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Abstract

Fitting neural networks often resorts to stochastic (or similar) gradient
descent which is a noise-tolerant (and efficient) resolution of a gradient
descent dynamics. It outputs a sequence of networks parameters, which
sequence evolves during the training steps. The gradient descent is the
limit, when the learning rate is small and the batch size is infinite, of this
set of increasingly optimal network parameters obtained during training.
In this contribution, we investigate instead the convergence in the Gener-
ative Adversarial Networks used in machine learning. We study the limit
of small learning rate, and show that, similar to single network training,
the GAN learning dynamics tend, for vanishing learning rate to some limit
dynamics. This leads us to consider evolution equations in metric spaces
(which is the natural framework for evolving probability laws) that we call
dual flows. We give formal definitions of solutions and prove the conver-
gence. The theory is then applied to specific instances of GANs and we
discuss how this insight helps understand and mitigate the mode collapse.

Keywords: GAN; metric flow; generative network

1 Introduction

Deep generative models are of high interest and used in many applications of
deep learning. Among them, the GANs have been one of the most efficient in
terms of practical results. The GANs and their convergence are the object of
a huge quantity of research papers (4′861 arxiv results mid-October 2020 for
”generative adversarial network”, 26′110 Google Scholar results). Nevertheless,
only very few works concern the behavior of solutions in the general framework
of metric spaces or the meaning to be given to the learning trajectory in the
limit of a small learning rate. On the other hand, the GANs are known to
exhibit unstable convergence behavior (see [18]) and several procedures have
been proposed to cure this drawback, among which [5, 9, 12, 19, 30]. In order to
contribute to a fundamental understanding of the objects involved, we give in
this work a rigorous definition of the concept of solution of the evolution equation
associated to a GAN that we call a dual metric flow. We identify the hypothesis
that guarantee that the discrete solutions converge, when the learning rate τ
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tends to 0, to a dual metric flow and apply this insight to understand and
mitigate the mode collapse phenomena. Finally we give examples that show
that the dual flows correspond indeed to procedures used in GAN practice.

1.1 Motivation: W-GANs

The goal of (deep) generative models such as the GANs is to generate new data
from some (unknown) distribution given a list of samples drawn from that dis-
tribution. To simplify the presentation, we suppose that the distribution to be
learned is a set of images. Two objects are important in a GAN: the Generator
and the Discriminator; both are deep networks with fixed, but rich enough,
architecture capable of representing a very large class of transformations. For
instance, in a Wasserstein-GAN (see [5]), the training has the following form
(see figure 1 for an illustration): after initializing (randomly) both the Genera-
tor and the Discriminator, the Discriminator is trained first. It takes as input
images generated by the Generator (with label ”fake”) and images from the real
database with label ”true”. It is trained for (one or possibly several) steps in
order to achieve good discrimination efficiency between the ”fake” and ”real”
labels. In the next step the discriminator is kept constant and the generator is
trained in order to create images which, when run through the (fixed) discrimi-
nator obtain as much labels ”real” as possible. Then the procedure is repeated
till convergence.
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Figure 1: Illustration of the dynamics of a GAN. Color code: in green the part
that is active (under training) and in grey the part that is fixed. Left: the
discriminator is active. Right: the generator is active. This is repeated till
convergence.

A very natural question is whether such a procedure can converge to a sat-
isfactory solution i.e., if the Generator samples from the right distribution and
the Discriminator is able to tell with high precision the quality of any sample.
The answer is not always yes, as illustrated by the following simple situation:
consider a target distribution which is a Dirac mass centered in some constant
xr. The generator is described by a vector of two real parameters x ∈ R2 and
the discriminator y has the same format. In the framework of integral proba-
bility metrics (see [27]) used in GANs, this simple situation has the following
transcription: if the current parameter of the generator is xn then the next
parameter yn+1 of the discriminator will be updated to maximize the distance
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from xn to xr, i.e. yn+1 = yn + τ(xn − xr), where τ is the learning rate. The
generator itself will take into account this new discriminator and will move to-
wards the unknown value xr by taking a step: xn+1 = xn − τyn+1, where τ is
the learning rate. These equations can be also written as

yn+1 − yn
τ

= xn − xr
xn+1 − xn

τ
= yn+1. (1)

When τ → 0 the limit evolution will be

y′(t) = x(t)− xr
x′(t) = y(t). (2)

However, except for very special initial conditions, the system (2) does not have
the property that x(t)→ xr because x(t) will have a periodic evolution around
xr, see figure 2.

x1

x 2

x
xr

Figure 2: Illustration of the oscillations dynamics of a GAN, see equation (2).

Prompted by this example we aim to analyze in this paper the intrinsic con-
straints coming from the GAN training in the form of an alternative adversary
evolution. More precisely, given the discrete Generator / Discriminator dy-
namics (similar to equation (1)) we want to write the equivalent limit equation
(2).

To do so, we suppose that the architectures of the Generator and Discrimina-
tor networks are rich enough so that the Generator can reach with satisfactory
precision any target distribution µr and the discriminator can realize any map-
ping that separates an arbitrary pair of distinct distributions in the integral
probability metrics sense, i.e. for any distinct distributions the Discriminator
can propose a mapping whose averages under the two distributions are different.
Of course this is an ideal setting but we take this view in order to better distin-
guish the effects due to network architectures from those intrinsically included
in the GAN convergence protocol.

Let us now introduce the mathematical objects involved in the GAN train-
ing. The Generator is a mapping from a given distribution (e.g. the multi-
dimensional Gaussian distribution) on some base space (called Latent space)
to the space of objects of interest, denoted Ω; for instance in figure 1 Ω are
images). Thus in general the Generator can construct probability distributions
on Ω; denote by P1(Ω) the set of all probability laws on Ω with finite first order
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moment. This set can be given the structure of a metric space by introducing a
distance; many distances exists and have been used but a popular choice, used
by W-GANs is the 1-Wasserstein distance (see [3] for a definition) denoted dW,1.
Thus formally we work in the metric space (P1(Ω), dW,1).

On the other hand the Discriminator constructs a Lipschitz mapping to label
the generated samples as fake or real. Mathematically the object is a Lipschitz
function ` : Ω→ R. The Discriminator works best when the average Eµ(`) is as
different as possible from the average Eµr (`). Again, ` lives in a metric space Y
(as opposed to a Hilbert space) with the distance being the Lipschitz distance.

The GAN update of the Generator will move µn (n indexes now the learning
steps) to some µn+1 along the gradient of the mapping µ 7→ Eµ(`)− Eµr (`) (to
be minimized, here ` being the current Discriminator state). In practice the
update is performed with a stochastic descent algorithm (that we take in this
work to be the SGD). We will not inquire about the stochastic oscillations but
only consider the average state. In full rigor the update rule is difficult to write
in the formal, metric space setting: for instance, for the Generator update, the
intuitive formula would be µn+1 = µn − τ∇µ [Eµn(`n+1)− Eµr (`n+1)]. This
formulation has several problems: first the space of probability laws is not a
vector space thus the addition and substractions operator are not well defined.
Secondly, the differential structure on the same space is not straightforward to
manipulate, i.e., ∇µ is not easy to work with. For these reasons, we will replace
the real dynamics with another, close, one and we model the update by the
requirement that µn+1 is the minimizer of

µ 7→ dX (µn, µ)2

2τ
+ [Eµ(`)− Eµr (`)] . (3)

The intuitive justification for this formula (very classic in metric space evolution
equations [4]) is the following: in a Hilbert space, dX (µn, µ)2 = ‖µn − µ‖2 and
taking a general functional F (µ) in (3) (here F (µ) = Eµ(`)−Eµr (`)) the critical
point equations derived from (3) can be written as µn+1 = µn − τ∇F (µn+1)
which is an implicit gradient descent of step τ starting from µn. The advantage
of the implicit formulation is that µn+1 defined through (3) can be written for
any abstract objects in a metric space (only dX (µn, µ)2 and F (·) are required).
Same model is used for the Discriminator update steps; all this leads us to con-
sider the main discrete equation that will model the GAN training dynamics 1

`n+1 = argmin`∈Y
d(`, `n)2

2τ
− [Eµn(`)− Eµr (`)] (4)

µn+1 = argminµ∈X
d(µ, µn)2

2τ
+ [Eµ(`n+1)− Eµr (`n+1)] , (5)

with τ > 0 the learning rate and X ,Y two metric spaces. The goal of this paper
is to clarify whether, when τ → 0, the discrete curves (µn)n≥0, (`n)n≥0, converge
to some limit continuous curves; we also want to give a formal definition of the
dynamics satisfied by the limit curves.

The GAN protocol described above is not the only one used in the litera-
ture. Many other procedures aim to improve convergence, generation quality,

1see Lemma 1 in appendix for information on the relationship between explicit and implicit
numerical schemes.
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computing speed, etc. For instance in [12] the authors add a penalty on the
gradient in order to make convergence better and the new type of GAN is called
WGAN-GP. A full zoology of GAN versions appeared: the Deep Convolutional
Generative Adversarial Network (DCGAN, [24]) use deep convolution networks
which are better adapted to images, the Coupled GANs proposal (coGAN [21])
uses two generators and two discriminators in order to improve convergence
and generation properties, Progressive Growing Generative Adversarial Net-
work (Progressive GAN [16]) improve the generation quality by gradually in-
creasing image resolution (size), Style-Based Generative Adversarial Network
(StyleGAN, [17]) better control the Latent space distribution and are able to
generate content with given characteristics; other contributions include Cycle-
Consistent Generative Adversarial Network (CycleGAN, [31]), Big Generative
Adversarial Network (BigGAN, [7]), Pix2Pix [13], and the research is still ad-
vancing.

In [10] the authors use even more abstract objects which lead to a loss func-
tional called ”Wasserstein of Wasserstein loss”; that is, the most basic objects
that are here the images (with our notations elements ω ∈ Ω) are not given
the usual Euclidian distance, but instead are immersed in a metric space and
the Wasserstein distance dW,1(ω1, ω2) is used to measure the distance (dissimi-
larity) between two (elementary) images ω1, ω2 ∈ Ω. The Wasserstein distance
dW,1(µ1, µ2) is then used a second time in order to discriminate between prob-
ability laws µ1, µ2 ∈ P1(Ω).

Similar abstraction for the ground distance are to be found in [1] that present
Banach space GANs.

All these examples enforce even more the need for an abstract formulation
of GAN convergence, that we give below. Finally, see also [14] for implicit
procedures relevant to GANs.

1.2 Mathematical setting

We consider X , Y two (Polish geodesic) metric spaces (see [8] for an introduction
to metric spaces) and C(·, ·) : X × Y → R× R a functional (that will stand for
the loss functional). Note that C(·, ·) is vector valued, we will denote by Cx(·, ·)
and Cy(·, ·) its components. Note that in a GAN we will have

C(`, µ) = (Cx(`, µ), Cy(`, µ))

= (−Eµ(`) + Eµr (`),Eµ(`)− Eµr (`)). (6)

We investigate the equation:

∂t

(
xt
yt

)
+

(
∇xCx(xt, yt)
∇yCy(xt, yt)

)
= 0,

(
x0

y0

)
=

(
x̄
ȳ

)
. (7)

Such an equation will be called a dual flow. The discrete version is defined
by the recurrence:

xτ0 = x̄, xτk+1 ∈ argminx∈X
d(x, xτk)2

2τ
+ Cx(x, yτk), k ≥ 0. (8)

yτ0 = ȳ, yτk+1 ∈ argminy∈Y
d(y, yτk)2

2τ
+ Cy(xτk+1, y), k ≥ 0. (9)
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These numerical schemes are a distant cousin of some other evolution evo-
lution on metric spaces, namely the evolution flows, see [6, 28]).

From the theoretical point of view, these results are not available with pre-
vious techniques from [2,11,11,20,22,23,25]).

2 Theoretical results

2.1 Motivation and literature review

Note that when Cx is independent of the second argument, i.e.,

Cx(x, y) = E(x), (10)

the relation (8) becomes the celebrated implicit Euler-type scheme of Jordan,
Kinderlehrer and Otto [15] for the definition of gradient flows in metric spaces

∂tyt +∇E(yt) = 0, y0 = ȳ, (11)

and received considerable attention (see [4, 26, 29] for instance). However, the
situation when E has dependence on other variables has not been treated to
the same extent and the related contributions involve gradient flows of time
dependent functionals E(t, u) with a known dependence on time (see [11, 20,
22, 23, 25]). Of course, formally one can set E(t, u) = C(u, yt), and hope to
analyze the (xt, yt) dynamics in this way. This is not possible for technical
reasons (see for instance the discussion in [28]); in particular doing so supposes
the knowledge of the dynamics yt (which is not available) and moreover the
dynamics may not be differentiable with respect to time (but remains absolute
continuous).

2.2 Basic reminders

The absence of a vector operations in a metric space does no allow to develop
fully a differential calculus and requires adaptation of notions of derivative. Ac-
cordingly the definition of evolution equations have to use alternative properties.

We recall below the main ideas of such an alternative formulation (see [2])
for the particular case (10)-(11); suppose for a moment that X is an Euclidian
space and E a smooth (C1 or above) function; then:

d

dt
E(xt) = 〈∇E(xt), x

′
t〉 ≥ − |∇E(xt)| · |x′t|

≥ −1

2
|x′t|

2 − 1

2
|∇E|2 (xt),

or equivalently,

d

dt
E(xt) +

1

2
|x′t|

2
+

1

2
|∇E|2 (xt) ≥ 0 ∀t, (12)

with equality only if x is solution of (11). Therefore asking that

d

dt
E(xt) +

1

2
|x′t|

2
+

1

2
|∇E|2 (xt) ≤ 0 ∀t, (13)
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is an equivalent characterization of (11) (more precisely called the EDI formu-
lation). Its integral form is:

∀ 0 ≤ a ≤ b :

E(xb)− E(xa) +

∫ b

a

(
1

2
|x′t|

2
+

1

2
|∇E|2 (xt)

)
dt ≤ 0. (14)

The advantage of formulation (14) is that it only uses quantities that can be
defined in a metric space (see below for definition of |x′t| and |∇E|). The corre-
sponding computation for a bi-variate functional C is:

∀ 0 ≤ a ≤ b :

∫ b

a

(
d

dt
Cx(xt, ν)

∣∣∣
ν=yt

)
dt

+

∫ b

a

(
1

2
|x′t|

2
+

1

2
|∇1Cx|2 (xt, yt)

)
dt

+

∫ b

a

(
d

dt
Cy(ν, yt)

∣∣∣
ν=xt

)
dt

+

∫ b

a

(
1

2
|y′t|

2
+

1

2
|∇2Cy|2 (xt, yt)

)
dt ≤ 0. (15)

However this formulation poses specific problems as in general the solution
(xt, yt)t≥0 is only absolutely continuous (with respect to time) while, for in-

stance, the manipulation of the term d
dtC

x(xt, ν)
∣∣∣
ν=yt

requires additional as-

sumptions. This will be made precise later.

2.3 Definition of (EDI style) equilibrium flows

Let us recall the following definition:

Definition 1 A curve x : [0, T ]→ (X , d) is called absolutely continuous if there
exists f ∈ L1(0, T ) such that

d(xt1 , xt2) ≤
∫ t2

t1

f(t)dt, ∀t1 < t2, t1, t2 ∈ [0, T ]. (16)

For an absolutely continuous curve (xt)t∈[0,T ] the metric derivative of x at r
defined by

|x′r| = lim
h→0

d(xr+h, xr)

|h|
, (17)

exists a.e., belongs to L1(0, T ) and is the smallest L1 function that verifies (16).
We suppose from now on that C satisfies the assumption:

(A1) There exists C1 <∞ such that Cx(y, x), Cy(y, x) ≥ −C1, ∀x, y ∈ X × Y.

For any α, β ∈ R, α ≤ β, we denote by S(α, β) the set of divisions of the
interval [α, β]. Let z = (x, y) = (xt, yt)t∈[0,T ] be an absolutely continuous curve
in X × Y; define for 0 ≤ a ≤ b ≤ T and a division ∆ = {a = t0 < t1 < ...tN∆

=
b} ∈ S(a, b):

Υx(∆; z, a, b) =
∑
k

Cx(xtk+1
, ytk)− Cx(xtk , ytk). (18)
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Υx(z, a, b) = lim inf
∆∈S(a,b), |∆|→0

Υx(∆; z, a, b). (19)

Similar definitions are introduced for Υy(z, a, b) (summing the variations of
Cy along the curve z). Furthermore we denote

Υ(∆; z, a, b) = Υx(∆; z, a, b) + Υy(∆; z, a, b). (20)

Remark 1 When X is e.g., Euclidian and under regularity assumptions on C
it is easy to check that Υx(x, a, b) =

∫ b
a
d
dtC

x(xt, ν)
∣∣∣
ν=yt

dt and the same for Υy.

We are now ready to state the formal definition of a solution of (7) in the
abstract setting of metric spaces. The particular flavor we use is the so-called
”EDI” solution, see [3] for details.

Definition 2 (EDI equilibrium flow) An absolutely continuous curve z =
(xt, yt)t∈[0,T ] is called an EDI-equlibrium flow starting from (x̄, ȳ) if limt→0(xt, yt) =
(x̄, ȳ) and:

∀s ≥ 0, Υ(z, 0, s) +
1

2

∫ s

0

|x′r|
2

+ |y′r|
2

dr

+
1

2

∫ s

0

|∇1Cx|2 (xr, yr) + |∇2Cy|2 (xr, yr) dr ≤ 0, (21)

a.e. t > 0, ∀s ≥ t, Υ(x, t, s) +
1

2

∫ s

t

|x′r|
2

+ |y′r|
2

dr

+
1

2

∫ s

t

|∇1C|2 (xr, xr) + |∇2Cy|2 (xr, yr) dr ≤ 0,

(22)

where the slope |∇1Cx| (x, y) of Cx(·, ·) with respect to the first argument evalu-
ated at (x, y) is:

|∇1Cx| (x, y) = lim sup
u→x

(Cx(x, y)− Cx(u, y))+

d(x, u)
, (23)

and similarly for |∇2Cy| (x, y).

Remark 2 For the particular case of a Hilbert space the definition above coin-
cides with the usual definition of an evolution equation (7).

2.4 Convergence of numerical schemes

Let us denote

Mx(x, y, τ) = argminu∈X
d(u, x)2

2τ
+ Cx(u, y) (24)

My(x, y, τ) = argminu∈Y
d(u, y)2

2τ
+ Cy(x, u). (25)

With this definition the numerical scheme in equations (8)-(9) can be written
as

xτk+1 ∈Mx(xτk, y
τ
k , τ), yτk+1 ∈My(xτk+1, y

τ
k , τ). (26)
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The goal of this contribution is to investigate whether when τ → 0 the set
{(xτk, yτk), k ≥ 1} converges to a solution of (7) as defined in (21)-(22).

In order to work with meaningful objects, we introduce the following as-
sumption which is the analogue of [2, Assumption 4.8 page 67]:

(A2) There exists τ̄ > 0 such that for any τ ≤ τ̄ and (x, y) ∈ X × Y:

Mx(x, y, τ) 6= ∅,My(x, y, τ) 6= ∅. (27)

Assuming that assumption (A2) is satisfied, we can define the interpolation
à la de Giorgi which is a curve t ∈ [0, T ] 7→ (xτt , y

τ
t ) such that (xτ0 , y

τ
0 ) = (x̄, ȳ)

and ∀t ∈]kτ, (k + 1)τ ]:

xτt ∈Mx(xτkτ , y
τ
kτ , t− kτ), yτt ∈My(xτ(k+1)τ , y

τ
kτ , t− kτ). (28)

We will need some additional hypothesis:

(A3) For any c ∈ R, r > 0 and (x, y) ∈ X × Y the sets {u ∈ X |Cx(u, y) ≤
c, d(u, x) ≤ r} and {u ∈ Y|Cy(x, u) ≤ c, d(u, u) ≤ r} are both compact.

(A4) The slopes |∇1Cx| and |∇2Cy| are lower semicontinuous.

(A5) The function Cx is Lipschitz with respect to the second argument and Cy
is Lipschitz with respect to the first argument.

(A6) For any absolutely continuous curve z = (xt, yt)t∈[a,b]:

Υ(x, a, b) ≤ lim inf
|∆n| → 0

zn = (xn, yn)→ z

supn
∫ b
a
|ẋn(t)|+ |ẏn(t)| dt <∞

Υ(∆n; zn, a, b), (29)

where the convergence of the curves zn to z is in the uniform (on compacts)
norm.

(A7) There exists CL <∞ such that for any x, y, u, w:

|Cx(u, v) + Cx(u, y)− Cx(w, v)− Cx(w, y)| ≤ CLd(u,w)d(v, y). (30)

and the same for Cy(u, v).

Remark 3 The assumption (A7) implies (A6) (see [28, Lemma 2]).

With these provisions, the properties of the curves obtained by the numerical
scheme (8) are detailed in the Theorem 1.

Theorem 1 Let C satisfying assumptions (A1), (A2), (A3), (A4), (A5) and
(A6). Then the set of curves {(xτt , yτt )t∈[0,T ]; τ ≤ τ̄} defined in (28) is relatively
compact in the set of curves in X × Y with local uniform convergence and any
limit curve is an EDI equilibrium flow in the sense of Definition 2.

Proof The proof is somehow technical but is a adaptation of the proof of

Theorem 1 in [28]: first we show that the map τ 7→ d(xτ ,x)2

2τ +Cx(xτ , y) is locally
Lipshitz. Then the discrete identity is obtained as in [28, formula (32)] and then
estimations similar to [28, formulas (35) and (36)] allow to conclude. �

Similar results hold for the convex case (see [28, Theorem 2]).
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3 Applications

Using Lemma 1 we conclude that if in some circumstances there are ways to use
explicit numerical schemes (like for GANs), the convergence is also ensured for
the explicit schemes, once the implicit ones converge.

Let us now inquire what are the consequences of the theoretical results for
WGAN training. Because the Discriminator is trained first one can consider
the variable x to be the Discriminator network parameters that will result in
a Lipschitz function ` = `(x) and y to be the Generator parameters that will
generate a distribution µ = µ(y). Functions Cx and Cy are given by (6) thus in
particular Cx = −Cy. With these notations we can apply the Theorem 1 and
obtain that, in the limit of a vanishing learning rate, the WGAN training will
tend to some evolution curve, both in the space X ×Y of parameters, but also in
the space of the distributions (where µ belongs) and Lipschitz function (where
` belongs).

As a further application, we can investigate the conditions under which the
GAN training give rise to a mode collapse. The discussion below is not a
mathematical proof but oriented towards a practical understanding. A mode
collapse describes, e.g., the situation when a strong Discriminator pushes the
Generator to only produce a limited number of samples with a loss in diversity.
With our notations, this means that the evolution (xt, yt) will be close to a
constant (x∞, y∞) but the corresponding distribution µ(y∞) is far from µr
but can be expressed (at least approximately) as a finite sum of Dirac masses∑A
a=1 paδia where ia ∈ Ω are given images. Using the insight from Lemma 2

and under assumption that the generator network is locally injective (i.e., does
not generate redundant probability laws) the point µ(y∞) is a critical point of
the loss function. But, denoting l∞ the Lipschitz function corresponding to
the Discriminator network, the loss function for the Generator will be Eµ(`∞)−
Eµr (`∞) and the loss of the Discriminator will be ` 7→ Eµr (`)−Eµ∞(`). For such
a loss function, the information that µ is a sum of Dirac masses and also a critical
point of µ 7→ Eµ(`∞)−Eµr (`∞) implies that moving (in the space of probability
laws endowed with the 1-Wasserstein metric) towards any other Dirac mass does
not change (decrease) the loss value (to the first order). Therefore the images ia
in the support of the measure µ are necessarily of lowest possible loss value i.e.,
if the discriminator is good enough, are members of the original ”real” image
values (in mathematical terms are members of the support of µr). On the other
hand, if the dynamics of the Discriminator is also blocked in some point `∞,
this means again that, to the first order, Eµ∞(`) − Eµr (`) cannot be increased
locally when ` is slightly perturbed around `∞. Or, since µ and µr are different
we obtain a contradiction. Therefore the mode collapse is not a legitimate limit
dynamics. We can therefore conclude that if mode collapse happens this is due
to a too large time step, to a not strong enough Generator architecture or to
numerical traps that can be removed by perturbating slightly the dynamics.

4 Discussion and conclusion

When averaging out the steps of a SGD one obtains the gradient flow of the loss
functional. The question that we ask in this paper is what is obtained when
one averages out the generator-discriminator dynamics encountered in GANs.
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To answer the question we notice that in GANs the ground metric is not always
of L2 type but can be arbitrary (Wasserstein metric as in [10], Banach norm
as in [1], etc). Thus we re-formulate the question: when the learning rate
becomes smaller and smaller, is there any limit for the curves obtained during
the GAN training ? Does this correspond to a dynamical system ? We first
give sufficient conditions for this convergence in general metric space when the
learning process is composed of implicit steps. On the other side we recall
that under mild conditions explicit and implicit steps will be arbitrary close
thus converge to the same limit. Therefore the dynamics of GAN training
will in general follow the solution of a evolution equation whose details are
given explicitly in equation (7). The knowledge of such a fact can help better
understand the GAN optimization dynamics and the mode collapse phenomena.

Acknowledgements

A Appendix

A.1 Explicit and implicit numerical schemes in Hilbert
spaces

We recall below a standard result on the relationship between explicit and im-
plicit numerical schemes in Hilbert spaces.

Lemma 1 Let H be a Hilbert space, f : H → R a bounded Lipschitz function
with Lipschitz constant L and two numerical schemes defined by the recurrences:

xEn+1 = xEn + τf(xEn ), xE0 = x̄ (31)

xIn+1 = xIn + τf(xIn+1), xI0 = x̄ (32)

Then for τ small enough:

1. the implicit scheme (32) has a unique solution for any step n ≥ 0.

2. let T = Nτ for some fixed N , then ‖xIN −xEN‖ ≤ Cτ , with the constant C
depending only on f , x̄ and T .

Remark 4 Note that point 2 implies in particular that if, for τ → 0, the implicit
curves (xIn)n≥0 converge to some limit curve then the explicit curves (xEn )n≥0

converge to the same. However in order to avoid technicalities we will not state
precisely what the full curves are and what kind of convergence is obtained.

Proof Point 1 is obtained by a Picard procedure after observing that the
mapping x 7→ xEn + τf(x) is a contraction for τ small enough. For the point 2
we make use of the Lipschitz constant of f :

‖xIn+1 − xEn+1‖ ≤ ‖xIn − xEn ‖+ τL‖xIn+1 − xEn ‖
≤ ‖xIn − xEn ‖+ τL

(
‖xIn − xEn ‖+ τf(xIn+1)

)
(33)

Thus, denoting by Cf an upper bound on f :

‖xIn+1 − xEn+1‖ ≤ (1 + τL)‖xIn − xEn ‖+ τ2LCf . (34)
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If suffices now to use the discrete version of the Gronwall lemma to obtain
‖xIn+1 − xEn+1‖ ≤ eτL(n+ 1)τ2LCf , and the conclusion follows from:

‖xIN − xEN‖ ≤ τeτLTLCf . (35)

A.2 Critical points of gradient flows on intermediary spaces

We investigate in this section a simple situation of a gradient flow of a composed
function. Suppose thus an initial space Xp = Rn (for a GAN the neural network
parameter space), an object space Xo = Rm (for a GAN this will be the space
of probability measures where µ belongs and that of Lipschitz functions where
` belongs). Consider also two functions g : Xp → Xo, f : Xo → R and the
gradient flow:

x′t = −∇x(f ◦ g)(xt), (36)

where for any function we denote by ∇ its differential; for instance ∇of(o) is
the gradient of f at the point o, taken as a row vector, ∇xg(x) is the m × n
Jacobian matrix of g at x (entry i, j being ∂gi/∂xj).

This dynamics in parameter space Xp defines a dynamics ot = g(xt) in the
object space Xo. We want to investigate the relationship between the dynamics
xt and ot when the evolution (36) ends up in a stationary point i.e., stalls at
some given point x∞ ∈ Xp and o∞ = g(x∞) ∈ Xo.

Lemma 2 Suppose that the functions f and g are of C1 class (i.e. with con-
tinuous derivatives). Then:

1. denoting ot = g(xt) the dynamics in parameter space can also be written

x′t = −(∇of)(ot) · (∇xg)(xt). (37)

2. the dynamic in object space Xo is:

o′t = −(∇of)(ot) · (∇xg)(xt) · (∇xg)(xt)
T . (38)

In particular the dynamics in object space is not in general a gradient flow
(but will be when (∇xg) · (∇xg)T = Id).

Suppose now that the dynamics (36) is such that for some t ≥ t1 we have
xt = x∞. Then:

3. o∞ = g(x∞) is a critical point of f (i.e., ∇of(o∞) = 0) as soon as ∇ogT is
locally injective around o∞ (which implies that g is locally injective around
o∞).

Proof Formulas (37) and (38) are derived from (36) using the chain rule. Sup-
pose now x∞ is a critical stationary point of the dynamics (36). This of course
implies that ot = g(xt) will also be constant but is not enough to conclude
that o∞ is a critical point of f . But, since the time derivative x′t in the
evolution equation is zero for the constant dynamics xt = x∞, we have that
(∇of)(o∞) · (∇xg)(x∞) = 0, which, when (∇xg)T (x∞) is injective will imply
that (∇of)(o∞) = 0. �

Note that by the rank theorem the local injectivity of (∇xg)T (x∞) and of g
are related.
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