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Abstract: A holomorphically fibred space generates locally trivial bundles with positive dimensional
fibers. This paper proposes two varieties of fibrations (compact and non-compact) in the non-uniformly
scalable quasinormed topological (C, R) space admitting cylindrically symmetric continuous functions.
The projective base space is dense, containing a complex plane, and the corresponding surjective fiber
projection on the base space can be fixed at any point on real subspace. The contact category fibers
support multiple oriented singularities of piecewise continuous functions within the topological
space. A composite algebraic operation comprised of continuous linear translation and arithmetic
addition generates an associative magma in the non-compact fiber space. The finite translation is
continuous on complex planar subspace under non-compact projection. Interestingly, the associative
magma resists transforming into a monoid due to the non-commutativity of composite algebraic
operation. However, an additive group algebraic structure can be admitted in the fiber space if the
fibration is a non-compact variety. Moreover, the projection on base space supports additive group
structure, if and only if the planar base space passes through the real origin of the topological (C, R)
space. The topological analysis shows that outward deformation retraction is not admissible within
the dense topological fiber space. The comparative analysis of the proposed fiber space with respect
to Minkowski space and Seifert fiber space illustrates that the group algebraic structures in each
fiber spaces are of different varieties. The proposed topological fiber bundles are rigid, preserving
sigma-sections as compared to the fiber bundles on manifolds.
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1. Introduction

The Minkowski space is a four-dimensional topological vector space over reals (i.e., four-manifold admitting
Poincare symmetry group of isometries) with applications in physical and mathematical sciences [1,2].
In general, the Minkowski space is not well behaved if the corresponding Euclidean topological space
is considered to be a locally homogeneous space [3]. The reason is that the Minkowski topological
space gets decomposed into two locally homogeneous Euclidean subspaces, where the two topological
subspaces are separated in nature. Note that the finest topology in n−dimensional Minkowski space is
Zeeman topology, which is separable, Hausdorff, locally non-compact, and also non-Lindeloff in nature.
Moreover, the Zeeman topology generates a first countable topological space. On the other hand,
the n > 1 dimensional Minkowski space equipped with t-topology (Mt) is not completely Euclidean in
nature [4]. The topological space on Mt is first countable, where the compactification and continuity
of a function can be maintained through the Zeno sequences. In view of general topology, the 4D
Minkowski space equipped with s-topology is not a normal topological space, and it is a non-compact
Hausdorff space. The axial rotations of a Minkowski space generate various geometric hypersurfaces
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in space. For example, the three types of helicoidal hypersurfaces are generated by axial rotation of
4-dimensional Minkowski space [5].

In this paper, the construction of topological fiber space in a non-uniformly scaled quasinormed
(C, R) space and the corresponding topological, as well as algebraic analysis of fibration varieties are
presented. First, the brief descriptions about the related concepts, such as topological fiber spaces and
immersion of manifolds are presented in Sections 1.1 and 1.2, respectively. Next, the motivation for
this work and contributions made in this paper are explained in Section 1.3. In this paper, the symbols
R, C and Z represent sets of extended real numbers, complex numbers, and integers, respectively.

1.1. Topological Fiber Spaces

The topological fiber bundles over a sphere exhibit a set of interesting topological properties if the
respective fiber space is Euclidean. It is shown that if M is a closed and compact manifold maintaining
Hausdorff topological property, then the function space X containing functions m : M×R→ R without
interchanging the ends in R is a contractible space [6]. In view of algebraic topology, the structure Gn

represents a monoid of homotopy self-equivalences of (n− 1)—spheres denoted by Sn−1 [6]. Note that
in this case, the topological space is in the compact-open category.

However, from the viewpoint of differential geometry, the structure of a fiber space can be
considered to be rigid under specific conditions, such as orientations [7,8]. Specifically, a Seifert fiber
space is profinitely rigid if it is an oriented variety [8]. Otherwise, the Seifert fiber space is based on
three-manifold, which is classified depending upon a set of invariants, and it incorporates rigidity
of infinite π1 with a hyperbolic two-orbifold base of fibration [9]. Similarly, the Haken orientable
hyperbolic three-manifold is an irreducible variety, and it supports the rigidity of fibration [10].

1.2. Manifolds and Immersions

In view of geometric topology, the immersion of surfaces into the null submanifolds in 3D
offers various interesting observations. If the structure (M, g) is a Lorentzian manifold under
tensor h with i : N→M immersion function, then (N, h) is a degenerative null submanifold [11].
Interestingly, the Lorentzian manifolds are not metrizable, preserving isometry in reference to the
space of immersion. It is known that the immersion of a hypersurface S into a Euclidean space with
normal vector field VN is self-adjoint in the presence of a suitable shape operator. In general, a Lorentz
space can be finitely covered by a circle bundle if it is a compact space [12]. Note that topologically the
spaces with Lorentzian geometry (such as a torus bundle) are locally Hausdorff, and the corresponding
manifold is not a globally Hausdorff topological space. The immersion of a k−dimensional manifold in
a k + l−dimensional Euclidean space is given by fi : Mk → Ek+l induces the one-to-one map in tangent
space on the manifold [13]. The immersion space is considered to be a regular topological space,
and the manifold is a connected topological space with orientation.

1.3. Motivation and Contributions

The fiber bundles are geometric as well as topological objects, which can be simulated and
visualized in computer models. The computer visualization of fiber bundles as geometric objects has
opened up a wide array of applications in various domains of physical sciences as well as computational
sciences [14]. In the topological spaces of fiber bundles, the determination of equivalence between
fiber bundles is a challenging task. The fiber bundle space reduction theorem indicates that two
topological fiber bundle spaces are equivalent if and only if the corresponding Ehresmann bundles
have cross-sections over common base space [15]. Interestingly, if we consider subspace X0 ⊂ X in
the corresponding topological base space, then the cross-sections of an automorphic bundle within
the subspace form an algebraic group structure. This paper proposes the construction and analysis
of fiber space in the non-uniformly scalable multidimensional topological (C, R) space [16]. One of
the interesting aspects of multidimensional topological (C, R) space is that the space is quasinormed,
admitting cylindrically symmetric continuous functions, and does not always preserve compactness
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under topological projections. Hence, the interesting and motivating questions are: what are the
possible varieties of fibrations in such space, and is it possible to establish any algebraic structures
within the respective fiber space? Moreover, what are the topological properties of the resulting
fiber space within the quasinormed multidimensional (C, R) space if the holomorphic condition of
complex subspace is relaxed? These questions are addressed in this paper. The presented analysis
considers algebraic as well as topological standpoints as required. The elements of functional analysis
are employed whenever necessary.

The main contributions made in this paper can be summarized as follows. The topological
(C, R) space is a non-uniformly scalable and quasinormed space, where the cylindrical open sets form
the topological basis. The proposed fibrations within the space can be constructed in two varieties,
such as compact fibration and non-compact fibration. The fiber space is considered to be dense,
and it can admit the concept of a special category of fibers called contact fibers. The fiber space is
equipped with finite linear translation operation. The resulting fiber space in the topological (C, R)
space supports the expansion and orientations of multiple singularities of a piecewise continuous
function on contact fibers. It is shown that a composite algebraic operation comprised of linear
translation, and arithmetic addition prepares an associative magma in the non-compact fiber space.
The associative magma space is commutative under linear translation within the magma space of fibers,
and it resists the formation of a monoid under composite algebraic operation. However, an additive
group algebraic structure can be admitted in the fiber space and in projective base space under specific
conditions. Interestingly, the proposed fiber space does not support outward deformation retraction in
a dense subspace.

The rest of the paper is organized as follows. Section 2 presents a set of preliminary concepts
enhancing the completeness of the paper. The definitions related to topological fiber spaces and
fibrations are presented in Section 3. The algebraic and topological properties are presented in Section 4.
Section 5 illustrates the concepts of expansion and singularities in the proposed topological fiber space.
A detailed comparative analysis of this work with respect to other contemporary works in the domain
is presented in Section 6. Finally, Section 7 concludes the paper.

2. Preliminary Concepts

Let v = (x0, x1, . . . . . . xn−1) and w = (y0, y1, . . . . . . yn−1) be two vectors in a n−dimensional
vector space represented as (Vn,+, ·). The Lorentzian inner product between v, w is given as

L(v, w) = −x0y0 +
n−1∑
i=1

xiyi. The real vector space in Rn endowed with symmetric Lorentzian inner

product with non-degenerate bi-linear form is called a n−dimensional Minkowski space Mn. In the
Minkowski space, the linear operator T : Mn →Mn preserves L(., .) because it maintains the condition
represented as ∀v ∈ Mn, L(v, v) = L(T(v), T(v)) generating a Lorentz group structure. The Euclidean
e−topology in Mn is formulated by the topological basis elements given as a set of neighborhoods
B =

{
N(x, ε) : x ∈Mn, ε > 0

}
. Note that s−topology on Mn is strictly finer than the e−topology. Moreover,

in the Minkowski space Mn, the geometry of the space cone in the Euclidean topology maintains
σ− e− open criteria [3].

The Steenrod formulation of fiber bundles is represented as an algebraic structure F ={
B, X, p, Y, G, V j,ϕ j

}
, where B is the bundle space, X is a topological base space, p : B→ X is a projection

function, Y is a topological space called fiber, and G is a bundle group [15]. In the formulation,
the elements V j,ϕ j are coordinate neighborhoods and the corresponding coordinate functions,
respectively. The coordinate functions must satisfy a condition which is given by ϕ j : V j ×Y→ p−1(V j) .
Note that a four-dimensional Minkowski space is essentially a real vector space preserving Hausdorff
topological property [17].
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3. Topological Fiber Space and Fibrations

In this section, a set of definitions related to fibrations and the resulting generation of fiber spaces
in a quasinormed topological (C, R) space is formulated. A point xp in the quasinormed topological
(C, R) space (X, τX) is represented as xp = (zp, rp), and the origin of (X, τX) is denoted as x0 = (z0, 0),
where z0 is the Gauss origin. The corresponding topological projections are given by πR : X→ R and
πC : X→ C on the real subspace and complex subspace, respectively. For the simplicity of algebraic
representation

{
zp

}
× I ≡ (zp, I) is used to denote a sectional subspace within the topological fiber space,

where I is an interval (either open or closed). In this paper, Ao and A represent the interior and closure
of an arbitrary set A such that A = Ao

∪ ∂A. Moreover, if A is homeomorphic to B then it is denoted as
hom(A, B). First, we define the projective base of a fiber space in the topological (C, R) space.

3.1. Projective Base in (C, R) Tangent Space

Let Am ∈ τX be an open cylindrical subspace in the topological (C, R) space (X, τX) such that
Am = D(zm, ε > 0) × I, where (zm, r) ∈ C × {r} and I ⊆ R is open. Suppose we determine {α, ε} ⊂ R+

maintaining the ordering relation given by 0 < α < ε. The projection of corresponding tangent subspace
onto topological base space at r ∈ R is defined as:

∀D(zn,α) ⊂ D(zm, ε), Bn = ∂D(zn,α) × I,
∀zp ∈ ∂D(zn,α),∀r ∈ R,πr : Bn → (∂D(zn,α) × {r}),

πr((zp, I)) = (zp, r).
(1)

Note that the projection πr(.) is surjective in nature onto the dense base space D(zn, ε) × {r},
where the hom(∂D(zn,α), S1) condition is maintained for every zn ∈ C. Moreover, it preserves the
standard notion of projection in the tangent space of a topological manifold (M, τM). Next, the definition
of fiber bundles in the tangent space considering a base space is formulated.

3.2. Topological Fiber Bundle in (C, R) Space

As stated earlier, let Am = D(zm, ε) × I be a subspace in the topological (C, R) space for ε > 0.
The topological fiber bundle in the corresponding tangent space Bm = ∂D(zm, ε) × I is given by:

Fm =
{
(zp, I) : zp ∈ ∂D(zm, ε)

}
,

∀Ep ⊆ ∂D(zm, ε) ×
{
rp

}
, σ : Ep → Fm,

(πr ◦ σ)(xp ∈ Ep) = (zp, r).
(2)

A fiber (σ ◦πr)((zp, I)) = µp×I ≡ (zp, I) where (zp, I) ∈ Fm is called a compact fiber, if and only if
I ⊂ R\{−∞,+∞} and I = Io

∪ ∂I. Otherwise, it is a result of non-compact fibration in the topological
(C, R) space.

Remark 1. The topological fiber bundle Fm in (C, R) space is more rigid as compared to the fiber bundle in
(M, τM) because Fm preserves the σ− sections within the fiber bundles in the corresponding tangent (C, R)
space, where the topological base space is a dense set. The σ− sections in the topological manifold (M, τM) may
not be preserved in every case within the fiber bundle of (M, τM) . The reason is that a set of σ− sections of
(M, τM) is constructed separately independent of projections onto topological base space.
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3.3. Fiber Space

The fiber space in a topological (C, R) space (X, τX) is formulated based on the sets of fiber bundles
in the dense subspaces. Let us consider Am = D(zm, ε) × I be a dense subspace in topological (C, R)
space for ε > 0. The corresponding fiber space Γm in Am considering 0 ≤ ε < k < +∞ is defined as:

∀za ∈ D(zm, ε), Aa ⊂ Am,
Γm = ∪

∀za∈D(zm,ε)
Fa = ∪

∀ε∈[0,k)
Fm. (3)

In the above definition Fa is a local fiber bundle of corresponding topological subspace
Ba = ∂D(za, ε) × I in (X, τX). The entire fiber space of topological (C, R) space can be generated from
the sets of local fiber bundles as given below:

ΓCR = ∪
∀zm∈C

Γm. (4)

Note that at ε = 0 in the topological subspace, Am the subspace µm×I is also a fiber at zm ∈ C.
Earlier it is mentioned that there are two varieties of fibrations, which can be admitted into the
topological (C, R) space. However, it is interesting to observe that in any case, the fiber space in (X, τX)

is not compact, which is presented in the following proposition.

Proposition 1. Every fiber space Γm in (X, τX) is not compact.

Proof. Let (X, τX) be a topological (C, R) space and Fa ⊂ Γm be a topological fiber bundle in the
topological subspace Aa ⊂ Am. The topological projection πR : X→ R prepares a real subspace
in (X, τX). We will prove the proposition by considering two separate cases. In the first case,
suppose I ⊂ R\{−∞,+∞} such that I = Io

∪ ∂I preparing a compact fibration in the topological space.
However, recall that as Aa = D(za, ε > 0) × I, thus, the projection πC(v ∈ Aa) ⊂ C is an open subspace.
Otherwise, if I = R in Aa then the fibration Fa ⊂ Γm is a non-compact variety. As a result, the projective
subspace πR(v ∈ Aa) = R is an open set. Hence, in every case Fa ⊂ Γm is not compact and as a result
Γm = ∪

∀za∈D(zm,ε)
Fa is also not compact in (X, τX). �

Remark 2. The above proposition further indicates that the fiber space ΓCR in (X, τX) is not a compact space.

In general, the Seifert fiber space on an oriented manifold maintains profinite rigidity [8].
However, in the case of a holomorphic map f : M→ N between two complex manifolds M and N,
the rigidity of fibration allows sending a single fiber to another fiber, as along as the complex manifolds,
are individually connected spaces [18]. In this paper, the topological (C, R) space is a connected space,
and the associated fiber space supports finite translation of fibers within the space.

3.4. Translation in Fiber Space

Let Γm ⊂ ΓCR be a fiber subspace in the topological (C, R) space (X, τX). The topological translation
of a fiber subspace in Γm is defined as:

∃Γp : Γm ⊂ Γp ⊆ ΓCR,
T : ΓCR → ΓCR,

T(µa×I) = µTa×I = T(za, I),
∀µa×I ∈ Γm,µTa×I ∈ Γp.

(5)
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Remark 3. Note that, the translation T : ΓCR → ΓCR is continuous in C under projection πC : X→ C within
the open subspaces of fibers. However, the translation can be transformed into a strictly closed and convergent
variety if the following restrictions are imposed on it: Γp = Γo

p ∪ ∂Γp and Γp ⊂ ΓCR.

The properties of finite translations within the topological fiber space depend on the Baire
categorization of a subspace (i.e., dense or meager) and compactness of the corresponding projective
subspace. The following proposition presents such observation.

Proposition 2. If Γp ⊂ ΓCR is dense and the topological projection on subspace πR ◦ σ(xm ∈ X) is not compact,
then T : (Γm ⊂ ΓCR)→ (Γp ⊂ ΓCR) is a continuous and finite fiber space translation.

Proof. Let Γm, Γp be two fiber subspaces in (X, τX) such that the translation is given as
T : (Γm ⊂ ΓCR)→ (Γp ⊂ ΓCR) . Note that Γo

m ⊂ Γp in the topological space and as a result T : ΓCR → ΓCR
is continuous in all monotone classes of projective subspaces πC(Γm) ⊂ πC(Γp) in (X, τX). If the
topological projection πR ◦ σ(xm ∈ X) is not compact, then the corresponding fibration is a non-compact
variety resulting in the generation of fiber µm×I ≡ (zm, I = R). Suppose fibration is non-compact
everywhere in the topological space (X, τX). Thus ∀µa×I ∈ Γm, T(µa×I) = µTa×I is maintained in
the subspaces such that µTa×I ∈ Γp and µTa×I = T(za, I), where T(za) ∈ C and T(I = R) = I.
If Γp ⊂ ΓCR is dense, then Γp ⊂ ΓCR is a compact subspace of fibers. As a result, it is true that
∀µa×I ∈ Γm, 0 ≤

∣∣∣∣∣∣πC(µTa×I) − za
∣∣∣∣∣∣2 < +∞ considering the inclusion of translation invariant fiber, which is

given by∃µa×I ∈ Γm, T(µa×I) = µa×I. Hence, the continuous translation of fiber subspace T : ΓCR → ΓCR
in (X, τX) is finite if Γp ⊂ ΓCR is dense and the topological projection πR ◦ σ(xm ∈ X) on real subspace
is not compact. �

The proposed fibration in a topological (C, R) space is equipped with a special category of fiber
called contact category, as defined below. A contact category fiber admits multiple oriented singularities
of a function within the fibered topological space under specific conditions.

3.5. Contact Category Fiber

Let Γm ⊂ ΓCR, Γp ⊂ ΓCR be two fiber subspaces in the topological (C, R) space (X, τX). A fiber µs×I

is defined to be in the contact fiber category if the following conditions are maintained by it:

Γm ∩ Γp =
{
µs×I

}
,

∀r ∈ R,πR ◦ σ((zs, r)) = R.
(6)

Note that the restriction for a contact fiber to be maintained is given as, zs ∈ C\{−∞,+∞}.
This restriction is required to retain the finiteness of projection of fiber space into the topological base
space of the contact fiber category. Once the contact fiber is defined, we can formulate the oriented
singularities of a function in the topological space.

3.6. Oriented Singularities of Function

Let f : [a ∈ R, b ∈ R]→ (X, τX) be a continuous function in the topological (C, R) space.
The function f (.) is defined to have positively oriented singularity in the space if the following
conditions are maintained by it on a fiber.

I ⊆ R\{−∞,+∞},∃µ f×I ⊂ X,
∃c ∈ (a, b) : ∀x f r ∈ f ([a, b]\{c}), x f r = (z f , r ∈ I),

lim
t→c

f (t) = (z f , r), r→ +∞.
(7)
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Remark 4. It is straightforward to verify that the negatively oriented singularity of a continuous function can
be defined by following a similar concept, as stated above, with a change in orientation. Moreover, a planar
and symmetric variety of the function with multiple oriented singularities can be formulated if the following
restrictions are maintained by it:

Γm ∩ Γp =
{
µs×I

}
,

D(zm, ε)∩D(zp, ε) = {zs},∃r ∈ R\{−∞,+∞},
f ([a, c)) ∈ D(zm, ε) × {r}, f ((c, b]) ∈ D(zp, ε) × {r},

lim
t→c+

f (t) = (zs, r), r→ +∞,

lim
t→c−

f (t) = (zs, r), r→ −∞.

(8)

It is important to note that a planar and symmetric function with multiple oriented singularities
in the fiber space of topological (C, R) space is a discontinuous variety (i.e., the function is piecewise
continuous). Furthermore, the fiber admitting multiple singularities of a planar as well as symmetric
function is in the contact fiber category, and the corresponding fibration is non-compact type.

4. Algebraic and Topological Properties

In this section, the algebraic and topological properties of fiber space in the quasinormed
topological (C, R) space are presented. First, we show that the fiber space ΓCR is an associative magma
under the algebraic composite operation (+T) as given below:

∀µa×I,µb×I ∈ ΓCR,
µa×I(+T)µb×I = µ(a+Tb)×I

(9)

The above representation indicates that (+T) is a composite algebraic operation, which is
comprised of functional translation and arithmetic addition within the topological space. Note that the
linearity of translation operation is considered to be maintained for generality. It is interesting to observe
that the algebraic structure (ΓCR, (+T)) constructs an associative magma in the topological space
(X, τX) if and only if the translation is invariant to first-order and the fibration is non-compact type.

Theorem 1. The non-compact fiber space (ΓCR, (+T)) is an associative magma if and only if T : ΓCR → ΓCR
is linear and ∀n ≥ 2, Tn = T, n ∈ Z+.

Proof. Let (ΓCR, (+T)) be a fiber space associated with the algebraic operation in the topological
space (X, τX). If T : ΓCR → ΓCR is linear and the fibration is non-compact type, then a σ− section
preserves the following condition involving corresponding topological base space, ∀µa×I ∈ ΓCR, (πR ◦σ)
(xa ∈ X) = R. Moreover, due to the linearity of translation of fibers in the space it can be verified
that ∀{k1, k2} ⊂ R, T(k1µa×I + k2µb×I) = k1T(µa×I) + k2T(µb×I), where

{
µa×I,µb×I

}
⊂ ΓCR. Recall that

∀µa×I ∈ ΓCR, T(µa×I) = µTa×I condition is maintained in the corresponding fiber space. Thus we can
derive the following equations considering the algebraic operation (+T):{

µa×I,µb×I,µc×I
}
⊂ ΓCR,

(µa×I(+T)µb×I)(+T)µc×I = µ(a+Tb+Tc)×I ∈ ΓCR,
µa×I(+T)(µb×I(+T)µc×I) = µ(a+T(b+Tc))×I ∈ ΓCR.

(10)

This indicates that the fiber space is associative if T2 = T in (ΓCR, (+T)). Moreover, if T2 = T then
∀n ∈ Z+, Tn = Tn−2(T2) = Tn−1 = . . . . . . . . . = T and it is closed in (ΓCR, (+T)). Hence, the fiber space
(ΓCR, (+T)) is an associative magma under the non-compact fibration in the topological space. �
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Corollary 1. It is important to note that the fiber space (ΓCR, (+T)) is not a monoid as no fixed fiber
(i.e., original fiber) can be identified within the space. This indicates that it is a relatively rigid structure
because even if the invariance condition of translation is further relaxed at the origin of (X, τX) so that
∃x0 ∈ X, T(µ0×I) = µ0×I = T(z0, I) then also the algebraic structure (ΓCR, (+T)) is not transformed into a
monoid, where z0 is Gauss origin. The main reason is that the algebraic operation (+T) is not commutative
in nature.

Interestingly, although the fiber space (ΓCR, (+T)) is an associative magma under
non-commutative algebraic operation (+T); however, an additional linear translation of the magma of
fiber space is a commutative space. This observation is presented in Theorem 2.

Theorem 2. In (ΓCR, (+T)) associative magma of fiber space, the translation T : (ΓCR, (+T))→ (ΓCR, (+T))
admits commutativity in magma under T.

Proof. Let
{
µa×I,µb×I

}
⊂ ΓCR be a subset of fibers in associative magma (ΓCR, (+T)). According to the

principle of commutativity, the following equations can be derived in the magma of fiber space:

µa×I(+T)µb×I = µ(a+Tb)×I,
µb×I(+T)µa×I = µ(b+Ta)×I.

(11)

Thus, further translation in the associative magma of fiber space leads to the following conclusions
considering T2 = T.

T(µa×I(+T)µb×I) = µ(Ta+Tb)×I,
T(µb×I(+T)µa×I) = µ(Tb+Ta)×I.

(12)

However, the algebraic structure (C,+) is commutative in nature, indicating that T(zb) + T(za) =

T(za) + T(zb). This leads to the following algebraic identity:

T(µa×I(+T)µb×I) = T(µb×I(+T)µa×I). (13)

Hence, the function T : (ΓCR, (+T))→ (ΓCR, (+T)) admits commutativity within the associative
magma of fiber space in (X, τX). �

From the algebraic standpoint, the above theorem illustrates that the linear translation in the
associative magma of fiber space admits commutativity within the space. However, the space does
not support a group structure under such given conditions. On the other hand, if the fibration is a
non-compact variety in topological (C, R) space, then the algebraic structure (ΓCR,+) in the respective
fiber space attains a group structure as presented in the next theorem.

Theorem 3. The structure (ΓCR,+) is a fiber group in (X, τX) if and only if ∀µa×I ∈ ΓCR,∀ra ∈ R the fibration
maintains (πR ◦ σ)(xa ∈ X) = R.

Proof. Let ΓCR be a fiber space in the topological (C, R) space (X, τX). Suppose we consider a subspace
Mµ =

{
µa×I,µb×I,µc×I

}
⊂ ΓCR such that the projection on base space is Mv =

{
πr(v ∈Mµ)

}
and the

corresponding topological projection maintains (πR ◦ σ)(y ∈ Mv) = R. This leads to the following
result maintaining commutativity under non-compact fibration.

I = R, za + zb = za+b ∈ C,
µa×I + µb×I = µ(a+b)×I = (za+b, I),

(µa×I + µb×I) + µc×I = µa×I + (µb×I + µc×I).
(14)

Moreover, at the origin x0 of (X, τX) the fiber µ0×I is an identity fiber (i.e., original fiber)
because, ∀µa×I ∈ ΓCR,µa×I + µ0×I = µ0×I + µa×I = µa×I. Furthermore, if we consider fibers such that
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∀µa×I ∈ ΓCR,∃µ−a×I ∈ ΓCR maintaining µa×I + µ−a×I = µ−a×I + µa×I = µ0×I then µ−a×I is the inverse of
µa×I. Hence, the algebraic structure (ΓCR,+) is a fiber group if the fibration is a non-compact variety. �

Lemma 1. In the topological (C, R) space (X, τX), the algebraic structure (πr(ΓCR),+) is a group, if and only
if r = 0.

Proof. The proof is relatively straightforward. Suppose we select an arbitrary r ∈ R\{0} to prepare a
topological base space for projection. In this case, the {x0} ∩πr(ΓCR) = φ condition is satisfied within the
projective space of fibers. This leads to the conclusion that ∀za, zb ∈ (πC ◦πr)(ΓCR), za + zb , za , zb if
za , zb , z0 and in addition the following condition is maintained,

{
(πR ◦πr)(v ∈ ΓCR)

}
∩

{
πR(x0)

}
= φ.

Thus, the algebraic structure (πr(ΓCR),+) is not a group because ∀xa, xb ∈ πr(ΓCR), xa + xb , xa , xb
indicating that the additive identity element does not exist in (πr(ΓCR),+) if r , 0. Hence, the algebraic
structure (πr(ΓCR),+) is a group, if and only if r = 0. �

Remark 5. If ψ : ΓCR → ΓCR is a function in fiber space such thatψ(µa×I) = µa×ψ(I) with (πR ◦σ)(xa ∈ X) = R,
then it can be observed that ψ(µa×I) � µa×ψ(I) , if and only if µa×ψ(I) � µa×I . Hence, the function ψ(.) is a
2π− radian rotation of a fiber maintaining symmetry property. Moreover, it preserves the identity in a σ− section
as (ψ ◦ (σ ◦πr)) = (σ ◦πr) due to symmetry.

Theorem 4. In the fiber space ΓCR, there is no deformation retract ηD : D(zm, ε) × I→ ∂D(zm, ε) × I ,
where ε > 0, ε ∈ R+.

Proof. Let ΓCR be a fiber space in the topological (C, R) space (X, τX). If we consider ε > 0, ε ∈ R+ then
D(zm, ε)× I is an open subspace in (X, τX). Note that in the corresponding subspace hom(∂D(zm, ε), S1)

condition is maintained. According to the deformation retraction theorem, there can be no retraction
from convex D(zm, ε) to ∂D(zm, ε) maintaining continuity of retraction function within the topological
space. As a result, there can be no deformation retract function ηD : D(zm, ε) × I→ ∂D(zm, ε) × I
admissible within (X, τX). �

Remark 6. Although ηD : D(zm, ε) × I→ ∂D(zm, ε) × I outward deformation retract is not admissible in
(X, τX); however, the inward deformation retract given by ηE : D(zm, ε) × I→ D(zm,α) × I can be admitted,
if and only if α < ε and α > 0,α ∈ R+.

5. Expansion and Singularity

The fiber space ΓCR in a quasinormed topological (C, R) space (X, τX) supports the continuous
and uniform expansion of a subspace Γm under the translation function T : ΓCR → ΓCR . First, we define
the uniformity of T in ΓCR as given below, considering the Euler representation of a point zm ∈ C:

zm = αmeiθm ,
∀zm ∈ C,µTm×I = (αT

meiθm , I).
(15)

If we equip the fiber subspace Γm ⊂ ΓCR with uniform T : ΓCR → ΓCR then the algebraic structure
(Γm, T) admits continuous and uniform expansion in (X, τX), within the monotone class of fiber space.
In other words, the fiber subspace Γm ⊂ ΓCR admits continuous and uniform expansion within the
fiber space if it maintains the following properties:

∀Γm ⊂ ΓCR,∃ΓTm ⊂ ΓCR, Γm ⊂ ΓTm,
∀µm×I ∈ Γm, n > 1, Tn(µm×I) ∈ ΓTm,

Tn , T.
(16)
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Note that it indicates ΓTm is dense in ΓCR because ΓTm ∪ ∂ΓTm = ΓTm within (X, τX).
Moreover, the continuous and uniform expansion of a fiber subspace is finite within a compact
subspace. However, this restriction may not be valid in the entire fiber space ΓCR within (X, τX),
where X ∈ τX is open.

The contact category fiber in (X, τX) admits multiple singularities of a function f : [0, 1]→ (X, τX) .
In this case, the function is piecewise continuous in (X, τX). Let Γm, Γp ⊂ ΓCR be two fiber
subspaces such that Γm ∩ Γp =

{
µs×I

}
is a fiber in the contact fiber category. Suppose a ∈ (0, 1)

such that ∀x ∈ [0, a), f (x) ∈ D(zm, ε) × I and ∀x ∈ (a, 1], f (x) ∈ D(zp, ε) × I for some ε > 0.
Consider that fibration is a non-compact variety, and as a result the (πR ◦ σ)( f (x)) = R condition
is maintained under projection. If lim

x→a+
f (x)→ (zs,+∞) and lim

x→a−
f (x)→ (zs,−∞) conditions are

maintained by the function, then f : [0, 1]→ (Γm ∪ Γp) admits multiple singularities in the fiber space.
Furthermore, the proposed structure does not exclude the possibility of the existence of oriented
singularity within the space under the additional requirement. If lim

x→a−
f (x) � lim

x→a+
f (x) equivalence

relation is maintained by the limiting values of the function, then lim
x→a±

f (x)→ (zs,+∞) is a strictly

positively oriented singularity of the function on the respective contact fiber in (X, τX).

6. Comparative Analysis

There are varieties in the construction of fiber bundles and associated singularities based on
various parameters, such as the connectedness of topological spaces, locality of homeomorphism,
and different types of projection maps. The comparison of various properties associated with different
varieties of fiber spaces is summarized in Table 1.

Table 1. Summary of comparative analysis of various spaces and fibrations.

Space/Fibration Geometric Property Topological Decomposed
Subspaces

Local
Compactness Group Structure

Seifert fiber space three-Manifold S1—fiber space Yes Fundamental group with
unique normal subgroup

Minkowski space four-Manifold 3D real, 1D real spaces Yes Lorentz group in fiber
sub-bundle

Complex fiber bundle Holomorphic nD normal complex space (n ≥ 2) Yes Lie group

(C, R) space Quasinormed 2D complex, 1D real spaces Yes Two additive group
varieties in fiber space

In the case of Seifert fiber space, the fiber bundles are S1—bundles of a three-manifold
M3 [7,8]. The Seifert fiber space admits local compactness along with the fundamental group π1(M3).
The fundamental group π1(M3) includes a unique normal subgroup structure. However, the fiber
space of topological (C, R) space is a set of elements given by

{
µa×I : (za ∈ C, I ⊆ R) ⊂ X

}
. As a result,

the fiber space in topological (C, R) space admits oriented singularity and two respective varieties of
fibrations. Moreover, unlike Seifert space, the topological (C, R) space is a quasinormed space with
non-uniform scaling of points in space. The fiber space of topological (C, R) space forms an additive
group algebraic structure under certain conditions. Furthermore, the composite algebraic operation
comprised of arithmetic addition and functional translation forms an associative magma in the fiber
space of topological (C, R) space.

The generalization of singular fibration considers that the topological space (X, τX) is connected in
nature [19]. Specifically, if A1∪A2 = X then the singular fibration in (X, τX)maintains the condition that
A1 ∩A2 , φ. Moreover, the function h : (B ⊂ A1)→ A2 is a homeomorphism, and for each component,
E ⊂ A2\h(B), the projection map is given by h\h−1(E) for a fiber bundle, where the base space is
E ⊂ X [19]. The similarity of singularities between the topological (C, R) space and the generalized
singular fibration is that in both cases, the topological space is a connected type. However, the main
distinction between the two constructions is that the function of admitting multiple singularities in a
topological (C, R) space does not require the existence of local homeomorphism within the topological
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space. There are varieties of constructions to preserve compactness. In the case of a generalized
singular fibration, the functions f : A1 → A2 and f−1 : A2 → A1 maintain compactness [19]. On the
contrary, the compactness in a topological (C, R) space is not always preserved. For example, in the
topological (C, R) space, πC(B ⊂ X) is compactible but πR(B ⊂ X) is not compactible in nature.

The fibration and fiber bundles in Minkowski space consider four-manifold (M4) structure [20,21].
Interestingly the fibration in Minkowski space is possible if the space is Hausdorff and connected
topological space, which is locally Euclidean on M4. The fibration in topological (C, R) space considers
similar topological properties (i.e., space is connected T2 space). However, the fibration in Minkowski
space is four-dimensional, whereas the fibration in topological (C, R) space is three dimensional in
nature. Furthermore, the topological (C, R) space contains a complex subspace under projection,
and the Minkowski M4 is a completely real manifold. Note that the Minkowski space and topological
(C, R) space both support the formation of sub-bundles within the respective fiber spaces. The fiber
space of topological (C, R) space admits two varieties of additive group algebraic structures under
projections. However, the Minkowski fiber space admits a sub-bundle with Lorentz group structure [20].
Interestingly, the holomorphic and principal fiber bundle of a compact complex manifold supports
a complex Lie group structure [22]. The topological decomposition indicates that Minkowski space
can be completely decomposed into two components, such as 3D real Euclidean subspace and 1D
real Euclidean subspace [21]. On the contrary, the topological (C, R) space is a quasinormed space
supporting non-uniform scaling, and it can be topologically decomposed into two components, such as
2D complex subspace and 1D real subspace.

7. Conclusions

A fiber space is a topological space where it locally behaves as a product space, but globally
the space has a different topological structure. The analytical properties of fibrations and resulting
fiber spaces vary depending upon the constructions as well as the structures of topological spaces.
The multidimensional topological (C, R) space is a non-uniformly scaled quasinormed space admitting
a topological group under composite algebraic operations. The fibrations in multidimensional
topological (C, R) space have two varieties in view of compactness. The non-compact fiber space forms
associative magma under composite algebraic operation comprised of linear translation and addition
within the complex subspace. In this case, the translation is invariant to first order. However, it resists
the formation of a monoid structure under composite algebraic operation, and the magma space
supports commutativity under linear translation operation within the space of fibers. The fiber space
forms an additive group structure if the fibration is a non-compact variety. The projective base space
admits an additive group structure if and only if the base space contains the origin of real subspace.
The fiber subspace is dense, and it does not allow outward deformation retraction. The fiber space of
multidimensional topological (C, R) space allows expansion under uniform translation and preserves
multiple oriented singularities of a piecewise continuous function on contact fibers. The structures of
Minkowski space and multidimensional topological (C, R) space have different dimensions and partial
similarities. The comparative analysis of fiber spaces of multidimensional topological (C, R) space,
Minkowski space, and Seifert fiber space illustrates that the supporting group algebraic structures are
different for each space. Moreover, the topologically decomposed subspaces have different dimensions
as well as properties in each space. Finally, this is to note that the proposed constructions of topological
fibrations may find applications in mathematical sciences (i.e., manifold immersion and surface
classifications) and in physical sciences (i.e., supersymmetry, topological string theory, cosmology,
and analyzing symmetry fibration in biological networks).
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