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Surface-diffusion mediated solid-state dewetting has been observed and studied in a number of different
systems during the past two decades. This process can be accompanied by the pinching of the film at a finite
distance from the retracting triple line. The repetition of this pinching is often referred to as periodic mass
shedding. We show that the disjoining pressure of the film can accelerate mass shedding by orders of magnitude
in ultrathin films with nanometric thickness. In the presence of power-law disjoining pressures induced by van der
Waals forces, the mass shedding time exhibits an approximate power-law dependence on film thickness tms ∼ h̄ν ,
with ν ≈ 6. Exponentially decaying disjoining forces also give rise to a strong acceleration of mass shedding.
However, due to the finite range of the exponential potential, the mass shedding time does not exhibit a simple
power-law dependence on the thickness, and is controlled by a cutoff thickness. In addition, two-dimensional
simulations indicate that, within the range of thicknesses that we have studied and for isotropic dynamics, the
transversal instability of a straight front does not lead to fingering, and mass shedding is the dominant instability
of the dewetting front. Finally, we also show that no significant difference is observed in the dewetting dynamics
between simulations based on a model with a wetting potential integrated over the film surface area, or over the
projected substrate area.

DOI: 10.1103/PhysRevE.101.042802

I. INTRODUCTION

Thin solid films are one of the basic building blocks of
many micro- and nanotechnologies. However, these films
are often thermodynamically metastable or unstable. Indeed,
when the temperature is high enough for surface diffusion
mass transport to be activated, the morphology evolves spon-
taneously and islands are formed to minimize surface and
interface energy. This process is called solid-state dewetting.

Experimental studies show that solid-state dewetting usu-
ally starts at defects or at the edges of the film [1,2]. Two
model systems have been extensively studied in experiments:
semiconductors on insulators (Si-SiO2 or Ge-SiO2) [3–10]
and metals on insulators (Ni-MgO, Au-SiO2, or (Cu or
Au)-sapphire) [11–18]. During solid-state dewetting, complex
morphological evolutions are observed where the film evolves
via various kinetic mechanisms depending on the shape and
orientation of defects. For example, depending on front orien-
tation, the film either gives rise to pinching at finite distance
from the dewetting front—a process which is usually called
periodic mass shedding [11,12,19], or through a transversal
instability of the dewetting front giving rise to fingering [3,6].
Both processes (mass shedding and fingering) lead to the
formation of linear structures which subsequently break up
into solid islands via the Rayleigh-Plateau–like instability.
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The mass shedding mechanism does not occur in the
dewetting of simple liquids where mass transport is medi-
ated by hydrodynamics. Instead, mass transport in solid-state
dewetting is usually mediated by surface diffusion, which
produces an oscillatory tail behind the dewetting rim. The
amplitude of the oscillations increases with time, ultimately
leading to the pinching of the film. This process has been
studied in detail by Wong et al. [19], and is similar to the
process by which periodic hollow tori are produced during
surface-diffusion mediated coalescence of spheres [20].

Our goal in this paper is to study the mass shedding mecha-
nism in nanometrically thin films. Such ultrathin films exhibit
a thickness-dependent free energy. The thickness-dependent
part of the free energy is usually referred to as the wetting
potential and its derivative as the disjoining pressure. The
standard continuum models for solid-state dewetting describe
the surface-diffusion-limited dynamics of thin solid films at
thicknesses much larger than the range of the wetting po-
tential. Hence diffusion on the film is not affected by the
wetting potential, and the only effect of the wetting potential
is summarized in the value of the contact angle [19,21–
24]. Our approach is based on a continuum thin film model
which is also valid at small thicknesses where the surface
properties are directly influenced by the wetting potential.
In order to do so, the standard Mullins model for surface
diffusion is supplemented with a wetting potential which
drives dewetting. We focus on the case of partial wetting,
where the wetting potential exhibits a minimum, giving rise
to a finite contact angle [25]. Thin film models with a contact
angle as a boundary condition at the triple line and without
influence of the wetting potential on the film away from the
triple line are recovered from models with a wetting potential
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in the limit where the range of the wetting potential vanishes
(see, e.g., Ref. [26]). Models with a wetting potential have
already been used to study hole opening [27] in anisotropic
solid films, and Ostwald ripening of nanoislands [28], or to
derive effective nonequilibrium kinetic boundary conditions
at the triple line of macroscopic films [26].

The standard interpretation of the wetting potential in
the case of partial wetting is based on a combination of
short-range repulsive forces resulting from the overlap of
the regions of the film where bonds between atoms are af-
fected by the surface and by the interface, and a long-range
attractive force is attributed to van der Waals interactions.
However, many different physical contributions can actually
come into play [25], and we will therefore consider two
generic situations, where the attractive part is either power law
or exponential.

We show that the mass shedding process in solid-state
dewetting, which exists even when the range of the wetting
potential vanishes, is accelerated by orders of magnitude in the
presence of a wetting potential, even if the range of the wetting
potential is much smaller than the initial film thickness. This
is different from the case of liquid dewetting, where no mass
shedding is found when the range of the wetting potential
vanishes, but an instability similar to mass shedding is found
when the range of the wetting potential is of the same order as
the film thickness, as discussed for example in Refs. [29,30].

The mass shedding time in solid-state dewetting exhibits
a power-law dependence on the film thickness in the case of
attractive van der Waals forces. In contrast, no power law is
observed for exponentially decaying potentials. We propose
that the pinching time is controlled by a cutoff thickness in
the case of exponential potentials. For film thicknesses of the
order of the range of the wetting potential, the film destabilizes
everywhere away from the film edges due to the spinodal
instability. We also briefly report on the full two-dimensional
dynamics of the mass shedding process. These simulations
reveal that no fingering instability takes place for very thin
films with isotropic dynamics.

The paper is organized as follows. In Sec. II, we present
our one-dimensional mesoscopic model. Section III reports
on the acceleration of periodic mass shedding for the van
der Waals potential. In Sec. IV, we summarize the results
for the exponential potential. Section V presents some numer-
ical simulations for two-dimensional dynamics. Finally, we
discuss our results in the light of existing experiments and
conclude in Sec. VI.

II. WETTING POTENTIAL MODEL

A. Free energy

In this paper, we discuss the diffusion-limited dynamics of
thin solid films. We neglect elastic effects, and the solid is
considered to be rigid.

Let us start by defining γint—the free energy per unit area
of the interface between two different semi-infinite solids.
Then, consider a flat solid film of thickness h made of one
of these solids on a semi-infinite bulk made of the other solid.
Discarding bulk contributions (proportional to the volume) the
free energy of the film per unit area is a function of the film

thickness denoted as φ(h). We define γ (h) = φ(h) − γint, and
decompose it into a constant term and an h-dependent term

γ (h) = γ̄ + w(h), (1)

where w(h) → 0 as h → +∞, so that φ(h) = γint + γ̄ as
h → +∞. As a consequence, γ̄ can be interpreted as the
asymptotic surface energy of the film for large h. The wetting
potential w(h) arises due to many physical effects such as
breaking of chemical bond extending farther than nearest
neighbors, structural effects, electrostatic effects, and van der
Waals interactions [25,31].

Based on the free energy γ (h), we now wish to build a
model energy for a one-dimensional film with a thickness
h(x, t ) depending on the space coordinate x and the time t .
Here, we assume that the film thickness does not depend on
the spatial coordinate y orthogonal to x. Keeping an isotropic
surface free energy γ which depends on h but not on ∂xh and
higher order derivatives, the total free energy per unit length
along y reads

F =
∫

ds γ (h),=
∫

ds [γ̄ + w(h)], (2)

where s is the arclength coordinate along the surface profile
h(x, t ) and

ds = [1 + (∂xh)2]1/2dx. (3)

We remark that the free energy Eq. (2) is not the only possible
model which extends the definition of the wetting potential
to finite slopes. Indeed, while some authors have used an
approach similar to ours to study wetting statics and dynamics
at finite slopes [26,27,32–36], other options are possible as
reported, e.g., in Ref. [37], where the finite-slope wetting term
is chosen as

∫
dx w(h) instead of

∫
ds w(h). On the one hand,

the integration over dx leads to a contribution in the chemical
potential which is simple and identically equal to that of the
small slope limit. On the other hand, as discussed in Ref. [38],
integration over ds is very convenient for example to add con-
trolled anisotropy in solid-state wetting (due to the isotropy
of the reference model). However, none of these models are
derived from a rigorous asymptotic expansion. Expressions
of the free energy based on h and its spatial derivatives have
only been obtained as an expansion, as discussed, e.g., in
small slope expansions from Ref. [39] for van der Waals–like
interactions, or in Ref. [40] for surface energy anisotropy.
Furthermore, we show in Appendix I that the two energy
models (with dx or ds) do not lead to quantitatively significant
differences for our dewetting simulations. This quantitative
similarity has been already noticed in the context of liquid-
state wetting in the static regime in Ref. [36]. In the following,
we use the model energy Eq. (2).

We consider a wetting potential w(h) with a well defined
stable state at h = hm corresponding to a wetting film or
to a bare substrate with an adsorbate layer, as discussed,
e.g., in Ref. [28]. We focus on the case of partial wetting,
where the wetting potential, shown in Fig. 1, exhibits a single
minimum at h = hm with w(hm) < 0. A balance of tensions
at equilibrium then leads to the Young-Dupré equation for
the equilibrium contact angle θeq, where θ = arctan(∂xh). This
relation reads γ̄ cos θeq = γ (hm), and may be rewritten with
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FIG. 1. Wetting potential as function of film thickness. (a) Expo-
nential case with a minimum at hm = 0 and a width h0. (b) van der
Waals potential with a minimum at hm > 0.

the wetting potential as

−w(hm) = γ̄ (1 − cos θeq). (4)

Hence the partial wetting regime for which θeq > 0 corre-
sponds to w(hm) < 0. In addition, we do not allow for over-
hangs. Therefore, all angles, including the equilibrium contact
angle θeq, must be smaller than 90◦. Inserting this condition
in Eq. (4), we have w(hm) > −γ̄ and the total free energy
γ (h) = γ̄ + w(h) is always positive.

The local chemical potential is derived from the cancel-
lation of the variation δ(F − μN ) = 0. We have defined
the number of atoms per unit length along y N = ∫

dx h/�

and the volume per atom �. We therefore obtain μ =
(δF/δh)/(δN /δh), where (δ • /δh) denotes the functional
derivative. This leads to

μ = �

(
γ (h)κ + γ ′(h)

[1 + (∂xh)2]1/2

)
, (5)

where γ ′(h) denotes the derivative of γ (h) with respect to h,
and the curvature of the surface reads

κ = −∂xxh

[1 + (∂xh)2]3/2
. (6)

In equilibrium, the chemical potential μ must be independent
of time and space. Using this condition, multiplying Eq. (5) by

∂xh, and integrating, one obtains the Young-Dupré equation
(4), as discussed for example in Refs. [25,26].

B. Surface-diffusion dynamical model

We now turn to the dynamical model for surface-diffusion-
limited dynamics. The nonequilibrium states are characterized
by a spatially nonhomogeneous local chemical potential. In
a long-wave approach, the nonequilibrium thermodynamic
driving force is then proportional to the gradient of chemical
potential ∂sμ. Within the framework of linear irreversible pro-
cesses, we assume that the surface mass flux j is proportional
to the driving force and we write j = −m∂sμ, where the
kinetic coefficient m is a surface mobility. Finally, due to local
mass conservation, the film surface evolves via conserved
dynamics, and the normal velocity vn of the surface is written
as the divergence of the surface mass flux vn = −∂s j. Using
the expression of vn,

vn = ∂t h

[1 + (∂xh)2]1/2
, (7)

and Eq. (3) the evolution equation of the film thickness in
Cartesian coordinates reads

∂t h = ∂x

[
�m

[1 + (∂xh)2]1/2
∂x

(
γ (h)κ + γ ′(h)

[1 + (∂xh)2]1/2

)]
.

(8)

In the following, we assume for the sake of simplicity that m
is a constant independent of h. Some discussion of the case
where m depends on h can be found in Ref. [26].

All one-dimensional simulations in this paper are based
on the numerical solution of the finite-slope model Eq. (8)
with different expressions of the wetting potential. For the nu-
merical integration, we use the implicit Euler pseudospectral
numerical scheme discussed in Ref. [26].

C. Small slope limit

The local surface angle is defined as θ = arctan(∂xh). In
the small slope limit, we have ∂xh ∼ θ � 1. Thus Eq. (4)
indicates that the wetting potential is small as compared to the
asymptotic surface energy w ∼ γ̄ θ2 � γ̄ . As a consequence,
the evolution equation of the film assumes a simple expression
to leading order [26]

∂t h = m�
[−γ̄ ∂4

x h + ∂xxw
′(h)

]
. (9)

Our analytical discussions of the simulation results are mainly
based on the small slope limit Eq. (9). Indeed, the small
slope equations are simpler and are therefore easier to analyze
analytically. Furthermore, the small slope limit often leads to
predictions that are quantitatively not too far from the finite
slope models (see, e.g., Ref. [19]). Finally, the small slope
limit is in some sense more universal than finite slope models
(for example, both finite slope models discussed above in
Sec. II A, corresponding to integration of w along dx or ds,
exhibit the same small slope limit).

However, as mentioned in the previous subsection, we use
the finite-slope model Eq. (8) and finite contact angles in all
simulations. Indeed, most experimental systems exhibit finite
contact angles, i.e., finite slopes. We therefore aim to describe
the behavior at finite slopes to be able to discuss experimental
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results. In addition, numerical simulations with finite contact
angles—and therefore with finite slopes—are usually faster
than those with small contact angles. We therefore use finite-
slope simulations to simulate larger systems and to have an
easier access to long-time regimes.

III. VAN DER WAALS WETTING POTENTIAL

A. Model and simulations

We first consider a potential with a power-law attractive
van der Waals contribution ∼h−2 [31]

w(h) = γ̄ (1 − cos θeq)

[
2

(
hm

h

)3

− 3

(
hm

h

)2
]
. (10)

The power-law form of the repulsion term ∼h−3 is chosen for
convenience, and is similar to that used for liquid dewetting
studies. The precise dependence of the repulsive term on h
is not relevant for our conclusions, as long as it obeys two
conditions: (i) it is negligible as compared to the attractive
part for h 	 hm and (ii) it is large enough at small h to lead
to a minimum at h = hm. The attractive part of the wetting
potential is chosen to scale as h−2. This dependence is the
most used to describe van der Waals forces; however, other
behaviors are possible (see, e.g., Refs. [25,31]).

The wetting potential produces an equilibrium contact
angle obeying the Young-Dupré relation (4). Since the wetting
potential diverges for h → 0, negative thicknesses are forbid-
den. Note that the length scale hm describes both the minimum
of w and the width of the potential well. Within this model, hm

can be interpreted as the width of a wetting or adsorbate layer.
We have investigated the evolution of a thin film via the

numerical integration of Eq. (8). We have used hm = 0.2 and
equilibrium contact angle θeq = 60◦ in our simulations. The
spatial discretization length was dx = π/32 and the time step
was dt = 0.002. The initial condition is a (exponential) step
function with a film thickness h̄ ranging from 5hm to 30hm.
The film thickness h̄ is defined as the difference between the
height of the flat film and the height of the wetting layer hm.

The films exhibit the expected behavior as reported in
Fig. 2(b). First, a rim forms at the edge of the solid film
where the mass accumulates. The rim exhibits an oscillatory
tail in the film region. The first minimum of these oscillations
deepens with time, and ultimately leads to a pinching event.
This process then repeats in time, giving rise to the periodic
mass shedding scenario [19]. In the following, we focus on the
behavior of the first minimum of the oscillations of the profile
away from the triple line, which is involved in the pinching
event.

B. Two regimes

Let us define the position xmin(t ) of the minimum of the
first oscillation of the film profile after the triple line. In
the following, we use the index min to indicate quantities
evaluated at x = xmin(t ). As an example, hmin = h(xmin(t ), t ).
Since ∂xhmin = 0, the small slope limit Eq. (9) leads to

∂t hmin = m�
[−γ̄ ∂4

x hmin + w′′(hmin)∂xxhmin
]
. (11)
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FIG. 2. Dewetting dynamics at the edge of a solid film. (a) Evo-
lution of a film profile starting from a step. (b) Time dependence of
∂t hmin, for h̄ = 6.0. “Mullins term” and the “Wetting term” denote the
contributions to ∂t hmin originating from surface curvature and wetting
potential, respectively [see Eq. (11)]. MO(2) is the second order
solution for ∂t hmin, obtained from the small slope approximation of
the Mullins model in the long-time limit [19].

The comparison of the two terms in the right hand side
(RHS) of this equation with ∂t hmin in the simulations suggests
two regimes. Initially, the film thickness in the region of
the first minimum is too large to be affected by the wetting
potential and the film evolution is driven by surface tension.
This regime is observed approximately from t = 10 to about
105 in Fig. 2(b), when the (brown) solid line corresponding
to the value of |∂t hmin| observed in simulations collapses with
the (blue) dotted-dashed line corresponding to the value of the
Mullins term γ̄ ∂4

x hmin calculated at the minimum. We refer to
this regime as the Mullins regime. Then, we observe a second
regime where the wetting potential and the Mullins term are
of the same order. This regime ends with the detachment of
the first oscillation of the rim from the rest of the film.

In Appendix H, we derive the finite-slope generalization of
Eq. (11), which contains three additional terms. A numerical
evaluation, presented in Fig. 17, shows that these three terms
are negligible as compared to the two terms in the RHS of
Eq. (11). We conclude that Eq. (11) provides a satisfactory
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approximation of the dynamics at the minimum during dewet-
ting processes governed by Eq. (8). However, finite slope
effects are expected to lead to deviations from the small slope
limit in other parts of the profile. For example, close to the
triple line, the slope approaches the finite equilibrium contact
angle. Hence the dynamics is still globally influenced by
finite-slope effects.

C. Mullins regime

Let us now analyze the Mullins regime in more detail.
When the potential term is negligible, Eq. (11) suggests a
scaling relation x4 ∼ t which is usual in surface-diffusion
limited dynamics. In addition, the condition of a fixed contact
angle θeq and a fixed scale for the heights selected by the initial
thickness h̄ imposes the relation x ∼ h̄/θeq. This suggests a
scaling variable t/x4 ∼ tθ4

eq/h̄4. Discarding the dependence in
θeq, we obtain a scaling ansatz of the form

h̄ − hmin(t ) = h̄F (t/h̄4). (12)

As shown in Fig. 3, data collapse of simulation results based
on Eq. (12) is achieved in an intermediate regime between a
first transient relaxation and the final stages of pinching when
the thickness around the minimum is small enough for the
wetting potential to become relevant.

Within this scaling regime, the analytical asymptotic ex-
pansion presented in Ref. [19] provides the surface profile
during dewetting in the limit of small slopes and large times
(see also Ref. [41]). The scaling function F can be extracted
from this result, and takes the form

F (ξ ) ≈ aξ 1/5 + b + c/ξ 1/5 + · · · , (13)

where ξ = t/h̄4 for large times. The details of the analytical
expression are reported in Appendix A. The scaling behavior
Eq. (12) and the scaling function Eq. (13) were shown to be
quantitatively accurate in the limit of small slopes in Ref. [19]
using numerical simulations of the Mullins model without
wetting potential [i.e., Eq. (8) with γ (h) = γ̄ , and w(h) = 0],
and with a fixed contact angle θeq imposed at the triple line.

As shown in Fig. 2(b), the prediction Eq. (13) approaches
asymptotically our results at long times, but does not agree
with them quantitatively. However, as seen in Fig. 3, the
convergence to the scaling function F (ξ ) during the Mullins
regime improves when the film thickness h̄ is increased. The
values of ξ reached in our simulations are not large enough
for the behavior of F (ξ ) to be dominated by the first term in
Eq. (13). This could happen only for ξ larger than 103, which
is beyond the range of numerical simulations. Similarly, a
simple power-law fit of the scaling function F (ξ ) = a + bξ c

leads to c ≈ 0.36, a value which is significantly larger than the
expected asymptotic exponent 1/5.

As a summary, our results show a Mullins regime with a
scaling behavior in agreement with Eq. (12). The simulation
results approach the scaling function Eq. (13). Nonetheless,
the separation of scales h̄ 	 hm is not large enough in our
simulations to reach an asymptotic behavior described only
by the asymptotic exponent 1/5.

(a)

10−2
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100

(b)

10−4
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10−2

10−1 100 101 102 103

MO(1)
MO(2)

FIG. 3. Data collapse for hmin and ∂t hmin in the Mullins regime.
Data are scaled according to Eq. (12). Solid lines are fit to the
data according to the function F (ξ ) = a + bξ c. MO(1) and MO(2)
represent respectively the first and second order solutions of the small
slope approximation of Mullins’ model in the long time limit with
α0 = θeq.

D. Potential-dominated regime

The Mullins regime ends when the wetting potential starts
to affect the dynamics of the first minimum of the profile. As
a first insight on the influence of the wetting potential, we
study the stability of linear perturbations of a flat film far from
the edges. Consider a small perturbation of the film profile
around a flat film δh(x, t ) = h(x, t ) − h̄ � h̄. Substituting this
expression into Eq. (8) or Eq. (9), and linearizing, we obtain a
linear equation with constant coefficients. This equation pro-
vides a dispersion relation for Fourier modes δhqω ∼ eiωt+iqx .
In the small slope limit Eq. (9), we obtain

iω = m�[−γ̄ q4 − w′′(h̄)q2]. (14)

In the more general case where finite slopes are allowed,
Eq. (8) leads to

iω = m�[−γ (h̄)q4 − w′′(h̄)q2]. (15)
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The Fourier modes will grow when Re(iω) > 0, i.e., when
w′′(h̄) < 0. This is the well-known spinodal instability which
appears at long wavelengths for q < [−w′′(h̄)/γ (h̄)]1/2. The
timescale of the appearance of the instability is defined as
tSD = 2π/ maxq[Re(iω)] and reads

tSD = 8πγ (h̄)

m�|w′′(h̄)|2 . (16)

Since we consider a potential which is attractive at long
distances, we have w′′(h̄) < 0 and this instability is expected
to be present.

However, pinching is a spatially localized event and the
linear stability of a flat film is not appropriate to study this
effect. Instead, we have searched for a localized self-similar
solution in the pinchoff regime under the influence of the
wetting potential, following the same line as some previous
studies on liquid dewetting [42–44]. For this purpose, we
consider a self similar ansatz

h(x, t ) ∼ (tms − t )1/β f

(
x − xms

(tms − t )α

)
. (17)

Substituting this solution in Eq. (9) and considering that the
wetting potential is dominated by the attractive part of the van
der Waals potential for h 	 hm, we find a self-similar solution
for α = 1/4 and β = 8 (the derivation of these exponents is
reported in Appendix B, where it appears as a special case
of a discussion for arbitrary power laws w ∼ −h−n). When
h = hmin Eq. (17) reduces to

hmin(t ) =
(

A�1/2m1/2

γ̄ 1/2

)1/4

(tms − t )1/8 f (0), (18)

where f (0) is a dimensionless constant and A = 3γ̄ h2
m(1 −

cos θeq).
We have rescaled the numerical data for hmin with the self-

similar ansatz of Eq. (17). This is shown in Fig. 4. The best
data collapse is obtained for β ≈ 7.2, which deviates slightly
from the expected value β = 8. This deviation could result
from the difficulty to reach the separation of scales h 	 hm

in the simulations leading to a contribution of the repulsive
part of the potential which is neglected in the analysis of the
scaling behavior, and which increases rapidly when the film
surface is very close to the substrate. Fitting the numerical
data with β = 8 provides f (0) = 1.07 (see Fig. 12 in the
Appendixes).

E. Total pinching time

The total mass shedding time cumulates both processes
of formation of the minimum with Mullins dynamics and
of final pinching controlled by the wetting potential. As a
simple approximation, we therefore propose to evaluate the
total mass shedding time tms as the sum of the time t∗ that the
system spends in the Mullins regime and the time tms − t∗ of
the final pinching regime. This approach requires one to match
the two solutions at the time t∗. In order to do so, we impose
both that the thickness at the minimum and its time derivative
are equal in the two solutions at t∗. The resulting expressions
are rather tedious, and are reported in Appendix C. As shown
in Fig. 5, the best quantitative agreement of this approach with
the numerical data of tms is obtained for f (0) ≈ 1.4 when

(a)100

(b)

10−2

10−1

100

10−2 10−1 100 101

FIG. 4. Data collapse for hmin and its derivative in the pinch-
off regime. Data are scaled according to the self-similar solution
described in the text with β = 7.2. The continuous lines correspond
to the fit to collapsed data using Eq. (17) with β and f (0) as fitting
parameter.

using α0 = θeq. As shown in Appendix F, using α0 = tan θeq

leads to f (0) = 1.05. We except the discrepancies between
these two values of f (0), and the value f (0) = 1.07 obtained
above from the fitting of the data collapse of hmin, to be
smaller in the small slope limit. They may differ here because
the simulations are performed with a finite contact angle
θeq = 60◦.

A direct power-law fitting of the total time for mass shed-
ding tms,

tms = h̄ν, (19)

with ν ≈ 6, shown in Fig. 5, is in good agreement with the
numerical simulations. This exponent is intermediate between
two extreme cases. First, if the dynamics was within the
Mullins regime up to pinching, then we could use Eq. (12)
with hmin = 0, leading to tms ∼ h̄4 [19]. In contrast, if the
dynamics was dominated by the pinch-off regime we could
substitute hmin by h̄ and t by zero in Eq. (18), and we would
obtain tms ∼ h̄8. The observed exponent ν ≈ 6 results from a
compromise between these two limits.

The corresponding nonaccelerated mass-shedding time ob-
tained in absence of wetting potential [19] is reported in the
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107
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FIG. 5. Mass shedding time from simulations tNS
ms as a function

of film thickness for van der Waals potential. Here, tM
ms is the mass

shedding time obtained in the absence of wetting potential and tSD

is the timescale of spinodal dewetting. tmatching
ms denotes the mass

shedding time obtained from matching the solution without wetting
potential with the pinch-off solution (performed with α0 = θeq). The
continuous line denotes the power law fit to the numerical data.

same figure. The numerical results indicate that the wetting
potential can accelerate the mass shedding process by at
least 103 or 104 times. This acceleration is larger at small
thicknesses.

We have also reported the timescale of spinodal dewetting
for which the film is unstable to random fluctuations at the
film surface on Fig. 5. The timescale of spinodal dewetting
is comparable to that of mass shedding at small thicknesses.
Hence we expect a competition between spinodal dewetting
and mass shedding at very small thicknesses. However, the
mass shedding scenario dominates at larger thicknesses.

IV. EXPONENTIAL WETTING POTENTIAL

Let us now consider the case where short-range interac-
tions dominate. In order to study this case, we consider a
potential which decays exponentially for large thicknesses

w(h) = γ̄ [1 − cos(θeq)][e−(h−hm )/h0 − 2 e−(h−hm )/(2h0 )]. (20)

This potential exhibits a minimum at h = hm, and extends
up to a range of the order of h0. In the following we will
consider hm = 0 without loss of generality (up to a shift in the
definition of h). The numerical integration parameters were
dx = π/16 and dt = 0.01.

In simulations with h0 = 0.1, we observe once again two
different regimes in the mass shedding process: a Mullins
regime where the influence of the wetting potential is negli-
gible and a second regime when the wetting potential plays a
major role.

The time evolution of hmin and its time derivative are
summarized in Fig. 6. A good data collapse in Figs. 6(b) and
6(c) confirms the scaling ansatz Eq. (12) and indicates that
the evolution is in the Mullins regime at intermediate times
(except for the very thin film with h̄ = 1, where the regimes

(a)

10−13

10−11

10−9

10−7

10−5

10−3

10−1

10−1 101 103 105 107

(b)

10−2

10−1

100

(c)

10−6

10−5

10−4

10−3

10−2

10−1

10−2 10−1 100 101 102 103 104

MO(2)

MO(2)

MO(1)

FIG. 6. Evolution of the minimum of the profile for the ex-
ponential wetting potential. (a) Time evolution of ∂t hmin for h̄ =
5.0, together with the contributions of the “Mullins term” and the
“Wetting term.” (b),(c) Data collapse of hmin and ∂t hmin in the Mullins
regime. Data are scaled according to Eq. (12). The green and brown
curves represent a fit to the collapsed data using F (ξ ) = a + bξ c.

are not well separated in time). Furthermore, comparison of
Fig. 6(a) with Fig. 2 suggests that the evolution with an
exponential potential exhibits a faster convergence towards
the scaling function Eq. (13) corresponding to the solution
of Wong et al. [19]. In addition, as shown in Figs. 6(b) and
6(c), a fit of the scaling function of the form F (ξ ) = a + bξ c

provides an exponent c = 0.28, which is closer to asymptotic
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FIG. 7. Mass shedding time tNS
ms as a function of film thickness

for exponential potential. Here, tM
ms is the mass shedding time in the

absence of wetting potential and tSD is the timescale of spinodal
dewetting. The continuous line denotes the fit to the numerical data
according to Eq. (21) with texp = 0 and hc = 1.5.

prediction 1/5 than in the case of the van der Waals potential.
This faster convergence could be caused by a faster decrease
of the exponential potential when increasing film thickness.

We have also examined the variation of total mass shed-
ding time tms with film thickness, as reported in Fig. 7. We
observe that tms is at least 102 to 104 times smaller than
the corresponding value for the Mullins model without any
wetting potential. When the film thickness is decreased the
acceleration of the shedding process increases very rapidly,
i.e., faster than a power law. Indeed, due to the exponential
form of the potential, we do not expect a self-similar pinching
solution in the form of Eq. (17).

A simple argument allows one to gain further insight on
this behavior. Indeed, we assume that the exponential wetting
potential only influences the dynamics at a finite distance hc

from the substrate which is controlled by the range h0 of the
potential. Once the thickness has reached hc, the pinching
takes a finite time texp. This simple picture neglects the details
of the matching between the Mullins regime and the final
pinching regime. However, since the potential is exponentially
decreasing with h, the details of the matching should only
bring logarithmic corrections. Here, we neglect these correc-
tions and, using the expression of hmin in Eq. (12) [see also the
full expression Eq. (A2)], we find

tms = texp + h̄4

m�γ̄α4
0

(
C1 − C2

hc

h̄

)5

, (21)

where C1 = 12.0204 . . . and C2 = 9.3478 . . . are numerical
constants, the expressions of which are reported in Appendix
(D2). Assuming texp ≈ 0 and α0 = θeq, we use Eq. (21) to fit
the numerical results with two fitting parameters C1 and C2hc.
This provides a value C1 = 11.11, and using the value of C2

from analytical expression we obtain the cutoff height hc ≈
1.5. The results are shown in Fig. 7. If we use α0 = tan θeq

instead of α0 = θeq, fitting the data for tms using Eq. (21)
provides C1 = 16.62 and hc = 2.27. These small quantitative
discrepancies again originate in an application of the small
slope limit beyond its regime of validity.

Finally, as compared to the van der Waals potential, the
ratio of the spinodal instability time over the mass shedding
time increases much faster in the exponential case, as seen in
Fig. 7. This is clearly a consequence of the fast decay of the
exponential potential for large h.

V. 2D SIMULATIONS

In the previous sections, we have investigated the dewetting
dynamics of a thin solid film within a one-dimensional model.
In this section, we briefly present numerical results for the
full two-dimensional dynamics of the dewetting process. As
a straightforward generalization of the model Eq. (8), we
consider a finite-slope two-dimensional surface with a height
profile h(x, y), which obeys

∂t h = ∇ ·
[

�m

(1 + |∇h|2)1/2
∇

(
γ (h)κ + γ ′(h)

(1 + |∇h|2)1/2

)]
,

(22)

where ∇ denotes the gradient operator in the (x, y) plane.
Again, we consider the case of a constant mobility m. The
numerical integration scheme is similar to that of Ref. [26],
with an implicit Euler pseudospectral method. All simulations
of the finite-slope model Eq. (22) are performed on a periodic
discrete 1024 × 1024 grid with lattice spacing dx = π/16 and
time increment dt = 0.01.

Simulations of Eq. (22) starting from a film with a straight
stripe geometry are shown in Fig. 8. We use the exponen-
tial potential, with h̄ = 1, and θeq = 60◦ (similar results are
obtained with a larger thickness h̄ = 1.5, as reported in Ap-
pendix G). The simulations confirm that the pinching process
occurs periodically, leaving a periodic array of straight lines.
Simulations do not show any important effect of the instability
along the front described in Refs. [41,45,46], which was
expected by these authors to give rise to fingering, i.e., to the
formation of linear structures perpendicular to the dewetting
front. Hence the mass shedding process is found to be faster
than the fingering instability within our isotropic model and
in the range of thicknesses that we have studied. These results
justify our one-dimensional description of the periodic mass
shedding process reported in the previous sections which
discards possible transversal instabilities.

We have also performed similar simulations with addi-
tional random roughness in the initial conditions. In order to
do so, we have added a random perturbation with uniform
distribution in the interval [−0.025, 0.025] at each point of
the simulation grid. The results are reported in Fig. 9. The
initial dynamics is similar to that of simulations without initial
roughness. The pinching timescale tms and the width of the
lines produced by the mass shedding process are only weakly
affected by the noise [for example, we have nine lines both
in Fig. 8(c) and Fig. 9(c)]. However, at larger times, the
stripes break up into dots as expected from the Rayleigh-
Plateau instability [3]. The Rayleigh-Plateau instability by
which a linear structure breaks up into dots is driven by the
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(a) (b)

(c) (d)

FIG. 8. Evolution of a stripe. Plots from (a) to (d) correspond
to times 0, 200, 600, and 20000, respectively. Simulations are
performed using the exponential potential with range h0 = 0.1 and
contact angle θeq = π/3. The initial thickness of the stripe is h̄ = 1.
The edges of the stripe are exponential sigmoids of unit width.
Note that the vertical scale has been magnified as compared to the
horizontal scale for a better visualization of the surface profile.

continuous reduction of the energy of the line when increasing
the amplitude of a modulation of its width (to avoid confusion,
we use the term pinching only for the mass-shedding process,
and not for the breakup of linear structures). At long times,
Ostwald ripening of the islands takes place, where larger
islands grow at the expense of smaller ones. Some conse-
quences of the wetting potential on this coarsening process
have been investigated in Ref. [28].

The surface roughness in the initial conditions is expected
to promote the instabilities such as the fingering and Rayleigh-
Plateau instabilities. Indeed, Fourier modes of small transver-
sal perturbations along y with wave vector q are expected to
grow as ζq(t ) = ζq(0) exp[iωt], where the dependence of iω
on q depends on the type of instability. Ignoring nonlinear
effects, the time for the amplitude to reach a finite value
that could lead to the film breakup ζq(t ) = h̄ is therefore
approximated as tinst = ln[h̄/ζq(0)]/iω. The amplitude ζq(0)
is proportional to roughness in the initial conditions. Thus
larger initial roughness leads to smaller tinst. However, the
mass shedding process occurs even if the roughness vanishes
(it is only triggered by the presence of the edge of the film).
Hence to leading order, for small roughness in the initial
conditions, the fingering and Rayleigh-Plateau instabilities
should appear earlier as compared to mass shedding when
increasing amplitude of the roughness. As seen in Figs. 8
and 9 this interpretation is consistent with the observation of

(a) (b)

(c) (d)

FIG. 9. Evolution of a rough stripe. Plots from (a) to (d) corre-
spond to times 0, 100, 400, and 20000, respectively. Same parameters
as in Fig. 8, with an additional random roughness in the initial
condition.

the strengthening of the Rayleigh-Plateau instability in the
simulation results when the initial roughness is increased.
However, even in the presence of noise, no fingering is ob-
served irrespective of the noise amplitude. Hence we conclude
that within our isotropic model, and within the range of
thicknesses that we have studied, the transversal instability
during dewetting only gives rise to a Rayleigh-Plateau–like
modulation of the rim.

The scenario with formation of lines via periodic pinching
and subsequent breakup into islands can also be observed
with a circular front geometry. Indeed, as reported in Fig. 10,
simulations starting from a small circular hole show a sim-
ilar behavior with the formation of an array of rings that
ultimately break up into dots. Here, the meeting of the mass
shedding rings via the periodic boundary conditions initiates
the breakup of the rings into dots. However, as reported in
Ref. [10], simulations with an isotropic phase field model
show that the dewetting of square islands can give rise to more
complex patterns.

Simulation with a thinner initial thickness h̄ = 0.5 leads to
a destabilization of the film away from the edge due to the
spinodal instability, as shown in Fig. 11. Using the expression
of time of appearance of the instability given above, we obtain
tSD
inst = tSD ln[h̄/ζq(0)]/2π , where tSD is defined in Eq. (16).

Assuming that ζq(0) can be approximated by the roughness
of the initial perturbation, which is uniformly distributed in
the interval [−ε, ε], we obtain ζq(0) = ε/31/2. Using this
expression, we find that, for the value ε = 0.025 used in
simulations, tSD

inst ≈ 1.5 × 102 for h̄ = 1 and tSD
inst = 0.8 for
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(a) (b)

(c) (d)

FIG. 10. Evolution of starting from a circular hole. Same param-
eters as in Fig. 8. Plots from (a) to (d) correspond to times 0, 200,
1000, and 20000, respectively.

h̄ = 0.5. Assuming that the mass shedding time is not strongly
affected by the roughness, the number of mass shedding
events before the spinodal instability comes into play can be
evaluated approximately as nms = tSD

inst/tms. Using the values
of tms = 118 for h̄ = 1 and tms ≈ 4 for h̄ = 0.5 obtained
from simulations without noise, we find nms = 1.28 for h̄ = 1
and nms = 0.2 for h̄ = 0.5. These results are in qualitative
agreement with the simulations, where a few mass shedding
events can be observed for h̄ = 1 in Fig. 9, while the spinodal
instability takes over before mass shedding occurs for h̄ = 0.5
in Fig. 11.

VI. DISCUSSION AND CONCLUSIONS

In summary, dewetting dynamics of ultrathin solid films
is strongly affected by the wetting potential. In the case of a
wetting potential dominated by van der Waals forces, the pe-
riodic mass shedding process can be accelerated by orders of
magnitude. The mass shedding time tms is found to scale with
film thickness approximately as h̄6. In the case of exponential
wetting potentials, we obtain a similar acceleration. However,
no simple effective power-law scaling of tms with h̄ was found
in this case. Simulations of the full two-dimensional dynamics
confirm that periodic mass shedding occurs, and no fingering
instability is observed within our isotropic model. In addition,
spinodal dewetting can compete with mass shedding at very
small film thicknesses.

Our study neglects the consequences of anisotropy and of
the thickness dependence of the mobility. These ingredients
should be important for the pinching dynamics, as suggested

(a) (b)

(c) (d)

FIG. 11. Evolution of a very thin film h̄ = 0.5 subject to a strong
spinodal instability. Initial conditions with initial roughness and same
parameters as in Fig. 9. Plots from (a) to (d) correspond to times 0,
2, 4, and 200, respectively.

from previous studies of pinching with anisotropy [27] or
thickness dependent mobilities [47,48]. Including these ef-
fects is an important direction for future theoretical investi-
gations. However, it is also a major challenge for experiments
since anisotropy and mobility are most of the time not known
accurately for a given experimental system.

Ye and Thompson have reported experimental observations
of the motion of solid-state dewetting fronts for 120 nm
thick Ni(110)-MgO films. By monitoring the time evolution
of a rectangular hole, they observe the thickening of rim
near the hole edges and also the pinch-off process [11,12].
They also observed the formation of a periodic array of
thickened rims due to the pinch-off process. The pinching
time observed in their experiments is tms ≈ 1255 min for a
film thickness h̄ = 120 nm. For Ni-MgO film, the surface
energies at 900 ◦C are γNi ≈ 1.95 J/m2, γMgO ≈ 1.15 J/m2,
and γNi-MgO ≈ 1.12 J/m2 [49–52]. Thus the equilibrium con-
tact angle is θeq ≈ 90◦. Surface mobility can be estimated as
m ≈ 5 × 10−29 m4/s [53]. Using these physical parameters,
the mass shedding time in the absence of wetting potential
is found to be tM

ms ≈ 3604 min, which is three times larger
than the experimental result t expt

ms . In order to make the com-
parison with our numerical results, we assume an exponential
potential with range h0 of about 2–3 monolayers, which is
approximately 1 nm. Using the numerical data obtained for
exponential potential with h0 = 0.1, we obtain tms ≈ 1097
for h̄ = 120 nm. The experimental result shows a reasonable
agreement with our numerical estimation of mass shedding
time. However, it should be emphasized that our model is not
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very accurate because the value of tNS
ms is calculated in the

small slope limit [54] and depends on our choice for the value
of h0. In addition, as discussed above, our analysis neglects
the effect of anisotropy and of the possible dependence of
the mobility on the film thickness, which is expected to affect
the dynamics of dewetting. However, for smaller thicknesses
mass shedding should be accelerated by several orders of
magnitude. For example, tM

ms = 109 min and tNS
ms = 14 min

for h̄ = 50 nm and tM
ms = 2.8 min and tNS

ms = 0.12 min for
h̄ = 20 nm. Hence the effect of the wetting potential should be
easier to measure for films that are thinner than 100 nm. We
therefore hope that our work will motivate novel directions in
the experimental investigations of the dewetting dynamics of
ultrathin solid films.
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APPENDIX A: EVOLUTION OF hmin DERIVED FROM
THE WORK OF WONG et al. [19]

We define the dimensionless variable

ζ =
(

m�γ̄
tα4

0

h̄4

)1/5

, (A1)

where α0 = θeq. In the limit of large times and small contact
angles, the solution of Ref. [19] to second order provides a
quantitative estimate of the film profile. Here, we do not report
the derivation of this solution which is provided in detail in
Ref. [19]. Using these results, we have obtained the expansion
hmin of the film thickness at the first minimum to second order:

hmin

h̄
= 1 + e−4π3−3/2

72
[57 + 32π31/2 − 36 × 24/5 × 51/5ζ ]

+ e−4π3−3/2

104976 × 24/5 × 51/5ζ
[131463 − 35856π31/2

− 120528π2 − 7680π331/2 + 4096π4

− 4(81 + 30π31/2 − 32π2)2]. (A2)

APPENDIX B: SELF-SIMILAR PINCHING SOLUTION
FOR POWER-LAW POTENTIAL

Neglecting the repulsion terms or other subdominant con-
tributions for large enough h̄, we assume a power-law wetting
potential

w(h) = − A

hn
. (B1)

Defining the new time variable τ = tms − t the small-slope
equation (9) for a power-law potential reads

− 1

m�
∂τ h = −γ̄ ∂xxxxh + (∂xh)2 An(n + 1)(n + 2)

hn+3

− ∂xxh
An(n + 1)

hn+2
. (B2)

The following ansatz makes all terms scale in the same way
with time:

h(x, t ) =
(

A(�m)1/2

γ̄ 1/2

)1/(n+2)

τ 1/[2(n+2)] f

(
x − xms

[m�γτ ]1/4

)
.

(B3)

This leads to the following expression of the exponents de-
fined in the main text:

α = 1
4 , (B4)

β = 2(n + 2), (B5)

which leads to α = 1/4 and β = 8 in the special case n = 2
discussed in the main text.

Note that, here, we do not worry about the possibility that
some values of n actually may not provide a meaningful solu-
tion. In addition, the function f obeys an ordinary differential
equation that we do not solve. Instead, we simply observe that
this ansatz compares well with the simulations and use f (0)
as a fitting parameter in the main text.

APPENDIX C: TOTAL MASS SHEDDING TIME FOR
POWER-LAW POTENTIAL: MATCHING PROCEDURE

We use the two conditions of equal thickness and time
derivative of the thickness at t = t∗ to match the solution in the
absence of wetting potential Eq. (A2) and the pinching scaling
solution Eq. (B3). In this calculation, we neglect the term
∼ζ−1 in Eq. (A2). This leads to two equations that provide
tms and h̄ as a function of ζ∗ = (t∗α4

0/h̄4)1/5:

h̄ = f (0)n/(n+2)

(
A(�m)1/2

γ̄ 1/2

)1/n(
51/5ζ∗

(n + 2)1/4α021/5

)2/n

×
(

1+ e−4π3−3/2

72
[57+32π31/2−36×24/551/5ζ∗]

)−1−3/(2n)

,

(C1)

tms = 1

m�γ̄

(
h̄ζ∗
α0

)4[
54/5

(n + 2)

1 + 1
72 e−4π3−3/2

(57 + 32π31/2)

e−4π3−3/2 24/5

+ ζ∗

(
1 − 5

2(n + 2)

)]
. (C2)

The discussions in the main text refer only to the case n = 2.
The mass shedding time tms is finally plotted as a function of
h̄ using a parametric plot with parameter ζ∗.

APPENDIX D: PINCHING WITH FINITE RANGE

Assuming that the potential-dominated regime occurs
when hmin = hc, and that the pinching in this final regime
takes a time texp, we find

hc

h̄
− 1 = e−4π3−3/2

72
[57 + 32π31/2 − 36 × 24/551/5ζexp],

(D1)
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FIG. 12. Data collapse for hmin and its derivative in the pinch-
off regime. Data are scaled according to the self-similar solution
described in the text with β = 8. The best fit is obtained for
f (0) = 1.07.

with ζexp = [m�γ̄ (tms − texp)α4
0/h̄4]1/5. This relation is

rewritten as

tms = texp + h̄4

m�γ̄α4
0

1

365 × 245

×
[

57 + 32π31/2 +
(

1 − hc

h̄

)
72e4π3−3/2

]5

. (D2)

This equation is rewritten in the main text in Eq. (21), together
with the numerical values of the constants.

APPENDIX E: SELF-SIMILAR SCALING WITH β = 8

In Fig. 12, we present the rescaled data for hmin and
its derivative when imposing the exponent β = 8. A fit of
the collapsed data using Eq. (18) provides f (0) = 1.07 as
discussed in the main text.

APPENDIX F: ANALYSIS OF tms AND hmin

USING α0 = tan θeq

The small slope limit assumes α0 ≈ θeq ≈ tan(θeq). When
comparing the result of the small slope solution to our

(a)

10−2

10−1

100

(b)
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10−1 100 101 102 103

MO(2)

MO(1)

FIG. 13. Simulation data for hmin and its derivative for the van
der Waals potential in the Mullins regime. Continuous lines are fit
to the data according to the function F (ξ ) = a + bξ c. MO(1) and
MO(2) represent respectively the first and second order solutions of
the small slope approximation of Mullins’ model in the long time
limit using α0 = tan(θeq).

numerical data with a contact angle which is not small (θeq =
60◦), we therefore have the choice to choose α0 = θeq or
α0 = tan θeq. The former choice has been used in the main
text. For the sake of comparison, we report here some analysis
of the numerical simulations for the van der Waals potential
using α0 = tan θeq.

However, the solution of Wong et al. [19] with α0 = θeq

(figures in the main text) shows a small deviation from the
corresponding solution for α0 = tan(θeq). To show this, we
have included the following results.

First, the numerical results for hmin and its derivative are
compared with the prediction of Wong et al. [19] in Fig. 13
assuming α0 = tan(θeq).

Second, the analysis of the numerical data for the mass
shedding time tms using α0 = tan(θeq). The best fit of the
matching solution to the numerical data for tms provides
f (0) = 1.05, as shown in Fig. 14.
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FIG. 14. Mass shedding time tNS
ms as a function of film thickness

for van der Waals potential, analyzed using α0 = tan(θeq). Here, tM
ms is

the mass shedding time obtained in the absence of wetting potential
and tSD is the timescale of spinodal dewetting. tmatching

ms denotes
the matching solution Eqs. (C1) and (C2) using α0 = tan(θeq). The
corresponding fitting parameter is f (0) = 1.05.

APPENDIX G: TWO-DIMENSIONAL SIMULATIONS
WITH h̄ = 1.5

In Figs. 15 and 16, we report simulations starting from a
stripe with initial thickness h̄ = 1.5. All other parameters are

(a) (b)

(c) (d)

FIG. 15. Evolution of a stripe with initial thickness h̄ = 1.5. All
other parameters are identical to those of Fig. 8. Plots from (a) to
(d) correspond to times 0, 1000, 5000, and 20000, respectively.

(a) (b)

(c) (d)

FIG. 16. Evolution of a rough stripe. All other parameters are
identical to those of Fig. 9. Plots from (a) to (d) correspond to times
0, 1000, 5000, and 20000, respectively.

identical to those of Figs. 8 and 9. We observe that the number
of lines produced by the mass shedding process is not affected
by the initial roughness. Furthermore, the initial roughness
leads to the enhancement of the instability along the lines. At
longer times, these lines break up into islands.

10−11
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10−3

10−1

100 102 104 106

FIG. 17. Comparison of the terms on the right hand side of
Eq. (H1) for van der Waals potential. The film thickness is h̄ = 6.0.
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10−6

10−4

10−2

100 102 104

FIG. 18. Comparison of ds model and dx model in 1D. Evolution
of the minimum thickness ∂t hmin for an initial film thickness h̄ = 2.

APPENDIX H: TIME EVOLUTION OF FIRST MINIMUM
FOR FINITE SLOPE

The evolution of a minimum hmin of h(x, t ) is derived
within the finite slope model Eq. (8). Once again, terms
proportional to ∂xhmin vanish, and we obtain

∂t hmin = m�
[−γ̄ ∂4

x hmin+w′′(hmin)∂xxhmin − w(hmin)∂4
x hmin

+ γ (h)(∂xxhmin)3 − 2w′(h)(∂xxhmin)2]. (H1)

The finite slope evolution equation of the minimum Eq. (H1)
contains three terms in addition to those already present in
the small slope limit Eq. (11). A numerical evaluation of
these additional terms, shown in Fig. 17, shows that they
are negligible as compared to the terms of the small slope
equation.

APPENDIX I: SIMULATIONS WITH THE dx MODEL

In this Appendix, we provide some results obtained with a
free energy where the wetting potential w(h) integrated along
dx instead of ds, as used in the main text. Within the dx model,
the chemical potential reads

μ = �[γ̄ κ + w′(h)]. (I1)

All simulations performed with this model lead to results
that are qualitatively identical and quantitatively very close
to those of the ds model reported in the main text. For
example, we show the evolution of the minimum thickness
of the film for 1D simulations in Fig. 18. In Fig. 19, we also
report 2D evolution computed from the dx model with pa-
rameters and initial conditions which are identical to those of
Figs. 8 and 9.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 19. Evolution of a stripe with the dx model in 2D. Plots
from (a) to (d) refer to the evolution of a stripe without roughness,
whereas plots from (e) to (h) describe the evolution of stripe with
small initial roughness. All parameters, initial conditions, and evolu-
tion time of the plots are identical to those of Fig. 8 without initial
roughness and Fig. 9 with initial roughness.
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