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Abstract 26 

In aquatic ecosystems, anthropogenic activities disrupt nutrient fluxes, thereby promoting 27 

harmful algal blooms that could directly impact economies and human health. Within this framework, 28 

the forecasting of the proxy of chlorophyll a in coastal areas is the first step to managing these algal 29 

blooms. The primary goal was to analyze how phytoplankton bloom forecasts are impacted by 30 

different sampling frequencies, by using a machine learning model. The database used in this study 31 

was sourced from an automated system located in the English Channel. This device has a sampling 32 

frequency of 20 minutes. We considered 12 physicochemical parameters over a six-year period. Our 33 

forecast methodology is based on the random forest (RF) model and a sliding window strategy. The 34 

lag times for these sliding windows ranged from 12 hours to 3 months with four different sampling 35 

times until 1 day.  36 

The results indicate that the optimal forecast was obtained for a 20 minutes time step, with an 37 

average R² of 0.62. Moreover, the highest values of fluorescence were predicted when the water 38 

temperature was approximately 11.8°C. Consequently, we demonstrated that the sampling frequency 39 

directly impacts the forecast performance of an RF model. Furthermore, this kind of model can 40 

recreate interactions that closely resemble biological processes. Our study suggests that the RF model 41 

can utilize the additional information contained in high-frequency datasets. The methodology 42 

presented here lays the foundation for the development of a numerical decision-making tool that could 43 

help mitigate the impact of these algal blooms. 44 

 45 
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1. Introduction 50 

The technological developments in recent decades, both numerical and material, help us to 51 

understand the complex processes present in aquatic ecosystems at a biological compartment level. In 52 

lacustrine environments, it has been noted that pairing of machine learning and high-frequency 53 

database inputs from automatic devices (or long-term sampling), engendered encouraging results in 54 

phytoplankton community forecasting (Yajima and Derot 2018; Thomas et al. 2018). For example, 55 

anthropogenic agricultural activities and the treatment of water and sewage, enrich nutrient levels in 56 

freshwater and coastal areas (Anderson et al. 2002; Smith et al. 2006; Roelke et al. 2010). These 57 

disruptive nutrient fluxes lead to eutrophication by promoting the development of toxic algae, causing 58 

harmful algal blooms (HAB) (Camargo and Alonso 2006; Schindler 2006). The size and intensity of 59 

these blooms has been increasing for over 20 years (Burkholder 2003; Glibert et al. 2005).  60 

The occurrence of HABs has a negative socio-economic impact on drinking water, fisheries, 61 

agriculture, and tourism (Carmichael and Boyer 2016; Reynaud and Lanzanova 2017). Moreover, they 62 

are often associated with cyanobacteria proliferation (Backer et al. 2015). In the marine environment, 63 

the Prymnesiophyceae Phaeocystis is an organism that blooms in response to increased nutrient levels. 64 

This species generally impacts tourism because of the large quantities of foam that appears on beaches 65 

during these blooms (Veldhuis and Wassmann 2005). In some parts of the world, these algae generate 66 

losses in the aquaculture industry, which could potentially impact the economies of these countries 67 

(Chen et al. 2002). For many years, the problems relating to Phaeocystis were mostly confined to the 68 

English Channel (Lancelot et al. 1987; Lubac et al. 2008; Monchy et al. 2012; Danhiez et al. 2017). 69 

However, in recent years, this type of bloom has also been observed in other parts of the world, such 70 

as China and the Arabian Gulf (Lancelot et al. 2002; Schoemann et al. 2005).   71 
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In this context, the ability to forecast algal blooms is currently a major issue in ecology 72 

(Pennekamp et al. 2019). The development of HABs is often directly linked to nutrient pollution, also 73 

termed eutrophication (Heisler et al. 2008; Howarth et al. 2000; Lapointe et al. 2017). A numerical 74 

tool capable of understanding and forecasting HABs could help manage water quality, thereby 75 

enabling stakeholders to mitigate the impact of this toxic bloom. However, before creating this type of 76 

decision-making tool, it is imperative to focus on the prediction of more global biological processes, 77 

such as phytoplankton biomass. Classic hydro-ecological models work optimally for physical 78 

processes, but perform poorly when forecasts of the first echelon of the food web are involved 79 

(Shimoda and Arhonditsis 2016). This decrease in predictive performance can be explained by 80 

numerous complex interactions and nonlinear mechanisms between phytoplankton and environmental 81 

variables (Edwards et al. 2016). In addition, in open-ocean and coastal areas, there are strong currents 82 

and important phytoplankton migrations; therefore, it is increasingly complicated to forecast these 83 

biological processes using a machine learning model (Thomas et al. 2018).  84 
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Scientific literature contains a wide variety of numerical models concerning the prediction of 85 

phytoplankton biomass or phylum, including models such as the hydro-ecological (Bae and Seo 2018; 86 

Yajima and Choi 2013), autoregressive moving integrated moving average (ARIMA) (Chen et al. 87 

2015), and random forest (RF) (Thomas et al. 2018; Yajima and Derot 2018; Shin et al. 2017; Kehoe 88 

et al. 2015; Rivero-Calle et al. 2015). There is also a wide variety of models based on neuronal 89 

networks: artificial neural networks (ANNs) (Shamshirband et al. 2019; G. Lee et al. 2016; S. Lee and 90 

Lee 2018); long short-term memory (LSTM) (Cho and Park 2019; Lee and Lee 2018; Cho et al. 2018); 91 

nonlinear autoregressive neural network (NAR) (Du et al. 2018), and deep belief network (DBN) 92 

(Zhang et al. 2016). Moreover, some of these models are coupled with a genetic algorithm (Lee et al. 93 

2016) or wavelet-transform (Du et al. 2018; Shamshirband et al. 2019), or both (Recknagel et al. 94 

2013). We can also find great diversity in the methods used to validate these models: coefficient of 95 

determination (R²) (Du et al. 2018; Shamshirband et al. 2019; Lee et al. 2016; Lee and Lee 2018; 96 

Recknagel et al. 2013; Kehoe et al. 2015); root mean squared error (RMSE) (Du et al. 2018; Cho and 97 

Park 2019; Zhang et al. 2016; S. Lee and Lee 2018; Cho et al. 2018; Chen et al. 2015; Recknagel et al. 98 

2013); mean absolute error (MAE) (Du et al. 2018; Shamshirband et al. 2019); mean squared error 99 

(MSE) (Lee et al. 2016; Rivero-Calle et al. 2015); mean relative error (MRE) (Zhang et al. 2016); 100 

absolute error peak (AEP) (Chen et al. 2015); and pseudo-R² (Thomas et al. 2018); area under curve 101 

(AUC) (Shin et al. 2017).   102 
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This highlights the lack of standardized protocol to forecast the parameters linked to 103 

phytoplankton biomass in aquatic environments. Thus, it can be inferred that the use of this kind of 104 

artificial intelligence based model in this branch of science is still in its infancy. However, the pairing 105 

of high-frequency data with RF models seems to be an interesting alternative to forecast primary 106 

production. One way to measure RF usefulness is the usage of the pseudo-R² coefficient that comes 107 

from the cross-validation process, at an “out-of-bag” error level, and measures only the performance 108 

of the learning phase (Breiman 2001). Although this coefficient has been used in several 109 

environmental studies, some researchers are aware that pseudo-R² cannot be assessed as a true forecast 110 

(Large et al. 2015; Teichert et al. 2016; Thomas et al. 2018). Therefore, in this study, we have chosen 111 

to compare the raw data from an automated system to the output of the machine learning model, using 112 

the coefficient of determination (R²). 113 

Automatic devices may have different sampling frequencies; for example, time steps of 10 114 

minutes, 20 minutes or 4 hours can be found (Dur et al. 2007; Derot et al. 2016; Schmitt and Lefebvre 115 

2016; Thomas et al. 2018). Currently, the impact of sampling frequency on the learning process is 116 

poorly understood. Therefore, in this study, we have explored the capacity of the RF model to leverage 117 

the supplementary information that is contained in the high sample frequency and water quality data. 118 

Moreover, the predictive performance of this model was studied by varying the time steps used in our 119 

database. Before creating a decision-making tool to help stakeholders with water quality management, 120 

certain intermediate research stages are necessary. Furthermore, the coupling between machine 121 

learning and hydrodynamic models exhibits encouraging results for the prediction of ecological 122 

parameters directly linked to water quality (Cuttitta et al. 2018; Jia et al. 2018; Hanson et al. 2020). 123 

Within this framework, the purpose of our study is to better understand the impact of sampling 124 

frequency on algal bloom forecast capacity. Therefore, the results presented here could potentially 125 

improve this type of coupled numerical model.   126 
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2. Material and methods  127 

2.1. Automatic device and study area 128 

The high-frequency dataset used in this study was producedby an automatic device called 129 

MAREL Carnot. MAREL is a French acronym for Mesures Automatisées en Réseaux pour 130 

l’Environnement Littoral (automated sampling network for coastal area). It belongs to a network of 131 

fixed platform networks along French coasts called COAST-HF (http://coast-hf.fr). The MAREL 132 

Carnot device used here is located in the eastern English Channel on the French coastal area. More 133 

specifically, this automatic system is situated at the exit of the Boulogne-sur-Mer harbor on the Carnot 134 

sea wall (50.7404 N; 1.5676 W) (Fig. 1). The Boulogne-sur-Mer harbor is the first fishing port in 135 

France. Consequently, it is subjected to significant anthropogenic pollution. Moreover, the English 136 

Channel has been affected by HAB generated by Phaeocystis for several decades (Lancelot et al. 137 

1987; Lubac et al. 2008; Monchy et al. 2012; Danhiez et al. 2017). In the eastern part, this kind of 138 

bloom has been a recurrent event since the 1990s (Spilmont et al. 2009; Schmitt et al. 2011; Houliez et 139 

al. 2012; Grattepanche et al. 2011). This is one of the reasons for basing this kind of automated device 140 

in this area. It is pivotal to consider that the English Channel has very turbid waters and is subject to 141 

large tidal ranges. This has been tied to the fact that the bed of this sea is a continental shelf, with a 142 

maximal depth of 180 meters.   143 
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 144 

 145 

Fig. 1. Location of the MAREL Carnot automatic device, in the eastern English Channel at the 146 

Boulogne-sur-Mer port exit.   147 
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2.1.1. MAREL Carnot data 148 

The MAREL Carnot sensors are attached to a floating system that nestles in a tube fixed to the 149 

sea wall. The data are constantly recorded at a depth of 1.5 meters below sea level. However, the 150 

measurement of the photosynthetically active radiation (P.A.R) parameter is an exception and for 151 

obvious reasons, the sensor is not installed in the tube, but on the top of the sea wall. Each parameter 152 

is recorded at a frequency of 20 minutes, except for the three nutrient parameters (nitrates, silicates, 153 

and phosphates) which are recorded with a periodicity of 12 hours (Dur et al. 2007; Derot et al. 2015; 154 

Zongo and Schmitt 2011; Huang and Schmitt 2014). Table 1 lists all the parameters that were used in 155 

our study. The data presented here can be obtained from the following sites:  https://data.coriolis-156 

cotier.org  and the Seanoe site provided by Lefebvre et al. (2015).  157 

Not all the available parameters, recorded by the MAREL device, have been used to avoid the 158 

problems linked with collinearity. The term collinearity is used when the two predictors that are input 159 

into a machine learning model, display a strong correlation. In order to decrease the computation time 160 

and avoid creating an unstable model with a degraded predictive performance, it is better to avoid 161 

selecting predictors showing correlations (Kuhn and Johnson 2013). To this end, we discarded the 162 

readings for percentage of dissolved oxygen and salinity: they were too close to the concentration of 163 

dissolved oxygen and the conductivity readings, respectively. In each case, we selected the parameter 164 

with the most complete data set.   165 
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Time periods with missing data are an inherent problem for automatically generated datasets; 166 

many factors can create these missing values: maintenance periods, internal system failures, and 167 

vandalism (Dur et al. 2007; Derot et al. 2015). The percentage of missing data for each parameter is 168 

listed in Table 1. The MAREL Carnot platform did not work for most of 2014. During the last four 169 

years, the system experienced many problems; therefore, there is a high number of missing values for 170 

many parameters. In order to avoid bias, our analysis only uses data between 2005 and 2010. In other 171 

words, considering this 6-year period allows us to maintain consistency of the monitoring data used as 172 

input to the RF model. In Fig. 2, we can see the averaged raw data for fluorescence and water 173 

temperature for this time period of 6 years. Moreover, the type of machine learning used in this study 174 

is able to manage the missing values (see Section 2.2.1 for further details). These missing values are 175 

different for all the parameters. In some rare cases, some of these parameters could have more than 176 

one month in raw missing values. In this context, we preferred to keep these missing values in the 177 

inputs of the RF model, rather than using a numerical method to fill these gaps, which could create 178 

greater bias.    179 



11/44 
 

Table 1. Physicochemical parameters (target signal and predictors) in the original MAREL Carnot 180 

database, with number of readings, percentage of missing data between 2005 and 2010, sampling 181 

frequency, and their associated units.   182 

Parameters Number of  
readings 

Percentage of 
missing data 

Sampling  
frequency 

Units 

Fluorescence 
 

113530 13.60% 20 minutes FFU 

Water 
temperature 

 

117176 10.83% 20 minutes °C 

P.A.R 
 

62172 52.68% 20 minutes µmol/s/m3 

Conductivity 
 

114114 13.16% 20 minutes mS/cm 

Dissolved oxygen 
 

111573 15.09% 20 minutes mg/L 

pH 
 

97556 25.76% 20 minutes pH 

Turbidity 
 

92992 29.23% 20 minutes NTU 

Wind direction 
 

103304 21.38% 20 minutes ° 

Wind speed 
 

103716 21.07% 20 minutes m/s 

Nitrate 
 

1982 45.70% 12 hours µmol/L 

Phosphate 
 

1908 47.73% 12 hours µmol/L 

Silicate 
 

1983 45.67% 12 hours µmol/L 

  183 
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 184 

Fig. 2. Inter-annual mean (day-scale) of MAREL Carnot raw data for fluorescence and temperature 185 

between 2005 and 2010.   186 
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2.2. Numerical analysis  187 

2.2.1. Machine learning  188 

There are many different types of machine learning models. The RF model is an evolution of 189 

the classification and regression tree (CART) model, which was created by the same scientist in 1984 190 

(Breiman et al. 1984). Contrary to the CART model that only uses one tree structure; the RF mode is 191 

composed of a predetermined number of trees, hence the term “forest”.  The input data of each tree 192 

comes from a random sub-sampling performed with a bootstrap technique, hence the term “random”. 193 

The first node of the tree is called the root node and split into two child nodes, and so forth until the 194 

terminal nodes, which contain the prediction of the model. By following this step, the RF model in 195 

regression mode will obtain an average between all the created trees. This stage is more generally 196 

referred to as “ensemble learning”. For the RF model, this ensemble method is based on a cross 197 

validation process via the out-of-bag (OOB) error. These OOB are mainly calculated from the mean 198 

squared error (MSE) in the form of a ratio, in order to give a weight to each predictor. It is important 199 

to note that these scores are ratio; therefore, they do not have units. The extraction of the OOB after 200 

the learning phase allows us to examine the relative importance of each predictor.  201 

Recent studies have shown that the RF model is well adapted to forecasting changes in the 202 

phytoplankton community (Yajima and Derot 2018; Derot et al. 2020; Thomas et al. 2018). The tree 203 

structure combined with the bootstrap allows the RF model to effectively manage missing values in 204 

datasets, adapt to the study of nonlinear processes, and make no prior assumptions (Thomas et al. 205 

2018; Breiman 2001). These properties coincide with the issues related to our long-term high-206 

frequency sample database; the fluctuations in the phytoplankton abundance can be considered as a 207 

stochastic process (Derot et al. 2015), leading to the many gaps associated with sampling automation 208 

(see paragraph below). Within the framework of our study, the target signal is the phytoplankton 209 

biomass, measured by a proxy via fluorescence. The predictors are the remaining physicochemical 210 

parameters, as presented in Table 1. All our data are continuous; therefore, we used the RF model in 211 

regression mode.  212 
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Moreover, we used an individual conditional expectation (ICE) plot (Goldstein et al. 2015), to 213 

identify if the interactions created during the learning phase are comparable with the real biological 214 

mechanisms. These ICE plots are an improvement on the partial dependence plot (PDP) used several 215 

times in previous scientific studies on phytoplankton and water environments (Friedman et al. 2001; 216 

Cutler et al. 2007; Roubeix et al. 2016; Teichert et al. 2016; Derot et al. 2020). The PDP highlights the 217 

marginal effect between a selected predictor and the target signal (Friedman 2001). In this way, it is 218 

possible to observe the global relationship between these two variables. The ICE plots allow a much 219 

more refined vision, accounting for the individual effect of the observations on the target. To 220 

summarize, the PDP corresponds to the average of the ICE; however this average curve may 221 

overshadow the complexity of the relationship created by the model during the learning phase 222 

(Goldstein et al. 2015).  223 

All our numerical analyses were conducted using the MATLAB software and its “statistics 224 

and machine learning” toolbox. We used the “TreeBagger” function for the RF models and 225 

“plotPartialDependence” for the ICE plots. Once the learning is completed, the function 226 

“TreeBagger” creates a “fitted model object”, which contains the model and all the related 227 

information. By directly inserting this “object” in the function “oobError”, it is possible to observe the 228 

evolution of the out-of-bag error (Figs A1-A4). The figures showing the ranking of predictor 229 

importance (Figs 5, A6 and A9-A11) are also from the same “object”. We can extract these 230 

permutation out-of-bag observations across each input, using the array 231 

“OOBPermutedVarDeltaError”. We used the function “barh” to visualize these ranking. In addition, 232 

the “rng” function was set to 1, in order to ensure that the results of the random draw could be used for 233 

reproducibility purposes. In our preliminary studies, we observed that 300 trees were sufficient to 234 

ensure the stability of the learning phases (Figs. A1 to A4). Given this, we performed all the RF runs 235 

in this study using this number of trees. The minimal number of observations per node was set to 5 236 

(Derot et al. 2020).  237 
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2.2.2. Forecast methodology  238 

In order to understand the impact of the sampling frequency on the forecasts, we artificially 239 

created three databases with the following time steps: 1 hour, 12 hours, and 1 day from the original 240 

MAREL Carnot 20-minutes sample frequency database by performing a classical linear interpolation. 241 

These interpolations were conducted using the MATLAB function “interp1” on all parameters; the 242 

results are presented in Table 1. Subsequently, each of these datasets was split according to the year, 243 

from 2005 to 2010, inclusively. As mentioned above, the coupling between machine learning and 244 

hydrodynamic models could be a way to achieve decision-making tools (Jia et al. 2018; Hanson et al. 245 

2020; Cuttitta et al. 2018). However, the calibration of the biogeochemistry solver linked to 246 

hydrodynamic models is fairly sensitive and directly impacts on the capacity to reproduce the 247 

dynamics of the phytoplankton (Shimoda and Arhonditsis 2016; Anderson 2005; Zhao et al. 2008). 248 

This is why the parameterization of this kind of solver is generally performed year by year (Yajima 249 

and Choi 2013). The division into annual subsets of our database was performed to meet this temporal 250 

limitation. In all cases fluorescence is always the target signal (green boxes in Fig. 3) and the other 251 

physicochemical parameters (Table 1) are the predictors (blue boxes in Fig. 3).   252 
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As in our previous phytoplankton forecast study (Yajima and Derot 2018), we used the sliding 253 

window strategy to perform these forecasts (Herrera et al. 2010). To summarize, the sliding window is 254 

a classical methodology for re-farming time series data when we a forecast analysis is to be performed 255 

with machine learning models. A lag time is introduced between the target signal and the predictors. 256 

For example, when the fluorescence is forecast with a lag time of one week, we removed the first 257 

week of this target signal and the last week for all other physicochemical parameters (predictors). In 258 

this way, a new input matrix is obtained, where the first value of the fluorescence corresponds to the 259 

first value of day 8. The first values of all predictors are still the same. Therefore, there is always a 260 

one-week lag between the target signal and the predictors. We used the following lag times for each of 261 

our four databases and each year: no lag, 1 day, 3 days, 1 week, 2 weeks, 1 month, 2 months, 2  and a 262 

half months and 3 months. Consequently, we performed nine RF runs for the1-year dataset. Therefore, 263 

we made 45 RF runs for all the years in one database. In total, we performed 180 RF runs in this study 264 

with our four datasets. It should be noted that by applying a sliding window of 2 weeks, we are forced 265 

to remove some data at the beginning of the target signal vector and some data at the end of the 266 

predictors’ matrix (Yajima and Derot 2018). In order to perform our analyses using the same amounts 267 

of data, we cut the same time period for each case, depending on the largest lag time, that is. 3 months 268 

(yellow boxes in Fig. 3). We applied the same procedure for these 180 cases (Fig. 3). 269 

First, the fluorescence vector was identified as the target signal (green boxes and arrows in 270 

Fig. 3), and the predictor matrix contained the other physicochemical parameters (blue boxes and 271 

arrows in Fig. 3). Second, we applied the sliding window with one definite lag time, and cut periods 272 

depending on the 3 months lag (yellow boxes in Fig. 3). Third, we split our data into two parts, the 273 

training part comprised 70% of the cut and lagged data and the remaining percentage was used for the 274 

test part (yellow boxes in Fig. 3). This split was realized with a semi-random draw via the MATLAB 275 

function “cvpartition”. This function allowed the creation of two groups with similar intensity values.   276 
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Therefore, situations where in the training part contained all the high fluorescence values 277 

(bloom periods), leaving the test part with no bloom values, or vice versa were accounted for and 278 

skews in data were avoided. Fourth, we used the training part (both target and predictors) for the 279 

learning phase of the RF model (orange boxes in Fig. 3). Fifth, we used only the predictors from the 280 

test part to form a prediction or forecast of our target signal via the MATLAB function “predict”. 281 

Finally, to control the quality of the predictions and forecasts; we performed a correlation between the 282 

predicted target signal and the real data from the test part (red box in Fig. 3). These R² coefficients 283 

were calculated with the coefficient of determination for each of our 180 cases as follows 284 

(Shamshirband et al. 2019; Lee et al. 2016; Lee and Lee 2018; Recknagel et al. 2013; Du et al. 2018; 285 

Kehoe et al. 2015):  286 

 287 

𝑅! = 1 −
𝑆𝑆"#$
𝑆𝑆%&%

= 1 −
∑ (𝑦' − 𝑦)')²(
')*

∑ (𝑦' − 𝑦,)(
')* ²

 288 

 289 

where 𝑆𝑆"#$  is the residual sum of squares, 𝑆𝑆%&%  is the total sum of squares, 𝑛 is the number of 290 

observations, 𝑦' is the observed data, 𝑦)' is the predicted data and 𝑦, is the mean of the observed data.   291 
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 292 

Fig. 3. Conceptual diagram presenting the methodology used to measure the forecast quality, 293 

considering all lag times and sampling frequencies.   294 



19/44 
 

3. Results and discussion  295 

The primary purpose of this study is to demonstrate the capacity of a machine learning model 296 

to forecast phytoplankton blooms in coastal areas and to study the impact of the sampling frequency 297 

on the forecast performance of the RF model. For that purpose, we artificially reduced the time step 298 

and used different lag times with a sliding window strategy. First, we studied the evolution of the 299 

coefficients of determination, depending on several lag times and sampling frequencies. Second, we 300 

analyzed which predictors had the greatest influence on the learning phase. Subsequently, we 301 

compared the interactions created by the RF model with real biological mechanisms.  302 

 303 

3.1. Sampling frequency and time-lag impacts 304 

The evolution of the forecast performances and the dependence on lag times is depicted in Fig. 305 

4 for the four datasets up to a time period of 3 months. This analysis was only performed on the test 306 

part. Each point on the four lines of Fig. 4 is derived from an inter-annual average for the years 2005-307 

2010. For example, the second green point is calculated by averaging these 5 years with a lag time of 1 308 

day. The time axis in Fig. 4 uses a log scale. Therefore, in order to avoid problems with the log of 309 

zero, we have put the results for no lag time in the annotations for this figure. The calculated averages 310 

of all lag times were included for each sampling frequency. Another point of view with the median 311 

instead of average is presented in Fig. A7 in the appendix and the range of error in shown Table A1. 312 

The green line in Fig. 4 represents the inter-annual average lag times depending on the sampling 313 

frequency of 20 minutes. Similarly, the blue, red, and magenta lines represent the coefficient of 314 

determination averages for the frequencies of 1 hour, 12 hours, and 1 day, respectively. It should be 315 

noted that we cannot apply a sliding window of 12 hours for a sampling frequency of 1 day. This is 316 

why the first point of the purple curve is missing in the Fig. 4. In the same way, the first point on the 317 

red curve, which corresponds to the 12 hours frequency, is equal to its coefficient without lag; it has 318 

been retained to maintain a visual coherence.   319 
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An example quantile-quantile plot from the test part is presented in the appendix (Fig. A5). 320 

The highest coefficients of determination were obtained for the 20 minutes and 1 hour frequencies. 321 

The accuracy of the RF model was evaluated for each frequency and lag time in the appendix in Fig. 322 

A8. Table A2 shows the error range linked to this Fig. A8. The average coefficient is slightly better for 323 

the green curve and R² with no lag time (see annotations). With respect to the frequencies of 12 hours 324 

and 1 day, they have the smallest averages. It is significant to note that all curves exhibit the same 325 

tendencies; R² generally starts to decrease after at two-month lag.  326 

 327 

 328 

Fig. 4. Evolution of forecast performances depending on lag times and sampling frequencies from test 329 

part. The y-axis represents the inter-annual average coefficient of determination from the outputs of 330 

the RF models. The x-axis depicts the lag times from the sliding window on a logarithmic scale. The 331 

green, blue, red and magenta lines correspond to the sampling frequencies of 20 minutes, 1 hour, 12 332 

hours, and 1 day, respectively. The annotations show the coefficient of determination with no lag time 333 

and the global averages of the coefficient of determination for each frequency. See Table A1 in the 334 

appendix for the range of error.   335 
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Our results indicate that the RF model has the ability to use the supplementary information, 336 

which is contained in the database from high-frequency sampling. As depicted in Fig. 4, the forecast 337 

capacities are generally better for sampling frequencies of 20 minutes and 1 hour than those of 12 338 

hours and 1 day. It is also evident that the average R² coefficient is less than 0.4 for a sampling 339 

frequency of 1 day. In our previous works, we tested a close forecast strategy using another database 340 

from fresh water ecosystems (Yajima and Derot 2018). It was a long-term dataset over a period of 30 341 

years with a bimonthly sampling frequency. With this lower time step, in various cases the coefficients 342 

of determination of the forecasted chlorophyll a were below a threshold of 0.5. In the current study 343 

with high-frequency database, it is observed that R² stays above this threshold until the 2 months lag, 344 

even when the sampling frequency is arterially decreased until 12 hours. Therefore, our findings 345 

demonstrate that the pairing of an RF model with a high-frequency dataset from an automatic system 346 

yields good forecast results on an annual scale. Water currents and phytoplankton migration have 347 

greater significance in open-ocean and coastal areas than in lakes. This complexity could make it 348 

difficult to obtain good forecast results for these types of ecosystems (Thomas et al. 2018).   349 
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Nevertheless, our study shows that this pairing strategy can also work in marine ecosystems. 350 

Consequently, in a water body where water quality management is a major societal issue, it is of 351 

pivotal importance to highlight the additional value provided by high sample frequency databases 352 

generated by automatic devices. The results of this study indicate that the forecast performance of the 353 

RF model increases with increasing sampling frequencies. In addition, it should be noted that although 354 

some other studies in similar fields have used the pseudo-R² to measure the performance of the RF 355 

model, the authors are aware that the coefficient does not assess the true forecast (Large et al. 2015; 356 

Teichert et al. 2016; Thomas et al. 2018). Thus, we split our dataset between a learning part and a test 357 

part (Fig. 3), and used the Pearson coefficient to measure the forecast performances. Consequently, the 358 

pairing between machine learning models and automatically generated high sample frequency 359 

databases could eventually lead to the creation of numerical decision-making models. Such a model 360 

could help stakeholders prevent HABs from hindering the economy as well as human health. In the 361 

next part of this section, we examine the influence of the predictors on the learning phase.  362 
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3.2. Physicochemical ranking 363 

Once the learning phase has been completed, it is possible to extract the ranking predictor 364 

importance from the out-of-bag (OOB) permutated error. Thus, we can understand the relative impact 365 

that each predictor has on an RF model during the learning phase. As shown above, the original 366 

MAREL Carnot database with a frequency of 20 minutes provided the best forecast results. In order to 367 

examine the global ranking predictor importance, we performed an average of the 35 OOB errors for 368 

this frequency. The evaluated global ranking is presented in Fig. 5. It is observed that the nutrients 369 

appear to have had low impacts. However, it must be noted that owing to the device limitations, with 370 

the original time step of 20 minutes, these nutrients were actually recorded with a sampling frequency 371 

of 12 hours (Table 1). In regard to the other physicochemical parameters, water temperature had the 372 

most influence on these 35 learning phases, closely followed by the pH, and then the dissolved 373 

oxygen. Furthermore, the fourth most important predictor is the salinity measured via its proxy for 374 

conductivity. Apart from the nutrients, the photosynthetically active radiation (P.A.R) is the predictor 375 

with the least influence. In the appendix, this global ranking has also been evaluated for the other 376 

sampling frequencies: Fig. A9 for 1 hour, Fig. A10 for 12 hours and Fig. A11 for 1 day.   377 
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 378 

Fig. 5. Ranking of predictor importance based on the average of the out-of-bag (OOB) error, from the 379 

35 runs performed with a time step of 20 minutes. Legend of abbreviations: P.A.R for 380 

photosynthetically active radiation and DO for dissolved oxygen.   381 
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Water temperature, salinity, nutrients, dissolved oxygen, and pH are the water quality 382 

indicators that are used in the water framework directive because of their direct impact on biological 383 

processes (Best et al. 2007; Millero 2016). Among the physicochemical parameters, we temperature 384 

and pH were observed to be the most important predictors, but the impact of the other predictors, such 385 

as dissolved oxygen, turbidity, and salinity, are non-negligible. Furthermore, the sampling frequency 386 

and lag time can also strongly impact the predictor ranking, as depicted in Fig. A6, where the out-of-387 

bag importance of the temperature is very low. Despite its relative importance for a frequency of 20 388 

minutes, the temperature alone is not sufficient to predict the chlorophyll a correctly. For this 389 

frequency, we obtained an R² without lag that was equal to 0.31, when only the temperature was used 390 

as a predictor and other physicochemical parameters were remove. The values of OOB that were 391 

extracted from the 35 learning phases with at frequency of 20 minutes were consistent with the water 392 

quality indicators, except for the nutrients (Fig 5). Nevertheless, if only the OOB from the databases 393 

with a frequency over 12 hours were considered (Fig. A6); the nutrients crucially impacted the 394 

learning phase of the RF models. This leads us to believe that the low impact of nutrients shown in this 395 

high-frequency database is an artifact caused by recording system limitations.  396 

Consequently, in light of the significant influence of the temperature on the learning phases of 397 

the RF models, it considered to have been systematically account for when a parameter directly linked 398 

to the primary production is predicted with machine learning based on tree structure. Furthermore, it is 399 

important to harmonize all sampling frequencies from automatic devices in order to prevent this type 400 

of bias. In this context, when designing or upgrading an automatic station, similar to a MAREL buoy, 401 

having several types of sensors, we suggest installing sensors having the highest possible common 402 

sampling frequency. This could increase the biological prediction linked to the phytoplankton biomass 403 

via a machine learning model. Next, we will study the parallels between the interactions created by the 404 

RF model and real biological mechanisms.  405 
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3.3. Learning phase interactions 406 

Machine learning models are often considered “black boxes” because we cannot understand 407 

the interaction between the predictor that the model creates during its learning phase. However, it is 408 

possible to transform the RF models into “gray boxes” with the partial dependence plot (PDP) and the 409 

individual conditional expectation (ICE) plots. In the previous section, it was seen that the water 410 

temperature, conductivity, dissolved oxygen, and pH had the most influence on the average in our 411 

learning phases. Therefore, we extracted one ICE plot for each of these 4 predictors with a time step of 412 

20 minutes (Fig.6). The red lines are the PDP, and all the gray lines and the blue points have been 413 

derived from the ICE method. In reference to the water temperature, we can see that the RF model 414 

predicts high fluorescence values mainly around 11.8°C; there is also a slight increment over 17.0°C. 415 

The other three predictors exhibit a common pattern. That is to say, the predicted values of 416 

fluorescence are low until the predictors reach a certain threshold. The results of this study exhibit 417 

high predicted fluorescence values for a pH over 8.25, conductivity over 47 mS/cm, and concentration 418 

in dissolved oxygen over 9 mg/L. It is also important to note that high fluorescence values are mainly 419 

predicted for very high conductivities and pH values. However there is a large spread in the high 420 

fluorescence values for the dissolved oxygen from the middle range to the higher value.    421 
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 422 

 423 

Fig. 6. Individual conditional expectation (ICE) plots for the four most influent predictors with a time 424 

step of 20 minutes. The red lines denote the partial dependence plot (PDP); the gray lines and the blue 425 

represent from the ICE analyses. Upper left: water temperature; upper right: dissolved oxygen; lower 426 

left: pH; lower right: conductivity. 427 

 428 

 429 

Although the interactions created during the learning phase of an RF model are difficult to 430 

comprehend, it may be possible to obtain some links between these interactions and the biological 431 

processes that occur in the ecosystems being studied. In Fig. 6 (upper left), It can be observed that the 432 

highest fluorescence data are predicted for temperatures of approximately 11.8°C. This result is 433 

consistent with those in previous literature (Schoemann et al. 2005; Jahnke 1989). The MAREL 434 

Carnot device is located in the English Channel; in this area, the main issue is the harmful algal bloom 435 

(HAB) linked to Phaeocystis globosa. For this type of phytoplankton, regardless of whether the light 436 

conditions are limited, the optimal growth rate appears to be between 10°C and 14°C (Jahnke 1989; 437 

Schoemann et al. 2005). Therefore, our ICE analysis of water temperature illustrates that even without 438 

prior assumptions, an RF model can account for some real biological processes.   439 
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4. Conclusion   440 

In this study we found that the average coefficient of determination, which is the index of the 441 

quality of the forecast, decreases when the sampling frequency increases. The coefficient for the 20-442 

minute time step was 0.24 larger than that for the 1-day time step. From our analyses, we observed 443 

that the nutrients had a limited impact on the learning phase with the highest sampling frequency.  In 444 

regard to the water temperature, the averaged OOB error reached 13, while that for the phosphate 445 

concentration was only approximately 0.1. Creation of the ICE plot for the water temperature allowed 446 

us to illustrate that the RF model predicted the highest fluorescence values of approximately 11.8°C. 447 

Consequently, the results suggest that RF models can use the additional information contained in high-448 

frequency databases. It is supposed that the apparent low influence of the nutrients was a bias due to 449 

the difference in sampling frequencies. Moreover, although the RF model has no prior assumptions, it 450 

was able to create some interactions closely resembling the biological processes present in our study 451 

area.  452 

The decrease in the sampling frequency is not the only factor impacting forecast capacity. It 453 

should be kept in mind that different time steps between the input parameters can introduce biases into 454 

the learning process of an RF model. Therefore, it is imperative to have harmonized sampling 455 

frequencies in datasets from automated devices. Several studies in the environmental science literature 456 

have claimed that the pairing between high-frequency or long-term datasets with an RF model could 457 

overcome the limitations of conventional models (linear, generalized linear model …) (Kehoe et al. 458 

2015; Thomas et al. 2018; Rivero-Calle et al. 2015). The results of our study seem to confirm this 459 

hypothesis.  460 
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Furthermore, some of the automatic systems are equipped with flow cytometers, enabling 461 

differentiation between the phytoplankton groups responsible for the HAB (Thomas et al. 2018). 462 

Therefore, pairing these types of datasets with machine learning models could aid in the creation of 463 

numerical decision-making tools that can help stakeholders with water quality management. In the 464 

long run, this kind of tool could have a benefit the economy and human health. Within this framework, 465 

we are currently exploring the possibilities of applying this type of pairing on an inter-annual scale, in 466 

order to increase the lengths of the forecasted periods.  467 
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Appendix  750 

 751 

Fig. A1. Evolution of the out-of-bag error for the year 2007 without lag time.  752 

 753 

 754 

 755 

Fig. A2. Evolution of the out-of-bag error for the year 2007 with lag time of 1 day.  756 
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 757 

Fig. A3. Evolution of the out-of-bag error for the year 2007 with lag time of 2 weeks.  758 

 759 

 760 

 761 

Fig. A4.  Evolution of the out-of-bag error for the year 2007 with lag time of 2 months.  762 
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 763 

Fig. A5. Quantile-quantile plot from the test part; for the year 2007 with a frequency of 1 hour and a 764 

lag time of 2 weeks.   765 

 766 
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 767 

Fig. A6. Ranking of predictor importance from the out-of-bag (OOB) error, for the year 2007 this a 768 

lag time of 1 day and a sampling frequency of 1 day.  769 

 770 
 

Frequency 

 20 minutes 

Frequency 

 1 hours 

Frequency 

 12 hours 

Frequency  

1 day 

Lag = 0 0.14 0.23 0.13 0.07 

Lag = 12 hours 0.05 0.15 0.19 ∅ 

Lag = 1 day 0.07 0.17 0.18 0.26 

Lag = 3 days 0.13 0.16 0.18 0.26 

Lag = 1 week 0.10 0.15 0.20 0.21 

Lag = 2 weeks 0.09 0.20 0.21 0.23 

Lag = 1 month 0.06 0.16 0.18 0.21 

Lag = 2 months 0.12 0.09 0.11 0.21 

Lag = 2.5 month 0.15 0.08 0.20 0.19 

Lag = 3 months 0.15 0.09 0.30 0.23 

Table A1. Error ranges linked to Fig. 4 calculated via the standard deviation. 771 
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 772 

Fig. A7. Evolution of forecast performances depending on lag times and sampling frequencies from 773 

test part. The y-axis represents the inter-annual median from the outputs of the RF models. The x-axis 774 

denotes the lag times from the sliding window on a logarithmic scale. The green, blue, red and 775 

magenta lines correspond to the sampling frequencies of 20 minutes, 1 hour, 12 hours, and 1 day, 776 

respectively. The annotations display the median of coefficient of determination with no lag time for 777 

each frequency.  778 
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 779 

Fig. A8. Evolution of forecast OOB error depending on lag times and sampling frequencies from test 780 

part. The y-axis represents the inter-annual mean extracted after the learning part. The x-axis denotes 781 

the lag times from the sliding window on a logarithmic scale. The green, blue, red and magenta lines 782 

correspond to the sampling frequencies of 20 minutes, 1 hour, 12 hours, and 1 day, respectively. The 783 

annotations display the mean of OOB with no lag time for each frequency.  784 



43/44 
 

 
Frequency  

20 minutes 

Frequency  

1hous 

Frequency  

12 hours 

Frequency 

 1 day 

Lag = 0 0.18 0.11 0.16 0.18 

Lag = 12 hours 0.09 0.12 0.14 ∅ 

Lag = 1 day 0.09 0.15 0.16 0.10 

Lag = 3 days 0.09 0.15 0.17 0.10 

Lag = 1 week 0.06 0.16 0.18 0.07 

Lag = 2 weeks 0.08 0.13 0.18 0.08 

Lag = 1 month 0.06 0.07 0.19 0.11 

Lag = 2 months 0.14 0.12 0.13 0.07 

Lag = 2.5 month 0.17 0.13 0.15 0.09 

Lag = 3 months 0.15 0.17 0.10 0.05 

Table A2. Error ranges linked to Fig. A8 calculated via the standard deviation. 785 

 786 

 787 

Fig. A9. Ranking of predictor importance based on the average of the out-of-bag (OOB) error, from 788 

the 35 runs performed with a time step of 1 hour. Legend of abbreviations: P.A.R for 789 

photosynthetically active radiation and DO for dissolved oxygen. 790 
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 791 

Fig. A10. Ranking of predictor importance based on the average of the out-of-bag (OOB) error, from 792 

the 35 runs performed with a time step of 12 hours. Legend of abbreviations: P.A.R for 793 

photosynthetically active radiation and DO for dissolved oxygen. 794 

 795 

 796 

Fig. A11. Ranking of predictor importance based on the average of the out-of-bag (OOB) error, from 797 

the 35 runs performed with a time step of 1 day. Legend of abbreviations: P.A.R for 798 

photosynthetically active radiation and DO for dissolved oxygen. 799 


