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Due to their high force sensitivity, mechanical resonators combining low mechanical dis-

sipation with a small motional mass are highly demanded in fields as diverse as reso-

nant force microscopy, mass sensing, or cavity optomechanics. “Soft-clamping” is a

phononic engineering technique by which mechanical modes of highly-stressed mem-

branes or strings are localized away from lossy regions, thereby enabling ultrahigh-Q for

ng-scale devices. Here, we report on parasitic modes arising from the finite size of the

structure which can significantly degrade the performance of these membranes. Through

interferometric measurements and finite-element simulations, we show that these parasitic

modes can hybridize with the localized modes of our structures, reducing the quality fac-

tors by up to one order of magnitude. To circumvent this problem, we engineer the spectral

profile of the parasitic modes in order to avoid their overlap with the high-Q defect mode.

We verify via a statistical analysis that the quality factors of devices fabricated with this

modal engineering technique are consistently closer to the value predicted by dissipation

dilution theory. We expect this method to find applications in a broad range of contexts

such as optomechanical cooling, resonant force microscopy, swept-frequency sensing or

hybrid quantum networks.

a)Corresponding author, to whom correspondence should be addressed: samuel.deleglise@sorbonne-universite.fr
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Edge mode engineering for optimal ultracoherent silicon nitride membranes

Mechanical resonators have been widely used in force sensing owing to the exceptional sensi-

tivities that they can achieve in state-of-the-art devices1,2. In addition, the long coherence times of

motional states of modern mechanical resonators, reaching the milliseconds3, can be exploited in

quantum information to produce quantum memories4, to couple otherwise incompatible quantum

systems such as for optical-to-microwave photon conversion5–8, or to study non-classical states

of motion9–11. Tensioned silicon nitride (SiN) membranes are among the most popular platforms

because of their ultrahigh quality factor Q. This is enabled by a mechanism known as dissipation

dilution: although the intrinsic quality factor Qintr of the amorphous SiN is low (of the order of

a few thousands13), the ability to grow this material with high tensile stress can be exploited to

obtain Q ≫ Qintr
14 in high-aspect ratio structures.

In highly stressed membranes and strings, most of the elastic energy of vibrational modes is

stored in lossless elongation rather than in bending, which causes dissipation in the presence of

intrinsic material loss15,16. For a thin quasi-2D resonator vibrating out-of-plane with a profile

u(x,y), the energy lost per oscillation cycle ∆U is given by16

∆U =
2π

Qintr

Ubend. (1)

Here, Ubend is the energy stored in bending, and is related to the mean curvature of the membrane

c(x,y) = ∇
2u(x,y) by

Ubend =
Eh3

24(1−ν2)

∫
c2(x,y) dxdy, (2)

where E is Young’s modulus, ν is the Poisson ratio, and h is the resonator thickness. On the

other hand, the energy stored in elongation Uelong is related to the gradient of the mode profile

g(x,y) = ∇u(x,y), and reads

Uelong =
σh

2

∫
g2(x,y) dxdy, (3)

where σ is the tensile stress. In highly stressed systems where Uelong ≫Ubend, the effective gain

in Q is Q/Qintr =Uelong/Ubend.

In a model where only u is subject to fixed boundary conditions at the borders of the resonators

(u|borders = 0), the mode shape is purely sinusoidal, and u and its derivatives are independent of σ .

In that case, from Eqs. (2) and (3), the gain would be

Q

Qintr
∝ Λ, with Λ =

σ l2

Eh2
, (4)

where l is the typical lateral dimension of the mode. However, the hard clamping boundary condi-

tion in thin-film resonators imposes an additional constraint of n ·g|borders = 0, where n is a vector
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Edge mode engineering for optimal ultracoherent silicon nitride membranes

normal to the borders. The mode profile thus acquires a dependence on σ , which we denote with

an additional index in uσ , gσ , and cσ . In particular, although uσ (x,y) and gσ (x,y) uniformly con-

verge towards the limiting sinusoidal profiles as σ → ∞, cσ (x,y) exhibits a divergence close to the

anchor points16. The net result is that the bending energy varies as Uelong ∝
√

σ17, and a modified

scaling for the quality factor Qhc of such “hard clamped” systems is found16:

Qhc

Qintr

∝

√
Λ. (5)

In practice, SiN can be deposited with σ up to 1.4 GPa. This value can be pushed close to

the ultimate yield limit of approximately 6 GPa by stress engineering18. For Young’s modulus of

E = 270 GPa and an aspect ratio l/h ≈ 1 mm / 20 nm (representative of state-of-the-art devices3),

Qhc/Qintr ∼ 103, rather than the potential 106 for the ideal case described by Eq. (4).

To overcome this shortcoming, a method was recently developed which uses phononic engi-

neering to make anchor losses negligible19. By structuring the resonators with a phononic crystal

(PnC), the modes become localized within a central defect region, such that the PnC exponentially

attenuates the modes and the asymptotic divergence of cσ is suppressed. These so-called “soft

clamped” resonators benefit from the full dissipation dilution described by Eq. (4), resulting in Q

exceeding 108 at room temperature19,20.

A critical consideration in the design of such resonators is the impact of finite size effects of

the PnC. Indeed, edge modes (EMs) which are localized near the borders of the resonator may be

supported. These EMs must satisfy the hard clamping boundary condition, and therefore follow

the suboptimal gain in Q of Eq. (5). Crucially, if some frequencies of EMs are degenerate to

those of the central defect modes (DMs), they can form hybridized modes which are no longer

soft clamped, and the ideal dissipation dilution is lost. Since fabrication-related errors result in

fluctuations of the mode frequencies, the onset of mode hybridization is unpredictable, leading to

resonators with a large sample-to-sample variability in Q.

In this Letter, we study parasitic EMs in membranes patterned with a PnC. We experimentally

show that a dense spectrum of EMs arises in PnC membranes, and that it can lie in the vicinity

of DM eigenfrequencies. We verify this result with finite-element simulations, and show that the

DM and the EMs can indeed become hybridized. To overcome this, we propose an alternative

design in which the frequencies of the parasitic modes are shifted away from the DM of interest.

Through a statistical study of both designs, we demonstrate that the average performance of PnC

membranes can be improved by implementing edge mode engineering techniques, resulting in
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Edge mode engineering for optimal ultracoherent silicon nitride membranes

higher reproducibility in the DM Q.

The samples presented in this work are fabricated from 4-inch Si (100) wafers purchased from

Si-Mat21, on both sides of which a layer of SiN is deposited with a thickness of approximately 100

nm. Optical lithography and reactive ion etching are used on one side to form a hexagonal array

of holes19. A hot potassium hydroxide bath is then used to chemically back-etch the silicon sub-

strate, releasing the PnC membrane; the details of the fabrication process are elsewhere22. Owing

to the cumulative fabrication imprecision of optical lithography and pattern alignment, there is an

overall imprecision in the membrane side length and PnC centering amounting to approximately

5 µm. An example of a “first generation” PnC membrane is shown in Fig. 1a, with dimensions of

approximately 2.84 mm x 3.08 mm. The PnC holes have a radius of 42 µm, and the lattice param-

eter is 160 µm, creating a spectral bandgap for out-of-plane motion in the range of approximately

1.4 to 1.6 MHz.

Characterization is performed by spatially-resolved interferometry. The thermal fluctuations of

the membrane are probed with a 5 mW Nd:YAG laser, with a beam waist at the sample of ap-

proximately 10 µm. The power spectral densities (PSD) are measured with a balanced homodyne

detection, effectively rejecting the technical noise of the laser below the shot-noise limit. The

spectra are taken with a resolution bandwidth of 30 Hz, which allows for a single-shot acquisition

of the entire spectrum of interest. The interferometer is set on a translating stage (Newport M-426

with LTA-HL actuator), such that the PSD can be recorded as a function of position, from which

the displacement profiles of the eigenmodes can be reconstructed23. All measurements are done

at a pressure of a few nanobar, to ensure that gas damping remains negligible.

The quality factors Q of our samples are measured by ringdown measurement. The membrane

is first driven by modulating the intensity of the measurement beam. After a few seconds, the in-

tensity modulation is abruptly switched off; the interferometric signal is then used to continuously

monitor the free evolution of the mode amplitude as a function of time. Finally, the envelope of

the amplitude is fitted with a decaying exponential, from which Q is deduced. An example of a

typical ringdown curve is shown in Fig. 4b. We have checked that the measured Q values are

unaffected by the probe laser itself.

The simulated spectrum of a first-generation membrane around the bandgap of the PnC is

shown in Fig. 1b. The membranes are modelled by a quasi-3D system, using the finite-element

solver COMSOL Multiphysics. To faithfully render the richness of the spectrum in the presence

of micro-imprecisions of fabrication, the PnC structure is shifted from the center of the membrane
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Edge mode engineering for optimal ultracoherent silicon nitride membranes

A

B C

A B C

FIG. 1. (a) Optical micrograph of a first generation PnC membrane. In yellow, the SiN is suspended

above air, and in blue, the SiN lies above Si. The dots represent the points where the spectra shown in (c)

are measured. (b) Simulated spectrum near the PnC bandgap. (c) PSD spectrum, consisting overall of 4

spectra, measured at the vertical borders (cyan), the horizontal borders (blue), the defect (red), and within

the PnC (black). For both spectra, the bandgap is highlighted in light blue. Absolute value of the simulated

displacement fields of (d) four membrane modes and (e) of selected examples of VEMs (left), DMs (center),

and HEMs (right). The amplitude of the mode is arbitrary, with dark blue representing zero displacement,

and yellow representing maximal displacement. All scale bars in this figure represent 1 mm.

by 5 µm in each direction. Outside of the highlighted bandgap, the modes are delocalized over the

entire membrane; examples of such membrane modes are shown in Fig. 1d. Within the bandgap,

we observe three different kinds of modes, categorized by their position on the membrane: DMs

are localized near the central defect, while vertical EMs (VEMs) and horizontal EMs (HEM) are

localized along the vertical and horizontal borders of the membrane, respectively. Some illustrative

examples of these kinds of modes are shown in Fig. 1e. For the purposes of this work, only DMs
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Edge mode engineering for optimal ultracoherent silicon nitride membranes

FIG. 2. (a) Definition of the margin M at the border of the membrane. (b) and (c) Mechanical characteristics

of DM A (blue) and nearby VEMs (light gray), as a function of the margin. Avoided crossings are marked

by vertical lines.

labeled A, B, and C are considered.

Measuring a similar spectrum cannot be done in a single shot, as there is no single point at

which all modes present significant displacement. Several measurements are thus taken, at 13

different points on the membrane, pinpointed in Fig. 1a. They are grouped into 4 categories, based

on their location: on the defect, along the horizontal borders, along the vertical borders, and within

the PnC. For each measurement group, a single spectrum is then produced by taking the maximal

value of the displacement noise at each frequency, giving the full spectrum of motion shown in

Fig. 1c. The simulated and experimental spectra are only in qualitative agreement; we attribute

the discrepancies to microscopic differences in the geometry between the simulated model and the

realized sample. Such discrepancies however do not significantly affect the conclusions of this

work.

The spectrum near DM A is characterized by two features which are absent for DMs B and

C: first, a series of VEMs are measured at frequencies near that of mode A; second, we observe

a splitting of the DM A into several peaks. Such a concurrence is indicative of strong coupling

between VEMs and DM A, a feature which has not been reported in other works19,24. Note that

we place particular emphasis on DM A because it is primarily studied in current applications of

PnC membranes24,25.

To verify the strong coupling hypothesis, we first induce hybridization between the VEMs and

6

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
3
1
6
2
6



Edge mode engineering for optimal ultracoherent silicon nitride membranes

DM A by precisely matching their frequencies in a numerical model with COMSOL. The frequen-

cies of the VEMs are found to vary strongly with a geometrical parameter of the membrane: the

margin M, defined as the distance between any outermost hole of the PnC and the nearest border

of the membrane – see Fig. 2a. We sweep this parameter such that several VEMs successively

cross the frequency of DM A. For each value of M, we extract the eigenmode frequencies (Fig.

2b) and their quality factor Q (Fig. 2c). The latter value is computed by using the definition

Q = Qintr×Uelong/Ubend. The value of Qintr, which depends on the membrane thickness for sub-

micron membranes where surface loss dominates, is taken to be Qintr = 6× 103 for h = 100 nm,

based on empirical measurements13. Ubend is evaluated using Eq. (2), whereas Uelong is computed

with the formula Uelong = ρhΩ
2
m

∫
A dxdy u2

σ (x,y)/2, where ρ = 3200 kg.m−3 is the density of SiN,

and Ωm is the angular frequency. This expression yields identical results to Eq. (3) for high σ ,

but is more efficient for computation. To further reduce the computation time, the system has been

assumed symmetrical. As a result, fewer VEMs appear compared to a more realistic model, but

the general behavior of the system is maintained.

When the frequency of an edge mode approaches that of the DM, an avoided crossing can

be observed, from which we estimate that the coupling rate between a VEM and the DM is of

the order of a few kHz, a value consistent with the coupling rate recently reported in dimer defect

membranes25. The quality factor Q, shown in Fig. 2c, follows the behavior expected from a system

of two coupled harmonic oscillators: the avoided crossings go along with a dramatic reduction in

Q by almost one order of magnitude.

To maximize the DM Q, one could in principle fine-tune M to a specific value where the fre-

quency difference between the DM an all VEMs is well above the coupling rate. This is a chal-

lenging and non-reproducible approach because of the high accuracy in M that is required, which

exceeds the possibilities of the currently employed fabrication method. Furthermore, any off-

centering of the PnC pattern with respect to the membrane window will multiply the number of

EMs as the symmetry is broken. Another option is to reduce the coupling between VEMs and DMs

by increasing the size of the membrane, and, correspondingly, of the PnC. However, the spectral

density of EMs increases with the membrane side length, and, despite an expected exponential

decrease of the coupling rate, the likelihood of hybridization does not go to zero. Furthermore,

we note that this approach has practical drawbacks, such as more fragile samples, reduced thermal

anchoring to the substrate, increased Brownian motion and the possible emergence of instabilities

resulting from low-frequency mechanical modes.
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Edge mode engineering for optimal ultracoherent silicon nitride membranes

A

BC

FIG. 3. (a) Optical micrograph of a second generation PnC membrane. The dots represent the points where

the spectra shown in (b) are measured. (b) Simulated spectrum near the PnC bandgap. (c) PSD spectrum

consisting overall of 4 spectra, measured at the vertical borders (cyan), the horizontal borders (blue), the

defect (red), and within the PnC (black). For (b) and (c), the bandgap is highlighted in light blue.

For this reason, we suggest a third method, robust to errors in microfabrication, which will

ensure reproducibly high quality factors for DM A. Its principle is to engineer the frequencies of

the VEMs to be far from that of DM A, ensuring that even with micro-fabrication errors, they are

always sufficiently separated. This second generation of membranes, shown in Fig. 3a, has its

vertical borders patterned with supplementary arrays of holes near the anti-nodes of the VEMs.

This results in a shift toward higher frequencies of the VEMs, as shown in the simulated spectrum

in Fig. 3b. As before, qualitative agreement is found with the measured spectrum, shown in Fig. 3c.

Because of fabrication imprecision, the effect of edge mode coupling is not expected to be

systematically observable on every sample. For instance, no splitting of DM B or C can be ob-

served in Fig. 3b, despite their spectral proximity to VEMs. Rather, we expect that a good PnC

membrane design would be robust to fabrication errors in M, resulting in a high reproducibility of

the DM Q. To verify this, we measure the fluctuations in Q of the DMs of 10 samples for each

membrane generation, with a design value of M = 20 µm. The results for the first generation

membrane are shown in Fig. 4a: DM A has an average quality factor QA,1 of 3.9× 106, with a

standard deviation of 2.2×106. Equivalent values are QB,1 = 10.0×106 and 1.0×106 for DM B,

and QC,1 = 9.6× 106 and 1.0× 106 for DM C. Furthermore, we check that the membranes with

low QA,1 indeed present mode hybridization, by imaging the mode profile. In Figs. 4c and d, the

profiles of two low-quality modes near the theoretical resonance frequency of DM A are shown:
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Edge mode engineering for optimal ultracoherent silicon nitride membranes

FIG. 4. (a) Measured Q values for modes A (yellow), B (light green), and C (dark green) for the first

generation design. The simulated spectrum is included for reference. The red cross pinpoints the mode

imaged in profiles (c) and (d). (b) Example of ringdown measurement, from which Q can be determined

with a linear fit (orange). (c)-(d) Mode profile images with significant displacement near the borders and

the center. The displacement is plotted in arbitrary units, and the scale bar represents 1 mm. (e) Collected

values of Q for the second generation design, with the same color coding as (a). The simulated spectrum is

shown above. The red dot pinpoints the mode used for the ringdown measurement in (b). In (a) and (e), the

error bars indicate the mean value and the standard error of the quality factor and frequency.

both of them present significant displacement in the central region and near the (left or right) ver-

tical borders. We attribute this breaking of left-right symmetry to a slight off-centering of the PnC

with respect to the membrane window.

The results for the second generation membrane are shown in Fig. 4e: DM A has an average

quality factor QA,2 of 7.2×106, with values spread over 2.0×106. Equivalent values are QB,2 =

6.4× 106 and 4.6× 106 for DM B, and QC,2 = 3.2× 106 and 2.6× 106 for DM C. The average

quality factors in the absence of EM coupling (namely QA,2, QB,1, and QC,1) agree to within 30%

with the optimal value predicted by our numerical simulations of 1.1× 107, as expected for a

membrane thickness of 100 nm19. In addition, for 7/10 second generation membranes, the Q

of DM A exceeds 60% of the optimal value, against only 2/10 for first generation membranes.

We attribute the remaining dispersion of quality factors to an irreproducibility in the mechanical

loss angle of the raw silicon nitride layer. With this edge mode engineering, we can thus more

reproducibly approach the ideal dissipation dilution predicted by Eq. (4) for DM A, although this

has the collateral effect of degrading DMs B and C.
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The scaling of Q with the thickness of the membrane emphasizes the importance of edge mode

engineering: DMs follow a scaling described by Eq. (4), while EMs, limited by anchor losses,

follow the less favorable scaling of Eq. (5). In our work, the aspect ratio l/h ∼ 104 leads to a

tenfold reduction of the DM quality factor when hybridization with an EM occurs. However, in

experiments with more extreme aspect ratios up to l/h ∼ 105 (with h down to 12 nm)3,26–28, the

Qs of DMs exceed 108, and hybridization events are expected to lead to a 100-fold reduction of

the quality factor.

To summarize, we have presented our observation of a class of localized states of PnC mem-

branes arising from finite size effects: edge modes. We have demonstrated that they can hybridize

with the high-Q DMs, which degrades the performance of the membrane and reduces the repro-

ducibility of the quality factors. To address this issue, edge mode engineering has been used to

ensure that the frequencies of the edges modes are maintained far from those of the fundamental

defect mode, such that hybridization cannot occur due to fabrication error. The method described

here, by enabling the reliable fabrication of ultracoherent softly-clamped mechanical resonators,

paves the way towards the wide-scale adoption of these devices in various scientific and industrial

applications, such as magnetic resonant force microscopy1,12, or hybrid quantum networks29,30.

The increased spectral isolation demonstrated here is also advantageous in optomechanical cooling

experiments, where mode overlaps due to optical broadening set a practical limit to the achievable

cooling rate, or in swept resonant sensing applications31 where classical feedback or optical spring

effects could be employed to shift the defect-mode frequency over a large frequency-range free of

spurious modes.
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