.
We assume in the current Section 3.2 that such estimators are given; we shall explain in detail in
Section 3.2.2 which estimators γ we consider, while the estimators b and ρ are calculated directly from
the R package mop (see Appendix A for a brief summary of how these estimators are constructed). We
start by dealing with the source of bias common to all estimators in this class, which is the bias due
to the extrapolation procedure itself, contained in the third term of Equation (7).

3.2.1 Bias due to the extrapolation procedure

To understand the nonrandom bias term in Equation (7), we write[
n(1− βn)

kn

]γ
ξβn

ξ1−kn/n
=

[
n(1− βn)

kn

]γ
qβn

q1−kn/n︸ ︷︷ ︸
1 +B1,n

×
(
γ−1 − 1

)−γ q1−kn/n
ξ1−kn/n︸ ︷︷ ︸

1 +B2,n

×
(
γ−1 − 1

)γ ξβn
qβn︸ ︷︷ ︸

1 +B3,n

. (9)

By Theorem 2.3.9 in de Haan and Ferreira (2006), the bias term B1,n can be written as

B1,n =
[n(1− βn)/kn]−ρ − 1

ρ
A(n/kn)(1 + o(1)).

We now focus on the other two bias terms B2,n and B3,n linking an expectile to its quantile counterpart,
at intermediate and extreme levels. It follows from the proof of Proposition 1 in Daouia et al. (2018)
that

F (ξα)

1− α
=
(
γ−1 − 1

)
(1 + r(α)) (10)

with 1 + r(α) =

(
1− E[Y ]

ξα

)
1

2α− 1

(
1 +A

(
1

F (ξα)

)
1

γ(1− γ − ρ)
(1 + o(1))

)−1
as α ↑ 1.

Using Lemma 1 in Daouia et al. (2020) together with the heavy-tailed assumption then entails

ξα
qα

=
(
γ−1 − 1

)−γ
(1 + r(α))−γ

(
1 +

(
γ−1 − 1

)−ρ
(1 + r(α))−ρ − 1

ρ
A((1− α)−1)(1 + o(1))

)
(11)

6



as α→ 1. With α = 1− kn/n and α = βn, this yields

B2,n = (1 + r(1− kn/n))γ

(
1 +

(
γ−1 − 1

)−ρ
(1 + r(1− kn/n))−ρ − 1

ρ
A(n/kn)(1 + o(1))

)−1
− 1

and B3,n = (1 + r(βn))−γ

(
1 +

(
γ−1 − 1

)−ρ
(1 + r(βn))−ρ − 1

ρ
A((1− βn)−1)(1 + o(1))

)
− 1.

Each of these bias terms can be estimated. Recall our assumption that A(t) = bγtρ, and use consistent
estimators γ of γ, ρ of ρ and b of b to estimate B1,n by

B1,n =
[n(1− βn)/kn]−ρ − 1

ρ
bγ(n/kn)ρ.

Details on the estimation of γ are provided in the next section; recall that the estimation of ρ and
b is done directly from the R package mop (see Appendix A for an account of how these estimators
are constructed). Let further Y n denote the sample mean of Y1, . . . , Yn, ξ1−kn/n be either the LAWS

or indirect intermediate expectile estimator, and ξ
?

βn be the related extrapolated estimator (in our

current implementation we use the LAWS estimator for ξ1−kn/n and its extrapolated version for ξ
?

βn).
The remainder terms r(1− kn/n) and r(βn) are estimated by

r(1− kn/n) =

(
1− Y n

ξ1−kn/n

)
1

1− 2kn/n

1 +
b[F̂n(ξ1−kn/n)]−ρ

1− γ − ρ

−1 − 1

and r?(βn) =

(
1− Y n

ξ
?

βn

)
1

2βn − 1

(
1 +

b
(
γ−1 − 1

)−ρ
1− γ − ρ

(1− βn)−ρ

)−1
− 1.

This yields estimators of B2,n and B3,n as

B2,n = (1 + r(1− kn/n))γ

(
1 +

(
γ−1 − 1

)−ρ
(1 + r(1− kn/n))−ρ − 1

ρ
bγ(n/kn)ρ

)−1
− 1

and B3,n = (1 + r?(βn))−γ

(
1 +

(
γ−1 − 1

)−ρ
(1 + r?(βn))−ρ − 1

ρ
bγ(1− βn)−ρ

)
− 1.

We deduce from (7) that a version of any estimator ξ
?

βn of the form (6), corrected for the bias exclusively
due to the heavy-tailed extrapolation, is

ξ
?,RB

βn = ξ
?

βn(1 +B1,n)(1 +B2,n)(1 +B3,n)

=

[(
n(1− βn)

kn

)−γ
ξ1−kn/n

]
(1 +B1,n)(1 +B2,n)(1 +B3,n). (12)

Let us highlight again that this correction is common to all estimators of the form (6). The methodology
introduced here differs from the earlier bias reduction techniques introduced in Girard et al. (2020a)
and Girard et al. (2020b) in a regression setup. In Girard et al. (2020a), the bias term proportional to
1/ξ1−kn/n is not corrected because the theory therein focuses on a random variable with expectation
0; in Girard et al. (2020b), the bias term proportional to A(n/kn) is not corrected because it is very
difficult to correct accurately this source of bias in the conditional, nonparametric setup on which that
paper focuses. In addition, the correction terms in the aforementioned papers rely on linearising the
bias terms, whereas we keep the structure of the bias as intact as possible. This makes our correction

7



term B2,n more accurate indeed than in these earlier attempts. The inclusion of term B3,n is also
new; while it could be expected that this term only has a small influence because it relies on quantities
calculated at a higher asymptotic order, it is our experience that its inclusion substantially improves
finite-sample performance.

We now concentrate on reducing the bias due to either the estimation of γ or that of ξ1−kn/n. Combined
with the general correction in (12), this will result in a fully bias-corrected extrapolated estimator.

3.2.2 Bias reduction for tail index estimation: an expectile-based method

Compared to the elimination of bias coming from the extrapolation methodology, a bias-reduction
procedure for the estimation of the tail index γ will of course depend on the particular form of the tail
index estimator that is used. Numerous tail index estimators have been introduced and studied in the
literature; a review of some of the most important estimators is given in de Haan and Ferreira (2006,
Chapter 3). There are various techniques for the reduction of bias of such estimators, an excellent
summary being given in the Introduction of Cai et al. (2013). Here our contribution is to propose
a bias-reduced version of a purely expectile-based tail index estimator, our procedure being partly
inspired by a method developed in, among others, Caeiro et al. (2005). To make the construction of
this estimator easier, we start by briefly recalling how the technique of Caeiro et al. (2005) works.
Consider the classical Hill estimator (Hill, 1975):

γ̂Hkn =
1

kn

kn∑
i=1

log
Yn−i+1,n

Yn−kn,n
.

It is known that under C2(γ, ρ,A), if moreover
√
knA(n/kn) → λ ∈ R, then (see Theorem 3.2.5 in

de Haan and Ferreira, 2006) √
kn(γ̂Hkn − γ)

d−→ N
(

λ

1− ρ
, γ2
)
.

In finite samples λ ≈
√
knA(n/kn) =

√
knbγ(n/kn)ρ, meaning that the pseudo-estimator

γ̂Hkn

(
1− b

1− ρ

(
n

kn

)ρ)
should be asymptotically unbiased with the same variance as the Hill estimator. Caeiro et al. (2005)
then plug in consistent estimators b of b and ρ of ρ and arrive at the bias-reduced Hill estimator

γ̂H,RB
kn

= γ̂Hkn

(
1− b

1− ρ

(
n

kn

)ρ)
.

Theorem 3.1 of Caeiro et al. (2005) shows that γ̂H,RB
kn

is indeed
√
kn−asymptotically Gaussian with

expectation zero and variance γ2. The construction of this estimator essentially hinges on eliminating
the bias by multiplying the original estimator by a quantity cancelling this bias.

We adapt here this construction to propose a bias-reduction procedure for the estimator

γ̂Ekn =

1 +
nF̂n(ξ̂1−kn/n)

kn

−1 .
The rationale behind this estimator, studied in different contexts by Girard et al. (2020b) and Padoan
and Stupfler (2020), is that, from (10),

γ =

(
1 +

F (ξα)

1− α
1

1 + r(α)

)−1
≈
(

1 +
F (ξα)

1− α

)−1
as α ↑ 1.
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To find a bias-reduced version of this asymptotic proportionality tail index estimator γ̂Ekn , we follow the
above idea and use the sample counterpart r(1 − kn/n) of r(1 − kn/n) defined in Section 3.2.1: this
yields a bias-reduced asymptotic proportionality tail index estimator as

γ̂E,RB
kn

=

1 +
nF̂n(ξ̂1−kn/n)

kn

1

1 + r(1− kn/n)

−1 .
In our current implementation we take ξ1−kn/n = ξ̂1−kn/n and γ = γ̂H,RB

kn
for the calculation of this

bias-reduced version.

Our first main theoretical result gives the asymptotic normality and unbiasedness of γ̂E,RB
kn

.

Theorem 1. Suppose that E|Y−|2+δ <∞ for some δ > 0. Assume further that C2(γ, ρ,A) holds with
0 < γ < 1/2, ρ < 0 and A(t) = bγtρ, and let kn be a sequence such that kn → ∞ and kn/n → 0
as n → ∞. If

√
knA(n/kn) → λ1 ∈ R,

√
kn/q(1 − kn/n) → λ2 ∈ R, and γ, ρ and b are consistent

estimators of γ, ρ and b such that (ρ− ρ) log(n) = oP(1), then

√
kn(γ̂E,RB

kn
− γ)

d−→ N
(

0,
γ3(1− γ)

1− 2γ

)
.

We provide a comparison of the two tail index estimators in terms of variance in Figure 1. The
asymptotic variance of γ̂E,RB

kn
is substantially smaller than that of γ̂H,RB

kn
when γ is less than 0.35.

The variance of γ̂E,RB
kn

explodes, however, as γ ↑ 1/2, which is to be expected since the estimators γ̂Ekn
and γ̂E,RB

kn
are based on the intermediate LAWS estimator ξ̂1−kn/n, itself known to be asymptotically

normal only when γ < 1/2 (see Daouia et al., 2018). In our implementation, one can choose either

γ = γ̂H,RB
kn

or γ = γ̂E,RB
kn

.

3.2.3 Bias due to the estimation of the intermediate expectile

If one takes the anchor estimator ξ1−kn/n in (6) as being the LAWS estimator ξ̂1−kn/n in (3), then
nothing has to be done because this estimator is asymptotically unbiased; on the contrary, the indirect
estimator given in (5) is asymptotically biased, see Theorems 1 and 2 in Daouia et al. (2018). We
explore here the implications of a bias reduction of the indirect estimator on the construction of its
extrapolated version. To do so we note that any estimator of the form (5), at the level α = αn =
1− kn/n, satisfies

log

(
ξ1−kn/n

ξ1−kn/n

)
= log

(
(γ−1 − 1)−γ

(γ−1 − 1)−γ

)
+ log

(
Yn−kn,n
q1−kn/n

)
+ log

(
(γ−1 − 1)−γ

q1−kn/n

ξ1−kn/n

)
.

With the notation of (9), the last term is precisely log(1+B2,n). Plugging this expression in (6) results
in

log

(
ξ
?

βn

ξβn

)
= (γ − γ) log

(
kn

n(1− βn)

)
+ log

(
(γ−1 − 1)−γ

(γ−1 − 1)−γ

)
+ log

(
Yn−kn,n
q1−kn/n

)
− log((1 +B1,n)(1 +B3,n)).

The first and second term will not contribute to bias if γ is asymptotically unbiased, which is for
instance the case if γ is chosen to be one of the estimators of γ we discussed in Section 3.2.2. Besides,
the third term is asymptotically Gaussian with expectation 0 (see e.g. Theorem 2.4.8 p.52 in de Haan
and Ferreira, 2006). When using the indirect estimator, it is therefore enough to estimate the bias
terms B1,n and B3,n, using the method of Section 3.2.1.
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3.2.4 Two classes of bias-reduced extreme expectile estimators

We combine here our arguments developed in Sections 3.2.1, 3.2.2 and 3.2.3 to construct our final,
fully bias-reduced estimators. The first class, which extrapolates the intermediate LAWS estimator, is
defined as

ξ̂?,RB
βn

=

[(
n(1− βn)

kn

)−γ
ξ̂1−kn/n

]
(1 +B1,n)(1 +B2,n)(1 +B3,n)

where γ is any bias-reduced estimator of the tail index γ, and B1,n, B2,n and B3,n are defined in
Section 3.2.1. The second class, based on extrapolating the indirect estimator, is

ξ̃?,RB
βn

=

[(
n(1− βn)

kn

)−γ
× (γ−1 − 1)−γYn−kn,n

]
(1 +B1,n)(1 +B3,n)

where again γ is any bias-reduced estimator of the tail index γ. It should be noted that this second class
of estimators has a nice interpretation in terms of a bias-reduced version for the Weissman extreme
quantile estimator (Weissman, 1978; Gomes and Pestana, 2007): this estimator is, with our notation,

q̃?,RB
βn

=

[(
n(1− βn)

kn

)−γ
Yn−kn,n

]
(1 +B1,n).

It follows that an equivalent expression for ξ̃?,RB
βn

is

ξ̃?,RB
βn

=
[
(γ−1 − 1)−γ q̃?,RB

βn

]
(1 +B3,n).

In other words, this estimator is obtained by using the asymptotic proportionality relationship (4) at
level α = βn, plugging in bias-reduced estimators of the tail index and extreme quantile involved, and
finally correcting directly for the bias incurred using this proportionality relationship at the level βn
only.

3.3 Asymptotic properties

We briefly explore the asymptotic properties of our bias-reduced estimators ξ̂?,RB
βn

and ξ̃?,RB
βn

. It was
highlighted in Section 3.1 (see (8)) that extrapolated expectile estimators have a limiting distribution
controlled by their tail index estimator. This is also true for their bias-reduced versions, as the following
result shows.

Theorem 2. Assume that C2(γ, ρ,A) holds with ρ < 0 and A(t) = bγtρ, and let kn, βn be two

sequences such that kn → ∞, kn/n → 0, n(1 − βn)/kn → 0 and k
−1/2
n log(kn/[n(1 − βn)]) → 0 as

n→∞. Assume further that
√
knA(n/kn)→ λ1 ∈ R,

√
kn/q(1− kn/n)→ λ2 ∈ R,

√
kn(γ − γ)

d−→ Γ
where Γ is a nondegenerate distribution, and ρ and b are consistent estimators of ρ and b such that
(ρ− ρ) log(n) = oP(1).

(i) If E|Y−| <∞ and 0 < γ < 1, then

√
kn

log(kn/[n(1− βn)])

(
ξ̃?,RB
βn

ξβn
− 1

)
d−→ Γ.

(ii) If moreover E|Y−|2 <∞ and 0 < γ < 1/2, then

√
kn

log(kn/[n(1− βn)])

(
ξ̂?,RB
βn

ξβn
− 1

)
d−→ Γ.

It follows from Theorem 2 that the bias-reduced extrapolated expectile estimators similar asymp-
totic properties as their standard counterparts. We shall illustrate in Section 4, however, that the
bias-reduced versions generally have much better finite-sample properties. Before that, we explain
how to select the important tuning parameter kn appearing in the estimation of the tail index, inter-
mediate expectile level, and bias correction terms.
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3.4 Choice of the intermediate level kn

The choice of the sequence kn is a crucial point: basically, a low kn translates into a large variance,
and a high kn translates into a large bias. Choosing kn therefore leads to solving a trade-off between
the bias and variance of the tail index estimator to be used. In order to find the right balance, de Haan
and Ferreira (2006) proposed a choice of kn for the Hill estimator as a minimiser of an estimate of
the Asymptotic Mean Squared Error of this estimator. We propose to develop our own selection rule
for kn, to be used in conjunction with the expectile-based bias-reduced asymptotic proportionality
estimator γ̂E,RB

kn
, based on the ordinary asymptotic proportionality estimator γ̂Ekn also presented in

Section 3.2.2. For this estimator, it holds that√
kn

(
γ̂Ekn − γ −

γ(γ−1 − 1)1−ρ

1− γ − ρ
A(n/kn)− γ2(γ−1 − 1)γ+1E[Y ]

q(1− kn/n)

)
d−→ N

(
0,
γ3(1− γ)

1− 2γ

)
.

See Proposition 1 in Appendix B. Consequently, there are two sources of bias in the expectile-based
estimator γ̂Ekn : one proportional to A(n/kn), having order (n/kn)ρ, and another proportional to 1/q(1−
kn/n), having order (n/kn)−γ . The leading term of bias will thus depend on ρ and γ. The second source
of bias, proportional to 1/q(1− kn/n), can very accurately be eliminated; indeed, its expression only
features γ, E[Y ] and q(1− kn/n), for which we have good estimators that converge to the rate

√
kn or

more. By contrast, the first source of bias features second-order parameters from the distribution of Y ,
whose estimators converge slowly, and thus is more difficult to remove. In practice, this means that the
trade-off to be solved when using the expectile-based asymptotic proportionality tail index estimator
will essentially be between the bias due to the second-order quantity A(n/kn) and the variance of the
estimator. This gives us the idea of minimising the Partial Asymptotic Mean Squared Error

PAMSE(kn) =

[
γ(γ−1 − 1)1−ρ

1− γ − ρ
A(n/kn)

]2
+
γ3(1− γ)

1− 2γ
× 1

kn

∝ b2(γ−1 − 1)1−2ρ

(1− γ − ρ)2
×
(
n

kn

)2ρ

+
1

1− 2γ
× 1

kn
.

It is readily seen that this leads to the optimal value

kEn =

(
(γ−1 − 1)2ρ−1(1− γ − ρ)2

−2ρb2(1− 2γ)

)1/(1−2ρ)

n−2ρ/(1−2ρ).

This optimal value depends on the unknown γ, ρ and b; in practice we use the estimated value

k̂En = min

( (γ−1 − 1)2ρ−1(1− γ − ρ)2

−2ρb
2
(1− 2γ)

)1/(1−2ρ)

n−2ρ/(1−2ρ)

 , ⌊n
2

⌋
− 1

 . (13)

In Equation (13), the estimators ρ and b are the same as in Section 3.2, and γ is the bias-reduced Hill

estimator γ̂H,RB
kn

with the corresponding estimated AMSE-optimal choice of kn, that is

k̂Hn =

( (1− ρ)2

−2ρb
2

)1/(1−2ρ)

n−2ρ/(1−2ρ)

 .
The fact that we force our selected k̂En to be less than bn/2c is due to the presence of the multiplicative
term (1−2kn/n)−1 in our bias reduction methodology (featuring in r(1−kn/n)). Since n−2ρ/(1−2ρ) =
o(n) for any ρ < 0, this restriction disappears with arbitrarily high probability as n → ∞. We

recommend this choice k̂En when the expectile-based asymptotic proportionality estimator γ̂E,RB
kn

is
used.
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3.5 The Expectrem package

We have implemented our methods in an R package called Expectrem, freely downloadable at https:
//github.com/AntoineUC/Expectrem. The content of this package is the following:

• Basic functions for the estimation: Fbarhat returns the empirical estimator of the survival
function, and expect provides the empirical LAWS expectile estimator at a given level. Basic
population expectile calculations: enorm, et, elog, epareto, egpd and eburr respectively re-
turn the expectiles of the normal, Student, logistic, Pareto, Generalised Pareto (GP) and Burr
distributions.

• Tail index estimation: The estimator γ̂Ekn is implemented in the function tindexp with argument

br=FALSE (default). If br=TRUE, the bias-reduced estimator γ̂E,RB
kn

is returned. The other optional

argument is the intermediate level k, set at k = k̂En by default.

• Extreme expectile estimation: The direct and indirect extreme expectile estimators ξ̂?βn and ξ̃?βn
are computed in the function extExpect with arguments method="direct" and method="indirect"

respectively, and br=FALSE (default). If br=TRUE, the bias-reduced estimators ξ̂?,RB
βn

and ξ̃?,RB
βn

are returned instead. Argument estim="Hill" (default) calls the Hill estimator (function mop in
the package evt0), and estim="tindexp" calls tindexp; setting br=TRUE calls the bias-reduced

versions of these estimators. The choice of kn is also an option through k, and by default kn = k̂Hn
(if estim="Hill") or kn = k̂En (if estim="tindexp").

• Extreme quantile estimation: The estimator q̃?βn is computed in the function extQuant with

argument br=FALSE (default). If br=TRUE, the bias-reduced estimator q̃?,RB
βn

is returned instead.
The other arguments are those of extExpect.

• Data sets: austria, belgium, commerzbank, finland, france, greece, italy, namibia, netherlands,
newzealand, secura and southafrica, as described in Section 5.

4 Simulation study

We study the finite-sample performance of our estimators on simulated data in order to assess the
importance of bias reduction in extreme expectile estimation. For that purpose and in order to get
a good overview of practical performance, we consider the following heavy-tailed distributions for Y
(see Table 1):

• A Burr distribution with tail index γ > 0 and second-order parameter ρ < 0, i.e. F (y) =
(1 + y−ρ/γ)1/ρ. The interesting point here is that the choices of γ and ρ are free, meaning that
for a fixed γ we can make the second-order parameter ρ vary in order to generate scenarios with
various degrees of difficulty in the estimation. We consider here ρ = −5,−1,−0.5, corresponding
respectively to an easy, medium, and hard estimation problem.

• A Generalised Pareto Distribution (GPD) with tail index γ > 0 and unit scale, i.e. F (y) =
(1 + γy)−1/γ . Here ρ = −γ. For γ close to 0, ρ will then also be close to 0, meaning that we
expect the estimation problem to be difficult when the data are generated from this distribution.

For each of these distributions (three Burr distributions and one GPD), we consider the cases γ =
0.1, 0.2, 0.3, 0.4. This gives 16 cases in total. In each case, we simulate N = 1,000 data sets Y1, . . . , Yn
of n = 1,000 independent realisations of Y , with survival distribution function F . We estimate the
expectile of level βn = 1− 5/n = 0.995 using five methodologies:

(i) The bias-reduced extrapolated LAWS estimator ξ̂?,RB
βn

with the expectile-based, bias-reduced tail

index estimator γ̂E,RB
kn

,
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(ii) The bias-reduced extrapolated indirect estimator ξ̃?,RB
βn

with the expectile-based, bias-reduced

tail index estimator γ̂E,RB
kn

,

(iii) The bias-reduced extrapolated LAWS estimator ξ̂?,RB
βn

with the bias-reduced Hill estimator γ̂H,RB
kn

,

(iv) The bias-reduced extrapolated indirect estimator ξ̃?,RB
βn

with the bias-reduced Hill estimator

γ̂H,RB
kn

,

(v) (As a benchmark) The extrapolated LAWS estimator ξ̂?βn (without bias reduction) with the

bias-reduced Hill estimator γ̂H,RB
kn

.

Comparing methods (i) and (iii) on the one hand, and (ii) and (iv) on the other hand, allows us to see
the influence of the choice of tail index estimator. Comparing (iii), (iv) and (v) makes it possible to
assess the benefit of the bias reduction method in the expectile extrapolation. To get a further idea
of the difference between using the bias-reduced tail index estimator γ̂E,RB

kn
introduced in the current

paper and the bias-reduced Hill estimator γ̂H,RB
kn

, we also record the values of γ̂E,RB
kn

and γ̂H,RB
kn

.

We assess finite-sample performance by computing the following quantities:

• The relative bias, variance and mean-squared error of the extrapolated expectile estimators. For
the bias-reduced extrapolated LAWS estimator ξ̂?,RB

βn
, that is

RBias(ξ̂?,RB
βn

) =
1

N

N∑
j=1

(
ξ̂
?,RB,(j)
βn

ξβn
− 1

)
and RMSE(ξ̂?,RB

βn
) =

1

N

N∑
j=1

(
ξ̂
?,RB,(j)
βn

ξβn
− 1

)2

(where ξ̂
?,RB,(j)
βn

is calculated on the jth sample) and RVar = RMSE − RBias2 is the relative

variance. Similarly for the indirect estimator ξ̃?,RB
βn

and the non-bias-reduced estimator ξ̂?βn .

• The (classical) bias, variance and mean-squared error of the estimators γ̂E,RB
kn

and γ̂H,RB
kn

.

All these quantities are calculated for kn chosen to be (in each sample) the selected value k̂En or k̂Hn
as appropriate, depending on whether the estimator γ̂E,RB

kn
or γ̂H,RB

kn
is used, and they are reported in

Tables 3, 4, 5 and 6 in the Appendix. We also record, and report, median expectile and tail index
estimates over kn ∈ {2, 3, . . . , 450} and the corresponding log-mean-squared errors in Figures 4, 5, 6, 7
and 8 in this same Appendix.

We conclude from this simulation study that, on our tested cases, the bias reduction scheme is very
effective: as a consequence, the RMSE of the bias-reduced estimates is often one and sometimes two
orders of magnitude lower than the RMSE of the standard extrapolated estimates. This is true across a
wide range of values of kn, as shown in Figures 4, 5 and 6, where it is seen that overall the bias-reduced
estimators based on γ̂E,RB

kn
seem to have an advantage in terms of bias, while those based on γ̂H,RB

kn
have a lower MSE overall. There does not seem to be a clear winner between (bias-reduced) direct
and indirect estimators. It also appears (from considering the case of the GPD distribution) that the

bias-reduced estimator γ̂E,RB
kn

is particularly interesting for values of ρ close to 0 both in terms of bias
and MSE, and is competitive otherwise; note that for large |ρ|, the Burr distribution gets very close to
the Pareto distribution for which the Hill estimator is the Maximum Likelihood estimator and known
to be optimal, so it is not reasonable to expect that the estimator γ̂E,RB

kn
would be more accurate than

the bias-reduced Hill estimator in such cases. The estimator γ̂E,RB
kn

appears to be a useful complement
to available tail index estimation devices.
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5 Applications on real data

We apply our methodology to three data sets, from insurance, economics, and finance, as a way to
illustrate the applicability of our expectile and tail index estimators.

5.1 Reinsurance premium estimation

Reinsurance is a very important way of mitigating risk associated with high-impact events such as
extreme climate episodes. Reinsurance contracts typically involve two insurance companies A and
B; by the terms of the contract, company A transfers to company B (totally or partially) the risk
associated to events involving large claims. Here we focus on the case when risk is totally transferred,
which is also called excess-of-loss reinsurance. Under such a policy, when a claim occurs, company A
pays the claim amount up to a certain amount R decided in the reinsurance contract, called retention
level, and company B underwrites all losses above that amount R. In other words, if the total claim
amount is Y , company A pays min(Y,R), and company B pays max(Y −R, 0).

A crucial task to decide the terms of a reinsurance contract is to accurately price this contract, which
leads to the calculation of the so-called reinsurance premium. A first, natural approach to do this is
to use the net premium principle (see e.g. Chapters 4 and 5 in Kaas et al. (2008)), namely

Π(R) = E[max(Y −R, 0)] =

∫ ∞
R

F (x)dx,

where F is the survival function of Y . However, paying company B this net average premium would
not protect that company B from a catastrophic loss much higher than its average value. A solution
to this problem developed in the actuarial literature over the last 25 years has been to consider more
conservative premium principles, including the distorted premiums introduced in Wang (1996):

Πg(R) =

∫ ∞
R

g(F (x))dx,

where g : [0, 1] → [0, 1] is a nondecreasing concave function such that g(0) = 0 and g(1) = 1, called
the distortion function. The choice g(x) = x leads to the net premium principle, but there are several
reasonable ways of choosing a function g leading to a more conservative (i.e. higher) premium, such as
the Dual Power function, or the Proportional Hazards function (we refer to, among others, the paper
of Wang (1995) and Chapter 3 of Dickson (2016)).

Since in reinsurance the retention level R should be considered as a high (and therefore rarely observed)
level of claim amount, the calculation of the reinsurance premium is very closely linked to the right tail
of the distribution of the claim amount Y . This motivated Vandewalle and Beirlant (2006) to develop
an extreme value theory-based method for the estimation of Πg(R) (a different, somewhat linked theory
for Wang distortion risk measures conditionally on the loss being high is provided in El Methni and
Stupfler (2017)). In particular, they proved that if Y is heavy-tailed with tail index γ and g(1/·) is
regularly varying with tail index δ < −γ, i.e. g(1/(ty))/g(1/t) → yδ as t → ∞, where δ < −γ < 0,
then the following limiting relationship holds between the distorted premium, the retention level and
the probability of exceeding that level:

lim
R→+∞

Πg(R)

Rg(F (R))
=

1

−δγ−1 − 1
.

An interesting version of that relationship is found when R = ξβ for β ↑ 1. In that case, using
Equation (10), we get

lim
β↑1

Πg(ξβ)

ξβ g(1− β)
=

(γ−1 − 1)−δ

−δγ−1 − 1
. (14)
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In the case of the net premium, g(x) = x, so δ = −1 and we find Πg(ξβ) = Π(ξβ) ∼ (1− β)ξβ ; in this
asymptotic equivalence, the tail index γ does not appear anymore, and the expectile is in some sense
an asymptotic inverse of the function R 7→ Π(R)/R that represents the proportion of the retention
level R paid on average per claim by company B (in other words, if Π(R)/R = π, then company B
contributes πR to the payment of the average claim).

Given this relevance of expectiles to premium calculation for large claims, we propose to estimate
the reinsurance premium Πg(R) (for a large retention level R) using Equation (14) and our bias-
reduced extreme expectile estimation methodology. For that purpose, we consider the well-known
Secura Belgian Re data used in Vandewalle and Beirlant (2006), available in our package Expectrem

as well as several other R packages such as ReIns, CASdatasets and ltmix. This data set contains
n = 370 inflation-adjusted automobile claim amounts (from 1988 to 2001), larger than e1,200,000. We
consider two premium principles: the net premium (g(x) = x) and Dual Power (g(x) = 1− (1− x)κ)
principles, and to allow us to compare our results with those of Vandewalle and Beirlant (2006), we
take κ = 1.366. This choice was already recommended in Wang (1996). We estimate the associated
premiums Πg(R) with the statistic

Π̂?
g(ξβ) =

(γ−1 − 1)−δ

−δγ−1 − 1
ξ̂?,RB
β g(1− β).

Here ξ̂?,RB
β denotes the bias-reduced LAWS extrapolated estimator calculated using either our bias-

reduced asymptotic proportionality tail index estimator γ̂E,RB
kn

or its bias-reduced Hill counterpart

γ̂H,RB
kn

, and γ is taken to be the same tail index estimator as the one used in the extrapolation. We

also compare this estimator with the one in which the bias-reduced estimator ξ
?,RB

β is replaced by the

standard, non-bias-reduced extrapolated LAWS estimator calculated with γ̂H,RB
kn

(and thus γ = γ̂H,RB
kn

everywhere). The estimated reinsurance premiums are represented in Figure 2 on a fine grid of values of
βn; this yields curves of estimates of Πg(R) in the tail region R→∞, that we compare to the premium
curve obtained by Vandewalle and Beirlant (2006). Indirect estimators are here almost identical to
their LAWS counterparts, and are not reported for the sake of readability.

We draw two conclusions from Figure 2. First, our bias-reduced expectile-based estimators constructed
from Formula (14) are at first quite conservative, but become very close to those of Vandewalle and
Beirlant (2006) when the retention level is large, confirming the accuracy of our (bias-reduced) extreme
expectile estimators. Interestingly, the point estimate based on our proposed tail index estimator
γ̂E,RB
kn

is slightly less conservative than the others for the largest values of R that we consider. While
policymakers and regulators would favour higher (i.e. more pessimistic) estimates such as those given
by Vandewalle and Beirlant (2006), more optimistic (i.e. lower) assessments of risk may be interesting
for insurance companies, because lower premiums paid by consumers imply improved competitivity on
insurance markets. Second, it is clearly seen that without the bias reduction scheme that we propose,
the expectile-based estimates seem to be very poor and a long way off the other estimates we consider.
This example therefore clearly emphasises the importance of the bias reduction methodology proposed
in this paper as far as expectile-based estimation is concerned.

5.2 Approximation of the Gini index

We now showcase how our methodology can be applied in economic data through the example of the
estimation of the Gini index. This economic indicator measures the statistical dispersion (and therefore
inequality) of income within a country: the Gini index of a country with n workers having respective
incomes Y1, . . . , Yn is given by

G =

∑n
i=1

∑n
j=1 |Yi − Yj |

2n
∑n
i=1 Yi

.

A higher Gini index means higher inequality of income within the sampled population. Of course,
in practice n is very large (of the order of millions, if not a billion) and income data is typically
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very sensitive, so to estimate the Gini index of a country using the above formula, it is generally the
case that a representative survey of incomes representing all the categories of workers is carried out.
Ensuring representativity in this context can be extremely difficult and time- and labour-intensive.
In particular, it is the case that substantial left-censoring or left-truncation can be present, as it is
reasonable to imagine that accurately sampling from the lowest-paid workers is hard, for example
because of job unstability, or labour market law violations from employers including minimum wage
underpayment or illegal employment of foreign workers. Accurately representing the left tail of the
income distribution, which is key if the above definition of the Gini index is to be used, can therefore be
a tall order. An alternative solution putting more weight on the right tail is to model the distribution
of income within a country by a heavy-tailed distribution (as done for example in the recent work by
Gardes and Girard (2020)). This kind of approach has a long history in labour economics, see for
instance Singh and Maddala (1976) and McDonald (1984). A particularly interesting model uses the
Burr distribution with parameters γ (the tail index) and ρ (the second-order parameter). It can then
be shown that the Gini index should be

G = G(γ, ρ) = 1− Γ(−1/ρ)Γ((γ − 2)/ρ)

Γ(−2/ρ)Γ((γ − 1)/ρ)
. (15)

Here Γ(·) is Euler’s Gamma function; see e.g. Chotikapanich and Griffiths (2000). This way of mod-
elling the Gini index has the advantage to use only the right tail of the distribution of income, and is
thus more robust to sampling inaccuracies in the left tail.

We propose here to estimate the Gini index for several countries using Formula (15) and the bias-
reduced tail index estimates, and to compare our results with official Gini indices calculated by the
CIA1, World Bank2 and Eurostat3. The countries and data considered are the following:

• The synthetic Eurostat4 data set of incomes for Austria (n = 5,977), Belgium (n = 6,159), France
(n = 11,131), Finland (n = 11,370), Greece (n = 7,439) and the Netherlands (n = 10,131).

• A data set of n = 8,156 Italian incomes for the year 2014, available from the Bank of Italy5.

• A survey of n = 9,656 wages in Namibia during the period 2009-2010, provided by the Namibia
Statistics Agency6.

• A synthetic data set of n = 11,315 incomes in New Zealand during the year 2003, collected by
the official Statistics New Zealand agency7.

• The Filipino Family Income and Expenditure data set8 of n = 41,544 incomes measured in the
Philippines in 2015 by the Philippine Statistics Authority.

• The Living Conditions Survey 2014-20159 in South Africa, containing n = 19,286 wages.

The Gini coefficient is estimated with

Ĝ
(
γ̂H,RB
kn

)
= G

(
γ̂H,RB
kn

, ρ
)

and Ĝ
(
γ̂E,RB
kn

)
= G

(
γ̂E,RB
kn

, ρ
)
,

1https://www.cia.gov/library/publications/the-world-factbook/rankorder/2172rank.html
2https://data.worldbank.org/indicator/SI.POV.GINI
3https://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&language=en&pcode=tessi190&plugin=1
4https://ec.europa.eu/eurostat/web/microdata/statistics-on-income-and-living-conditions
5https://www.bancaditalia.it/statistiche/tematiche/indagini-famiglie-imprese/bilanci-famiglie/

distribuzione-microdati/index.html?com.dotmarketing.htmlpage.language=1
6https://nsa.org.na/microdata1/index.php/catalog/6
7https://www.stats.govt.nz/services/customised-data-services/statistics-for-university-staff-and-students/

new-zealand-income-survey-super-surf
8https://www.kaggle.com/grosvenpaul/family-income-and-expenditure
9https://www.datafirst.uct.ac.za/dataportal/index.php/catalog/608
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where the parametric form G(γ, ρ) of the Gini index is defined in (15) and ρ is the second-order
parameter estimator we use throughout in our bias reduction scheme (see Appendix A). Our estimates
are reported in Table 2, where they are compared with official Gini indices calculated by the World
Bank, CIA and/or Eurostat as appropriate, as well as with their versions Ĝ

(
γ̂Hkn
)

and Ĝ
(
γ̂Ekn
)

that
do not feature any bias reduction. The first conclusion we can draw is that the bias reduction scheme
applied to the asymptotic proportionality tail index estimator is very effective: the non-bias-reduced
estimates are typically far from their bias-reduced counterparts as well as from official estimates,
and when the non-bias-reduced estimate is sensible (in the example of the Philippines and South
Africa), the bias-reduced estimate is not unreasonable either. The second conclusion is that the bias-

reduced estimates based on γ̂E,RB
kn

are competitive and sometimes even closer to the average Gini
index (computed using the average Gini indices from our official sources) than the estimate using the
bias-reduced Hill estimator. This shows that our bias-reduced asymptotic proportionality tail index
estimator is a valuable resource in practical applications.

5.3 An analysis of financial returns

Our final real data example focuses on financial returns. The fact that expectiles can, in financial
contexts, be interpreted in terms of the gain-loss ratio, makes them interesting in portfolio management.
Recently Bellini and Di Bernardino (2017) have shown the practical interest of estimating extreme
expectiles of series of financial log-returns series; in particular, they recommend the estimation of the
expectile of level β = 0.99855, following their observation that it coincides with the quantile of level
β′ = 0.99 in the standard Gaussian case. In this example, we consider the series of the daily negative
log-returns of the Commerzbank stock prices on the DAX30 stock exchange between March 6, 2012
and July 28, 2016, resulting in a sample Y1, . . . , Yn of size n = 1,048 plotted in the top left panel
of Figure 3. To reduce the serial dependence in the observations, we filter our time series using a
GARCH(1, 1) model:

Yt = σtεt, with σt > 0 such that σ2
t = σ2

t (Y 2
t−1, σ

2
t−1) = c + aY 2

t−1 + bσ2
t−1.

Here a, b, c > 0 are unknown coefficients, and (εt) is an unobserved independent nonconstant white
noise sequence, i.e. such that E(ε) = 0, E(ε2) = 1 and P(ε2 = 1) < 1. Under suitable conditions, this
model has a stationary, nonanticipative solution, see Theorem 2.4 p.30 of Francq and Zaköıan (2010);
this is in particular the case if a+b < 1. In this case the process σt is a function of Yt−1, Yt−2, . . . only.
By positive homogeneity of expectiles, the conditional expectile for the next day given our observations
up to time n is then

ξβ(Yn+1|Yt, t ≤ n) = σn+1 ξβ(ε).

We estimate here an extreme conditional expectile for tomorrow given our knowledge of today, that
is, the quantity ξβn(Yn+1|Yt, t ≤ n) with βn = β = 0.99855. We first estimate a, b, c by Gaussian
quasi-maximum likelihood (see Chapter 7 in Francq and Zaköıan (2010)) using the function garch in
the R package tseries. This gives residuals ε̂i from the model, which we treat as independent and
identically distributed copies of ε for the estimation of the tail index γ of ε, and ξβn(ε). Evidence that
ε is indeed heavy-tailed is gathered in the two bottom panels of Figure 3 using exponential QQ-plots
of the log-spacings (the somewhat erratic behaviour of the four points at the right end of the plot is
quite typical because the very top observations have a large variance; see Ghosh and Resnick (2010)
in the linked context of mean excess plots). Estimated tail indices of the residuals are the very similar

γ̂H,RB
kn

≈ 0.253 and γ̂E,RB
kn

≈ 0.270 (selected kn values are k̂Hn = 50 and k̂En = 30 respectively). The
garch routine also provides an estimate σ̂n of the conditional standard deviation on day n+1, produced
by manually inputting an initial value for the volatility on day 1 and iterating using the formula

σ̂2
t = σ̂2

t (Y 2
t−1, σ̂

2
t−1) = ĉ + âY 2

t−1 + b̂σ̂2
t−1, for t ≥ 2.

This eventually yields the conditional extreme expectile estimates

ξ̂?,RB
βn

(Yn+1|Yt, t ≤ n) = σ̂n+1 ξ̂
?,RB
βn

(ε) and ξ̃?,RB
βn

(Yn+1|Yt, t ≤ n) = σ̂n+1 ξ̃
?,RB
βn

(ε).
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We represent these estimates in the top right panel of Figure 3 as a function of the observation on
day n; in other words, we let Yn = yn vary in σ̂2

n+1(y2n, σ̂
2
n), as a way of evaluating the influence

of the nth observation on the dynamic extreme expectile prediction for the next day. Our esti-
mates ξ̂?,RB

βn
(Yn+1|Yt, t ≤ n) and ξ̃?,RB

βn
(Yn+1|Yt, t ≤ n) are calculated using either γ̂H,RB

kn
or γ̂E,RB

kn
,

and are compared to their counterpart using the standard, non-bias-reduced Weissman estimate
ξ̂?βn(Yn+1|Yt, t ≤ n) extrapolated with γ̂H,RB

kn
. They are also compared with dynamic bias-reduced

Weissman quantile estimates of level β′n = β′ = 0.99, calculated using either γ̂H,RB
kn

or γ̂E,RB
kn

:

q̃?,RB
β′n

(Yn+1|Yt, t ≤ n) = σ̂n+1 q̃
?,RB
β′n

(ε),

where the expression of q̃?,RB
β′n

(ε) (adapted here with the use of residuals) is given in Section 3.2.4.

The expectile estimates give similar results, thus suggesting that bias does not play an important role
in this example. Estimated expectiles are substantially larger than estimated quantiles; this justifies
further the non-Gaussian behaviour of the returns, and also means that a risk assessment based on
expectiles using the guidelines provided by Bellini and Di Bernardino (2017) in the Gaussian case
would be more conservative than if it were based on quantiles.
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Country Ĝ(γ̂H,RB
kn

) Ĝ(γ̂E,RB
kn

) World Bank CIA Eurostat Average Gini

Austria 28.4 (30) 28.1 (38.1) 30.8 (2013) 30.5 (2015) 27 (2013) 29.4

Belgium 26.2 (27.7) 27.5 (37.8) 27.7 (2013) 25.9 (2013) 25.9 (2013) 26.5

Finland 26.4 (27.5) 27.7 (37.5) 27.2 (2013) 27.2 (2016) 25.4 (2013) 26.6

France 36 (37.6) 35.3 (46.5) 32.5 (2013) 29.3 (2016) 30.1 (2013) 30.6

Greece 35.2 (37) 35.8 (45.9) 36.1 (2013) 36.7 (2012) 34.4 (2013) 35.7

Italy 31.8 (33.3) 32.1 (43.9) 34.7 (2014) 31.9 (2012) 32.8 (2013) 33.1

Namibia 60.6 (62.9) 59.9 (64.5) 61 (2009) 59.7 (2010) X 60.4

Netherlands 25.2 (26.4) 27.1 (37) 28.1 (2013) 30.3 (2015) 25.1 (2013) 27.8

New Zealand 35.6 (37) 34.2 (45.9) X 36.2 (1997) X 36.2

Philippines 38.7 (39.5) 38.4 (46.5) 44.4 (2015) 44.4 (2015) X 44.4

South Africa 58.6 (60.5) 60.1 (64.4) 63 (2014) 62.5 (2013) X 62.8

Table 2: Estimated Gini indices per country using the estimators Ĝ(γ̂H,RB
kn

) (reported along with

Ĝ(γ̂Hkn) between brackets) and Ĝ(γ̂E,RB
kn

) (reported along with Ĝ(γ̂Hkn) between brackets), and official
Gini indices (reported along with year of publication). The last column gives the average Gini index
calculated from official estimations. Figures highlighted in violet indicate the estimate closest to the
average Gini coefficient calculated using official figures.
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Figure 2: Secura Belgian Re insurance data, estimated distorted premium Πg(R) as function of the
retention level R = ξβ for β ranging from 1−10/n ≈ 0.973 to 1−1/(8n) ≈ 0.9997 (here n = 370). The

premiums are estimated using ξ̂?,RB
βn

and γ̂H,RB
kn

(solid blue curve), ξ̂?,RB
βn

and γ̂E,RB
kn

(solid red curve)

and ξ̂?βn and γ̂H,RB
kn

(dotted blue curve). The black curve is constructed by linear interpolation using
the estimates found in Vandewalle and Beirlant (2006). Left panel: net premium principle (g(x) = x).
Right panel: Dual Power principle (g(x) = 1− (1− x)κ) with κ = 1.366.

23



0 200 400 600 800 1000

−
0.

20
−

0.
10

0.
00

0.
10

Commerzbank daily log returns

Day

Lo
g−

re
tu

rn

−
3.

5
−

3.
0

−
2.

5

0.00 0.05 0.10 0.15 0.20

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Expectile and quantile estimates

Y_{t−1}^2
E

st
im

at
e

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

QQ−plot

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

QQ−plot

Figure 3: Commerzbank daily log-returns data between March 6, 2012 and July 28, 2016, sample size
n = 1,048. In the top left panel, daily (positive) log-returns (black curve) and GARCH log-volatility
estimates t 7→ log σ̂t (red bold curve, smoothed using the R function smooth.spline with smoothing
parameter λ = 0). In the top right panel, dynamic extreme expectile (level βn = 0.99855 ≈ 1−2/n) and
quantile (level β′n = 0.99) estimates of Yn+1 given past observations as functions of Yn = yn: estimates

ξ̂?,RB
βn

(Yn+1|Yt, t ≤ n) and ξ̃?,RB
βn

(Yn+1|Yt, t ≤ n) computed with γ̂H,RB
kn

(respectively solid and dotted

black curves) and corresponding estimates computed with γ̂E,RB
kn

(respectively solid and dotted blue

curves), estimate ξ̂?βn(Yn+1|Yt, t ≤ n) computed with γ̂H,RB
kn

(green curve), estimate q̃?,RB
β′n

(Yn+1|Yt, t ≤
n) computed with γ̂H,RB

kn
(red curve) and γ̂E,RB

kn
(orange curve). Bottom left (respectively bottom

right): Exponential QQ-plot of the log-spacings log(ε̂n−i+1,n/ε̂n−k∗,n), 1 ≤ i ≤ k∗ = 50 (respectively

1 ≤ i ≤ k∗ = 30). The straight line has slope γ̂H,RB
kn

= 0.253 (respectively γ̂E,RB
kn

= 0.270).
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A Estimation of second-order extreme value parameters

We explain here how we estimate the second-order parameters ρ and b which are ubiquitous in our
bias reduction procedures. The estimators we use are introduced in Gomes and Martins (2002)
and Fraga Alves et al. (2003). We start by the estimation of ρ. Let

M (j)
κn =

1

κn

κn∑
i=1

(log Yn−i+1,n − log Yn−κn,n)
j
, for j = 1, 2, 3.

For j = 1, this is just the Hill estimator. These quantities are the basic building blocks for the quantity

T
(τ)
κn defined as

T (τ)
κn =



(
M

(1)
κn

)τ
−
(
M

(2)
κn /2

)τ/2
(
M

(2)
κn /2

)τ/2
−
(
M

(3)
κn /6

)τ/3 if τ > 0,

log
(
M

(1)
κn

)
− 1

2 log
(
M

(2)
κn /2

)
1
2 log

(
M

(2)
κn /2

)
− 1

3 log
(
M

(3)
κn /6

) if τ = 0.

The estimator of ρ that we consider is a simple function of T
(τ)
κn :

ρ̂(τ)κn = −

∣∣∣∣∣3(T
(τ)
κn − 1)

T
(τ)
κn − 3

∣∣∣∣∣ . (16)

This estimator is implemented in the R function mop from the package evt0. In this package, κn =

bn0.999c, and a choice of τ ∈ {0, 1} is made based on a stability criterion for κ 7→ ρ̂
(τ)
κ for large κ

(see Section 3.2 in Gomes et al. (2016) for more details). According to Proposition 2.1 in Caeiro
et al. (2005), these choices ensure, if ρ is large enough (a calculation analogue to that of Remark 2.2
in Caeiro et al. (2005) provides roughly ρ > −249.75, which will cover all practical applications), that

(ρ̂
(τ)
κn − ρ) log(n) = oP(1) as required in our asymptotic results. An estimator of b is then

b̂κn =
(κn
n

)ρ
(

1
κn

κn∑
i=1

(
i
κn

)−ρ)(
1
κn

κn∑
i=1

Ui

)
−
(

1
κn

κn∑
i=1

(
i
κn

)−ρ
Ui

)
(

1
κn

κn∑
i=1

(
i
κn

)−ρ)(
1
κn

κn∑
i=1

(
i
κn

)−ρ
Ui

)
−
(

1
κn

κn∑
i=1

(
i
κn

)−2ρ
Ui

) , (17)

where ρ = ρ̂
(τ)
κn and the Ui = i log(Yn−i+1,n/Yn−i,n) are the weighted log-spacings. This estimator

is also available from the R function mop. The aforementioned choice of κn ensures that b = b̂κn is
consistent, see Proposition 2.2 in Caeiro et al. (2005).

B Mathematical proofs

The proof of Theorem 1 uses the following auxiliary result, somewhat similar to results in Girard et al.
(2020b) and Padoan and Stupfler (2020). We provide a very concise proof for the sake of completeness.

Proposition 1. Suppose that E|Y−|2+δ < ∞ for some δ > 0. Assume further that C2(γ, ρ,A) holds
with 0 < γ < 1/2, and let kn be such that kn →∞ and kn/n→ 0 as n→∞. If

√
knA(n/kn)→ λ1 ∈ R

and
√
kn/q(1− kn/n)→ λ2 ∈ R, then

√
kn
(
γ̂Ekn − γ

) d−→ N
(
γ(γ−1 − 1)1−ρ

1− γ − ρ
λ1 + γ2(γ−1 − 1)γ+1E[Y ]λ2,

γ3(1− γ)

1− 2γ

)
.
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Proof of Proposition 1. Let z ∈ R be arbitrary and focus on the probability

Φn(z) = P

√kn
nF̂n(ξ̂1−kn/n)

kn
− (γ−1 − 1)

 ≤ z
 = P

(
F̂n(ξ̂1−kn/n) ≤ (1− αn)(θ + z/

√
kn)
)

where on the right-hand side, we let αn = 1−kn/n and θ = γ−1−1. Equivalently Φn(z) = P(ξ̂1−kn/n ≥
q̂α′n), where α′n = 1− (1− αn)(θ + z/

√
kn), and so

Φn(z) = P

(√
kn

(
ξ̂1−kn/n

ξ1−kn/n
− 1

)
≥
√
kn

(
q̂α′n
qα′n
− 1

)
qα′n

ξ1−kn/n
+
√
kn

(
qα′n

ξ1−kn/n
− 1

))
.

Setting

Θn =
√
kn

(
ξ̂1−kn/n

ξ1−kn/n
− 1

)
, Θ′n = Θ′n(z) =

√
kn

(
q̂α′n
qα′n
− 1

)
and δn = δn(z) =

qα′n
ξ1−kn/n

− 1,

we find
Φn(z) = P(Θn ≥ Θ′n(1 + δn) +

√
kn δn) = P(Θn −Θ′n + oP(1) ≥

√
kn δn)

by Proposition 1 in Daouia et al. (2020) and the consistency of q̂ at the intermediate level α′n. The
conclusion follows from finding the limit of Φn(z) thanks to an application of Proposition 1 and
Theorem 1 in Daouia et al. (2020) and straightforward calculations.

Proof of Theorem 1. We prove the result when the intermediate and extrapolated expectile estimators
in the bias reduction method are the LAWS versions; the proof for the indirect estimators is identical.
Note the identity

1

γ̂E,RB
kn

= 1 +

(
1

γ̂Ekn
− 1

)
× 1

1 + r(1− kn/n)
.

It follows that

1

γ̂E,RB
kn

− 1

γ
=

(
1

γ̂Ekn
− 1

γ

)
× 1

1 + r(1− kn/n)
−
(

1

γ
− 1

)
× r(1− kn/n)

1 + r(1− kn/n)
. (18)

By Proposition 1,

√
kn

(
1

γ̂Ekn
− 1

γ

)
d−→ N

(
− (γ−1 − 1)1−ρ

γ(1− γ − ρ)
λ1 − (γ−1 − 1)γ+1E[Y ]λ2,

1− γ
γ(1− 2γ)

)
. (19)

It follows from our assumptions on γ, b and ρ, combined with the law of large numbers, the Gaussian
approximation of the tail empirical distribution function in Theorem 5.1.4 p.161 in de Haan and
Ferreira (2006) and Proposition 1 and Theorem 2 in Daouia et al. (2020) that, after straightforward
calculations,

√
kn r(1− kn/n) =

√
kn

(1− Y n

ξ1−kn/n

)
1

1− 2kn/n

1 +
b[F̂n(ξ1−kn/n)]−ρ

1− γ − ρ

−1 − 1


= − (γ−1 − 1)−ρ

γ(1− γ − ρ)
λ1 − (γ−1 − 1)γE[Y ]λ2 + oP(1). (20)

Combine Equations (18), (19), (20) and the delta-method to conclude the proof.
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Proof of Theorem 2. We prove the result when the intermediate and extrapolated expectile estimators
in the bias reduction method are the LAWS versions; the proof for the indirect estimators is identical.
Clearly

log

(
ξ̂?,RB
βn

ξβn

)

= (γ − γ) log

(
kn

n(1− βn)

)
+ log

(
ξ̂1−kn/n

ξ1−kn/n

)
− log

([
n(1− βn)

kn

]γ
ξβn

ξ1−kn/n

)
+ log(1 +B1,n) + log(1 +B2,n) + log(1 +B3,n)

= (γ − γ) log

(
kn

n(1− βn)

)
+ log

(
ξ̂1−kn/n

ξ1−kn/n

)
+ log

(
1 +B1,n

1 +B1,n

)
+ log

(
1 +B2,n

1 +B2,n

)
+ log

(
1 +B3,n

1 +B3,n

)
.

Similarly,

log

(
ξ̃?,RB
βn

ξβn

)
= (γ − γ) log

(
kn

n(1− βn)

)
+ log

(
(γ−1 − 1)−γ

(γ−1 − 1)−γ

)
+ log

(
Yn−kn,n
q1−kn/n

)

+ log

(
1 +B1,n

1 +B1,n

)
+ log

(
1 +B3,n

1 +B3,n

)
.

It follows from our assumptions on γ, b and ρ, combined with (for the control of B2,n and B3,n) the law
of large numbers and (for the control of B2,n specifically in the correction of the LAWS estimator) the
Gaussian approximation of the tail empirical distribution function in Theorem 5.1.4 p.161 in de Haan
and Ferreira (2006) and Proposition 1 and Theorem 2 in Daouia et al. (2020) that, after straightforward
calculations,

log

(
1 +B1,n

1 +B1,n

)
+ log

(
1 +B2,n

1 +B2,n

)
+ log

(
1 +B3,n

1 +B3,n

)
= oP

(
log(kn/[n(1− βn)])√

kn

)
.

The two desired convergences follow immediately (for the convergence of ξ̂1−kn/n at the rate
√
k, use

Theorem 1 in Daouia et al. (2020)).

C Simulation study results

We give here all supporting tables and figures regarding our simulation study in Section 4.
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