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Hydrodynamic phonon transport in solids exhibits unique thermal transport behaviors, such as second sound,
the Poiseuille flow, and ultrahigh thermal conductivity. However, those have been limited up to the cryogenic
temperature (~1 K) for a few materials. In this work, by employing the phonon Boltzmann transport equa-
tion, we demonstrate hydrodynamic phonon transport in organic systems such as bulk crystalline polymers.
Remarkable hydrodynamic phonon transport up to 50 K is demonstrated for both polyacene (-C4H,-), and
polyacetylene (-C,H;-), crystals. More interestingly, a weak phonon hydrodynamic behavior takes place in crys-
talline polyethylene (-C,H,-), in the intermediate-temperature range around 120 K, different from the observed
hydrodynamics in most systems. The spectral phonon analysis reveals that the torsional motion of the A, mode
causes this unique hydrodynamic behavior. A modified criterion for the emergence of hydrodynamic phonon
transport is proposed which agrees quantitatively with the results from thermal conductivity and phonon drifting
component calculations. This study provides physical insights into the understanding of phonon hydrodynamics
in organic materials and also a reliable criterion to probe the hydrodynamic phonon transport in complex systems.

DOI: 10.1103/PhysRevB.102.195302

I. INTRODUCTION

Thermal transport is an important issue in the fields of
phonon physics and heat management [1-4]. In addition
to the well-known diffusive and ballistic thermal transport
regimes [1,5], thermal phonons can also propagate hydro-
dynamically as a collective motion when the momentum-
conserving phonon-phonon scattering (normal process) is
dominant [6-9]. In this phonon hydrodynamic regime, many
unique transport behaviors have been demonstrated so far,
such as second sound [10], the Poiseuille flow [11], ultrahigh
thermal conductivity «, and its strong size effect [12,13]. More
recently, hydrodynamic phonon transports in new systems
have received extensive research attention. For instance, hy-
drodynamic phonon transport and second sound were reported
in two-dimensional materials [12,14] and graphite [15-17].

The observation of hydrodynamic transport behavior is,
however, limited to only a few inorganic materials demon-
strated at very low temperatures [7,17-20]. For example,
phonon hydrodynamics and second sound are experimentally
observed in bismuth [7,10] and solid helium [20] below 4 K.
More recently, studies have revealed that the existence of the
bending phonon modes is the origin of hydrodynamic phonon
transport observed in two-dimensional systems [12,14] and
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graphite [16]. In this regard, organic materials, such as crys-
talline polymers which have intrinsically bending phonon
modes, would be a promising platform to explore phonon
hydrodynamics. Moreover, the criterion to determine the
emergence of phonon hydrodynamics is still an open ques-
tion. In the 1960s, Guyer and Krumhansl [6] proposed a
criterion to predict different phonon transport regimes by
directly comparing various scattering rates. Compared to
recently reported criteria, such as heat wave propagation
length [7] and dimensionless « [16], Guyer’s criterion is still
the most widely used one. However, its validity in complex
materials or at relatively high temperatures deserves further
examination.

In this work, we report hydrodynamic phonon transport
in organic systems and, more specifically, in bulk crystalline
polymers. Three types of bulk crystalline polymers are stud-
ied, including polyethylene (-CyHy4-),, polyacene (-C4H»-),,
and polyacetylene (-C,H,-), (see Fig. 1). Unlike the emer-
gence of hydrodynamic phonon transport at low temperatures
observed in polyacene (PA-I) and polyacetylene (PA-II), we
find that hydrodynamic phonon transport in polyethylene
(PE) unusually appears in the intermediate-temperature range,
which cannot be captured by Guyer’s criterion. We further
propose a modified criterion based on the mode-dependent «
that can precisely predict the hydrodynamic phonon transport
regime in all three types of crystalline polymers. Our work
provides physical insights into the deeper understanding of
hydrodynamic phonon transport in polymer systems.

©2020 American Physical Society
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FIG. 1. The unit cell structures of crystalline polymers for
(a) polyethylene (-C,Hy-),, (PE), (b) polyacene (-C4H;-), (PA-I), and
(c) polyacetylene (-C,H,-), (PA-II). The top panel is the bulk crys-
talline polymer, and the bottom panel is the single-chain crystalline
polymer.

II. CRYSTALLINE POLYMERS AND METHODOLOGY

The bulk crystalline polymers are composed of well-
aligned polymer chains [21,22] and inherently possess strong
bending acoustic (ZA) phonon modes due to the flexible
nature of polymers [23,24]. Because of the weak van der
Waals (vdW) coupling between polymer chains, bulk crys-
talline polymers well persist the quadraticlike ZA phonon
modes, which was reported in previous studies on PE [21,25].
The atomic structures of the individual polymer chain in bulk
crystalline polymers are shown in Fig. 1, and the unit cell for
three types of crystalline polymers is shown in the top panel of
Fig. 1. More detailed information about the atomic structures
can be found in the Materials Project database [26].

By using the iterative solution of the Boltzmann transport
equation (BTE), the lattice thermal conductivity «; of crys-
talline polymers along the axial (z) direction of the polymer
chains can be obtained as [27-29]

1

K= ke T2QN

> " no(no + 1w, v F, ()
A

where kg, T, 2, and N refer to the Boltzmann constant, the
temperature, the volume of the unit cell, and the number of
wave vector points in the first Brillouin zone, respectively. The
summation goes over each phonon mode A that is uniquely
defined by both wave vector and phonon branch. ny denotes
the equilibrium Bose-Einstein distribution function, 7 and w;,
are, respectively, the reduced Planck constant and the phonon
frequency, and v; is the phonon group velocity along the z
direction. During the iterative process, the last term, Fj, in
Eq. (1) can be expressed as [27,28,30] F, = rf(vk + Ay),
where rf is the phonon lifetime of the mode A in the relax-
ation time approximation (RTA) as obtained from perturbation
theory and A, is a correction term [27,29]. The phonon
scattering process and the initial 7 are calculated based on
Fermi’s golden rule with the force constant obtained from
the adaptive intermolecular reactive empirical bond order
(AIREBO) potential [31], which has been widely used in
the study of thermal transport in polymers. In the AIREBO
potential, the long-range vdW interaction between polymer
chains is included. The boundary scattering is not considered
in the calculations of thermal conductivity since we focus
on the intrinsic thermal conductivity of bulk samples. Both
thermal conductivity calculations based on RTA (k) and the
iterative solution (k;) are performed by using the ShengBTE
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FIG. 2. Thermal conductivities of crystalline polymers from the
iterative solution (x;) and relaxation time approximation («xg) of the
Boltzmann transport equation for (a) PE, (b) PA-I, and (c) PA-IL. The
symbols in (a) denote the literature results from Refs. [21,32,33].

package [29]. The convergence of the integration grid along
three directions in the calculation of x has been well tested for
all systems at various temperatures. The convergent mesh is
chosen tobe 4 x 6 x 60 (> 75 K) and 4 x 6 x 70 (< 75 K)
for PE, 4 x 7 x 60 (> 75 K) and 4 x 7 x 70 (< 75 K) for
PA-I, and 5 x 5 x 60 (> 75 K) and 5 x 5 x 70 (< 75 K) for
PA-II, respectively.

III. THERMAL CONDUCTIVITY

The calculated thermal conductivities for three types of
crystalline polymers are shown in Fig. 2. Compared with
the low thermal conductivity values in amorphous polymer
systems [23,24,34], which are typically on the order of 0.1
W m~'K~! at room temperature, the crystalline polymers ex-
hibit much higher « as predicted by BTE calculations. For
instance, the room temperature thermal conductivity for PE
calculated from iterative solution is 216 Wm~'K~!, in good
agreement with literature results from the molecular dynamics
simulation [32], the BTE calculation [21], and experimental
measurement [33]. Our results also show « perpendicular to
the chain direction, the x or y direction, is about 0.22% of
the value along the z direction due to the weak vdW inter-
action, which is neglectable in this work. Moreover, the two
schemes of BTE calculations are notably different in certain
temperature ranges for all three types of crystalline polymers.
The RTA scheme substantially underestimates the thermal
conductivity compared to the iterative scheme, especially in
PA-I and PA-II. A similar discrepancy in thermal conductivity
has also been reported in two-dimensional materials [12] and
bismuth [7]. This is because RTA incorrectly treats the nor-
mal process as a thermally resistive process that contributes
directly to thermal resistance, similar to the umklapp process.
However, the normal process only redistributes phonons in the
reciprocal space and does not contribute directly to thermal re-
sistance. For normal processes, total momentum is conserved
(qx + qv — qu» = 0), which means all three phonon wave
vectors belong to the first Brillouin zone, whereas in umklapp
processes momentum is not conserved (q, + q;» — qu = G)
and the summation corresponds to a nonzero reciprocal lattice
vector (G). Here, q; .+ are the wave vectors of three phonon
modes, A, A/, and A", respectively, which participate in the
three-phonon scattering processes. As a result of energy and
momentum conservation, the normal processes do not directly
dissipate heat, and umklapp processes act as the source of
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FIG. 3. (a) The ratio of «;/kg in PE. (b) and (c) The averaged drifting component in crystalline polymers calculated based on Egs. (6)
and (7), respectively. The averaged scattering rates of the normal process, umklapp process, and boundary scattering calculated based on

Eq. (3) for (d) PE, (e) PA-I, and (f) PA-1I, respectively.

intrinsic dissipation. The equal treatment of normal and umk-
lapp scattering in RTA calculations would overestimate the
phonon-phonon scattering rate and thus cause the underesti-
mation of ¥ when normal scattering is significantly larger than
the umklapp scattering.

When the umklapp process is comparable to the normal
process in phonon scatterings, which is typically the case at
high temperatures [35], kg overlaps with «; (Fig. 2). At low
temperatures, however, the RTA scheme is not applicable in
the study of hydrodynamic phonon transport as the normal
process is dominant [36]. Interestingly, although kg is not re-
liable for hydrodynamic phonon transport, its deviation from
k; indirectly reflects the importance of the normal process,
which is a signature of hydrodynamic phonon transport. In
other words, the difference between «r and k; could serve
as an indicator for the emergence of hydrodynamic phonon
transport. Therefore, the ratio of «; to kg for PE displayed in
Fig. 3(a) indicates that hydrodynamic phonon transport takes
place in the intermediate temperature range at ~120 K, while
the large discrepancies between «; and xz shown in Figs. 2(b)
and 2(c) suggest that hydrodynamic phonon transport occurs
in both PA-I and PA-II at much lower temperatures. How-
ever, the difference between k; and «g is just a signature
of phonon hydrodynamics. To further identify various ther-
mal transport regimes, Guyer’s criterion should be applied
(see Sec. IV).

We then discuss the temperature dependence of ther-
mal conductivity observed in Fig. 2. The temperature-
dependent thermal conductivity in crystals is a consequence
of the competing relationship between phonon excitation and
phonon-phonon scattering. When the temperature decreases,
high-frequency phonons are less excited according to the
Bose-Einstein distribution, leading to the reduction of heat
capacity and thus the reduction of thermal conductivity. At
the same time, the anharmonic phonon-phonon scatterings
are suppressed, leading to the increase of phonon lifetimes
and thus the increase of thermal conductivity. As we shall
demonstrate in Sec. IV, the low-frequency phonons contribute
dominantly to thermal conductivity in both PA-I and PA-II
due to the large group velocity [see Figs. 4(b) and 4(c)],
which still can be excited at low temperatures. Therefore,
the suppressed phonon scattering is the dominant competing
effect in both PA-I and PA-II, leading to the increase of «; in
Figs. 2(b) and 2(c) with the decreasing temperature. However,
for the case of PE, the low-frequency phonons are mixed
with flat bands exhibiting low group velocity and a stronger
phonon-phonon scattering rate, which causes the dominant
contribution phonon to thermal conductivity shifts to high
frequency (see discussion in Sec. IV). The high-frequency
phonons are less excited with decreasing temperature, leading
to the decreasing «; in PE with decreasing temperature shown
in Fig. 2(a).
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FIG. 4. Phonon dispersion (left panel) and mode-contributed
specific heat C(w) and thermal conductivity k() (right panel) for
(a) PE at 120 K, (b) PA-I at 50 K, and (c) PA-II at 50 K. The arrow in
(a) indicates the torsional motion A, optic mode. Only the dominated
phonon modes below 20 THz are displayed.

On the other hand, the normal process, which becomes
significant at low temperature, is incorrectly treated as the
thermal resistive process in the RTA calculations, leading to
an overestimated phonon scattering rate at low temperatures.
Surprisingly, the RTA solution predicts a decreasing trend in
thermal conductivity at low temperatures in both PA-I and
PA-II, which is in direct contradiction to the increasing trend
predicted by the iterative solution. It should be pointed out
that the decreasing trend with the RTA solution at low tem-
peratures found in our study is different from the decreasing
trend induced by the boundary scattering reported in previous
studies [37,38], as we consider bulk crystalline polymers and
no boundary scattering term is included in our calculations.
To examine the origin of such discrepancy between RTA and
iterative solutions, we take PA-I as an example and compare
the spectral phonon properties at two different temperatures
(150 and 40 K).

From the kinetic theory, thermal conductivity can be writ-
ten as k = ) , Coual,, where C, and [, denote the heat
capacity and mean free path for the phonon mode A. The
phonon mean free path distribution is related to the phonon-
phonon scattering strength, which is different for RTA and
iterative solutions, while the variation of heat capacity results
from the temperature-dependent phonon population, which is
the same for these two solutions. When the temperature de-
creases, two effects take place: (i) the reduced phonon-phonon
scattering that leads to the increase of [, and (ii) the decrease
of phonon population that causes the decrease of C,. The final
temperature dependence of the thermal conductivity is a result
of these two competing effects.

Figure 5(a) shows that the values of Ik /l;50x for various
phonons are all greater than unity, indicating that the phonon
mean free path rapidly increases with decreasing temperature
due to the weakened phonon-phonon scattering. However,
compared to the significant increase of the phonon mean free
path in the iterative solution, the enhancement of the phonon
mean free path in the RTA solution is limited, exhibiting
a difference of at least two orders of magnitude between
the iterative and RTA solutions in the ratio of Ik /lis0x-
Such a difference should originate from the overestimated
phonon-phonon scattering in the RTA solution, in which the
ultrastrong normal process is not correctly treated.
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FIG. 5. Comparison of spectral phonon properties at different
temperatures for PA-I. (a) The ratio of the phonon mean free path
[ at 40 and 150 K. (b) The ratio of heat capacity weighted phonon
mean free path C/ at 40 and 150 K. The calculations are carried out
with RTA and the iterative solution of BTE, respectively. The solid
lines in (b) are plotted to guide the eye for the ratio of unity.

The heat capacity weighted phonon mean free path, i.e.,
Cl, is further shown in Fig. 5(b). The values of the ratio
Caoxlaok /(Cisoxlisox ) for the RTA solution are greater than
unity when the frequency is less than 2.5 THz. Above 2.5 THz,
the ratio of Cyoxls0x /(Cisox 150k ) for the RTA solution is less
than unity and shows a rapidly decreasing tendency, indi-
cating the variation of phonon properties with temperature
is dominated by the reduction of phonon population in this
frequency range. The final thermal conductivity value de-
pends on the relative contributions from the low-frequency
phonons (below 2.5 THz, which have enhanced CI) and the
high-frequency phonons (above 2.5 THz, which have reduced
Cl). The cumulative thermal conductivity in Fig. 6 further
shows that phonons with frequency below 2.5 THz contribute
only around 10% to the total thermal conductivity in the RTA
solution. Therefore, the phonons above 2.5 THz, which have
reduced CI with decreasing temperature, make the dominant
contribution to thermal conductivity at low temperature for
the RTA solution, which eventually leads to the decreasing
trend of thermal conductivity for the RTA solution with de-
creasing temperature. This abnormal temperature dependence

1.0 N
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2 | ;! ]
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FIG. 6. The normalized cumulative thermal conductivity of PA-I
computed by iterative («;) and RTA (xg) solutions at 150 and 40 K.
The vertical and horizontal lines pinpoint two frequencies (2.5 and
15 THz) for comparison at 40 K.
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is completely opposite to the increasing trend of thermal
conductivity with decreasing temperature observed in most
materials at low temperature where the hydrodynamic phonon
transport behavior is absent, such as in bulk diamond [28] and
silicon [36].

On the contrary, with the iterative solution, the threshold of
unity for the ratio of Cyoxlsox/(Cisoxlis0x) 1s around 15 THz
[Fig. 5(b)], while phonons below 15 THz make the dominant
contribution to the total thermal conductivity with the iterative
solution (Fig. 6), leading to the increasing trend of thermal
conductivity for the iterative solution with decreasing tem-
perature. Here, we emphasize that compared to the iterative
solution, the incorrect treatment of the normal process in the
RTA solution not only leads to the underestimation of the ther-
mal conductivity but also can produce unreliable temperature
dependence of the thermal conductivity at low temperature
when the hydrodynamic phonon transport takes place (e.g.,
the normal process is dominant). Meanwhile, the observed
temperature-dependent xy is different from predictions by the
Callaway model in which normal and umklapp processes are
separately treated [39]. Our finding is consistent with the
temperature dependence of thermal conductivity reported by
Ding et al. in three-dimensional graphite with hydrodynamic
phonon transport [16].

IV. CRITERION FOR HYDRODYNAMIC
PHONON TRANSPORT

To precisely determine the emergence of hydrodynamic
phonon transport, one should look into the specific phonon
scattering process in the reciprocal space. Several crite-
ria [6,7,16] have been applied to identify different transport
regimes. Among them, the criterion proposed by Guyer and
Krumhansl [6] in the 1960s is still the most widely used and
determines the phonon transport regimes by comparing the
averaged scattering rates. Although phonons with different
frequencies may have different transport characteristics in
the same system, the overall transport behavior of the sys-
tem is determined by the full contribution of all phonons.
Therefore, the approach of ensemble averaging among various
phonons is adopted to determine the macroscopic transport
behavior [12]. For Poiseuille flow, Guyer’s criterion for hy-
drodynamic phonon transport reads [6]

Ly > > Iy, (2)

in which Ty, [y, and T'p are the averaged normal, umklapp,
and boundary scattering rates, respectively. The boundary
scattering rate is defined by Casimir’s theory [40] as ['p =
2|v,|/d, where v, denotes the phonon group velocity in the
transverse direction perpendicular to the axial direction of the
polymer chain and d is the sample width in the transverse
direction. To obtain the average value, the scattering rate for
each scattering process s is usually ensemble averaged over
frequencies [6,12,14,16] with the following thermodynamic
approach:

ro_ Y C(@)T(w)
K ZC(CU) )

where C(w) = no(w)[np(w) + 1 ](ha))z/(khTz) is the mode
specific heat. In Guyer’s original study, the Debye specific

3

heat was used in this averaging formula. However, consider-
ing the quantum phonon population from the Bose-Einstein
distribution is applied in the BTE calculations and phonon hy-
drodynamics happen at low temperatures, Einstein’s specific
heat expression is adopted in this work as reported in other
BTE studies [7,12,16].

Following Guyer’s criterion, the averaged scattering rates
for PE are compared in Fig. 3(d). Obviously, the averaged
boundary scattering rate that satisfies Eq. (2) falls in the
width range from ~50 to 500 nm, and hydrodynamic phonon
transport occurs in the low-temperature range (below 50 K).
This prediction directly contradicts the thermal conductivity
ratio shown in Fig. 3(a), which suggests that a weak hydro-
dynamic phonon transport predominantly takes place in the
intermediate-temperature range around 120 K. On the other
hand, Guyer’s criterion predicts the emergence of hydrody-
namic phonon transport at low temperature for both PA-I and
PA-II [see Figs. 3(e) and 3(f)], which agrees qualitatively well
with the direct observation of the discrepancy in x shown in
Figs. 2(b) and 2(c). These results reveal that Guyer’s crite-
rion [Egs. (2) and (3)] might not hold in complex systems
such as PE.

To investigate the origin for the failure of Guyer’s criterion
in PE, we compare the phonon properties for three types of
crystalline polymers at the temperatures where the discrep-
ancy between «; and kg appears (see Fig. 4). Due to the
large population of bending acoustic phonons, the spectral
thermal conductivity «(w), here, k; = Xk (w), in both PA-I
and PA-II is dominantly contributed by the bending acoustic
phonons below 10 THz, similar to the case for graphene [41].
Consistently, the dominant contribution of C(w) in both PA-I
and PA-II is also from low-frequency phonons. Therefore,
both Guyer’s criterion and « discrepancy can qualitatively
provide the same prediction for the emergence of hydrody-
namic phonon transport at low temperature in both PA-I and
PA-II.

In sharp contrast, the highly structural anisotropy and
cylinderlike molecular segment in PE result in a torsional
motion [42,43], as shown in Fig. 7(a), which gives rise to
the torsional A, mode observed in the phonon dispersion
[Fig. 4(a)]. However, such torsional motion does not exist in
the other two types of bulk crystalline polymers for the entire
frequency range due to their planelike molecular segments.
Interestingly, the flat band of the A, mode in PE provides
pronounced scattering channels for phonon-phonon scatter-
ing. In addition, this A, mode can easily hybridize with TA
and ZA modes, as shown in Fig. 7(b). This hybridization
can notably enhance phonon anharmonicity for the hybridized
phonon modes [44,45]. These two factors should have signif-
icant effects on the detailed phonon-phonon scattering.

To further explore the impact of the torsional mode on
the hydrodynamic transport in PE, we examine in Figs. 7(c)
and 7(d) the phonon scattering rate for both normal and umk-
lapp processes in PE when the hydrodynamic transport occurs
at 120 K. Due to the low-frequency and flat-band features of
the torsional mode in PE, the participation of the torsional
mode provides a large number of scattering channels for the
low-frequency acoustic phonons. Moreover, the hybridization
between the torsional band and acoustic bands [see Fig. 7(b)]
results in the strong anharmonicity in the low-frequency
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FIG. 7. Unique transport phenomenon induced by the torsional
mode in PE. Schematic figure of lattice vibration for (a) the torsional
mode at the zone center and (b) phonon hybridization at the zone
boundary. The arrows indicate the vibration direction of the phonon
mode. (c) and (d) The three-phonon scattering rates in PE at 120 K
for normal and umklapp processes, respectively. The solid and open
symbols denote the three-phonon scattering process without and with
the participation of torsional mode, respectively.

region, regardless of the participation of the torsional mode
in the scattering process. Consequently, Figs. 7(c) and 7(d)
reveal that the torsional mode has a dominant impact on the
low-frequency phonons below 5 THz, leading to the large
scattering rate in this low-frequency regime. This is the origin
of the suppressed contribution from low-frequency phonons
to the thermal conductivity and the dominant contribution of
high-frequency phonons in PE as observed in Fig. 4(a). In
addition, Figs. 7(c) and 7(d) also reveal that the participation
of the torsional mode (open symbols) in the three-phonon
scattering process results in a notably higher scattering rate
compared to the case without torsional mode (solid symbols)
in the low-frequency regime below 5 THz for both normal
and umklapp processes, presumably due to the enhanced
number of scattering channels with the participation of the
torsional mode mentioned above. Another important feature
is the phonon scattering rate for the normal process [Fig. 7(c)]
is much higher than that for the umklapp process [Fig. 7(d)],
leading to the hydrodynamic transport in PE observed at
120 K.

On the other hand, the hybridization significantly lowers
the acoustic modes to the low-frequency region below 5 THz,
where the dominant peak in C(w) is located. This effect causes
not only a reduced group velocity of acoustic phonons but
also the enhanced overall phonon-phonon scattering rates of
low-frequency phonons [see Figs. 7(c) and 7(d)], leading to
the suppressed thermal transport for low-frequency phonons.
However, the high-frequency phonons above 5 THz in PE,
which still have large group velocity and a relatively low
scattering rate, are less affected. As a result, the dominant
peak in k(w) shifts to a higher frequency of ~11.3 THz,

causing a complete separation of the dominant spectrum peak
between « (w) and C(w). Therefore, the breakdown of Guyer’s
criterion in PE is caused by the frequency separation between
the dominant peak spectrum of «(w) and C(w), so that the
thermodynamic average in Eq. (3) based on C(w) cannot
reliably capture the thermal transport behavior in PE.

To overcome such inconsistency, we propose a modified
criterion using « (@) obtained from the iterative solution as
the weighting function in the ensemble average as

r_ LK@
’ Yk(w)

With this modification, the recalculated averaged scattering
rates indeed confirm that our modified criterion can correctly
capture the unusual feature in PE; that is, [y > T'y is sat-
isfied in the intermediate-temperature range around 120 K
[Fig. 8(a)]. Meanwhile, the predictions of Eq. (4) shown in
Figs. 8(b) and 8(c) provide results consistent with Guyer’s cri-
terion in Eq. (3) that the hydrodynamic transport occur at low
temperature in both PA-I and PA-II, which further validates
our proposed criterion. Based on Egs. (2) and (4), we further
show in Figs. 8(d)-8(f) the transport diagram for three types
of crystalline polymers. The hydrodynamic phonon transport
in both PA-I and PA-II occurs in the low-temperature range
below 50 K, which is much higher than the observed tem-
perature in other bulk materials, such as NaF [19] and liquid
helium [20]. In PE, the hydrodynamic regime locates in the
intermediate-temperature range from 50 to 300 K. This unique
hydrodynamic behavior in PE originates from the sudden
change in umklapp and normal scattering rates in that tem-
perature range [Fig. 8(a)].

“

V. COLLECTIVE MOTION

Finally, we discuss the collective drifting motion of
phonons in crystalline polymers, which is another unique
signature of hydrodynamic phonon transport as a result of
the dominant momentum-conserved normal process [8,16].
Under a temperature gradient, phonons would equili-
brate toward a displaced Bose-Einstein distribution n; =
1 /{exp[%] — 1}, where q denotes the phonon wave
vector. The collective drift velocity u is constant for all
phonon modes. Assuming a small temperature gradient and
drift velocity, the phonon distribution function can be further
linearized as [14]

h
ng =ng +no(np + 1)——(q - ). (5)
kgT

A normalized form is used in the following discussion
as dn = (ng — ng) /[no(ny + 1)], where n, is calculated from
the iterative solution of BTE [16]. Under the fully collective
drifting condition, the normalized drifting term dn has a linear
dependence on the wave vector along the transport direction g,
as zZT” To quantify how close the calculated phonon distribu-
tion 7 is to the ideal displaced distribution ny, Ding et al. [16]
defined a phonon drifting component as

> C(w)dng,

Pd =
VX Cwydn’ /3 Clog

x 100%. (©6)
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FIG. 8. The averaged scattering rates of the normal process, umklapp process, and boundary scattering calculated based on Eq. (4) for
(a) PE, (b) PA-I, and (c) PA-II. Schematic diagrams of the ballistic, hydrodynamic, and diffusive regimes for (d) PE, (e) PA-I, and (f) PA-IL

Thus, for an ideally displaced distribution, the phonon
drifting component p; should reach a value of 100%. How-
ever, Fig. 3(c) shows that p; in PE calculated based on Eq. (6)
is below 50% for the entire temperature range and fails to
capture at all the hydrodynamic transport in the intermediate-
temperature range, as shown in the phase diagram in Fig. 8(d).
We believe that such a failure of Eq. (6) has the same cause
as the failure of the thermodynamic average of Eq. (3) in PE.
Therefore, we redefine p,; based on the weighting function of
k(w) as

Z K(w)%ch

VX k(@)dn’ /S k(@)g?

With this new definition, Fig. 3(c) shows that p, calculated
by Eq. (7) is closer to 100% at low temperatures for both
PA-I and PA-II, while the trend predicted by Eq. (7) is con-
sistent with the prediction by Eq. (6) for both PA-I and PA-II
[Fig. 3(c)]. Especially for the case of PE, the sudden increase
of p; above 50 K can well capture the onset of hydrodynamic
transport, and the peak temperature for hydrodynamic trans-
port predicted by Eq. (7) agrees quantitatively well with that
shown in the phase diagram of Fig. 8(c).

Pd = x 100%. 7

VI. SUMMARY

In this work, based on the Boltzmann transport equation,
we have studied hydrodynamic phonon transport in organic
materials, i.e., bulk crystalline polymers. In both PA-I and
PA-II, notable hydrodynamic transport takes place in the
low-temperature range up to 50 K. Surprisingly, a weak

hydrodynamic behavior emerges in PE at the intermediate-
temperature range around 120 K, an abnormal behavior that
cannot be captured by Guyer’s criterion for predicting hydro-
dynamic phonon transport. By analyzing the spectral phonon
properties, we found that a flat band of the torsional motion
exists in the phonon dispersion of PE due to its high structural
anisotropy and cylinder structure. This flat band hybridizes
strongly with acoustic phonons in PE, which lowers the fre-
quency for acoustic phonons and enhances phonon-phonon
scattering for low-frequency phonons, leading to suppressed
thermal transport for low-frequency phonons. Consequently,
the dominant phonon frequency for thermal conductivity
shifts to a higher frequency and separates completely from
the dominant peak frequency of the specific heat, causing the
breakdown of Guyer’s criterion in PE. A modified criterion
based on the spectral thermal conductivity was proposed to
determine the emergence of hydrodynamic transport, which
was found to work excellently in all three kinds of polymer
crystals, providing quantitative agreements with the predic-
tions from both thermal conductivity results and the phonon
drifting component. Our study provides a reliable criterion
to predict the emergence of hydrodynamic phonon transport
in complex systems, which will be helpful for the study of
transport physics in new materials.
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