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Convergent multi-matrix fractional linear system solvers

Xavier ANTOINE∗ Emmanuel LORIN†‡

Abstract

This paper is devoted to the numerical computation of fractional linear systems involv-
ing several matrix power functions, that is finding x solution to

∑
α∈RA

αx = b. These
systems will be referred to as Multi-matrix Fractional Linear Systems (MFLS). We propose
several gradient methods for solving these very computationally complex problems, which
themselves require the solution to standard Fractional Linear Systems (FLS) Aαx = b, with
α ∈ R. The latter usually requires the solution to many classical linear systems Ax = b. We
also show that in some cases, the solution to a MFLS problem can be obtained as the solu-
tion to a first-order hyperbolic system of conservation laws, and we discuss some connections
between this approach and gradient-type methods. The convergence study is developed and
numerical experiments are proposed to illustrate and compare the methods.

Keywords. Fractional linear systems, differential equation solver, iterative solver, gradient
method, GMRES, fractional PDE
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1 Introduction

In this paper, we are interested in the numerical solution to general Multi-matrix Fractional
Linear Systems (MFLS), i.e. linear systems of the form

Determine x ∈ Rn, such that
N∑
i=1

Aαix = b, (1)

where i) A is a Rn×n matrix with eigenvalues in C\R− and b ∈ Rn, ii) {αi}16i6N is a finite
sequence of real-valued exponents such that 1 > α1 > α2 > · · · > αN > 0, with N > 2. We
also assume that (1) has a unique solution. This is the case for instance for positive definite
matrices A since det(

∑N
i=1A

αi) >
∑N

i=1 det(A)αi > 0. The extension of the proposed methods
to exponents larger than 1 requires some additional technical details, but the algorithms as well
as the principle of the proofs remain valid. Indeed, we can formally rewrite Aα for any α > 1,
in the form AbαcAα−bαc, where bαc is the integer part of α, which justifies that we restrict the
study to αi < 1, for any index 1 6 i 6 N . Regarding the case of negative exponents, the
multiplication of the equation (1) by Ap, for some p ∈ N∗, would simply lead to problems with
positive exponents. The objective of this paper is then to derive and analyze some original
and efficient methods to solve the MFLS (1). This work is largely motivated by the recent
development of the mathematical analysis and numerical approximation of fractional partial
differential equations, and more generally fractional models, in particular fractional Laplacian-
based models, including time-dependent fractional heat or fractional Schrödinger equations [20].
Typically, approximations of models of the form

−
N∑
i=1

(−4)αiu(x) = f(x) ,

for x(:= x1 in 1D and := (x1, x2) in 2D) defined in a bounded domain Ω with null Dirich-
let boundary condition u = 0 at ∂Ω, can sometimes be reduced to fractional linear systems
of the form (1), when we define −(−4)α as a spectral fractional Laplacian, i.e. (−4)αu =∑∞

k=1 λ
α
k (u, ek)L2(Ω)ek. Here, {ek}k (resp. {λk}k) are the eigenfunctions (resp. eigenvalues) of

−4 with null Dirichlet boundary conditions, and (·, ·)L2(Ω) denotes the L2(Ω)-inner product
(see e.g. [20]). On the other hand, we recall that, for k > 0, the Cauchy integral representation
reads

N∑
i=1

Aαi = (2πi)−1Ak
N∑
i=1

∫
ΓA

zαi−k(zI −A)−1dz , (2)

where ΓA is a closed contour in the complex plane enclosing the spectrum of the matrix A, I is
the identity matrix in Rn×n and i =

√
−1. From a computational point of view, the choice of

the contour is an important question as discussed in [2, 21].
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There is an extensive literature on the computation of standard Fractional Linear Systems
(FLS)

Aαx = b , (3)

and more generally on the computation of matrix functions or their spectrum [2, 3, 12, 13, 14,
16, 17, 18, 25, 28, 4]. Based on several examples, it was numerically observed [21] that the
ODE-based solvers (4) for sparse matrices are often the most efficient in comparison with many
other direct or iterative computational FLS solvers (Padé, Newton, Cauchy,...). In this paper,
when needed, the FLS (3) are solved by the ODE-based approach which is recalled now. We
refer to [7, 10, 13, 14, 15] for details about this approach.

1.1 ODE-solver for FLS

Since the FLS is one fundamental building block of our algorithm for solving the MFLS, let
us first explain how the ODE-based solver works for one single n-dimensional system. For
τ ∈ [0, 1], we consider

x′(τ) = −α(A− I)
(
I + τ(A− I)

)−1
x(τ), x(0) = b ∈ Rn , (4)

whose solution x(τ) =
(
I + τ(A − I)

)−α
b is such that x(1) = A−αb. The advantage of this

approach is that there is no need to compute any matrix power, and all the existing method-
ologies for solving ODE systems can be applied. Practically, let us introduce the uniformly
sampled discrete times τj = j∆τ , with 0 6 j 6 J , τJ = 1, and constant time step ∆τ . For
α ∈ R+\{0}, we propose to approximate A−αb iteratively by discretizing (4). For instance,
using a second-order Crank-Nicolson (CN) scheme yields

x(j+1) = x(j) −
∆τ

2
α(A− I)

(
I + τj(A− I)

)−1
x(j) −

∆τ

2
α(A− I)

(
I + τj+1(A− I)

)−1
x(j+1) ,

where x(j) is an approximation of x(τj) solution to (4) at t = τj . The full iterative scheme is
presented in Algorithm 1. At each iteration j ∈ {1, · · · , J}, we need to solve two linear systems
using traditional iterative solvers combined with preconditioners.

Algorithm 1 Crank-Nicolson (CN) method for computing x = A−αb

1: For j > 0 and x(j) known, compute z(j) solution to
(
I + τj(A− I)

)
z(j) = x(j).

2: Set w(j) := x(j) −
∆τ

2
α(A− I)z(j), and calculate ω(j+1) such that

(
I + τj+1(A− I)

)
ω(j+1) = w(j) .

3: Compute y(j+1) solution to

(I + τj+1+α
2
(A− I))y(j+1) = ω(j+1) .

4: Obtain x(j+1) as

x(j+1) = (I + τj+1(A− I))y(j+1) .

5: Deduce x(J) to approximate A−αb.

If needed, higher-order ODE-solvers could be used. For example, the corresponding fourth-
order Runge-Kutta (RK4) scheme is presented in Algorithm 2. Hence, at the final time τJ = 1,
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there exists a positive constant C > 0 such that

‖x(J) −A−αb‖2 6 C∆τp ,

setting ‖v‖2 =
(∑n

j=0 |vj |2
)1/2

for any vector v ∈ Rn, and where p = 2 for the Crank-Nicolson
scheme and p = 4 for the RK4 scheme. In Appendix, we propose an efficient preconditioning
technique to improve the convergence of the ODE-solver.

Algorithm 2 Runge-Kutta (RK4) method for computing x = A−αb

1: For j > 0 and x(j) known, compute w
(j)
1 solution to(

I + τj(A− I)
)
z

(j)
1 = x(j) ,

w
(j)
1 = −α∆τ(A− I)z

(j)
1 .

2: Compute w
(j)
2 solution to(

I + τj+1/2(A− I)
)
z

(j)
2 = x(j) + z

(j)
1 /2 ,

w
(j)
2 = −α∆τ(A− I)z

(j)
2 .

3: Compute w
(j)
3 solution to(

I + τj+1/2(A− I)
)
z

(j)
3 = x(j) + z

(j)
2 /2 ,

w
(j)
3 = −α∆τ(A− I)z

(j)
3 .

4: Compute w
(j)
4 solution to(

I + τj+1(A− I)
)
z

(j)
4 = x(j) + z

(j)
3 ,

w
(j)
4 = −α∆τ(A− I)z

(j)
4 .

5: Obtain x(j+1) such that

x(j+1) =
1

6

(
w

(j)
1 + 2w

(j)
2 + 2w

(j)
3 + w

(j)
4

)
.

6: Deduce x(J) to approximate A−αb.

1.2 Organization of the paper

In Section 2, we derive and analyze several simple iterative methods for solving the MFLS
(1), including gradient methods, GMRES, and Taylor’s expansion techniques. In addition,
all the methods are validated and compared through numerical simulations. In Section 3,
we introduce an original Partial Differential Equation (PDE)-based solver for MFLS, which is
a natural extension of the standard FLS ODE-based solver (4) to MFLS. Some preliminary
experiments to validate the method are proposed in Subsection 3.3, and the connection of the
new approximate PDE solvers with gradient methods is explained in Subsection 3.4. We discuss
some possible extensions in Section 4. Finally, we conclude in Section 5.
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2 Derivation and analysis of the MFLS iterative solvers

In this section, we derive and prove the convergence of gradient-type solvers for the MFLS,
explain how to apply the GMRES procedure, as well as Taylor’s series expansion. We first
study the 2-matrix case (N = 2), and then generalize to the N -matrix MFLS. The key point
is that we naturally cannot explicitly compute the matrix powers, which would be too much
computationally complex.

2.1 Gradient solvers

We first introduce some gradient solvers for MFLS. In the following, we use the `2-norm defined
by ‖A‖ = ‖A‖2 = σmax(A) =

√
λmax(A∗A) =

√
ρ(A∗A), where A∗ is the complex conjugate

matrix of A. We also denote by κ(A) = ‖A‖‖A−1‖ the condition number of A.
For solving the MFLS (3), the classical constant step gradient method consists in solving

xk+1 = xk + ρ
(
b−

N∑
i=1

Aαixk
)
,

for ρ > 0. For positive definite matrices A, the convergence occurs whenever 0 < ρ <
2/
∑N

i=1 λ
αi
n , where λn is the largest eigenvalue of A. Hence, we have

‖xk − x‖ 6 βk‖x− x0‖ ,

where β < 1. The optimal value of ρ is known to be 2/
∑N

i=1(λαin +λαi1 ) which is however a very
restrictive condition [11]. To improve the convergence condition, it is possible to make vary the
optimal value of ρ at each step, i.e. considering ρk > 0. Practically, evaluating the optimal
value of ρ is however very computationally complex, and each iteration of the gradient method
requires N computations of standard FLS following Algorithm 3 below.

Algorithm 3 Standard gradient method with optimal parameter

1: Select the initial guess x0.

2: For k > 0, compute rk =

N∑
i=1

Aαixk − b.

3: The optimal parameter reads

ρk =
‖rk‖〈∑N

i=1A
αirk, rk

〉 .
4: xk+1 = xk − ρkrk.

In this paper, we consider the general derivation of gradient-type algorithms with an adaptive
step ρk, but for the numerical simulations, only the constant step ρ = ρk is tested. In this case,
for positive definite matrices, since the convergence strongly depends on the largest eigenvalue∑N

i=1 λ
αi
n , we will rather consider a preconditioned version of the MFLS thanks to A−α1 , leading

to a less restrictive convergence constraint: 0 < ρ < 2/(1 +
∑N

i=2 λ
αi−α1
n ). More precisely, the

gradient-based algorithms can be seen as the approximation to a gradient flow equation of the
form

∂tx(t) = −∇xJ(x), (5)
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with initial guess x(0) = x0 for the functional (with symmetrical matrices) preconditioned by
A−α1

J(x) =
1

2
((I +

N∑
i=2

Aαi−α1)x, x)− (A−α1b, x) ,

where 1 > α1 > · · · > αN > 0.

2.1.1 The case of the 2-matrix MFLS

In this section, we consider a MFLS with N = 2, i.e. for 0 < β < α < 1. We then consider the
discretization of the gradient flow with adaptive step ρk > 0, i.e.

xk+1 = xk − ρk∇xJ(xk) = ρkA
−αb− (ρk − 1)xk − ρkAβ−αxk.

To accelerate the convergence of the solution to gradient flows, the iPiano method was intro-
duced in [8, 22] in the framework of mathematical imaging. It was proved to be very efficient
by improving the convergence rate. The idea behind the method is to add an inertial term
βiPiano(xk − xk−1) to ensure the acceleration of the algorithm, thus leading to

xk+1 = xk − ρk((I +Aβ−α
)
xk −A−αb) + βiPiano(xk − xk−1).

In terms of gradient flow, and for a simplified configuration, the iPiano scheme corresponds to
the so-called Heavy-ball method. Indeed, this consists in using an explicit scheme for solving
the Heavy-ball friction dynamical system

∂2
t x(t) + γ∂tx(t) = −∇xJ(x). (6)

In applications [1, 22], a standard value for the parameter βiPiano is usually 0.8− 0.9. We come
back later to this choice in the numerical examples.

Let us recall that there are two levels of convergence in the proposed methodology. One is
related to intermediate standard (1-matrix) FLS, and the second one is in connection to the
construction of the iterated sequence {xk}k. Let us note that for ρk = 1 and βiPiano = 0, we
formally have, for k > 0

xk =
(
I − (−1)kAk(β−α)

)(
Aα +Aβ

)−1
b+ (−1)kAk(β−α)x0 . (7)

However, this is practically useless. Let us prove the following convergence results for the
associated Algorithm 4.

Proposition 1 We consider the system(
Aα +Aβ

)
x = b , (8)

with 1 > α > β > 0 and A a hermitian matrix. Let us also assume that the intermediate
fractional linear systems are all solved by using a p-th order ODE-solver for (4), leading to the

evaluation x
(J)
k of xk at time τJ = 1. Then, we have

1. For ρk = 1 and βiPiano = 0, the following result holds for Algorithm 4:

• For ‖A‖ > κ(A), the iterated sequence {x(J)
k }k∈N defined in (10) is convergent and

satisfies

‖x− x(J)
k ‖ 6

(κ(A)

‖A‖

)k(α−β)
‖x0 − x‖+ c(A)∆τp .
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• For ‖A‖ < κ(A), the sequence {x(J)
k }k∈N defined by

xk+1 = xk − ρk((I +Aα−β
)
xk −A−βb) + βiPiano(xk − xk−1), (9)

is convergent and is such that

‖x− x(J)
k ‖ 6

( ‖A‖
κ(A)

)k(α−β)
‖x0 − x‖+ c(A)∆τp .

2. We consider (10) for ρk = ρ constant and βiPiano > 0 , and assume in addition that A
is diagonalizable in R. Then, the convergence of the iterated occurs in Algorithm 4 if the
following condition holds

max
16i6n

∣∣∣(1− ρ− βiPiano) + ρλβ−αi

)(
1±

√√√√1−
4βiPiano(

(1− ρ− βiPiano) + ρλβ−αi

)2)∣∣∣ < 2 ,

where {λi}16i6n denote the eigenvalues of A.

Algorithm 4 Preconditioned gradient method with adaptive step ρk and iPiano parameter
βiPiano for the 2-matrix MFLS

1: Select the initial guess x0 and set x−1 = x0.
2: Iterate for k > 0 until convergence

xk+1 = xk − ρk((I +Aβ−α
)
xk −A−αb) + βiPiano(xk − xk−1) (10)

for some adaptive step ρk and parameter βiPiano.

Proof. By continuity argument, if {xk}k is convergent, then it converges to the solution of the
system. Now, let us state the proofs of the 2 items.

1. We study the convergence for the case ‖A‖ > κ(A), ‖A‖ < κ(A) can be treated similarly.

Let us denote by x
(J)
k the approximate solution at iteration k using an order-p ODE solver

with J = 1/∆τ . From (7), we have

x := (Aα +Aβ
)−1

b ,

and for k > 1,

‖xk‖ 6 ‖Ak(β−α)‖‖x0‖+
(
1 + ‖Ak(β−α)‖

)
‖x‖

6 ‖Aβ−α‖k‖x0‖+
(
1 + ‖Aβ−α‖k

)
‖x‖ .

Since α > 0 and β − α < 0, and notice that for any γ > 0, one gets

‖A−γ‖ =
√
λmax

(
(A−γ

)∗
A−γ) =

√
λγmax

(
(A−1)∗A−1

)
= ‖A−1‖γ .

Then, from ‖A−1‖ = κ(A)‖A‖−1, we deduce that

‖xk‖ 6 ‖A−1‖k(α−β)‖x0‖+
(
1 + ‖A−1‖kα

)
‖x‖

6
(
κ(A)/‖A‖

)k(α−β)‖x0‖+
(
1 +

(
κ(A)/‖A‖

)kα)‖x‖ .
7



In addition, we have: ‖x`+1−x`‖ 6 ‖Aβ−α‖‖x`−x`−1‖. We then conclude the convergence
of the algorithm as ‖A‖ > 1 and β − α < 0.

Let us next consider, for k > 1,

‖x− x(J)
k ‖ = ‖x− xk‖+ ‖xk − x

(J)
k ‖

‖x− x(J)
k ‖ = ‖x−A−αb+Aβ−αxk−1‖+ c(A)∆τp

= ‖A−αb−Aβ−αx−A−αb+Aβ−αxk−1‖+ c(A)∆τp

= ‖Aβ−α(xk−1 − x)‖+ c(A)∆τp

6 ‖Aβ−α‖k‖x0 − x‖+ c(A)∆τp .

Again, ‖A−γ‖ = ‖A−1‖γ since A is hermitian, with 0 < γ < 1, and therefore we obtain

‖x− x(J)
k ‖ 6 ‖A−1‖k(α−β)‖x0 − x‖+ c(A)∆τp

6
(
κ(A)/‖A‖

)k(α−β)‖x0 − x‖+ c(A)∆τp ,

which provides a rate of convergence of the overall algorithm for α− β > 0.

2. Let us assume that the step size is constant, i.e. ρk = ρ for all k, and consider first the
case where βiPiano = 0. Hence the algorithm simply reads

xk+1 = ρA−αb−
(
(1− ρ)I − ρAβ−α

)
xk .

This leads to

xk =
(
I − (−1)k

(
(1− ρ)I + ρAβ−α

)k)
(Aα +Aβ)−1b+ (−1)k

(
(1− ρ)I + ρAβ−α

)k
x0 .

We easily extend the idea developed above

xk − x = ρA−αb−
(
(ρ− 1)I + ρAβ−α

)
x− ρA−αb+

(
(1− ρ)I + ρAβ−α

)
xk−1

=
(
(1− ρ)I + ρAβ−α

)
(xk−1 − x) .

(11)

Hence, we have

‖xk − x‖ =
∥∥((1− ρ)I + ρAβ−α

)k∥∥‖x− x0‖ .

As a consequence, the parameter ρ gives some flexibility regarding the rate of convergence.
Setting D := (1 − ρ)I + ρAβ−α and the residual as ek = xk − x, we get: ek = Dek−1.
Assuming that A ∈ Rn×n is diagonalizable in R, we then deduce that D is diagonalizable
in the same basis P as A. We denote by {λi}16i6n the eigenvalues of A. Hence by setting
fk := Pek = (fk;1, · · · , fk;n), we obtain

fk;i =
(
(1− ρ) + ρλβ−αi

)k
f0;i. (12)

The convergence occurs whenever

max
i

∣∣(1− ρ) + ρλβ−αi

∣∣ < 1 ,

and ideally when it is as small as possible.

We now consider the iPiano version of the algorithm (βiPiano 6= 0) and evaluate

xk − x = ρA−αb−
(
(ρ− 1)I + ρAβ−α

)
x

−ρA−αb+
(
(1− ρ)I + ρAβ−α

)
xk−1 − βiPiano(xk−1 − xk−2)

=
(
(1− ρ− βiPiano)I + ρAβ−α

)
(xk−1 − x) + βiPiano(xk−2 − x) .
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Setting F := (1 − ρ − βiPiano)I + ρAβ−α and ek = xk − x, we then have: ek = Fek−1 +
βiPianoek−2. For A ∈ Rn×n diagonalizable in R, we obtain that F is a diagonalizable
matrix in the basis P , with eigenvalues {ζi} such that: ζi = (1 − ρ − βiPiano) + ρλβ−αi ,
where {λi}16i6n still denotes the eigenvalues of A. Hence for fk := Pek = (fk;1, · · · , fk;n),
we prove that

fk;i = ζifk−1;i + βiPianofk−2;i . (13)

We set r±i as the roots to the characteristic equation related to (13) and given by

r±i = ζi

1±

√
1−

4βiPiano

ζ2
i

2

=
(
(1− ρ− βiPiano) + ρλβ−αi

)1±
√

1−
4βiPiano(

(1− ρ− βiPiano) + ρλβ−αi

)2
2

.

The convergence of the algorithm requires that max16i6n |r±i | < 1 or |r±i | = 1 of multi-
plicity 1 [26]. The parameter βiPiano and ρ hence give more flexibility to accelerate the
convergence rate of the gradient algorithm. �

Regarding the complexity, at each iteration, it is necessary to compute standard fractional
linear systems for computing A−αbk and bk = b−Aβxk with an ODE-based solver.

2.1.2 Extension to N-matrix MFLS

We now consider the general case assuming that (1) has a unique solution, with the exponents
1 > α1 > α2 > · · · > αN > 0. We can therefore derive the preconditioned gradient-type
methods with adaptive step ρk for MFLS as given by Algorithm 5.

Algorithm 5 Preconditioned gradient method with adaptive step ρk and iPiano parameter
βiPiano for N -matrix MFLS

1: Select the initial guess x0 and set x−1 = x0.
2: Iterate until convergence for k > 0

xk+1 = ρkA
−α1b− (ρk − 1)xk − ρk

N∑
i=2

Aαi−α1xk + βiPiano(xk − xk−1) , (14)

for some adaptive step ρk and parameter βiPiano.

As before, it is possible to get an explicit formal expression of the solution to the algorithm

xk =
(
I − (−1)k

( N∑
i=2

A(αi−α)
)k)( N∑

i=1

Aαi
)−1

b+ (−1)k
( N∑
i=2

A(αi−α1)
)k
x0,

for ρk = 1. Again this formulation is not useful practically, but could help to study the math-
ematical properties of the method. We prove the following convergence result, corresponding
to the preconditioned gradient without iPiano additional term (i.e. βiPiano = 0). An analogous
result to the N = 2 case could also be obtained for the iPiano-version up to the additional
technical details.
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Proposition 2 We consider the system (1) with A a hermitian matrix, and we assume that
the intermediate fractional linear systems are solved by using an order-p ODE-solver for (4).
Then for ρk = 1, we have the following results

• For ‖A‖ > κ(A)(N − 1)
1

α1−α2 , the sequence of iterated defined by (14) in Algorithm 5 is
convergent and the following estimate holds

‖x− x(J)
k ‖ 6 (N − 1)k

(κ(A)

‖A‖

)k(α1−α2)
‖x0 − x‖+ c(A)∆τp .

• If ‖A‖ < κ(A)(N − 1)
1

αN−αN−1 , then the iterated sequence given by

xk+1 = ρkA
−αN b− (ρk − 1)xk − ρk

N−1∑
i=1

Aαi−αNxk + βiPiano(xk − xk−1) , (15)

converges and we have

‖x− x(J)
k ‖ 6 (N − 1)k

( ‖A‖
κ(A)

)k(αN−αN−1)
‖x0 − x‖+ c(A)∆τp .

Proof. By uniqueness assumption and continuity argument, if xk is convergent, then it con-
verges to the solution of the system. We proceed as above by setting now

bk = b−
N∑
i=2

Aαixk.

In the following, we prove the convergence in the case ‖A‖ > κ(A)(N − 1)1/(α1−α2). Since we
formally have

x = (Aα1 −
N∑
i=2

Aαi
)−1

b ,

we can prove the following sequence of inequalities

‖xk‖ 6
∥∥( N∑

i=2

Aαi−α1
)k∥∥‖x0‖+

(
1 +

∥∥( N∑
i=2

Aαi−α1
)k∥∥)‖x‖

6
∥∥ N∑
i=2

Aαi−α1
∥∥k‖x0‖+

(
1 +

∥∥ N∑
i=2

Aαi−α1
∥∥k)‖x‖

6 (N − 1)k‖Aα2−α1‖k‖x0‖+
(
1 + (N − 1)k‖Aα2−α1‖k

)
‖x‖

6 (N − 1)k‖A−1‖k(α1−α2)‖x0‖+
(
1 + (N − 1)k‖A−1‖k(α1−α2)

)
‖x‖

6 (N − 1)k
(
κ(A)/‖A‖

)k(α1−α2)‖x0‖+
(
1 + (N − 1)k

(
κ(A)/‖A‖

)k(α1−α2))‖x‖ .

10



Regarding the rate of convergence, we similarly show that

‖x− x(J)
k ‖ = ‖x− xk‖+ ‖xk − x

(J)
k ‖

= ‖x−A−α1b+
N∑
`=2

Aα`−α1xk−1‖+ c(A)∆τp

= ‖A−α1b−
N∑
`=2

Aα`−α1x−A−α1b+
N∑
l=2

Aαl−α1xk−1‖+ c(A)∆τp

= ‖
N∑
`=2

Aα`−α1(xk−1 − x)‖+ c(A)∆τp

6
∥∥ N∑
`=2

Aα`−α1
∥∥k‖x0 − x‖+ c(A)∆τp

6
( N∑
`=2

‖Aα`−α1‖
)k‖x0 − x‖+ c(A)∆τp ,

where we have used that for A hermitian, ‖A−γ‖ = ‖A−1‖γ for 0 < γ < 1. Hence, we conclude
that

‖x− x(J)
k ‖ 6

( N∑
`=2

‖A−1‖α1−α`
)k‖x0 − x‖+ c(A)∆τp

6 (N − 1)k‖Aα2−α1‖k‖x0 − x‖+ c(A)∆τp .

The rest of the proof is straightforward. �

2.2 GMRES solver

As far as we know, the use of GMRES [24] for solving MFLS or even FLS has never been
discussed in the literature. Basically, the principle consists in directly solving the preconditioned
equation

(I +

N∑
i=2

Aαi−α1)x = A−α1b, (16)

with the expectation that A−α1 is a good preconditioner of the original equation, leading then
to a clustering of the eigenvalues of system (16) around 1 in the complex plane. In the case
where A is a finite dimensional approximate Laplacian, this is relatively reasonable since the
operators (−∆)αi−α1 are negative order pseudodifferential operators with eigenvalues converging
towards zero for large spatial frequencies. At each GMRES iteration, the method relies on the
computation of N -matrix-vector products yk := Aαi−α1xk performed by using the ODE-based
solver. In the present paper, we consider the version of GMRES with restart to limit the memory
storage. Although, it is expected that GMRES usually performs better than a gradient-type
method, there are still some configurations where an opposite conclusion can be expected.
Let us consider for instance systems such that (Aα − Aα−ε)x = b, where ε is close to zero.
Rewriting the latter in the form (I − A−ε)x = A−αb, the matrix I − A−ε is close to the null
matrix naturally making a priori GMRES inefficient compared to a gradient method as the ones
presented before. In addition, building a preconditioner for I − A−ε is far from being trivial,
while the FLS-preconditioning developed in [3] is still suitable for the gradient methods. This
will be illustrated in Example 3.
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2.3 Truncated Taylor’s series expansion approximation

Finally, for completeness, a standard Taylor series expansion can be used to solve(
Aα +Aβ

)
x = b .

We formally rewrite, for α > β > 0,

x = (I +Aβ−α)−1A−αb =
∑
`>0

(−1)`A`(β−α)−αb .

Hence, approximating x by a truncated series xM leads to

xM =
∑

06`6M

(−1)`A`(β−α)−αb , (17)

with naturally

‖xM − x‖ 6
∑
`>M

‖Aβ−α‖`‖A−α‖‖b‖ .

Practically, this requires to compute A`(β−α)−αb, for ` = 0, · · · ,M , which is performed by the
ODE-based solvers. Hence, trivially the following error estimate occurs for (17)

‖x(J)
M − x‖ 6

∑
`>M

‖Aβ−α‖`‖A−α‖‖b‖+ c(A)M∆τp .

Unlike, the above approach the algorithm is embarrassingly parallel. For a truncation number
M in (17), the total number of standard FLS to solve is M + 1. By comparison, Algorithm 4
after k iterations, requires the solution to 2k standard FLS.

2.4 Numerical examples

We propose now several numerical experiments to illustrate the behavior of the iterative solvers
which were derived and analyzed above. When relevant, we will compare the convergence of
these methods.

Example 1. In this first set of numerical simulations, we show the convergence of the gradient
methods for different deterministic and stochastic fractional Poisson equations, in one or two
dimensions.
Example 1a. We consider the approximation of the following spectrally defined one-dimensional
fractional Poisson equation

−(−4)αu− (−4)βu = f,

on [−5, 5], with α = 0.75, β = 0.5 and f(x1) = exp(−x2
1), with null Dirichlet boundary condi-

tion, by the following 2-matrix MFLS
(
Aα + Aβ

)
x = b. The matrix A ∈ Rn×n is a five-point

stencil finite-difference approximation to −4 with n = 64. We refer to [3, 20] for details about
the justification of this approximation. In this example, we consider 15 iterations of the precon-
ditioned gradient method (Algorithm 4; with ρ = 1 and βiPiano = 0) and make vary the time
step ∆τ in the ODE solver (4) from 2−6 to 2−11. The solution is represented in Fig. 1. We
report the logarithm of the `2-error surface between the exact solution (computed through the
spectrum of A) and the preconditioned gradient solution (Algorithm 4; with ρ = 1) as a function
of ∆τ and the number of iterations k in Fig. 2, using Crank-Nicolson (Left) and Runge-Kutta
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Figure 1: Example 1a. Solution to the fractional Poisson equation.

Figure 2: Example 1a. `2-norm error in logscale as a function of the time-step ∆τ and iteration
k of the preconditioned gradient (Algorithm 4; with ρ = 1 and βiPiano = 0) with CN (Left) and
RK4 (Right).

4 (Right). We also plot in Fig. 3 the error for the truncated Taylor’s series expansion given by
(17), with Crank-Nicolson and Runge-Kutta 4, as a function of the truncation index M and ∆τ .
We observe that both methods are convergent, and naturally the RK4 solver is more accurate
than CN.
Example 1b. In the following experiment, we compare the error behavior as a function of the
number of standard FLS calls using RK4 with a given time step, between the preconditioned gra-
dient (Algorithm 4; with ρ = 0.5 and βiPiano = 0) and the standard gradient method (Algorithm
3; with ρ = 0.5), for approximating the fractional equation −(−4+V )αu−(−4+V )βu = f on
(−5, 5), where the potential is V (x1) = V0 exp(−x2

1/2) and for different values of the potential
intensity: V0 = 0, 10, 100, 500 (with a corresponding norm ‖A‖2 ≈ 5.2, 5.3, 5.4, 5.7 and condition
number κ(A) ≈ 2271, 582, 276, 213). We again fix α = 0.75 and β = 0.5. We report on Fig. 4
the `2-norm error as a function of the number of standard FLS to solve (8) with a given time
step ∆τ = 2−12 and n = 100. We observe that the preconditioned gradient leads to a faster
convergence, although the difference between both methods tends to be less visible when the
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Figure 3: Example 1a. `2-norm error in logscale as a function of the time-step ∆τ and
truncation index M in the Taylor’s series expansion with CN (Left) and RK4 (Right).

potential intensity V0 gets larger. The preconditioning of the system allows for an improvement
of the efficiency of the solver when refining the mesh, i.e. when increasing n. For example, we
report on Fig. 5 the case of V0 = 100 with α = 0.75 and β = 0.25 and we plot the number of
standard FLS vs. n (= 100, 200, 400) when fixing the error level to 10−4. We observe that the
convergence is indeed much faster using the Algorithm 4 than Algorithm 3. Moreover Algorithm
4 convergence is accelerated with increasing n. For all these reasons, we now only retain the
preconditioned gradient with RK4, and analyze the effect of βiPiano, the comparison with the
GMRES and restarted GMRES is considered next. However, we recall that nevertheless, our
conclusions here remain relatively related to the fact that fractional Laplacian-type equations
are considered, and that the conclusion may be different when considering general matrices A
not connected to fractional PDEs.
Example 1c. We propose now an example with a 4-matrix MFLS corresponding to the finite-
difference approximation of the fractional PDE

−
4∑
i=1

(−4u+ V u+W ∗ u)αi = f , (18)

on (−2, 2), with αi = 0.1(2i−1), for i = 1, 2, 3, 4, where ∗ denotes the convolution product, and
where we either have

1. V (x1) = V0 exp(−x2
1/2) with V0 = 0, V0 = 102 and W(x1) = 0, leading to the MFLS∑4

i=1A
αix = b, where A is a finite dimensional approximation of −4+ V , or

2. V (x1) = 0 andW(x1) is a nonlocal random perturbation following a uniform lawN (0, 10−2).
This corresponds to add to the matrix A (approximating −4) a random matrix N =
rand(n, n), and to solve the following MLFS

∑4
i=1(A+N)αix = b.

The function f is given by f(x1) = exp(−2x2
1). Again, we observe on Fig. 6 the convergence in

the three situations, with a slightly slower convergence rate for the random potential case.
Example 1d. We consider now A as a two-dimensional finite-difference approximate fractional
Laplacian including a gaussian potential V (x1, x2) = exp(−(x2

1 + x2
2)/2) on the square domain
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Figure 4: Experiment 1b. `2-norm error in logscale as a function of the number of standard
FLS to solve (8) with the preconditioned gradient method (Algorithm 4; with ρ = 0.5 and
βiPiano = 0) and the standard gradient method (Algorithm 3; with ρ = 0.5).

[−1, 1]2, with homogeneous Dirichlet boundary conditions. We use a five-point stencil discretiza-
tion for the Laplacian with 32 points in each direction, leading then to A ∈ R322×322 . The
right hand side b is a projection on the finite-difference grid of the source function f(x1, x2) =
exp(−5(x2

1 + x2
2)). We fix the exponents to be α = 0.75 and β = 0.25. We report the logarithm

of the `2-error between the reference solution and the solution computed by the preconditioned
gradient (Algorithm 4; with ρ = 1 and βiPiano = 0) as a function of ∆τ = 2−10, and the number
of iterations k in Fig. 7, illustrating again the good convergence of the preconditioned gradient
method.

Example 2. We compare now the convergence rate of gradient methods with possibly iPiano
term βiPiano and the GMRES approach [24] on the preconditioned system (see Subsection 2.2).
Example 2a. The matrix A ∈ Rn×n with n = 100, is an approximate one-dimensional five-
point stencil Laplacian including a potential V (x1) = 10 exp(−2x2

1), on [−5, 5]. We solve (Aα +
Aβ)x = b, with α = 0.75 and β = 0.25. We take ∆τ = 2−10 and report the graph of convergence
in Fig. 8 (Left). More specifically, we are interested in the comparison between GMRES and the
iPiano-version of the gradient method introduced in this paper. As expected the convergence
rate is strongly dependent on the value of the parameters βiPiano and ρ with the iPiano solver.
However, the fastest convergence rate is obtained with GMRES. The best value of βiPiano is 0.1
for these one-dimensional problems
Example 2b. A similar comparison is now proposed when the matrix A ∈ Rn×n is a two-
dimensional approximate five-point stencil perturbed Laplacian −4(1 +W(x1)), with n = 322

points on the computational domain [−5, 5]2, and where W(x1) is a local random perturbation
(uniform law) N (0, 5 × 10−2). We then solve (Aα + Aβ)x = b with α = 0.9, β = 0.1. We
take ∆τ = 2−6 and report the graph of convergence in Fig. 8 (Right). Overall, and as it was
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Figure 5: Experiment 1b. `2-norm error in logscale as a function of the number of standard
FLS to solve (8) with the preconditioned gradient method (Algorithm 4; with ρ = 0.5 and
βiPiano = 0) and the standard gradient method (Algorithm 3; with ρ = 0.5) where α = 0.75 and
β = 0.25, and for n = 100, 200, 400.
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Figure 6: Example 1c. `2-norm error in logscale as a function of the iteration k to solve (18)
with the preconditioned gradient (Algorithm 4; with βiPiano = 0), for i) V (x1) = V0 exp(−x2

1/2)
with V0 = 0, V0 = 102 and ii) V = 10−2rand(n, n).
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Figure 7: Example 1d. `2-norm error in logscale as a function of the iteration k of the
preconditioned gradient (Algorithm 4; with βiPiano = 0) for the 2D approximate fractional
Poisson equation.

expected for α− β not too small, GMRES performs much better than gradient-type methods,
including the iPiano versions. With the latter method, the fastest convergence is obtained with
βiPiano = 0.6, 0.7 and ρ = 0.4, 0.5. However, as we will observe in the next experiment, whenever
α− β is small the conclusion can be different.
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Figure 8: Graph of convergence in `2-norm. (Left) Experiment 2a. One-dimensional fractional
Laplacians. (Right) Experiment 2b. Two-dimensional perturbed fractional Laplacians.

Example 3. In this example, we illustrate a case where GMRES fails to provide a faster
convergence than a gradient method (Algorithm 4) with ρ = 1. We consider the system (Aα −
Aα−ε)x = b, where ε = 0.1, 5 × 10−2, 10−2 and α = 0.9. The matrix A is defined as a two-
dimensional finite-difference approximation of −(−4+ V (x1, x2) +W(x1, x2))α + (−4+ V +
W)α−ε, with homogeneous Dirichlet boundary conditions, where V (x1, x2) = 100 exp

(
− (x2

1 +
x2

2)/50
)

andW(x1, x2) follows an uniform law N (0, 5×10−2). The tolerance is fixed to 10−9 for
the convergence of the GMRES with a restart value equal to 40, as well as a restart parameter
at 10 iterations when β = 0.89 for comparison. In this case, the standard FLS are assumed to
be solved exactly at each iteration. The numerical results reported on Fig. 9 show that the
smaller ε, the slower the GMRES convergence, and in this case a standard gradient method
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indeed performs better, which is consistent with the discussion from Subsection 2.2.
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Figure 9: Experiment 3. Graph of convergence in `2-norm : GMRES and preconditioned
gradient method (Algorithm 4).

3 A Partial Differential Equation-based solver

In this Section, we propose an original PDE-based method for solving (1). We still assume that
1 > α1 > α2 > · · · > αN > 0, with N > 2. The proposed method can be seen as an extension
of the ODE-based solver (4) to N -variables. We will also show in Subsection 3.4 that, at the
discrete level, some approximate PDE solvers can actually degenerate into a gradient method.

3.1 Strategy for the N-matrix MFLS

The objective is to derive a PDE whose solution at a given point provides the solution to (1).
To this end, we introduce N real-valued variables ti, for i = 1, · · · , N , and we assume that the
solution x to the PDE on [0, 1/N ]N is of the following form

x(t1, · · · , tN ) =
(
(1−

N∑
i=1

ti
)
I + tiA

αi
)−1

b .

Hence, we notice that x(0, · · · , 0) = b and that N−1x
(
1/N, · · · , 1/N

)
=
(∑N

i=1A
αi
)−1

b which
is then the solution to (1). In order to derive the PDE, we remark that for any i ∈ {1, · · · , N}

∂tix(t1, · · · , tN ) =
(
(1−

N∑
i=1

ti)I +

N∑
i=1

tiA
αi
)−2

b−Aαi
(
(1−

N∑
i=1

ti)I + tiA
αi
)−2

b

= (I −Aαi)
(
(1−

N∑
i=1

ti)I + tiA
αi
)−1

x(t1, · · · , tN ) .
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We then deduce that for any (i, j) ∈ {1, · · · , N}2 with i 6= j :(
I −Aαj

)
∂tix(t1, · · · , tN ) =

(
I −Aαi

)
∂tjx(t1, · · · , tN ) .

In a forthcoming paper, we will propose a complete analysis of the corresponding PDE and
its efficient approximation for the general case. In this paper, we focus on the two-matrix version
(N = 2) of the algorithm.

3.2 The case of the 2-matrix MFLS

We propose to explicitly derive the algorithm for N = 2 with 0 < β < α, i.e.

(Aα +Aβ)x = b . (19)

For computational efficiency, we slightly transform the system. Let us set δ = (α + β)/2 and
γ = (α− β)/2 in such a way that we now consider

Aδ(Aγ +A−γ)x = b .

This system can be solved in two steps: i) a standard FLS Aδy = b, and then ii) (Aγ+A−γ)x = y.
Hence, for y ∈ Rn, we focus on the computation of the MFLS

(Aγ +A−γ)x = y .

For (t, τ) ∈ [0, 1/2]2, we consider

x(t, τ) =
((

1− (t+ τ)
)
I + tA−γ + τAγ

)−1
y ,

solution to (
I −Aγ

)
∂tx(t, τ) =

(
I −A−γ

)
∂τx(t, τ), x(0, 0) = y , (20)

and such that x(1/2, 1/2) = (Aγ +A−γ)−1y which is the expected solution. Then, we get

∂tx(t, τ) =
(
I −Aγ

)−1(
I −A−γ

)
∂τx(t, τ)

= A−γ
(
A−γ/2 −Aγ/2

)−1(
Aγ/2 −A−γ/2

)
∂τx(t, τ)

= −A−γ∂τx(t, τ) .

Interestingly, if A−γ is diagonalizable in R, we obtain a first-order one-dimensional linear hy-
perbolic system of conservation laws (HSCL) for (t, τ) ∈ [0, 1/2]2,

∂tx(t, τ) +A−γ∂τx(t, τ) = 0 . (21)

For wellposedness reasons, it is then necessary to impose some boundary conditions at τ =
0 and/or τ = 1/2 a priori depending on the sign of the eigenvalues of A−γ . Let us recall
for the readers who are unfamiliar with first-order HSCL that systems of conservation laws
∂tx+∂τf(x) = 0 are called hyperbolic if the Jacobian matrix df(x) is diagonalizable in R for any
x ∈ Rn. We refer to [6, 9, 19] for an exhaustive presentation of this type of PDEs. The system
(21) is hence linear with constant jacobian matrix A−γ . Such systems can be solved analytically
in R × R+, provided we have access to the eigenvalues {µ−γk }k, and to left/right eigenvectors
{`k}k, {rk}k, to A−γ . Practically, this is usually not possible for large and sparse matrices A or

A−γ . Moreover, system (21) has to be solved for τ ∈ [0, 1/2], with x(0, τ) =
(
(1−τ)I+τAγ

)−1
y
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and x(t, 0) =
(
(1− t)I + tA−γ

)−1
y. As a consequence, we cannot use a standard scheme based

on an approximate Riemann solver [27] if we do not have access to the sign of the eigenvalues
of A or A−γ . It is however important to recall that the proposed method does not require A−γ to
be diagonalizable in R. For any ∆t > 0, we consider in the following the approximate solution
to (20) from t to t+ ∆t.

Let us now approximate this equation on [0, 1/2]2, with x(0, τ) =
(
(1− τ)I + τAγ

)−1
y and

x(t, 0) =
(
(1− t)I + tA−γ

)−1
y. The latter are discretized as described below. We denote by xij

an approximation to x(ti, τj), for i, j = 0 to (i, j) = (Mt,Mτ ), where 0 = t0 < · · · < tMt = 1/2
and 0 = τ0 < · · · < τMτ = 1/2. For convenience, we assume that ∆τ = τj+1 − τj = 1/2Mτ

(resp. ∆t = ti+1 − ti = 1/2Mt) is constant. The solution to the PDE can be approximately
performed by using standard numerical solvers [27]. Hence, denoting by xMt

Mτ
an approximation

to the solution at (1, 1) of (19) by using an order p solver in t (with time step ∆t) and q in τ
(with time step ∆τ), then there exist two constants ct(A) and cτ (A) such that

‖xMt

Mτ
− x‖ 6 ct(A)∆tp + cτ (A)∆τ q .

The approximate derivatives can be computed for instance, as follows

D−x
j
i =

xji − x
j
i−1

∆t
, D0x

j
i =

xji+1 − x
j
i−1

2∆t
, D+x

j
i =

xji+1 − x
j
i

∆t
,

D−xji =
xji − x

j−1
i

∆τ
, D0xji =

xj+1
i − xj−1

i

2∆τ
, D+xji =

xj+1
i − xji

∆τ
.

A convergent approximation to (19) is naturally dependent on A, and a general solver reads

r∑
k=−r

ckx
j+1
i+k = A−γ

∆t

∆τ

s∑
k=−p

ek

q∑
`=−q

d`x
j+k
i+` , (22)

for some coefficients {ck}k, {dk}k and {ek}k involved in the approximate derivatives and for
some integers p, q, and s 6 1.

Practically, this approach could be very inefficient if it is necessary to compute two standard
FLS for each ti, τj , leading to a O(MtMτ ) FLS calls for computing the approximate solution

xM
t

Mτ
. Moreover, stability issues should be addressed which can limit the size of the time step.

To improve the efficiency of the method by taking larger time steps ∆t and ∆τ (and then
smaller values of Mτ and Mt), we could consider higher-order approximate PDE solvers or/and
use implicit solvers (corresponding to s = 1 in (22)). However, the latter would also lead to
the need for computing higher dimensional systems. Since standard explicit finite-difference
schemes for first-order hyperbolic systems usually have a small stencil, it is in fact not necessary
to compute xji for any 0 6 i 6Mt and 0 6 j 6Mτ . For instance, let us assume that an upwind

scheme involving only xij−1 and xij is employed to compute xi+1
j , and eventually estimate xM

t

Mτ
.

Then, we only need to compute xMt−1
Mτ−1, xMt−1

Mτ
, and then xMt−2

Mτ−2, xMt−2
Mτ−1,...,xMt−k

Mτ−k, x
Mt−k
Mτ−k+1,

for k 6 Mt. This corresponds to computing 4Mτ + 1 FLS rather than 2MtMτ + 1, with a
Lax-Friedrichs scheme or 5MtMτ + 1 with a Lax-Wendroff scheme [26]. For A diagonalizable in
R, a stable Lax-Friedrichs scheme (or upwind scheme if we have information on the sign of the
eigenvalues of A) can easily be implemented (see Step 4 of Algorithm 6). Regarding the initial
condition, we can for instance iteratively proceed as follows. From the representation∫ τ+∆τ

τ

(
(1− s)I + sA±γ

)
x(0, s)ds = y,
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Algorithm 6 PDE-based solvers

1: Solve Aδy = b and set x0
0 = y.

2: For j > 0, compute x0
j , for any 0 6 j 6Mτ , with

x0
j+1 = y + τj(I −Aγ)x0

j .

3: Compute xi0, for any 0 6 i 6Mt, with

xi+1
0 = y + ti(I −A−γ)xi0 .

4: For any 0 6 i 6Mt − 1 and any 1 6 j 6Mτ

xi+1
j =

1

2
(xij+1 + xij−1)−

∆t

2∆τ
A−γ(xij+1 − xij−1) (Lax-Friedrichs scheme)

or

xi+1
j = xij −

∆t

∆τ
A−γ(xij − xij−1) (Upwind scheme)

or

xi+1
j = xij −

∆t

2∆τ
A−γ(xij+1 − xij−1) +

∆t2

2∆τ
A−2γ(xij+1 − 2xij + xij−1) (Lax-Wendroff scheme)

5: Deduce the solution to (19) : x = 2xMt
Mτ

.
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we can use an approximation by using any standard quadrature rule over [τ, τ + ∆τ ] and FLS
calls (see Steps 1 and 2 in Algorithm 6). We finally obtain Algorithm 6 for the PDE-based
solver.

Using the standard theory of numerical analysis for hyperbolic systems of conservation laws
[26, 27], we have the following proposition.

Proposition 3 The Algorithm 6 with the upwind scheme for computing (19), where A is diago-
nalizable in R (with eigenvalues λk, 1 6 k 6 n) is convergent under the Courant-Friedrichs-Lewy
(CFL) condition

max
16k6n

∣∣λ(β−α)/2
k

∣∣∆t
∆τ
6 1 . (23)

Moreover, there exist two positive constants ct(A) > 0 and cτ (A) > 0 such that

‖xMt − 2x‖ 6 ct∆t+ cτ∆τ ,

where xMt = (xMt
0 , · · · , xMt

Mτ
)T and the approximate solution to (21) is xMt

Mτ
/2.

The stability condition can easily be fulfilled by computing the eigenvalue with largest modulus
of A. This PDE-based solver will be studied in more details in a forthcoming paper since we
think that there is a potential for improvement of the methodology proposed here.

3.3 Numerical examples

In this subsection, we propose some simple examples to illustrate this new approach. Future
investigations and experiments will be proposed in a forthcoming paper.

Example 4a. In this experiment, we numerically illustrate the convergence of the PDE-
based solver derived above. We consider the system (Aα + Aβ)x = b with α = 0.9, β = 0.1,
A ∈ R256×256 and we implement Algorithm 6 approximating the following Poisson equation on
[−1/4, 1/4], −K

(
(−4)αu − (−4)β

)
u = f with null Dirichlet boundary conditions, K = 10−3,

and where f(x1) = exp(−50x2
1). We again use the spectral definition of the fractional Laplacian

which allows us to approximate the fractional Poisson equation by a MLFS (Aα+Aβ)x = b. The
standard FLS are solved using RK4 with a very small time-step. The PDE is solved by using
i) upwind scheme, and ii) Lax-Friedrichs scheme which respectively require to solve 4Mτ + 1,
2MtMτ + 1 standard FLS. Let us recall that unlike the upwind schemes, the Lax-Friedrichs
scheme does not require the knowledge of the sign of the eigenvalues. We take Mt = 8, and let
Mτ vary from 4 to 256 (corresponding to space-steps from 2−4 to 2−10). In Fig. 10 (Top-Left),
we report the corresponding reference and numerical solutions at (t, τ) = (1/2, 1/2). We plot on
Fig. 10 (Top-Right) the norm error between the PDE-based solution and a solution of reference,
|xMt
Mτ
− x(1/2, 1/2)| as a function of ∆τ . Notice that the loss of precision for ∆τ small enough

is in fact due to the scheme instability which appears when the CFL condition is violated (23).

This is confirmed numerically in Fig. 10 (Bottom), where the CFL number
∣∣λmax

∣∣(α−β)/2
∆t/∆τ

is reported vs. ∆τ . Future investigations should include higher order convergent schemes and
more efficiency comparisons.

Example 4b. We consider now the same test as before, but for the exponents (α, β) = (1.9.0.1)
(the rest of the data is similar). We report the results on Fig. 11. We observe that all the
schemes are now stable for any values of ∆τ and that overall the three schemes behave similarly.
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Figure 10: Example 4a. (α, β) = (0.9.0.1). (Top-Left) Solution of reference and PDE-based
numerical solution. (Top-Right) Graph of convergence. (Bottom) CFL-number as a function of
∆τ .
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Figure 11: Experiment 4b. (α, β) = (1.9.0.1), (Left) Solution of reference and PDE-based
numerical solution. (Middle) Graph of convergence. (Right) CFL-number as a function of ∆τ .

Experiment 4c. We proceed with the same configuration as Example 4b, but where we solve

−K
(
(−4+W)αu− (−4+W)β

)
u = f,

whereW is a random potential (uniform law) N (0, 103). In this case, the eigenvalues of A(α−β)/2

are complex. We globally observe a good behavior of the schemes on Fig. 12, with again stability
issues for enough ∆τ .
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Figure 12: Experiment 4c. (Left) Solution of reference and PDE-based numerical solution.
(Middle) Graph of convergence. (Right) CFL-number as a function of ∆τ .
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3.4 Connection between the approximate PDE-solver and the gradient method

In this subsection, we are interested in the link between the PDE-based approach and the
gradient methods developed in Subsection 2.1, for solving

(Aα +Aβ)x = b . (24)

We set δ = (α + β)/2 and γ = (α − β)/2, and as explained above, the PDE-based method is
applied to

(Aγ +A−γ)x = A−δb . (25)

The preconditioned gradient method with ρ = 1 leads to the sequence of iterates

xk+1 = A−αb−Aα−βxk . (26)

Let us first recall some basic facts about the solutions to hyperbolic systems. For (t, τ) ∈ [0, 1/2]2

and A ∈ Rn diagonalizable in R+, we consider the following system

∂tx +A−γ∂τx = 0, x (0, τ) = x0(τ), x (t, 0) = x 0(t) . (27)

For τ > t, the solution to this system reads

x (t, τ) =
n∑
s=1

`Ts x0(τ − µ−γs t)rs ,

where {`s}s and {rs}s are the left and right eigenvectors of A and {µs}s the corresponding
eigenvalues.

We consider now an explicit approximate PDE-solver {yki }
16k6Mt
16i6Mτ

in the form:

yk+1
i = yki −

∆t

∆τ
A−γ

q∑
`=0

d`y
k
i−` , (28)

where ∆t = 1/2Mt and ∆τ = 1/2Mτ . Assuming that the scheme is convergent at order p in
space (τ) and 1 in time (t), we then have yMt

Mτ
∝ (A−γ + A−γ)−1b + O(∆τp) + O(∆t). For

the sake of simplicity, we assumed i) that the scheme is upwinded, which allows to avoid the
boundary condition at τ = 1/2, and ii) that Mτ > Mt in order to avoid the boundary condition
issues at τ = 0. The computational solver can be rewritten using matrix notation. We denote
for k 6Mt, Yk := {yki }16i6Mτ , such that

Yk+1 = AYk ,

where the block matrix A with Mτ ×Mτ blocks of size n× n, is such that for 1 6 i 6Mτ and
1 6 ` 6 q

Ai;i = I − d0
∆t

∆τ
A−γ , Ai;i−` = −d`

∆t

∆τ
A−γ .

We prove the following result.

Proposition 4 The PDE solver (28) can be reformulated as a preconditioned gradient method
(26) for solving (24).
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Proof. We denote zk := ykk in (28), and we reformulate the latter for k < Mt, as the following
iterative method

zk+1 = −d1
∆t

∆τ
A−γzk + Fk, (29)

where Fk is a correction term, defined as

Fk :=
(
I −

∆t

∆τ
d0A

−γ
)
ykk+1 −

∆t

∆τ
A−γ

q∑
`=2

d`y
k
k+1−` . (30)

Now in (30), ykk+1−` is such that by construction of the weights {d`}` and by projection on the
grid

ykk+1−` =
∑n

s=1 `
T
s x0(τk+1−` − µ−γs tk+1)rs +O(k∆t) +O(∆τ q)

=
∑n

s=1 `
T
s x

0
bk+1−`−µ−γs tk+1c

rs +O(k∆t) +O(∆τ) .

Thus, we have

Fk = ykk+1 −
∆t

∆τ
A−γ

∑q
`=0; 6̀=1 d`y

k
k+1−`

=
∑n

s=1 `
T
s

(
x0
bk+1−µ−γs tk+1c

−
∆t

∆τ
A−γ

∑q
`=0;`6=1 d`x

0
bk+1−`−µ−γs tk+1c

)
rs +O(k∆t) +O(∆τ) .

Let us recall that initially x(0, τ) =
(
(1− τ)I + τAγ

)−1
A−δb, with in particular x(0, 0) = A−δb.

In order to evaluate x(0, τ), we proposed to iteratively compute∫ τ+∆τ

τ

(
(1− s)I + sAγ

)
x(0, s)ds = A−δb.

In other words Fk is only related to the computation of A−δb, through {x0
j}16j6Mτ .

Finally, by taking i) −d0∆t/∆τ = −1, and ii) setting xk := A−γzk (such that x0 = A−γ−δb =
A−αb), the iterative method (29) reads (since 2γ = α− β)

xk+1 = A−γFk −Aβ−αxk ,

and where A−γFk, by consistency, is an approximation to A−αb/2. We hence recover the
preconditioned gradient method (26). �

4 Extensions and remarks

4.1 MFLS involving several matrices

We shortly discuss natural extensions of the methods developed in this paper to systems of the
form

(Aα +Bβ)x = b , (31)

where 0 < β < α < 1 and A and B are two distinct matrices. This system can still be seen as
an approximation to a fractional PDE, where A and B are now two distinct finite-dimensional
approximate differential operators. For the computational efficiency, we slightly modify the
system. Let us rewrite (31) as follows

Aα/2(Aα/2B−β/2 +Aα/2B−β/2)Bβ/2x = b . (32)

Such systems can then be solved in 3 steps
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1. Solve Aα/2z = b by using (4).

2. Solve (C + C−1)y = z, where C = Aα/2B−β/2. This system can be solved by using the
methods developed in this paper for 2-matrix MFLS.

3. Solve Bβ/2x = y.

4.2 Fractional PDEs with variable exponents

In a future work, we will also be interested in equations of the form

−
N∑
i=1

(−4)αi(x)u = f ,

on a bounded domain Ω, with null Dirichlet boundary condition on ∂Ω and where {αi}i=1,··· ,N
are N space dependent functions from Ω to (0, 1). Such models typically correspond to medium
non-homogeneities in the framework of material science. Introducing a K-point real space grid
{ξk}16k6K on Ω, using again the spectral definition of the fractional Laplacian, we aim to
numerically solve, for all 1 6 k 6 K,

N∑
i=1

Aαi(ξk)xk = b ,

which provides x = (x1, · · · , xK) ∈ RK×K . This problem is hence an extremely complex
problem, as it requires the computation of K MFLS, which can however be embarrassingly
implemented in parallel. Notice in particular that the intermediate FLS can now be solved
using an ODE-solver for

∂τx(τ, ξ) = −α(ξ)(A− I)
(
I + τ(A− I)

)−1
x(τ, ξ), x(0, ξ) = b ∈ Rn , (33)

whose solution x(τ, ξ) =
(
I + τ(A− I)

)α(ξ)
b is such that x(1, ξ) = A−α(ξ)b.

4.3 Time-dependent fractional PDE

Compared to the standard fractional Poisson equation −(−4)αu = f , it was shown in this paper
that fractional equations involving several fractional Laplace operators −

∑
α(−4)αu = f , is

in general much more computationally complex. However, the conclusion can interestingly be
different in the time-dependent extension to fractional heat or Schrödinger equations [20]. Let
us consider FPDEs on (t,x) ∈ [0, T ]×Ω with null Dirichlet boundary conditions, that we assume
to be well-posed, of the form

∂tu(t,x) =
N∑
i=1

ci(−4)αiu(t,x), u(0,x) = u0(x) , (34)

where {ci}i=1,··· ,N are some given complex numbers. We denote by u(t) ∈ Rn an approximate
solution to (34) at time t. A semi-discrete in space version of the equation would lead to at
least one MFLS of the form

∂tu =
N∑
i=1

ciA
αiu, for any (t,x) ∈ [T, T + ∆T ]× Ω . (35)
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In other words, from time T to T+∆T , if an explicit numerical scheme is used, the computation
of (35) can be performed by just evaluating Aαiu(t) for all i ∈ {1, · · · , N}. For stability
reasons, it may be more appropriate to use an implicit scheme which however would lead to the
computation to MFLS. In order to drastically improve the efficiency of the computation, we
can simply use an operator splitting method with an explicit numerical scheme for each split
equation. Thus, denoting Ti = T + ∆T , for i = 1, · · · , N , we solve

∂tv1 = c1A
α1v1 on ∈ [T, T1]× Ω, v1(0, ·) = u(T ) ,

∂tv2 = c2A
α2v2 on ∈ [T, T2]× Ω, v2(0, ·) = v1(T1) ,

· · · = · · ·
∂tvN = cNA

αNvN on ∈ [T, TN ]× Ω, vN (0, ·) = vN−1(TN−1) .

(36)

Hence, each equation of (36) “only” requires the computation to N standard FLS, while the
direct computation of (35) would require the computation of MFLS at each iteration. Naturally,
for u(T ) = v(T ) a first-order splitting would lead to ‖u(T+∆T )−v(T+∆T )‖ 6 C∆T 2. Higher
order splitting schemes would increase the computational complexity, but would also allow to
increase ∆T .

5 Conclusion

In this paper, we have derived and analyzed some standard and original computational methods
for solving multi-matrix fractional linear systems (MFLS). The latter can appear in the numer-
ical computation of fractional Poisson equations involving several spectrally defined fractional
Laplace operators. The computation of MFLS is shown to be very computationally complex,
as they require the solution to several intermediate standard fractional linear systems. We
have proposed a few relatively efficient gradient-type methods which provided a reasonable con-
vergence rate. However, it was shown that, by far, GMRES is in general the most efficient
algorithm, except in some specific cases. A new direct method has also been developed requir-
ing the solution to a first-order partial differential equation. Although the latter allows to use
all the existing technology for solving PDE with efficient and higher order convergence, a basic
approximation can be very computationally complex if not properly designed. A discussion be-
tween the gradient methods and approximate PDE solvers was also presented. In a forthcoming
paper, we will analyze in more details this latter approach.

A Accelerated FLS solvers

To accelerate the ODE-based solver for FLS, we propose an original two-step preconditioning
technique. The principle is relatively simple and consists in the following steps.

• Construction of a preconditioner P such that P−1A ≈ I, and such that P and A commute.
We refer for instance to [5] where a large number of commuting preconditioners are derived
for linear systems solved using a conjugate gradient method. Some of these preconditioners
can naturally be used to other iterative Krylov-type solvers.

• Construction on a fine mesh (step δτ , and Jτ iterations such that Jτδτ = 1) of an approx-
imation to P−αb, by efficiently numerically solving on [0, 1] by an ODE-solver

y′(τ) = −α(P − I)
(
I + τ(P − I)

)−1
y(τ), y(0) = b ∈ Rn . (37)

This provides a precise approximation {y(j)}j to y(τ) = (I + τ(P − I))−αb, such that
y(1) = P−αb. Practically, the solution to linear systems involving P must be computed
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much faster than those involving A. Typically, P can be taken as incomplete-LU or Jacobi
preconditioners as long as they commute with A.

• Computation on a coarser mesh (step ∆T � ∆t and JT � Jτ iterations) with an ODE-
solver of

z′(τ) = −α(A− P )
(
P + τ(A− P )

)−1
z(τ), z(0) = P−αb ∈ Rn . (38)

This provides an accurate approximation {z(j)}j , even on a coarse grid, to z(τ) = (P +
τ(A − P ))−αb, such that z(1) = A−αb. Notice that the commutativity of A and P is
required in order to justify that z is indeed solution to (38). Practically, the initial data
in (38) will be numerically given by the approximate solution y(JT ) to y(1) in (37).

To analytically justify the approach and for the sake of simplicity, let us assume that solving a
linear system involving P (resp. A) has a quadratic (cubic) complexity and that the equations
(37) and (38) are solved by using a standard implicit Euler method (although in practice we
will use higher order methods), i.e. there exists c(P ) > 0 such that

‖y(JT ) − P−αb‖ 6 c(P )δτ .

Hence a direct approach (4) has a complexity O(Jτn
3) on a fine mesh δτ , while the precondi-

tioned approach developed here has a complexity O(Jτn
2 +JTn

3), with JT � Jτ . For instance,
if Jτ ∝ n, we gain an order of complexity. Regarding the accuracy of the preconditioned tech-
nique, let us denote by f the following matrix valued function involved in the original direct
ODE-solver (4) and g the one appearing in (38)

f(τ) = −α(I −A)(I + τ(A− I))−1, g(τ) = −α(P −A)(P + τ(A− P ))−1 .

Hence, we have

df(τ) = −α(I −A)2(I + τ(A− I))−2, dg(τ) = −α(I − P−1A)2(I + τ(P−1A− I))−2 .

Then denoting Λf := supτ∈[0,1] ‖df(τ)‖ and Λg := supτ∈[0,1] ‖dg(τ)‖, for P−1A ≈ I, we get

Λg / α‖I − P−1A‖2 .

For instance, if we assume that A is positive definite, a precise estimate of Λf is easily obtained
as

Λf = α sup
τ∈[0,1]

max
16i6n

[ 1− λi
1 + τ(λi − 1)

]2
.

Beyond the order of convergence, the error of the method is typically dependent of exp(Λf,g)
(through the constant in the error estimate) [23]. As a consequence the smaller Λf,g, the smaller
the error. More precisely, for {x(j)}j (resp. {z(j)}j) approximate solution to (4) (resp. (38)),
we obtain

‖x(Jτ ) −A−αb‖ 6 exp(Λf )δτ , ‖z(JT ) −A−αb‖ 6 exp(Λg)(‖y(JT ) − P−αb‖+ ∆τ) .

Although ∆τ � δτ , this effect is counter-balanced by the fact that exp(Λg)� exp(Λf ). When-
ever we consider non-commutative preconditioners, the construction of efficient ODE-solvers for
FLS is a bit more tricky, and in this case we again refer to [3].
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