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This paper designs an optimal observer-based output feed-
back control for traffic breakdown to dissolve traffic con-
gestion by means of backstepping method and optimiza-
tion. The linearized ARZmodel is used to represent the con-
gested traffic dynamics resulting from traffic breakdown.
Based on the factors leading to traffic breakdown, we take
into account the boundary conditions consisting of a bound-
ary with a constant density and a speed drop at the up-
stream inlet of a bottleneck, and a boundary with a distur-
bance of inflow (high traffic demand) at the inlet of the road
segment under consideration. In order to dissolute traffic
congestion, a dynamic feedback controller is designed at
the upstream boundary. By using backstepping approach,
an observer-based output feedback controller is computed
to guarantee the iISS of the closed-loop system. Through
establishing an optimization problem and solving it, the op-
timal values of the considered class of controller are ob-
tained. The performance of the output feedback controller
is also validated by numerical simulations.
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1 | INTRODUCTION

Traffic congestion resulting from traffic breakdown is an ubiquitous problem resulting in the increase of fuel consump-
tion and unsafe driving conditions. In the real world, traffic breakdown usually arises from the combination of three
factors: high traffic demand, bottlenecks, and disturbances caused by individual drivers (see [1]). High traffic demand is
the inflow indicating the potential average traffic flow on themain road and exceeding the bottleneck capacity, such as
during rush hours. The most bottlenecks include flow-conserving bottlenecks and non-flow-conserving bottlenecks
with additional sources and sinks, for example, on-ramp and off-ramp bottlenecks, or permanent and temporary types
such as the blocking effect resulted from the accidents or traffic lights. Local disturbances are caused by individual
drivers, such as abrupt lane changes, braking maneuvers, or other un-anticipated actions. The disturbances often
lead to a platoon of vehicles following each other at small time gaps which eventually becomes the first propagating
upstream traffic wave of a triggered stop-and go state.

There are several macroscopic models of traffic dynamics including first order Lighthill-Whitham-Richards (LWR)
model (see [2] and [3]), second order Payne-Whitham (PW) model (see [4] and [5]) and second order Aw-Rascle-Zhang
(ARZ) model (see [6] and [7]). The first-order LWR model represents density-velocity relation in equilibrium and fails
to model stop-and-go traffic. PW model consists of momentum equation and conservation law, and it is a nonlinear
second-order PDEs that describe deviations from density-velocity equilibrium. It is shown that disturbances in PW
model travel faster than traffic velocity in [8] and [9]. Consequently, vehicles on freeway are effected by both behind
and front. [7] showed that drivers mostly respond to the traffic in front of them. [6] and [7] separately brought
forward a new velocity equation to solve this problem. Afterwards, ARZ model is derived from the combination of
these two models through suitable definition and coefficients. Two-dimensional traffic dynamic model for large scale
traffic networks is introduced in [10].

In order to stabilize hyperbolic systems of the highway traffic, it is natural to use boundary feedback control on
available control signals as ramp metering or variable speed limits on a road. In order to design a boundary control
law for the linearized ARZ traffic flow model, spectral analysis is applied in [11]. Paper [12] proves the local stability
of a positive hyperbolic system and [13] designs a PI boundary feedback controller to stabilize the oscillations of the
traffic parameters on a freeway by Lyapunov method. [14] presents explicit boundary conditions which guarantee the
Lyapunov stability of the weak entropy solution to the scalar conservation law with convex flux.

In this paper, we use backstepping method to derive a boundary feedback controller to dissolve traffic congestion
resulting from traffic breakdown. The rationale behind the backstepping method is the following: through construct-
ing an appropriate Volterra integral transformation, the original PDE system is mapped to an integral input-to-state
stable target system. The original system inherits the stability property thanks to the invertibility of backstepping
transformation. The kernels derived from the backstepping transformation are adopted as gains of the original sys-
tem feedback controller.

The backstepping method for hyperbolic PDEs was initially introduced by [15], [16] and [17]. For backstepping
boundary control design of 2×2 coupled hyperbolic systems, there are some theoretical results obtained recently. [18]
uses a backstepping transformation to design a full-state feedback control law and derives H 2 exponential stability
for a quasilinear 2 × 2 system of first-order hyperbolic PDEs. Robust output regulation problem for boundary con-
trolled linear 2× 2 hyperbolic systems is solved in [19]. By implementing the finite-time state feedback regulator with
disturbance observers, the finite-time output regulation problem is solved in [20]. Two closely related state feedback
adaptive control laws are designed for stabilization of linear hyperbolic system with constant but uncertain in-domain
and boundary parameters in [21]. In [22], a boundary observer for nonlinear ARZ traffic flow model is designed to
estimate the information of traffic states using the backstepping method. An output feedback controller is designed
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for the underactuated cascade network of interconnected PDE systems using backstepping in [23].
In consideration of the limits of technology and cost, there have been research inspired by [24], designing an

observer-based output feedback control law for the linearized ARZ traffic flow model by using backstepping transfor-
mations (see also [25]). Although [26] has used the same method to deal with the disturbance rejection problem from
the oil and gas industry, this paper in the first work to design an optimal observer-based output boundary control of
traffic breakdown to remove or weaken the effect of high traffic demand acting as a given time-varying disturbance
input with the fastest convergence rate. Moreover, we design a controller and an observer respectively with a time-
depending integral term to reject disturbances by using backstepping transformation mapping the error system into
an integral input-to-state stable target system with a time-varying disturbance term. We use Lyapunov approach to
prove the iISS of this target system whose boundary control strategy is PI boundary control. Inspired by [27], we can
compute the kernels of backstepping transformations using a general expression of the kernel functions.

This paper is organized as follows. In Section 2, the linearized ARZ traffic flowmodel with boundary disturbances
for congested traffic deriving from traffic breakdown is derived by making use of coordinate transformation and lin-
earization around the steady state. Using backstepping transformation to map the linearized ARZ traffic flow model
into an integral input-to-state stable target system, we obtain a full state feedback controller in Section 3. An observer-
based output feedback controller is designed in Section 4. In Section 5, the optimization problem is discussed and the
results of numerical simulations are provided. The paper ends with concluding remarks in Section 6.

2 | TRAFFIC FLOW SYSTEM AND CONTROL PROBLEM

2.1 | ARZ traffic flow system and problem statement

The Aw-Rascle-Zhang model is a typically local second-order macroscopic traffic flow model composed of the follow-
ing continuity and acceleration equations:

ρt + (vρ)x = 0, (1)

vt +
(
v − ρp′(ρ)

)
vx =

Ve (ρ) − v

τ
, (2)

with an independent space variable x in (0, L) on a road section of length L, and an independent time variable t in
[0,∞). As the locally aggregated quantities, the traffic density ρ(x , t ) is defined as the number of vehicles per unit
length at time t , the mean speed v (x , t ) is the average speed of the vehicles passing the location x for a fixed time
interval. The speed adaptation time τ is a constant and corresponds to the inverse of the agility. In the previous model,
the steady-state speedVe (ρ) is the speed-density relation given by Greenshields model in [28] as

Ve (ρ) = vf

(
1 −

ρ

ρm

)
, (3)

where vf is the free flow speed, ρm is the maximum density. The speed adaptation term or relaxation term located in
the right side of equation (2) describes the mean acceleration of the vehicles in the local neighborhood for reaching
the steady-state speed.

The traffic pressure p(ρ) is an increasing function of density defined as

p(ρ) = vf −Ve (ρ) =
vf
ρm
ρ. (4)
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Let ω = v + vf
ρm
ρ, then (1) and (2) are written as

ωt + vωx =
vf − ω

τ
, (5)

vt + (2v − ω)vx =
vf − ω

τ
. (6)

In (6), the propagation velocity 2v − ω > 0 stands for the weak interactions between the vehicles, the traffic wave
propagates with the traffic flow (downstream) at this characteristic velocity in free traffic. Usually, the propagation
velocity of the traffic wave is slightly less than the average free-flow vehicle speed in free traffic. Reversely, the
characteristic velocity 2v − ω < 0 represents the traffic waves moves against the traffic flow (upstream) in congested
traffic due to the reaction of the drivers to their respective leading vehicles. In this paper, we take into account the
control problem of perturbation in congested traffic situations.

Denote by (ω∗,v ∗)> in C1([0, L];Ò2) a steady state of the system (5)-(6) such that 2v ∗(x ) − ω∗(x ) < 0 for all
x ∈ [0, L] on a stable and inhomogeneous road (with speed and density gradients). Note that it depends on the space
variable x and the corresponding density is ρ∗(x ) = ρm

vf
(ω∗(x ) − v ∗(x )). The deviations from the system states (ω,v )>

are defined as

ω̃(x , t ) = ω(x , t ) − ω∗(x ), (7)

ṽ (x , t ) = v (x , t ) − v ∗(x ), (8)

then the quasilinear deviation system is obtained,

ω̃t (x , t ) + Λ1(ω̃, ṽ , x )ω̃x (x , t ) + ṽ (x , t )
dω∗(x )
dx +

ω̃(x , t )

τ
= 0, (9)

ṽt (x , t ) + Λ2(ω̃, ṽ , x )ṽx (x , t ) + (2ṽ (x , t ) − ω̃(x , t ))
dv ∗(x )
dx +

ω̃(x , t )

τ
= 0, (10)

with two characteristic velocities

Λ1(ω̃, ṽ , x ) = ṽ (x , t ) + v
∗(x ), (11)

Λ2(ω̃, ṽ , x ) = 2ṽ (x , t ) − ω̃(x , t ) + 2v
∗(x ) − ω∗(x ), (12)

where Λ1(ω̃, ṽ , x ) > 0, Λ2(ω̃, ṽ , x ) < 0.

As described in [1], beyond the deterministic factors causing the traffic breakdown, high traffic demand is the
most effective ingredient. The disturbances caused by bottlenecks or individual drivers can not grow and propagate
on account of unconditional stability, if the traffic load is low enough. However, in spite of the absolute stability, traffic
breakdown will take place with inflow in excess of the capacity of bottlenecks on the considered road segment. The
local capacity reduction is the decisive attribute of characterizing the obstructing effect of a bottleneck. Furthermore,
we can not predict the time and location of individual traffic breakdown due to the stochastic and single-vehicle
natures of disturbances caused by individual drivers.

In order to increase the efficiency and stability of traffic flow, we investigate the optimal control of high traffic
demand by ramp metering in the presence of a bottleneck and disturbances on the road. Considering a road segment
with a constant density ρ∗out and a speed drop v−(L, t ) > v+(L, t ) at the boundary of the bottleneck, the diagram of
the control model is illustrated in Figure 1. The control is defined as U (t ) and would depend only on t .
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0 L

Q∗
rmp

U(t)

Q∗
in

p̄(t) ρ(0, t)v(0, t)

ρ−(L, t)v−(L, t)
ρ+(L, t)v+(L, t)

bottleneck

F IGURE 1 The traffic flow on a road segment with an downstream on-ramp bottleneck.

To be more specific, the boundary condition at x = L is, for all t ≥ 0,

ρ−(L, t ) = ρ+(L, t ) = ρ
∗
out . (13)

On the basis of the conservation of vehicle flows, the boundary condition with disturbances caused by high traffic
demand at the upstream inlet x = 0 can be derived,

Q ∗i n + Q
∗
rmp +U (t ) + p̄(t ) = ρ(0, t )v (0, t ), (14)

where Q ∗rmp > 0 denotes the steady-state on-ramp flow at the segment boundary upstream, Q ∗
i n
denotes the steady-

state inflow at the upstream boundary, and they satisfy Q ∗
i n
+Q ∗rmp = ρ

∗(0)v ∗(0); p̄(t ) is the unknown disturbances of
inflow serving as exogenous variable (externally given model input) depending on time t , the difference between the
measured speed at the inlet v (0, t ) and the corresponding steady state v ∗(0) ≥ 0 acts as the model output, i.e.,

y (t ) = v (0, t ) − v ∗(0), (15)

and the control law U (t ) is implemented by the on-ramp metering at upstream boundary of the main road. Ramp
metering temporarily reduces the traffic throughput and delays to increase it to prevent a traffic breakdown and the
associated capacity drop. We compute the optimal gains of controllerU (t ) depending on the output y (t ) only, so that
the system states converge to the steady state at the fastest speed, up to a constant depending on the size of the
disturbance p̄ .

2.2 | Coordinate transformation and linearization around steady state

In this section, in order to solve the previous problem, we perform a change of variables and we linearize the model.
Define the coordinate transformation

ε1(x , t ) = ψ1(x )ω̃(x , t ), (16)

ε2(x , t ) = ψ2(x )ṽ (x , t ), (17)
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with

ψ1(x ) = exp
(∫ x

0

1

τv ∗(s)
ds

)
, (18)

ψ2(x ) = exp
(∫ x

0

dv ∗(s)
ds ·

2

2v ∗(s) − ω∗(s)
ds

)
, (19)

for all x in (0, L), then the system (9)-(10) is rewritten as follows,

ε1t + Λ1(ε1, ε2, x )ε1x + c1(x )ε2 −
ψ−12 (x )

τv ∗(x )
ε1ε2 = 0, (20)

ε2t + Λ2(ε1, ε2, x )ε2x + c2(x )ε1 +
dv ∗(x )
dx ·

2ε2
2v ∗(x ) − ω∗(x )

(
2ψ−12 (x )ε2 −ψ

−1
1 (x )ε1

)
= 0, (21)

with

Λ1(ε1, ε2, x ) = ψ
−1
2 (x )ε2 + v

∗(x ), (22)

Λ2(ε1, ε2, x ) = 2ψ
−1
2 (x )ε2 −ψ

−1
1 (x )ε1 + 2v

∗(x ) − ω∗(x ), (23)

c1(x ) =
dω∗(x )
dx ψ1(x )ψ

−1
2 (x ), (24)

c2(x ) =

(
1

τ
−
dv ∗(x )
dx

)
ψ−11 (x )ψ2(x ). (25)

From the linearization of the quasilinear equation (20)-(21), we can derive

ε1t (x , t ) + λ1(x )ε1x (x , t ) + c1(x )ε2(x , t ) = 0, (26)

ε2t (x , t ) − λ2(x )ε2x (x , t ) + c2(x )ε1(x , t ) = 0, (27)

with

λ1(x ) = v
∗(x ) > 0, (28)

λ2(x ) = ω
∗(x ) − 2v ∗(x ) > 0. (29)

Therefore, from (13) and the transformations (7)-(8) and (16)-(17), the boundary condition at x = L may be
achieved as, for all t ≥ 0,

ε1(L, t ) = κε2(L, t ), (30)

with

κ = ψ1(L)ψ
−1
2 (L). (31)

The following linearized boundary condition at x = 0 is derived from (14),

ε1(0, t ) = q1ε2(0, t ) + q2 (U (t ) + p̄(t )) , (32)
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with

q1 =
2v ∗(0) − ω∗(0)

v ∗(0)
, (33)

and

q2 =
vf

ρmv ∗(0)
. (34)

We reformulate the previous control problem as follows. We seek the optimal parameters of an observer-based
output feedback control law to attain the maximum throughput (inflow) at the upstream of considerated road section
in order to remove or weaken the effect of high traffic demand and stabilize the linearized ARZ traffic flow model.
Inspired by [24], [18], but using different backstepping transformations due to different boundary conditions, we
can design a new observer-based output feedback control law. Firstly, we derive a full-state feedback control law
with kernels from the backstepping transformation mapping the original system to an integral input-to-state stable
target system. An observer is designed to estimate the states of the linearized ARZ traffic flow system. The precise
estimation to the states of the original system is guaranteed by the analytic expressions of injection gains which are
obtained by the backstepping transformation mapping the error system (derived by subtracting the state-estimate
system from the original system) to the same target system. Finally, the optimal parameters of the observer-based
output feedback controller are derived by solving the optimization problem with the objective function, defined as
the highest rate of exponential convergence.

3 | FULL-STATE FEEDBACK CONTROLLER

The main results of this section are the proof of the iISS of a target system with PI boundary conditions and obtaining
a full-state feedback controller through backstepping transformation.

3.1 | Target system

Firstly, we introduce a target system,

αt (x , t ) + λ1(x )αx (x , t ) = 0, (35)

βt (x , t ) − λ2(x )βx (x , t ) = 0, (36)

α(L, t ) = κβ (L, t ), (37)

α(0, t ) = q1β (0, t ) + k i η(t ), (38)

where k i ∈ Ò \ {0} is an integral tuning parameter, and

η(t ) =

∫ t

0
(β (0, s) − α(0, s)) ds + k −1i q2p̄(t ). (39)

According to the following theorem, the target system (35)-(39) is integral input-to-state stable for L2-norm. The
symbol ∗ stands for a symmetric block in the following content.
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Theorem 1 (Integral Input-to-state Stability of Target System) Assume there exist positive constants µ, θ, p1, p2, p4, q3,
q4 and constant p3 such that for all x in [0, L],

M1 =


M 11
1 M 12

1 M 13
1

∗ M 22
1 M 23

1

∗ ∗ M 33
1

 ≥ 0 (40)

with

M 11
1 = p1e

−µL −
p2

κ2
eµL , (41)

M 12
1 = 0, (42)

M 13
1 = −

p3
2κ
e
µ
2 L , (43)

M 22
1 = −p1q

2
1 + p2 −

3q4L

2
|p3 |(1 − q1)

2, (44)

M 23
1 = −p1q1k i +

p3
2
−
1

2
p4L(1 − q1), (45)

M 33
1 = −p1k

2
i −

3q4L

2
|p3 |k

2
i + (1 −m)L(p4k i −

q3
2
|k −1i |q2p4), (46)


p2
λ2(x )

p3
2λ2(x )

p3
2λ2(x )

p4
2

 > 0, (47)

m(k i −
q3
2
|k −1i |q2) >

θ

2
, (48)

µ >
θ

λ1(x )
, (49)

and


µp2 −

|p3 |

2q4λ
2
2
(x )
−

θp2
λ2(x )

µp3
4 −

θp3
2λ2(x )

µp3
4 −

θp3
2λ2(x )

m(p4k i −
q3
2 |k

−1
i
|q2p4) −

θp4
2

 > 0. (50)

Then there exists positive constants Ω1, b1 such that, for any z0 = (α(·, 0), β (·, 0), η(0))> in L2((0, L);Ò3), and for any p̄ such
that Û̄p ∈ L2[0,∞), the solution z = (α , β , η)> to the system (35)-(39) satisfies, for all t ≥ 0,

‖z (·, t ) ‖2
L2((0,L);Ò3) ≤ Ω1e

−θt ‖z0 ‖
2
L2((0,L);Ò3) + b1

∫ t

0

Û̄p2(s)ds . (51)

Remark Some observations follow

• From the inequality condition (48) in Theorem 1, it follows that the parameters m and k i have the identical sign,
i.e., mk i > 0.

• Note that the first term at the right-hand side of inequality (51) is continuous, decreasing with respect to t and
converges to zero as t goes to infinity. Since b1 > 0, the second term is increasing and tends to the L2 norm of
Û̄p . That is, the integral input-to-state stability of system (35)-(39) is verified by definition in [29] and [30].
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Proof The following candidate Lyapunov function is proposed for the purpose of analyzing the stability of the system
(35)-(39),

V =

∫ L

0


α(x , ·)

β (x , ·)

η(·)


>

P (x )


α(x , ·)

β (x , ·)

η(·)

 dx =V1 +V2 +V3 +V4, (52)

with

P (x ) =


p1
λ1(x )

e−µx 0 0

∗
p2
λ2(x )

eµx
p3

2λ2(x )
e
µx
2

∗ ∗
p4
2

 , for all x ∈ [0, L] (53)

and

V1 = p1

∫ L

0

e−µx

λ1(x )
α2(x , ·)dx , (54)

V2 = p2

∫ L

0

eµx

λ2(x )
β 2(x , ·)dx , (55)

V3 = p3η(·)

∫ L

0

e
µx
2

λ2(x )
β (x , ·)dx , (56)

V4 =
p4L

2
η2(·). (57)

On account of inequality (47) with p1 > 0, λ1(x ) > 0, the following inequality holds for all x in [0, L],


p1
λ1(x )

e−µx 0

∗

(
p2
λ2(x )

−
p2
3
p−1
4

2λ2
2
(x )

)
eµx

 > 0. (58)

Using Schur complement with p4 > 0, P (x ) is symmetric positive definite for all x in [0, L]. Therefore,

λmin ·

(∫ L

0

(
α2(x , ·) + β 2(x , ·)

)
dx + Lη2(·)

)
≤ V ≤ λmax ·

(∫ L

0

(
α2(x , ·) + β 2(x , ·)

)
dx + Lη2(·)

)
, (59)

where

λmin = min
x∈[0,L]

λ(P (x )), (60)

λmax = max
x∈[0,L]

λ(P (x )). (61)

In the previous equation, λ(P (x )) is the eigenvalue of P (x ) and λmin > 0, λmax > 0.
From (39), one can derive

Ûη(t ) = β (0, t ) − α(0, t ) + k −1i q2 Û̄p(t ). (62)

The time derivatives of (54)-(57) along the solutions to the system (35)-(39) are computed using integrations by parts
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in (54)-(56), Young’s inequality in (56), and (62), for all t ≥ 0,

ÛV1 = 2p1

∫ L

0

e−µx

λ1(x )
α(x , t )αt (x , t )dx

= −p1α
2(x , t )e−µx

���L
0
− µp1

∫ L

0
α2(x , t )e−µx dx

= p1 (q1β (0, t ) + k i η(t ))
2 − p1e

−µLα2(L, t ) − µp1

∫ L

0
α2(x , t )e−µx dx , (63)

ÛV2 = 2p2

∫ L

0

eµx

λ2(x )
β (x , t )βt (x , t )dx

= p2β
2(x , t )eµx

���L
0
− µp2

∫ L

0
β 2(x , t )eµx dx

=
p2

κ2
eµLα2(L, t ) − p2β

2(0, t ) − µp2

∫ L

0
β 2(x , t )eµx dx , (64)

ÛV3 = p3 Ûη(t )

∫ L

0

e
µx
2

λ2(x )
β (x , t )dx + p3η(t )

∫ L

0

e
µx
2

λ2(x )
βt (x , t )dx

= p3

(
β (0, t ) − α(0, t ) + k −1i q2 Û̄p(t )

) ∫ L

0

e
µx
2

λ2(x )
β (x , t )dx + p3η(t )β (x , t )e

µx
2

���L
0
−
µ

2
p3η(t )

∫ L

0
β (x , t )e

µx
2 dx

≤
q4L

2
|p3 |

(
(1 − q1)β (0, t ) − k i η(t ) + k

−1
i q2 Û̄p(t )

)2
+

1

2q4
|p3 |

∫ L

0

eµx

λ22(x )
β 2(x , t )dx + p3

e
µL
2

κ
η(t )α(L, t )

− p3η(t )β (0, t ) −
µ

2
p3η(t )

∫ L

0
β (x , t )e

µx
2 dx ,

≤
3q4L

2
|p3 |

(
(1 − q1)

2β 2(0, t ) + k 2i η
2(t ) + k −2i q22

Û̄p2(t )
)
+

1

2q4
|p3 |

∫ L

0

eµx

λ22(x )
β 2(x , t )dx + p3

e
µL
2

κ
η(t )α(L, t )

− p3η(t )β (0, t ) −
µ

2
p3η(t )

∫ L

0
β (x , t )e

µx
2 dx , (65)

ÛV4 = (1 − q1)p4Lη(t )β (0, t ) − k i p4Lη
2(t ) + k −1i q2p4Lη(t ) Û̄p(t )

≤ (1 − q1)p4Lη(t )β (0, t ) − k i p4Lη
2(t ) +

q3
2
|k −1i |q2p4Lη

2(t ) +
1

2q3
|k −1i |q2p4L

Û̄p2(t ). (66)

Using (63)-(66), for all t ≥ 0,

ÛV ≤ − θV −


α(L, ·)

β (0, ·)

η(·)


>

M1


α(L, ·)

β (0, ·)

η(·)

 −
∫ L

0


α(x , ·)

β (x , ·)

η(·)


>

M (x )


α(x , ·)

β (x , ·)

η(·)

 dx +
(
3q4L

2
|p3 |k

−2
i q22 +

1

2q3
|k −1i |q2p4L

)
Û̄p2(·),

(67)

where M1 is given by (40) and

M (x ) =

[
A(x ) B>(x )

B(x ) C

]
, (68)
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with

A(x ) =


(
µp1 −

θp1
λ1(x )

)
e−µx 0

0

(
µp2 −

|p3 |

2q4λ
2
2
(x )
−

θp2
λ2(x )

)
eµx

 , (69)

B(x ) =
[
0

(
µp3
4 −

θp3
2λ2(x )

)
e
µx
2

]
, (70)

C = m(p4k i −
q3
2
|k −1i |q2p4) −

θp4
2
. (71)

Therefore, using the Schur complement of C in M (x ) and (48), (71), for all x in [0, L], M (x ) > 0 holds if and only if

A(x ) − B>(x )C−1B(x ) =

[
M 11(x ) M 12(x )

∗ M 22(x )

]
> 0 (72)

with

M 11(x ) =

(
µ −

θ

λ1(x )

)
p1e
−µx , (73)

M 12(x ) = 0, (74)

M 22(x ) =

(
µp2 −

|p3 |

2q4λ
2
2(x )

−
θp2
λ2(x )

)
eµx −

(
m(p4k i −

q3
2
|k −1i |q2p4) −

θp4
2

)−1 (
µp3
4
−

θp3
2λ2(x )

)2
eµx . (75)

Inequality (72) holds if and only if the conditions (48)-(50) are satisfied. Thus using (40), if M (x ) > 0 holds,

ÛV ≤ −θV + a1 Û̄p
2(·), (76)

with a1 = 3q4L
2 |p3 |k

−2
i
q22 +

1
2q3
|k −1
i
|q2p4L > 0, and thus along the solutions to the system (35)-(39),

V ≤ e−θtV (z0) + a1e
−θt

∫ t

0

Û̄p2(s)eθs ds ≤ e−θtV (z0) + a1
∫ t

0

Û̄p2(s)ds . (77)

Combining this relation with (59), there exists positive constants Ω1 ≥ λmax
λmin
, b1 ≥

a1
λmin

such that

∫ L

0

(
α2(x , t ) + β 2(x , t )

)
dx + Lη2(t )

≤
1

λmin
V

≤
1

λmin

(
e−θtV (z0) + a1

∫ t

0

Û̄p2(s)ds
)

≤
1

λmin

(
e−θt · λmax ·

(∫ L

0

(
α2(x , 0) + β 2(x , 0)

)
dx + Lη2(0)

)
+ a1

∫ t

0

Û̄p2(s)ds
)

≤ Ω1e
−θt

(∫ L

0

(
α2(x , 0) + β 2(x , 0)

)
dx + Lη2(0)

)
+ b1

∫ t

0

Û̄p2(s)ds, (78)

completing the proof of Theorem 1.
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3.2 | Backstepping transformation and control law

As in [18], consider the backstepping transformation

α(x , t ) = ε1(x , t ) −

∫ L

x
G11(x , ξ)ε1(ξ, t )dξ −

∫ L

x
G12(x , ξ)ε2(ξ, t )dξ, (79)

β (x , t ) = ε2(x , t ) −

∫ L

x
G21(x , ξ)ε1(ξ, t )dξ −

∫ L

x
G22(x , ξ)ε2(ξ, t )dξ, (80)

where G11(x , ξ),G12(x , ξ),G21(x , ξ) and G22(x , ξ) in L2((0, L)2;Ò) are kernels in the triangular domain
Ô1 =

{
(x , ξ) ∈ Ò2 | 0 ≤ x ≤ ξ ≤ L

}
.

Take time derivative and spatial derivative on (79) and (80), and substitute them into (35)-(39) to get the following
conditions of the kernels from (26)-(30). The kernels G11(x , ξ),G12(x , ξ),G21(x , ξ) and G22(x , ξ) should satisfy the
following kernel equations,

λ1(x )G
11
x (x , ξ) + λ1(ξ)G

11
ξ (x , ξ) = −λ

′
1(ξ)G

11(x , ξ) + c2(ξ)G
12(x , ξ), (81)

λ1(x )G
12
x (x , ξ) − λ2(ξ)G

12
ξ (x , ξ) = λ

′
2(ξ)G

12(x , ξ) + c1(ξ)G
11(x , ξ), (82)

λ2(x )G
21
x (x , ξ) − λ1(ξ)G

21
ξ (x , ξ) = λ

′
1(ξ)G

21(x , ξ) − c2(ξ)G
22(x , ξ), (83)

λ2(x )G
22
x (x , ξ) + λ2(ξ)G

22
ξ (x , ξ) = −λ

′
2(ξ)G

22(x , ξ) − c1(ξ)G
21(x , ξ), (84)

and the boundary conditions

G11(x , L) =
λ2(L)

κλ1(L)
G12(x , L), (85)

G12(x , x ) =
c1(x )

λ1(x ) + λ2(x )
, (86)

G21(x , x ) = −
c2(x )

λ1(x ) + λ2(x )
, (87)

G22(x , L) =
κλ1(L)

λ2(L)
G21(x , L). (88)

The well-posedness of the kernel equations (81)-(88) and the boundedness of kernel variables follow from a
coordinate change (x , ξ) 7→ (L − ξ, L − x ) and an application of Theorem A.1 in [18] in the triangular domain Ô2 ={
(L − ξ, L − x ) ∈ Ò2 | 0 ≤ L − ξ ≤ L − x ≤ L

}
. Therefore, for system (26)-(34), the following control law can be de-

duced,

U (t ) =
k i
q2

∫ t

0
(ε2(0, s) − ε1(0, s)) ds

+
k i
q2

∫ t

0

∫ L

0

[ (
G11(0, ξ) −G21(0, ξ)

)
ε1(ξ, s) +

(
G12(0, ξ) −G22(0, ξ)

)
ε2(ξ, s)

]
dξ ds

+
1

q2

∫ L

0

[ (
G11(0, ξ) − q1G

21(0, ξ)
)
ε1(ξ, t ) +

(
G12(0, ξ) − q1G

22(0, ξ)
)
ε2(ξ, t )

]
dξ. (89)

Under the assumptions in the Theorem 1, the target system (35)-(39) is integral input-to-state stable. Thus, using
the invertibility of backstepping transformation, the original system (26)-(34) is integral input-to-state stable in the
L2-norm with the control law (89).
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Obviously, from (89), the practical implementation of the feedback control law needs the knowledge of the full
state (ε1(x , t ), ε2(x , t ))> over the whole spatial domain [0, L]. From (15), the output under coordinate transformation
is

y (t ) = ε2(0, t ). (90)

In the next section, the knowledge of the full state (ε1(x , t ), ε2(x , t ))> in the control law U (t ) can be provided by a
boundary state observer that uses the output y (t ) in (90) with a boundary measurement of v (0, t ) only. The kernels
G11(0, ξ),G12(0, ξ),G21(0, ξ) and G22(0, ξ) can be derived by solving the kernel equations (81)-(88). Through choosing
an appropriate value of k i , the iISS of original system (26)-(34) is guaranteed with the control law (89).

4 | OBSERVER DESIGN AND OUTPUT FEEDBACK CONTROLLER

From (15), We note that the output y (t ) can be obtained by the measurement of inlet speed v (0, t ) of the considered
road segment. In order to estimate the state (ε1, ε2)>, a boundary observer is designed as in [24] by constructing the
system with the output injection terms:

ε̂1t (x , t ) + λ1(x )ε̂1x (x , t ) + c1(x )ε̂2(x , t ) = r (x ) (y (t ) − ε̂2(0, t )) , (91)

ε̂2t (x , t ) − λ2(x )ε̂2x (x , t ) + c2(x )ε̂1(x , t ) = s(x ) (y (t ) − ε̂2(0, t )) , (92)

ε̂2(L, t ) =
1

κ
ε̂1(L, t ), (93)

ε̂1(0, t ) = q1ε̂2(0, t ) − Li

∫ t

0
(ε2(0, τ) − ε̂2(0, τ)) dτ + q2U (t ). (94)

In the previous equations, ε̂1 and ε̂2 are the estimates of the state variables ε1 and ε2, the terms r (x ) and s(x ) are the
output injection gains, and Li ∈ Ò \ {0} is an integral tuning parameter. In order to reject perturbation to guarantee
the convergence of the estimated state to the real state, an integral term is added to a boundary condition of the
observer.
The objective is to use the backstepping transformation to find r (x ) and s(x ) such that (ε̂1, ε̂2)> converges to (ε1, ε2)>.
The error system can be obtained by subtracting the estimate system (91)-(94) from the original system (26)-(34) and
(32)-(30),

ε̃1t (x , t ) + λ1(x )ε̃1x (x , t ) + c1(x )ε̃2(x , t ) = −r (x )ε̃2(0, t ), (95)

ε̃2t (x , t ) − λ2(x )ε̃2x (x , t ) + c2(x )ε̃1(x , t ) = −s(x )ε̃2(0, t ), (96)

ε̃2(L, t ) =
1

κ
ε̃1(L, t ), (97)

ε̃1(0, t ) = q1ε̃2(0, t ) + Li

∫ t

0
ε̃2(0, τ)dτ + q2p̄(t ), (98)

where ε̃1(x , t ) = ε1(x , t ) − ε̂1(x , t ), and ε̃2(x , t ) = ε2(x , t ) − ε̂2(x , t ).
In order to guarantee the iISS of the error system (95)-(98), the target system (35)-(39) is mapped into the error system
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by using the backstepping transformation

ε̃1(x , t ) = α(x , t ) +

∫ x

0
F 11(x , ξ)α(ξ, t )dξ +

∫ x

0
F 12(x , ξ)β (ξ, t )dξ, (99)

ε̃2(x , t ) = β (x , t ) +

∫ x

0
F 21(x , ξ)α(ξ, t )dξ +

∫ x

0
F 22(x , ξ)β (ξ, t )dξ, (100)

where the functions F i j (x , ξ) in L2((0, L)2;Ò), i , j = 1, 2 have to be determined on the triangular domain Ô.
Differentiating the transformation (99) and (100) with respect to t and x , substituting the results into the error

system (95)-(98) and using the equations of the target system (35)-(39), the following kernel equations can be derived,

λ1(x )F
11
x (x , ξ) + λ1(ξ)F

11
ξ (x , ξ) = −λ

′
1(ξ)F

11(x , ξ) − c1(x )F
21(x , ξ), (101)

λ1(x )F
12
x (x , ξ) − λ2(ξ)F

12
ξ (x , ξ) = λ

′
2(ξ)F

12(x , ξ) − c1(x )F
22(x , ξ), (102)

λ2(x )F
21
x (x , ξ) − λ1(ξ)F

21
ξ (x , ξ) = λ

′
1(ξ)F

21(x , ξ) + c2(x )F
11(x , ξ), (103)

λ2(x )F
22
x (x , ξ) + λ2(ξ)F

22
ξ (x , ξ) = −λ

′
2(ξ)F

22(x , ξ) + c2(x )F
12(x , ξ), (104)

with the boundary conditions

F 11(L, ξ) = κF 21(L, ξ), (105)

F 12(x , x ) = −
c1(x )

λ1(x ) + λ2(x )
, (106)

F 21(x , x ) =
c2(x )

λ1(x ) + λ2(x )
, (107)

F 22(L, ξ) =
1

κ
F 12(L, ξ). (108)

The injection gains are, for all x in [0, L],

r (x ) = λ2(0)F
12(x , 0) −

(
1 −

Li
k i

)
λ1(0)F

11(x , 0), (109)

s(x ) = λ2(0)F
22(x , 0) −

(
1 −

Li
k i

)
λ1(0)F

21(x , 0). (110)

The kernels F 11(x , ξ), F 12(x , ξ), F 21(x , ξ) and F 22(x , ξ) are the solutions to the kernel equations (101)-(108). The well-
posedness of the solutions to kernel equations (101)-(108) is guaranteed by the Theorem A.1 in [18] in the triangular
domain Ô2 following a coordinate change (x , ξ) 7→ (L − ξ, L − x ).

Based on the reversibility of the backstepping transformation, it is straightforward to prove the iISS of the error
system (95)-(98) in the L2 sense through studying the stability of the target system (35)-(39). Let

η̃(t ) =

∫ t

0
ε̃2(0, τ)dτ + L−1i q2p̄(t ), (111)

the following theorem concerning the iISS of the error system (95)-(98) implies that the state estimates go to the real
values as time goes on.

Theorem 2 (iISS of Error System) Under the assumptions of Theorem 1, consider the system (95)-(98), and the functions r
and s respectively determined by (109) and (110), where F 11(x , 0), F 12(x , 0), F 21(x , 0) and F 22(x , 0) (x in [0, L]) are obtained
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from (101)-(108), the equilibrium ε̃1 ≡ ε̃2 ≡ 0 is integral input-to-state stable in the L2 sense, that is there exists positive
constants Ω2, b2 such that, for any (ε̃1(·, 0), ε̃2(·, 0))> in L2((0, L);Ò2), and for any p̄ such that Û̄p ∈ L2[0,∞), the solution
(ε̃1, ε̃2, η̃)

> to the system (95)-(98) and (111) satisfies∫ L

0

(
ε̃21(x , t ) + ε̃

2
2(x , t )

)
dx + Lη̃2(t ) ≤ Ω2e−θt

(∫ L

0

(
ε̃21(x , 0) + ε̃

2
2(x , 0)

)
dx + Lη̃2(0)

)
+ b2

∫ t

0

Û̄p2(s)ds, (112)

for all t ≥ 0.

Proof Since the transformation (99)-(100) is invertible, the dynamical behavior of (95)-(98) is the same as the behavior
of the target system (35)-(39). Under the assumptions of Theorem 1, the target system (35)-(39) is integral input-to-
state stable in the L2 sense and goes to zero as we know from Theorem 1. Thus the iISS of (95)-(98) is obtained from
the invertibility and linearity of the backstepping transformation, in other words, (112) holds.

Therefore, the following observer-based output feedback controller is proposed by combining the full state feed-
back law (89) with the observer estimates (91)-(94),

U (t ) =
k i
q2

∫ t

0
(ε2(0, s) − ε̂1(0, s)) ds

+
k i
q2

∫ t

0

∫ L

0

[ (
G11(0, ξ) −G21(0, ξ)

)
ε̂1(ξ, s) +

(
G12(0, ξ) −G22(0, ξ)

)
ε̂2(ξ, s)

]
dξ ds

+
1

q2

∫ L

0

[ (
G11(0, ξ) −

1

q1
G21(0, ξ)

)
ε̂1(ξ, t ) +

(
G12(0, ξ) −

1

q1
G22(0, ξ)

)
ε̂2(ξ, t )

]
dξ, (113)

where ε̂1 and ε̂2 are computed from (91)-(94), the kernelsG11(0, ξ),G12(0, ξ),G21(0, ξ) andG22(0, ξ) are computed from
the kernel equations (81)-(88).
Combining Theorem 1 and Theorem 2, the following result can be derived, when closing the loop with the output
feedback controller (113).

Theorem 3 (iISS of Closed-loop System) Under the assumptions of Theorem 1, for any (ε1(·, 0), ε2(·, 0), ε̃1(·, 0), ε̃2(·, 0))>

in L2((0, L);Ò4) inÒ, the observer-based output feedback controller (113) makes the equilibrium of the system (26)-(34) and
(32)-(30) and the error system (95)-(98) integral input-to-state stable in the L2 sense, that is there exists positive constants
Ω3, b3 such that along the solution to (26)-(34), for any p̄ such that Û̄p ∈ L2[0,∞), it holds, for all t in [0,∞),∫ L

0

(
ε21(x , t ) + ε

2
2(x , t )

)
dx + Lη2(t ) +

∫ L

0

(
ε̃21(x , t ) + ε̃

2
2(x , t )

)
dx + Lη̃2(t )

≤ Ω3e
−θt

[ ∫ L

0

(
ε21(x , 0) + ε

2
2(x , 0)

)
dx + Lη2(0) +

∫ L

0

(
ε̃21(x , 0) + ε̃

2
2(x , 0)

)
dx + Lη̃2(0)

]
+ b3

∫ t

0

Û̄p2(s)ds . (114)

Proof The following candidate Lyapunov function is proposed,

W =W1 +W2, (115)
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where

W1 =

∫ L

0


ε1(x , t )

ε2(x , t )

η(t )


>

P1(x )


ε1(x , t )

ε2(x , t )

η(t )

 dx , (116)

W2 =

∫ L

0


ε̃1(x , t )

ε̃2(x , t )

η̃(t )


>

P2(x )


ε̃1(x , t )

ε̃2(x , t )

η̃(t )

 dx , (117)

with

Pj (x ) =


pj 1
λ1(x )

e−µx 0 0

∗
pj 2
λ2(x )

eµx
pj 3

2λ2(x )
e
µx
2

∗ ∗
pj 4
2

 , j = 1, 2, for all x ∈ (0, L). (118)

From Theorem 1 and the invertibility and linearity of the backstepping transformation, for the system (26)-(34) and
(32)-(30), there exist positive constants p11, p12, p14,C , a1, b and a constant p13 such that

ÛW1 ≤ −θW1 + a1 Û̄p
2(·), (119)

and ∫ L

0

(
ε21(x , t ) + ε

2
2(x , t )

)
dx + Lη2(t ) ≤ Ce−θt

(∫ L

0

(
ε21(x , 0) + ε

2
2(x , 0)

)
dx + Lη2(0)

)
+ b

∫ t

0

Û̄p2(s)ds . (120)

From Theorem 2, the iISS of the error system (95)-(98) guarantees exact estimation of the state ε1 and ε2 of the system
(26)-(30) under the assumptions of Theorem 1, i.e., there exist positive constants p21, p22, p24, a2 and a constant p23
such that

ÛW2 ≤ −θW2 + a2 Û̄p
2(·). (121)

and (112) hold.
According to the separation principle, and the inequalities (119)-(121), the Lyapunov functionW for the output feed-
back closed-loop system consisting of the original system (26)-(34) and (32)-(30) and the error system (95)-(98) satisfies

ÛW = ÛW1 + ÛW2 ≤ −θW + (a1 + a2) Û̄p
2(·), (122)

Then for Ω3 ≥ max{Ω2,C }, b3 = b + b2, one can derive the following result from (112) and (120),∫ L

0

(
ε21(x , t ) + ε

2
2(x , t )

)
dx + Lη2(t ) +

∫ L

0

(
ε̃21(x , t ) + ε̃

2
2(x , t )

)
dx + Lη̃2(t )

≤ Ω3e
−θt

[ ∫ L

0

(
ε21(x , 0) + ε

2
2(x , 0)

)
dx + Lη2(0) +

∫ L

0

(
ε̃21(x , 0) + ε̃

2
2(x , 0)

)
dx + Lη̃2(0)

]
+ b3

∫ t

0

Û̄p2(s)ds . (123)
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Therefore, it is proved that with the control law (113), the equilibrium ε1 ≡ ε2 ≡ 0 of the system (26)-(34) and (32)-(30)
is integral input-to-state stable in the L2 sense.

5 | OPTIMAL CONTROLLER AND NUMERICAL STUDIES

5.1 | Optimal controller

From (114), the maximal value of θ implies the highest rate of the exponential convergence of closed-loop system.
In order to seek the optimal control law U (t ) in (113), the following optimization problem for the maximal θ can be
considered to derive the optimal value of k i :

max θ

subject to µ, θ, p1, p2, p4, q3, q4 > 0, and (40)-(50) for all x ∈ [0, L]. (124)

Checking the constraints above, ask to deal with the matrix inequalities that are not directly numerically tackled due
to the products between unknown parameters. The parameters k i , µ, θ,m can be given through line search methods,
and the other variables p1, p2, p3, p4 can be derived by solving linear matrix inequalities (LMIs). We discretize the
spatial variable x on the domain [0, L] to solve infinite LMIs.

5.2 | Simulations

In order to demonstrate the performance of the proposed controller (113) in stabilizing the system (26)-(30) around
the equilibrium, numerical simulations are done in this section. Given p̄(t ),ω∗(x ),v ∗(x ), compute controller for the
linearized system and simulate the nonlinear model. For simulations, we illustrate by rush hour the traffic demand
p̄(t ) serving as an exogenous variable for traffic flow model that varies on time scales.

25 30 35 40 45 50
ki

4

5

6

7

8

9

10

θ
m
a
x

F IGURE 2 Relation between θmax and k i .

For numerical simulations, the traffic parameters of a local road section under consideration are chosen as in [13]:
L = 1 km, vf = 150 km/h, ρm = 200 veh./km, τ = 60 s, p̄(t ) = 420e−10t (veh./h), t ∈ [0,∞). The steady state is chosen as
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F IGURE 3 State (ε̃1, ε̃2, η̃)> of the error system.

ρ∗(x ) = 120−0.5x (veh./km), v ∗(x ) = 70−0.5x (km/h), x ∈ [0, L]which leads to the characteristic speeds λ1 = 70−0.5x ,
and λ2 = 20 + 0.125x , x ∈ [0, L], then q1 = −0.2857, q2 = 0.0107, q3 = 1, q4 = 1, κ = 2.2487. The initial conditions are
defined as

ρ(x , 0) = ρ∗(x ) + 0.5 sin 4πx ,

v (x , 0) = v ∗(x ) + 1.8 cos 4πx .

Solving (124) by using Matlab, Figure 2 shows the relation between maximal θ and parameter k i . It is checked in this
figure that the larger k i is, the larger is θmax given by (124). This figure can be used to compute the best performance,
given an amplitude constraint on k i . Choosing the control gain k i = 35 in (89) and (113), µ = 0.6, and m = 0.1, we
get θ = 7, p1 = 10.6524, p2 = 15.966, p3 = 0.0059, p4 = 564.0186, so that (40)-(50) hold. The integral tuning parameter
is set Li = 5 in (98), and using the method described and the code attached in Appendix F.2 of [27], the values of
kernels G11,G12,G21,G22 at x = 0 are derived from numerical computation of the kernel equations (81)-(88) and the
values of F 11, F 12, F 21, F 22 at x = 0 are obtained from the numerical computation of (101)-(108). Different from the
previous research giving the explicit formula of backstepping transformations that can be used to deduce the explicit
solutions of kernels, the numerical solutions of kernels in the general formation of backstepping transformations can
be derived using [27].

The iISS of the error system can be seen in Figure 3. The evolution of the output feedback controllerU (t ) given by
(113) is given in Figure 4. In Figure 5, the state of the closed-loop system with the output feedback control converges
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F IGURE 4 Evolution of the observer-based output feedback controller U (t ).

F IGURE 5 State (ε1, ε2)> of the closed-loop system.

to zero steady state. This numerical result is consistent with Theorem 3. Figure 6 gives the numerical simulations of
the nonlinear ARZ traffic model in closed loop with the controller that is computed with the linearized model. It is
obvious that the designed observer-based output feedback controller for the linearized ARZ traffic system stabilizes
the nonlinear system in the same way.

6 | CONCLUSION

The stabilization of the nonlinear Aw-Rascle-Zhang (ARZ) congestion traffic flowmodel with an unknown perturbation
at the upstream boundary was considered in this paper. A full-state feedback controller was designed to stabilize the
linear part of the nonlinear ARZ model. By designing an exponentially convergent observer which only needs to
measure the upstream boundary state, an output state feedback controller and the iISS were achieved. Only the
upstream inlet vehicles velocity was measured for the design of control law and the unpredicted perturbation was
rejected by designing proper injection gains of the observer.

With the same method, some related problems could be considered. Instead of the congested regime, the free-
flow regime will be studied in the future research work. Moreover, it could be a great help to apply our approach to
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F IGURE 6 State (ρ,v )> of the plant system.

some other models or other balance laws rather than the traffic flow model. The method also can be used for other
hyperbolic systems with more than two eigenvalues. We may also investigate the observer-based output feedback
control for nonlinear systems.
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