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Abstract

With this paper we present an extension of our recent ISSAC paper about computations of

Gröbner(-Shirshov) bases over free associative algebras Z〈X〉. We present all the needed proofs

in details, add a part on the direct treatment of the ring Z/mZ as well as new examples and

applications to e.g. Iwahori-Hecke algebras. The extension of Gröbner bases concept from

polynomial algebras over fields to polynomial rings over rings allows to tackle numerous appli-

cations, both of theoretical and of practical importance. Gröbner and Gröbner-Shirshov bases

can be defined for various non-commutative and even non-associative algebraic structures. We

study the case of associative rings and aim at free algebras over principal ideal rings. We con-

centrate on the case of commutative coefficient rings without zero divisors (i.e. a domain). Even

working over Z allows one to do computations, which can be treated as universal for fields of

arbitrary characteristic. By using the systematic approach, we revisit the theory and present the

algorithms in the implementable form. We show drastic differences in the behavior of Gröbner

bases between free algebras and algebras, which are close to commutative. Even the process

of the formation of critical pairs has to be reengineered, together with implementing the criteria

for their quick discarding. We present an implementation of algorithms in the Singular subsys-

tem called Letterplace, which internally uses Letterplace techniques (and Letterplace Gröbner

bases), due to La Scala and Levandovskyy. Interesting examples and applications accompany

our presentation.
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Introduction

We present an extension of our recent ISSAC paper (Levandovskyy et al., 2020a) on the com-

putations of Gröbner(-Shirshov) bases over free associative algebras like Z〈X〉. In the extended

version we have added and proved new results for non-commutative Gröbner bases over rings

with zero-divisors using factorization and lifting techniques. The proof of Lemma 13 received

substantial enhancements, since it is essential for the correctness of our algorithm. We added

details to the proof of Lemma 26 and showed the corresponding Lemma 27. New examples and

applications are introduced in Example 31 and Example 32. Older examples are revisited and

enhanced. Lemma 2.9 from the original paper (Levandovskyy et al., 2020a) on the length bound

2d − 1 (where d is the longest length of polynomials in a basis), which is needed to establish the

finiteness of a strong Gröbner basis, is recasted as Conjecture 15. The latter is supported by the

new Lemma 16, which demonstrates, that the lowest length bound is 3d − 1 indeed.

By 2010’s the techniques based on Gröbner bases were well-established in the sciences and

applications were widely known. A number of generalizations of them to various settings have

been proposed and discussed. However, especially when it came to non-commutative and non-

associative cases, generalizations of, in particular, Gröbner bases, were often met with sceptical

expressions like “as expected”, “straightforward”, “more or less clear” and so on. This is not true

in general since generalizations to various flavours of non-commutativity require deep analysis

of procedures (and in case of provided termination, algorithms) based on intricate knowledge

of properties of rings and modules over them. Characteristically, in this paper we demonstrate

in e.g. Example 8 and Example 9 how intrinsically different Gröbner bases over Z〈X〉 are even

when compared with Gröbner bases over Q〈X〉, not taking the commutative case into account.

An example can illustrate this better than a thousand words:

Example 1. Consider the set F = {2x, 3y}. While taken over Z〈x, y〉, it has a finite strong

Gröbner basis {2x, 3y, yx, xy} with respect to any well-ordering. On the other hand, considered

over Z〈x, y, z1, . . . , zm〉 for any m ≥ 1, F has an infinite Gröbner basis, which contains e.g. xzk
i
y

and yzk
i
x for any natural k.

In his recent articles and in the book (Mora, 2016) Teo Mora has presented "a manual for creating

your own Gröbner bases theory" over effective associative rings. This development is hard to

underestimate, as it presents a unifying theoretical framework for handling very general rings. In

particular, we can address the Holy Grail of computational algebra, that is the unified algorithmic

treatment of finitely presented modules over the rings like

R = (Z〈Y〉/J) 〈X〉/I

where Y and X are finite sets of variables, J is a two-sided ideal from the free ring Z〈Y〉 and I

is a two-sided ideal from the associative ring (Z〈Y〉/J) 〈X〉. The extension of (Z〈Y〉/J) with X

and I can be iterated. In order to compute within such a ring, it turns out to be enough to have

two-sided Gröbner bases over Z〈Z〉 for a finite set of variables Z, with respect to – among other –

block elimination orderings. Then, indeed, the concrete computation, still valid over R will take

place in Z〈Y ∪ X〉/(I + J). Furthermore, over the factor-algebra R one needs left and right and

two-sided (also called bilateral) Gröbner bases for ideals and submodules of free bimodules. We

provide these components over fields and over rings Z.
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The theory of non-commutative Gröbner bases was developed by many prominent scientists

since the Diamond Lemma of G. Bergman (Bergman, 1977); notably important are the papers my

Mora (Mora, 1994, 1989). Especially L. Pritchard (Pritchard, 1996) proved versions of the PBW

Theorem and advanced the theory of bimodules, also over rings. On the other hand, procedures

and even algorithms related to Gröbner bases in such frameworks are still very complicated.

Therefore, when aiming at implementation, one faces the classical dilemma: generality versus

performance. Perhaps the most general implementation, existing nowadays, is the JAS system by

H. Kredel (Kredel, 2020, 2015). In our designs we balance the generality with the performance;

based on Singular, we utilize its long, successful and widely recognized experience with data

structures and algorithms in commutative algebra. Notably, the recent years have seen the in-

depth development of Gröbner bases in commutative algebras with coefficients in principal ideal

rings (O. Wienand, G. Pfister, A. Frühbis-Krüger, A. Popescu, C. Eder, T. Hofmann and oth-

ers), see e.g. (Eder and Hofmann, 2019; Eder et al., 2016, 2021; Lichtblau, 2012). This required

massive changes in the structure of algorithms; ideally, one has one code for several instances

of Gröbner bases with specialization to individual cases. In particular, the very generation of

critical pairs and the criteria for discarding them without much effort were intensively studied.

These developments were additional motivation for us in the task of attacking Gröbner bases in

free algebras over commutative principal ideal rings, with Z at the first place. Currently, to the

best of our knowledge, no computer algebra system is able to do such computations. Also, a

number of highly interesting applications wait to be solved: in studying representation theory of

a finitely presented algebra (i.e. the one, given by generators and relations), computations over

Z remain valid after specification to any characteristic and thus encode a universal information,

see for example Example 31. In the system Felix by Apel et al. (Apel and Klaus, 1991), such

computations were experimentally available, though not documented. In his paper (Apel, 2000),

Apel demonstrates Gröbner bases of several nontrivial examples over Z〈X〉, the correctness of

which we can easily confirm now.

Our secret weapon is the Letterplace technology (La Scala and Levandovskyy, 2009, 2013;

Levandovskyy et al., 2013; La Scala, 2014), which allows the usage of commutative data struc-

tures at the lowest level of algorithms. We speak, however, in theory, the language of free alge-

bras over rings, since this is mutually bijective with the language of Letterplace.

This paper is organized as follows: In the first chapter we establish the notations which

are necessary when dealing with polynomial rings. Subsequently, in the second chapter we

generalize the notion of Gröbner bases for our setup, present a theoretical version of Buchberger’s

algorithm and give examples to visualize significant differences compared to the field case or the

commutative case. Implementation of Buchberger’s algorithm depends on and benefits from the

gentle handling of critical pairs, which we will discuss in the third chapter. This is followed up

by computational examples, applications and discussion on the implementational aspects.

1. Preliminaries

All rings are assumed to be associative and unital, but not necessarily commutative. We want

to discuss non-commutative Gröbner bases over the integers Z. Equivalently one can take any

commutative Euclidean domain R. This concept can be extended to Euclidean rings. It was done

in (Eder and Hofmann, 2019) for the commutative case with so-called annihilator polynomials.

We work towards an implementation and therefore we are interested in algorithms, which

terminate after a finite number of steps. Since Z〈X〉 is not Noetherian for |X| ≥ 2, there exist finite

generating sets whose Gröbner bases are infinite with respect to any monomial well-ordering.
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Therefore, a typical computation of a Gröbner basis is executed subject to the length bound

(where length is meant literally, applied to words from the free monoid 〈X〉), specified in the

input, and therefore terminates per assumption. Thus, we talk about algorithms in this sense.

Our main goal is to obtain an algorithm to construct a Gröbner basis over such a ring, finding

or adjusting criteria for critical pairs and setting up an effective method to implement Buch-

berger’s algorithm in the computer algebra system Singular. The problem of applying the state-

ments of commutative Gröbner basis over Euclidean domains and principal ideal rings, such as

in (Eder et al., 2021, 2016; Lichtblau, 2012; Markwig et al., 2015), are divisibility conditions of

leading monomials.

Let X = {x1, . . . , xn} denote the finite alphabet with n letters. We set P = R〈X〉, the free

R-algebra of X, where all words on X form a basis B = 〈X〉 of P as a free R-module. The

empty word in B as well as the neutral element of R are both denoted by 1. From now on we say

“B is an R-basis”. Moreover, let Pe
= P ⊗R P

opp be the free enveloping R-algebra with basis

Be
= {u ⊗ v | u, v ∈ B}. The natural action Pe × P → P, (u ⊗ v, t) 7→ (u ⊗ v) · t := utv makes a

bimodule P into a left Pe-module. We call the elements of B monomials of Pe. Note, that the

tensor product is employed to facilitate uniformly computations with left, right and two-sided

ideals and modules.

Let � be a monomial well-ordering on B. With respect to �, a polynomial f ∈ P \ {0} has

a leading coefficient lc( f ) ∈ R, a leading monomial lm( f ) ∈ B and a leading term lt( f ) =

lc( f ) lm( f ) , 0. We denote by |w| the length of the word w ∈ B. The length corresponds to the

total degree in the commutative case.

An ordering � is called length-compatible, if u � v implies |u| ≤ |v|. Every subset G ⊆ P

yields a two-sided ideal, the ideal of leading terms L(G) = 〈lt( f ) | f ∈ G \ {0}〉.

The notions of leading coefficient, leading monomial and leading term carry over to an ele-

ment h ∈ Pe by considering h · 1 ∈ P.

Definition 2.

Let u, v ∈ B. We say, that u and v have an overlap, if there exist monomials t1, t2 ∈ B, such that

at least one of the four cases

(1) ut1 = t2v (2) t1u = vt2 (3) t1ut2 = v (4) u = t1vt2

holds. Additionally, we say, that u and v have a nontrivial overlap, if (3) or (4) holds, or if in (1)

or (2) we have |t1| < |v| and |t2| < |u|. In (3), respectively (4), we say, that u divides v, respectively

v divides u.

The set of all elements, which are divisible by both u and v, is denoted by cm(u, v) ⊆ B (cm:

common multiple). The set of all elements which correspond to a minimal nontrivial overlap of

u and v is denoted by lcm(u, v) ⊆ B (lcm: least ...), i.e. t ∈ lcm(u, v) if and only if there exist

τu, τv ∈ B
e, such that t = τu · u = τv · v represent nontrivial overlaps of u and v, and for all

t̃ ∈ lcm(u, v) with t̃ = τ · t for some τ ∈ Be we have t = t̃ and τ = 1 ⊗ 1. Should there only be

trivial overlaps, then we set lcm(u, v) = ∅.

Fix a monomial well-ordering � on B and let f , g ∈ P. Then if lm(g) divides lm( f ), it follows

that lm(g) � lm( f ). To understand the set lcm(u, v) ⊆ B, consider the following example.
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Example 3.

Let u = xy and v = yzx be words in the alphabet {x, y, z}. There are four minimal overlaps of u

and v:

x y

y z x

x y

y z x

x y

y z x

x y

y z x

Among these four, two are trivial, namely xyyzx and yzxxy, and two are nontrivial, namely xyzx

and yzxy. The set cm(u, v) consists of all elements of B = 〈x, y, z〉, which contain one of these

four as a subword. The set of all minimal nontrivial overlaps is lcm(u, v) = {xyzx, yzxy}.

2. Non-commutative Gröbner Bases

Classically, a Gröbner basis for an ideal is a finite subset, whose leading terms generate the lead-

ing ideal. In the field case, this guarantees the existence of a so-called Gröbner representation,

which will be recalled subsequently, and for any f ∈ I \ {0} it also guarantees the existence of

an element g ∈ G, such that lt(g) divides lt( f ).

Definition 4.

Let f , g ∈ P \ {0}, G ⊆ P \ {0} a countable set and I ⊆ P a two-sided ideal. We fix a monomial

well-ordering � on B.

G is called a Gröbner basis for I, if L(I) ⊆ L(G).

G is called a strong Gröbner basis for I, if G is a Gröbner basis for I and for all f ′ ∈ I\{0}

there exists g′ ∈ G, such that lt(g′) divides lt( f ′) in P.

We say that f has a strong Gröbner representation w.r.t. G, if f =
∑m

i=1 higi with m ∈ N, gi ∈

G, hi ∈ P
e \ {0} and there exists a unique 1 ≤ j ≤ m, such that lm( f ) = lm(h jg j) and lm( f ) ≻

lm(higi) for all i , j.

If R is Euclidean, then we say that g lm-reduces f , if lm(g) divides lm( f ) with lm( f ) =

τ lm(g) for some τ ∈ Be and there are a, b ∈ R, a , 0 and |b| < | lc( f )| in the Euclidean norm,

such that lc( f ) = a lc(g) + b. Moreover, the lm-reduction of f by g is given by f − aτg.

For our implementation we require lm-reductions, which are the key to obtain a remainder after

division through a finite generating set G for an ideal and they are used in Buchberger’s algorithm

to construct a Gröbner basis from G. Therefore, R is from now on an Euclidean ring. In this

sense, the point of a Gröbner basis is to deliver a unique remainder when dividing through it.

Since we operate in a polynomial ring of multiple variables, the expression “reduction” is more

justified than “division” to describe a chain of lm-reductions. The outcome of such a reduction,

or the “remainder of the division”, is then known as a normal form.

The following normal form algorithm uses lm-reductions and can be compared to the normal

form algorithms, which is used for algebras over fields in (Levandovskyy, 2005).

5



Algorithm 5. NormalForm

input: f ∈ R〈X〉 \ {0}, G ⊆ R〈X〉 finite and partially ordered

output: normal form of f w.r.t. G

01: h = f

02: while h , 0 and Gh = {g ∈ G | g lm-reduces h} , ∅ do

03: choose g ∈ Gh

04: compute a, b ∈ R with: a , 0, lc(h) = a lc(g) + b and |b| < | lc(h)|

05: compute τ ∈ Be with: lm(h) = τ lm(g)

06: h = h − aτg, the lm-reduction of h by g

07: end while

08: return h

Every normal form of the zero polynomial is zero. Termination (due to the usage of a well-

ordering) and correctness (division with remainder) are completely analogous to the proof in

(Levandovskyy, 2005). The output of the algorithm is not unique in general, for it depends on

the choice of elements g ∈ Gh which are used for the reduction.

One can check, that the proof of the following theorem carries over verbatim from the com-

mutative case in (Lichtblau, 2012).

Theorem 6. (Generalization of (Lichtblau, 2012, Theorem 9))

Let G ⊆ P \ {0} and {0} , I ⊆ P an ideal. Then the following statements with respect to G and

a fixed monomial well-ordering � are equivalent:

1. G is a strong Gröbner basis for I.

2. Every f ∈ I \ {0} has a strong Gröbner representation.

3. Every f ∈ P \ {0} has a unique normal form after reduction.

An earlier non-commutative version has also been proven by Pritchard for “weak” Gröbner bases

in (Pritchard, 1996).

A strong Gröbner basis can be computed with Buchberger’s algorithm using syzygy-relations

between leading terms of generating polynomials. In the field case, the computation is done with

S-polynomials. It is known from the commutative case over rings (Lichtblau, 2012), that it does

not suffice to take so called “syzygy polynomials” as in Definition 7 to obtain a strong Gröbner

basis. To see this, let f = 3x, g = 2y and I = 〈 f , g〉 ⊆ Z〈x, y〉. Then every syzygy-polynomial

of f and g is zero, but clearly xy = f y − xg ∈ I has a leading term which is neither divisible by

lt( f ) nor lt(g). Thus, { f , g} is not a strong Gröbner basis for I. The problematic polynomial xy is

constructed by looking at the greatest common divisor of the leading coefficients of f and g.

Definition 7.

Let f , g ∈ P \ {0} with lcm(lm( f ), lm(g)) , ∅ and choose τ f , τg ∈ B
e, such that τ f lm( f ) =

τg lm(g) ∈ lcm(lm( f ), lm(g)). Furthermore, let a = lcm(lc( f ), lc(g)) and a f , ag ∈ R, such that

a = a f lc( f ) = ag lc(g); let b = gcd(lc( f ), lc(g)) and b f , b f ∈ R, such that b = b f lc( f )+bg lc(g)1.

1This is the Bézout identity for the leading coefficients.

6



In an Euclidean domain, the least common multiple and a f , ag are determined uniquely up

to a unit, b is unique as a greatest common divisor, but the Bézout coefficients b f , bg may not be

unique, depending on the implementation of the Euclidean algorithm.

We define a first type S-polynomial of f and g with respect to t as

spolyt
1( f , g) := a f τ f f − agτgg

and a first type G-polynomial of f and g with respect to t as

gpolyt
1( f , g) := b f τ f f + bgτgg.

If such τ f , τg do not exist, we set the first type S- and G-polynomials to zero. Since two monomials

may have several nontrivial overlaps, these τ f , τg are not unique. More precisely, this follows

from the fact that P is not a unique, but a finite factorization domain (Bell et al., 2016).

So far everything seems to work out as in the commutative case. We consider some examples to

see that this impression is wrong.

Example 8.

Let f = 2xy, g = 3yz ∈ Z[x, y, z], i. e. in the commutative ring. We need compute an S-

polynomial 3 f z − 2xg = 0 and a G-polynomial

gpoly( f , g) = (−1) · 2xy · z + 1 · x · 3yz = xyz.

Since the latter does not reduce to zero, we add it to { f , g} and obtain a strong Gröbner basis

{2xy, 3yz, xyz} for I ⊂ Z[x, y, z].

Same computations need to be done for f = 2xy, g = 3yz ∈ Z〈x, y, z〉. But additionally, for

every w ∈ B

gpoly′( f , g) = (−1) · 2xy · w · yz + 1 · xy · w · 3yz = xywyz

is also a G-polynomial of f , g and for many different monomials w the corresponding polynomial

xywyz will be added to the basis. Note, that there is no finite Gröbner basis for I (since in

particular {xykz : k ≥ 2} is a subset of any Gröbner basis). Thus we have to be satisfied with

computing up to a fixed length bound for monomials, occuring in polynomials of the basis. Note

that in the case of a G-polynomial we computed it in the canonical way, i. e. by looking for a

nontrivial overlap of xy and yz. In the case of gpoly′ we ignored this overlap. In the commutative

case this is irrelevant, because gpoly( f , g) divides gpoly′( f , g). Furthermore, in the field case

this is also irrelevant, because we do not need G-polynomials at all.

Similar phenomena occur for S-polynomials.

Example 9.

Let f = 2xy + x, g = 3yz + z ∈ Z〈x, y, z〉. Then spoly( f , g) = 3 f z − 2xg = xz is an S-polynomial

of f and g. Now consider

spolyw( f , g) = 3 f wyz − 2xywg = 3xwyz − 2xywz

for a monomial w ∈ B. If wy , yw, the two monomials differ and then

(spolyw( f , g) − xwg) + f wz = 0,
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meaning that this spoly reduces to zero. But for all w such that wy = yw, i. e. for w = yk, k ≥ 0

we have

spolyw( f , g) = 3xykyz − 2xyykz = xyk+1z,

which does not reduce any further and thus has to be added to the basis. Furthermore, for

f = 2xy + x we see that

spolyw( f , f ) = f wxy − xyw f = xwxy − xywx , 0

is an S-polynomial of f with itself which might not reduce any further depending on w and we

require lm( f )w lm( f ) ∈ cm(lm( f ), lm( f )), although it is not contained in lcm(lm( f ), lm( f )).

Thus, in general even principal ideals do not have finite strong Gröbner bases! Such

behavior of S-polynomials does not occur for non-commutative polynomials over fields.

Note, that we do not consider any further extensions of the leading monomials, meaning

that the S- and G-polynomial corresponding to t ∈ lcm(lm( f ), lm(g)) or lm( f )w lm(g) make any

further (trivial) overlap relations τt or τ(lm( f )w lm(g)) for τ ∈ Be redundant. Therefore, in the

definition of lcm(x, y) we stress the importance of the minimality.

The previous example shows that we have to consider all possible S- and G-polynomials, but

those are infinitely many. Moreover, the set cm(lm( f ), lm(g)) contains too many elements that

are redundant whereas the set lcm(lm( f ), lm(g)) is too small. The following definition is made

to classify two types of S- and G-polynomials, namely those corresponding to nontrivial overlap

relations and those corresponding to trivial ones.

Definition 10.

Let f , g ∈ P \ {0}, w ∈ B and a f , ag, b f , bg ∈ R as in Definition 7 with lcm(lc( f ), lc(g)) =

a f lc( f ) = ag lc(g) and gcd(lc( f ), lc(g)) = b f lc( f ) + bg lc(g).

We define the second type S-polynomial of f and g w.r.t. w as

spolyw
2 ( f , g) := a f f w lm(g) − ag lm( f )wg

and the second type G-polynomial of f and g w.r.t. w as

gpolyw
2 ( f , g) := b f f w lm(g) + bg lm( f )wg.

Remark 11.

Clearly, it only makes sense to consider first type S- and G-polynomials if there is a nontrivial

overlap of the leading monomials. However, as Example 8 shows, we always need to consider

second type S- and G-polynomials. For any w ∈ B we have lm( f )w lm(g) ∈ cm(lm( f ), lm(g)) and

lm(g)w lm( f ) ∈ cm(lm( f ), lm(g)), which are distinct in general. Therefore, we need to consider

both spolyw
2 ( f , g) and spolyw

2 (g, f ) and the same holds for second type G-polynomials. Also,

note that the set of first type S- and G-polynomials is finite, because our monomial ordering is

a well-ordering, whereas the set of second type S- and G-polynomials is infinite. Therefore, in

this context the need to compute up to a fixed length bound for the occuring monomials appears

again in a natural way.

It is important to point out, that the elements τ f , τg are not uniquely determined. Take for

example f = 2xyx + y, g = 3x + 1. Then t := xyx = lm( f ) = xy lm(g) ∈ lcm(lm( f ), lm( f )),

but also t = lm(g)yx and thus spolyt
1( f , g) = −3 f + 2gyx = 2yx − 3y and (spolyt

1)′( f , g) =

−3 f + 2xyg = 2xy − 3y are both first type S-polynomials with different leading monomials.
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The following algorithm uses Buchberger’s criterion Lemma 13 as a characterization for strong

Gröbner bases, which we will prove subsequently. It computes S- and G-polynomials of both

kind up to a fixed length bound d ∈ N and reduces them with the algorithm NormalForm in order

to obtain a strong Gröbner basis up to length d for an input ideal given by a finite generating set.

Algorithm 12. BuchbergerAlgorithm

input: I = 〈 f1, . . . , fk〉 ⊆ R〈X〉, d ∈ N, NormalForm

output: strong Gröbner basis G = Gd up to length d for I

01: G = { f1, . . . , fk}

02: L = {spolyt
1( fi, f j), gpolyt

1( fi, f j) | ∀ t ∗, i, j}

03: L = L ∪ {spolyw
2 ( fi, f j), gpolyw

2 ( fi, f j) | ∀w ∗∗, i, j}

04: while L , ∅ do

05: choose h ∈ L

06: L = L \ {h}

07: h = NormalForm(h,G)

08: if h , 0 then

09: G = G ∪ {h}

10: for g ∈ G do

11: L = L ∪ {spolyt
1(g, h), gpolyt

1(g, h) | ∀ t ∗}

L = L ∪ {spolyt
1(h, g), gpolyt

1(h, g) | ∀ t ∗}

L = L ∪ {spolyw
2 (g, h), gpolyw

2 (g, h) | ∀w ∗∗}

L = L ∪ {spolyw
2 (h, g), gpolyw

2 (h, g) | ∀w ∗∗}

12: end do

13: end if

14: end while

15: return G

∗ t ∈ lcm(lm(•1), lm(•2)), such that |t| < d
∗∗ w ∈ B, such that | lm(•1)| + |w| + | lm(•2)| < d

The monomials t, which satisfy ∗, come from pairs of type τ•1
, τ•2
∈ Be. Those pairs are not

unique and so all first type S- and G-polynomials w.r.t. t are computed.

For the algorithm to terminate we need the set L to eventually become empty. This happens,

if and only if after finitely many steps every S- and G-polynomial based on any combination of

leading terms has normal form zero w.r.t G, i.e. there exists a chain of lm-reductions, such that

the current S- or G-polynomial reduces to zero. However, lm-reductions only use polynomials of

smaller or equal length and all of these are being computed. Therefore, the algorithm terminates.

For the correctness of the algorithm we still need a version of Buchberger’s criterion. More

precisely, we want G to be a Gröbner basis for I, if and only if for every pair f , g ∈ G all their S-

and G-polynomials reduce to zero. Moreover, we only want to consider first and second type S-

and G-polynomials, i.e. only use t ∈ cm(lm( f ), lm(g)), such that one of the following four cases

(1) t = lm( f )t′f = tg lm(g) (2) t = lm( f ) = tg lm(g)t′g

(3) t = t f lm( f ) = lm(g)t′g (4) t = t f lm( f )t′f = lm(g)

holds for t f , t
′
f
, tg, t

′
g ∈ B. This excludes all cases where t is not minimal, i.e. t = τt′ for τ ∈ Be

and t′ satisfying one of the above four cases. Pritchard has proven in (Pritchard, 1996), that for a

9



generating set of the left syzygy module (which is not finitely generated in general) we may use

only minimal syzygies.

Lemma 13. (Generalization of (Lichtblau, 2012, Theorem 10))

Let G ⊆ P \ {0}. Then G is a strong Gröbner basis for 〈G〉, if and only if for every pair f , g ∈ G

their first and second type S- and G-polynomials reduce to zero w.r.t. G.

Proof. The idea of the proof goes back to (Lichtblau, 2012); we only need to show the “if” part.

Let 0 , f ∈ 〈G〉 =: I with f =
∑

i higi for some hi ∈ P
e and gi ∈ G. We set t := max(lm(higi))

and M := {i ∈ N | lm(higi) = t}. Clearly lm( f ) � t and we may assume that there is no

other representation of f where t is smaller. Without loss of generality let M = {1, . . . ,m}.

Moreover, since the Euclidean norm induces a well-ordering, we can choose a representation

where
∑m

i=1 | lc(hi) lc(gi)| is minimal w.r.t. t. If M contains exactly one element, then t = lm( f )

and we have a strong standard representation of f w.r.t. G. Suppose otherwise that card(M) > 1.

Then t � lm( f ). Note that t = lm(higi) = lm(hi) lm(gi) for i ≤ m. Then there exist monomials

t1, t
′
1
, t2, t

′
2
∈ X, such that t = t1 lm(g1)t′

1
= t2 lm(g2)t′

2
. This induces an overlap relation of the

leading monomials, because then there exist s1, s
′
1
, s2, s

′
2
∈ X, such that for one of the possibilities

T := lm(g1)s′1 = s2 lm(g2) T := lm(g1) = s2 lm(g2)s′2

T := s1 lm(g1) = lm(g2)s′2 T := s1 lm(g1)s′1 = lm(g2)

we obtain t = τT for some τ ∈ Pe. Moreover, let τ1, τ2 result from s1, s
′
1
, s2, s

′
2
, such that

τ1T = lm(g1), τ2T = lm(g2). Furthermore, let

a1 :=
lcm(lc(g1), lc(g2))

lc(g1)
, a2 :=

lcm(lc(g1), lc(g2))

lc(g2)

and d := gcd(lc(g1), lc(g2)) = b1 lc(g1) + b2 lc(g2) ∈ R (the Bézout identity for the leading

coefficients). Now if T corresponds to a nontrivial overlap, then we can compute spolyT
1 (g1, g2),

gpolyT
1 (g1, g2) or spolyT

1 (g2, g1), gpolyT
1 (g2, g1). Otherwise, there exists a w ∈ B, such that

T = lm(g1)w lm(g2) or T = lm(g2)w lm(g1). In this case we are interested in spolyw
2 (g1, g2),

gpolyw
2 (g1, g2) or spolyw

2 (g2, g1), gpolyw
2 (g2, g1). By definition

spoly(g1, g2) := a1τ1g1 − a2τ2g2

and gpoly(g1, g2) := b1τ1g1 + b2τ2g2

are first or second type S- and G-polynomials and lm(h1) = ττ1, lm(h2) = ττ2 ∈ B
e. Choose

a, b ∈ R\{0}, such that lc(h1) lc(g1)+ lc(h2) lc(g2) = ad and lc(h1) = ab1+ba1, lc(h2) = ab2−ba2.

Since |a1 lc(g1) + a2 lc(g2)| > 0 and by the triangle inequality, we obtain

| lc(h1) lc(g1)| + | lc(h2) lc(g2)|

=|(ab1 + ba1) lc(g1)| + |(ab2 − ba2) lc(g2)|

≥|ab1 lc(g1)| + |ba1 lc(g1)| + |ab2 lc(g2)| + |ba2 lc(g2)|

>|ab1 lc(g1)| + |ab2 lc(g2)| ≥ |ab1 lc(g1) + ab2 lc(g2)| = |ad|,

yielding |ad| < | lc(h1) lc(g1)| + | lc(h2) lc(g2)|. Furthermore, we have

h1g1 + h2g2 =(lc(h1) lm(h1) + tail(h1))g1 + (lc(h2) lm(h2) + tail(h2))g2

=(ab1 + ba1)ττ1g1 + tail(h1)g1 + (ab2 − ba2)ττ2g2 + tail(h2)g2

=aτ(b1τ1g1 + b2τ2g2) + bτ(a1τ1g1 − a2τ2g2) + tail(h1)g1 + tail(h2)g2

=aτ gpoly(g1, g2) + bτspoly(g1, g2) + tail(h1)g1 + tail(h2)g2.
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Since the S- and the G-polynomial are of first or second type they reduce to zero w.r.t. G. Hence

we can write h1g1 + h2g2 =
∑

j h′
j
g j for h′

j
∈ Pe and define M′ := { j ∈ N | lm(h′

j
g j) = t}. Since

lm(τspoly(g1, g2)) ≺ t, lm(tail(h1)g1) ≺ t and lm(tail(h2)g2) ≺ t we have

∑

j∈M′

| lc(h′j) lc(g j)| = | lc(a τ gpoly(g1, g2))| = |ad| < | lc(h1) lc(g1)| + | lc(h2) lc(g2)|,

which contradicts the assumption that the leading coefficient of our original representation are

minimal. Therefore, M contains exactly one element and thus we have a strong Gröbner repre-

sentation of f w.r.t. G, i.e. G is a strong Gröbner basis for I.

It is possible to define monic (that is, with leading coefficients being 1) or rather reduced (Li,

2012; Pauer, 2007) Gröbner bases in our setup. Let G ⊆ P \ {0}. It is called a reduced Gröbner

basis, if

1. every g ∈ G has leading coefficient with signum 1,

2. L(G \ {g}) ( L(G) for every g ∈ G and

3. lt(tail(g)) < L(G) for every g ∈ G.

The first condition states, that in the case of R = Z every element of a reduced Gröbner basis

has leading coefficient in Z+. The second condition is sometimes referred to as “simplicity”

and means, that the leading ideal becomes strictly smaller when removing an element, thus no

element is redundant. The third condition, “tail-reduced”, is required in the classical field case

with commutative polynomials to ensure that a reduced Gröbner basis is unique. However, this

does not hold in our situation: Pritchard gave the following counterexample in (Pritchard, 1996).

Example 14.

This example can be used for both the commutative and non-commutative case. Let f = 2y2,

g = 3x2
+ y2 and I = 〈 f , g〉 ⊂ Z[x, y]. Then { f , g} is a Gröbner basis for I with respect to

any ordering x ≻ y (however, it is not a strong Gröbner basis!) and satisfies the above three

conditions for reduced Gröbner bases. On the other hand, this is also true for { f , g′} where

g′ = g − f = 3x2 − y2, so we have two different reduced Gröbner bases for I. In the field case

the polynomial g is not tail-reduced.

Consider the same example and compute a strong Gröbner basis in Z[x, y] with respect to

the degrevlex ordering with x ≻ y. The result contains just one additional polynomial in both

cases, namely x2y2
+ y4 for { f , g} and x2y2 − y4 for { f , g′}. Unlike the case of fields, this shows

that having rings as coefficients leads to non-uniqueness of reduced minimal Gröbner bases with

normalized coefficients. The computations can be done with the following code (note, that the

very detailed explanation of the Singular:Letterplace usage is done in the Example 28):

LIB "freegb.lib";

ring r = ZZ,(x,y),dp; // one can use "integer" or ZZ notation for specifying Z

short=0;

option(redSB); option(redTail);

ideal I = 2*y^2, 3*x^2 + y^2;

I = twostd(I); // get new generator x^2*y^2+y^4

ideal J = 2*y^2, 3*x^2 - y^2;

J = twostd(J); // get new generator x^2*y^2-y^4

11



NF(I,J); // gives 0, that is I is contained in J

NF(J,I); // gives 0, that is J is contained in J

When implementing a version of Buchberger’s algorithm, one should always aim to have a re-

duced Gröbner basis as an output. In fact this is more practical, because removing elements,

which are not simplified or tail reduced speeds up the computation, since we do not need to

consider them in critical pairs.

Now we turn our attention to length bounds, needed to certify that a given finite set of polyno-

mials of length at most d is a Gröbner bases subject to a length-compatible monomial ordering. In

the non-commutative case over fields such a bound is 2d−1; see e. g. (La Scala and Levandovskyy,

2009), Cor. 3.19 for the case of a graded ideal, while the extension to the general case is apparent.

In the initial ISSAC paper (Levandovskyy et al., 2020a) we have formulated the following

result as a Lemma, but we have found problems with its proof, which require further deeper

investigations. Therefore, despite the nice new example of the bound 3d − 1 in Lemma 16 and

the evidence from numerous computed examples, we state the following result as a Conjecture.

Conjecture 15.

Let G ⊂ P \ {0} be a finite set, which contains polynomials involving monomials of the length

at most d ∈ N. Assume moreover, that no new polynomials are added to G, while computing a

strong Gröbner basis with respect to a length-compatible monomial ordering up to length 3d− 1

with the BuchbergerAlgorithm. Then G is a finite strong Gröbner basis for 〈G〉.

Especially G-polynomials of 2nd kind are potential sources for series of infinitely many elements

in Gröbner bases with coefficients over rings.

Lemma 16.

In the situation of Conjecture 15, the seeked bound it at least 3d − 1.

Proof. Consider 〈4x1x2, x2x3, 6x3x4, x4x1〉 in Z〈x1, x2, x3, x4〉. Since this is a monomial ideal,

a monomial well-ordering can be chosen freely. We have d = 2. In addition to the four

original generators, no new elements appear during the computation of a Gröbner basis up to

length 4 = (3 · d − 1) − 1. However, from length 5 = 3 · d − 1 there come new generators:

{2x1x2x4 x3x4, 2x1x2 x1x3x4, 2x3x4x3x1x2, 2x3x4x2x1 x2} of length 5, then there are further 14 ele-

ments of length 6 and so on.

LIB "freegb.lib";

ring r = ZZ,(a,b,c,d),dp;

ring R = freeAlgebra(r,6);

short=0;

option(redSB);

ideal I = 4*a*b, 6*c*d, b*c, d*a;

twostd(I);

Notably, the same behavior can be already observed with the ideal 〈2x1x2, x2x3, 3x3x4, x4x1〉.
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3. Coefficient Rings with Zero-divisors

When the ring of coefficients is not a domain like Z, but an Euclidean ring with zero divisors

such as Z/mZ for some nonzero m ∈ Z, which is neither a unit nor a prime, then we can make

use of factorizations of m.

For coefficients of polynomials in Z/mZ〈X〉 there are only two possibilities: They are either

units or zero divisors. In the first case, we can treat Z/mZ like a field. In the second case, one

can use a factorization of m into coprime divisors and perform a Gröbner basis computation for

each divisor, a lifting method. This was done for the commutative case in (Eder and Hofmann,

2019) and can be extended as we explain in this section. We will only consider factorizations

into coprime numbers and not focus on the case, where m is a prime power. Work on this in the

commutative setting was done in (Wienand, 2011, ch. 3 & 4) with an application to modelling

fixed bit-width arithmetic and analogies to the commutative case are yet to be investigated.

Recall, that a factorization of m, say m = ab for some coprime numbers a, b ∈ Z, implies,

that xy , m for a ∤ x | a, b ∤ y | b. Suppose, that cx = a, dy = b and xy = m. Then

m = ab = cxdy = cdm and so m(1 − cd) = 0, which implies 1 = cd, because Z is a domain. But

then c is a unit, which contradicts a ∤ x.

This was easy to see, but it also means, that we have to choose our coefficients wisely, when

using lifting methods. For a, b ∈ Z coprime, we consider the canonical projections

π : Z〈X〉 → Z/mZ〈X〉,
πa : Z/mZ〈X〉 � (aZ + bZ)/mZ〈X〉 → Z/aZ〈X〉

and πb : Z/mZ〈X〉 � (aZ + bZ)/mZ〈X〉 → Z/bZ〈X〉.

For an ideal J of Z/mZ〈X〉 =: Pm, we assume that there exist countable sets Ga = {ga,i}i,Gb =

{gb, j} j ⊆ Pm, such that πa(Ga) \ {0} is a strong Gröbner basis for πa(J) and πb(Gb) \ {0} is a

strong Gröbner basis for πb(J). We may demand without loss of generality that π(a) ∈ Ga,

π(b) ∈ Gb, since they both map to zero under πa, πb respectively. Furthermore, we assume that

π(a) ∤ lc(ga,i) | π(a) for ga,i , π(a) and π(b) ∤ lc(gb, j) | π(b) for gb, j , π(b). This implies, that

each leading coefficient is a nontrivial zero divisor in the respective quotient ring. For every pair

(i, j) of indices there exist monomials τi, j, τ j,i ∈ B
e, such that τi, j lm(ga,i) = τ j,i lm(gb, j) and one

of the four cases

τi, j = 1 ⊗ x′, τ j,i = y ⊗ 1 τi, j = x ⊗ 1, τ j,i = 1 ⊗ y′

τi, j = 1 ⊗ 1, τ j,i = y ⊗ y′ τi, j = x ⊗ x′, τ j,i = 1 ⊗ 1

occurs for suitable monomials x, x′, y, y′ ∈ B. These are precisely the overlap relations corre-

sponding to first and second type S- and G-polynomials. We define

fi, j := π(ar) lc(ga,i)τ j,igb, j + π(bs) lc(gb, j)τi, jga,i

for a pair (i, j) with ar + bs = 1.

Theorem 17.

Let m = ab ∈ Z with a, b coprime such that ar + bs = 1 for some r, s ∈ Z. Furthermore, let J be

an ideal of Pm accompanied by the sets Ga and Gb defined as above.

Then G := { fi, j | τi, j lm(ga,i) = τ j,i lm(gb, j)} is a strong Gröbner basis for J .
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Proof. By the second isomorphism theorem we have

(Z/mZ)/〈π(a)〉 � Z/aZ
and (Z/mZ)/〈π(b)〉 � Z/bZ.

From this and the forthcoming Theorem 18 (after liftingJ to P) it follows that Ga∪{π(a)} = Ga,

Gb ∪ {π(b)} = Gb are strong Gröbner basis of J + π(a)Pm, J + π(b)Pm respectively. Then, after

applying the isomorphism theorem one more time, all conditions of the following Theorem 19

are satisfied and it follows that G is a strong Gröbner basis for J .

Note, that the τi, j, τ j,i are not uniquely determined since all overlap relations of the leading mono-

mials have to be considered. The above lemma improves our algorithm for computing strong

Gröbner bases over principal ideal rings. It remains to show, that the Theorems 10 and 12 from

(Eder and Hofmann, 2019), formulated in the commutative case also hold in the commutative

one.

Theorem 18. (Generalization of (Eder and Hofmann, 2019, Theorem 10))

Let m ∈ Z \ {0} and I an ideal of P. Let G ⊆ P, such that π(G) is a strong Gröbner basis of π(I).

Additionally, we assume that m ∤ lc(g) | m for every g ∈ G. Then G ∪ {m} is a strong Gröbner

basis for I + mP.

Proof. Clearly G ∪ {m} is a subset of I + mP. Let f ∈ I. If π( f ) = 0, then m | lt( f ). Hence,

we may assume without loss of generality that π( f ) , 0 and m ∤ lc( f ). Then lm(π( f )) = lm( f )

and there exists g ∈ G such that lt(π(g)) | lt(π( f )), because π(G) is a strong Gröbner basis

and we can find a term h ∈ Pe with π(h) lt(π(g)) = lt(π( f )). Thus lm(h) lm(g) = lm( f ) and

π(h lt(g) − lt( f )) = 0. Thus, we have h lt(g) − lt( f ) = c lm( f ) for some c ∈ mZ and hence

lt(g) | lt( f ), because lc(g) | m by our additional assumption and lm(g) | lm( f ). In other words

G ∪ {m} is a strong Gröbner basis for I + mP.

We intend to use the previous Theorem 18 in the proof of Theorem 17 by applying the result to

a lift of J .

Theorem 19. (Generalization of (Eder and Hofmann, 2019, Theorem 12))

Let J be an ideal of Pm and a, b, r, s ∈ Zm, such that ab = 0 and a, b coprime with ar + bs = 1.

Let Ga, Gb be strong Gröbner bases for J + aPm and J + bPm respectively, such that for every

ga,i ∈ Ga \ Zm we have a ∤ lc(ga,i) | a. Assume, that the same holds for Gb. For ga,i ∈ Ga and

gb, j ∈ Gb we define

fi, j := π(ar) lc(ga,i)τ j,igb, j + π(bs) lc(gb, j)τi, jga,i

and assume lc(ga,i) lc(gb, j) , 0 for all i, j. Then G := { fi, j}i, j is a strong Gröbner basis for J .

Proof. By our assumptions we haveJ = arJ + bsJ = ar(J + bPm)+ bs(J + aPm) = ar〈Gb〉+

bs〈Ga〉. Since a and b are coprime and lc(ga,i) | a, lc(gb, j) | b, we see that lc(ga,i) and lc(gb, j)

are coprime as well. Furthermore, we have lc(ga,i) lc(gb, j)Zm = lc(ga,i)Zm ∩ lc(gb, j)Zm ) aZm ∩

bZm = {0} and thus lt( fi, j) = lc(ga,i) lc(gb, j)τ j,i lm(gb, j). Here we use that the product of leading

coefficients is nonzero. Now let f ∈ J ⊆ (J + aPm) ∩ (J + bPm). Then there exist ga,i ∈ Ga

and gb, j ∈ Gb, such that lt(ga,i) | lt( f ) and lt(gb, j) | lt( f ). Especially τi, j lm(ga,i) | lm( f ) and

lcm(lc(ga,i), lc(gb, j)) | lc( f ). Finally, lt( fi, j) | lt( f ) and G is a strong Gröbner basis for J .
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4. Forming and Discarding Critical Pairs

To improve the procedure BuchbergerAlgorithm, we need criteria to determine which pairs of

polynomials of the input set yield S- and G-polynomials, which reduce to zero. In the following

we will recall the criteria for discarding critical pairs known from the commutative case and

analyze, which of them can be applied in the case R〈X〉.

Remark 20.

Consider the case t := lm( f ) is divisible by (or even equal to) lm(g). Then lcm(lm( f ), lm(g))

contains exactly one element, namely t, because it is the only minimal element that is divisible

by both leading monomials. Therefore, spolyt
1( f , g) and gpolyt

1( f , g) are the only first type S-

and G-polynomials. However, these are not uniquely determined, we might have more overlap

relations of lm( f ), lm(g), as we have seen in the previous example of Remark 11, and we still

need second type S-polynomials.

The following Lemma explains, in particular, why G-polynomials are redundant over fields.

Lemma 21. (Buchberger’s criterion, generalization of (Eder et al., 2021; Lichtblau, 2012))

Let f , g ∈ P \ {0}. If lc( f ) | lc(g) in R, then every G-polynomial of f and g reduces to an

S-polynomial of f and g.

Proof. By the hypothesis we have b = lcm(lc( f ), lc(g)) = lc(g). Let r ∈ R, such that r lc( f ) =

lc(g). Then lc( f ) = (nr+1) lc( f )−n lc(g) yields any possible Bézout identity for b, where n ∈ Z.

Thus, with t = τ f lm( f ) = τg lm(g), every G-polynomial of f and g has shape gpoly( f , g) =

(nr + 1)τ f f − nτgg = lc( f )t + n(rτ f tail( f ) − τg tail(g)) + τ f tail( f ). Subtracting τ f f , we can

reduce this to n(rτ f tail( f ) − τg tail(g)). Note that rτ f tail( f ) − τg tail(g) is an S-polynomial of

f and g. Hence, every G-polynomial of f and g reduces to zero, after we compute their S-

polynomials.

For f ∈ P \ {0}, we iteratively define tail0( f ) := f and taili( f ) := tail(taili−1( f )) for i ≥ 1.

Lemma 22. (Product criterion, generalization of (Eder et al., 2021; Lichtblau, 2012))

Let f , g ∈ P \ {0} and w ∈ B, such that

1. lc( f ) and lc(g) are coprime over R,

2. lm( f ) and lm(g) only have trivial overlaps and

3. for all i, j ≥ 1 the inequality lm(taili( f ))w lm(g) , lm( f )w lm(tail j(g)) takes place.

Then s := spolyw
2 ( f , g) reduces to zero w.r.t. { f , g}.

Proof. Under the assumptions 1. and 2. we have s = f w lt(g) − lt( f )wg = f w(g − tail(g)) − ( f −

tail( f ))wg = tail( f )wg − f w tail(g). Note that tail( f )wg reduces to zero w.r.t. g and f w tail(g)

reduces to zero w.r.t. f .

By 3. we can assume without loss of generality that lt(s) = lt(tail( f ))w lt(g). Then s reduces

to s′ := s − lt(tail( f ))wg and lm(s′) ≺ lm(s). Again by (3) there is no cancellation of leading

terms and, since ≺ is a well-ordering, we iteratively see that s reduces to zero.

The preceding result contains strong conditions to discard S-polynomials. We capture this in the

following remark.
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Remark 23.

The commutative version of Buchberger’s product criterion in (Eder et al., 2021; Lichtblau,

2012) states, that the S-polynomial reduces to zero, if the leading terms are coprime over Z[X].

Condition 3. or rather its negation describes a very specific relation between the terms of f

and g. There is only a finite amount of w ∈ B, that satisfy such relation and are at the same time

considered in BuchbergerAlgorithm, because we only compute up to a certain length.

The version over fields for this criterion is much simpler, because then we only consider w

to be the empty word (which clearly satisfies 3.). Moreover, 1. is redundant and Buchberger’s

product criterion states that an S-polynomial reduces to zero when the leading monomials have

only trivial overlap relations.

We give examples for situations in which no possibilities for discarding critical pairs could be

found (yet) and which are unique for the commutative case.

Example 24.

If lm( f ) and lm(g) have no nontrivial overlap and the leading coefficients are not coprime, i.e.

gcd(lc( f ), lc(g)) , 1, then we can make no a priori statement about reduction. This only applies

to second type S- and G-polynomials. Take for example f = 4xy + x, g = 6zy + z ∈ Z〈X〉 =
Z〈x, y, z〉 in the degree left lexicographical ordering with x ≻ y ≻ z. In the sense of Definition 2,

the leading monomials have no nontrivial overlap. Then both

spoly1
2( f , g) = 3 f zy − 2xyg = 3xzy − 2xyz

and gpoly1
2( f , g) = (−1) f zy + 1xyg = 2xyzy + xyz − xzy

do not reduce any further. Thus, they must be added to the Gröbner basis just as any other second

type S- and G-polynomial. Finally, the Gröbner basis of 〈4xy+x, 6zy+z〉 with respect to classical

monomial orderings is indeed infinite, because it contains several infinite parametrizable series

like {zyizy − zyi+1z : i ≥ 0}.

LIB "freegb.lib";

ring r = ZZ,(x,z,y),rp;

ring R = freeAlgebra(r,7);

ideal I = 4*x*y+x, 6*z*y+z;

option(redSB);option(redTail);

ideal J = twostd(I);

When the leading coefficients are not coprime, no statement for S- and G-polynomials of

the first type can be made. For example, in the case of f = 4xy + y, g = 6yz + y we have

spoly
xyz

1
( f , g) = 3 f z− 2xg = 3yz− 2xy and gpoly

xyz

1
( f , g) = (−1) f z+ 1xg = 2xyz− yz+ xy which

do not reduce any further.

LIB "freegb.lib";

ring r = integer,(x,y,z),dp;

ring R = freeAlgebra(r,7);

ideal I = 4*x*y+y, 6*y*z+y;

option(redSB);option(redTail);

ideal J = twostd(I);

The Gröbner basis of 〈4xy+y, 6yz+y〉with respect to classical monomial orderings seem to be

infinite as the one above. This time we see infinite parametrizable series like {yziy − y2zi : i ≥ 0}.
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Remark 25.

In the commutative case, according to (Eder et al., 2021), a pair { f , g} with lm( f ) = lm(g) can

be replaced by the new pair {spoly( f , g), gpoly( f , g)}. Now set lm( f ) = lm(g) =: t, then in the

definition of S- and G-polynomials of the first type we have τ f = τg = 1 ⊗ 1 and therefore

spolyt
1( f , g) = a f f − agg and gpolyt

1( f , g) = b f f + bgg. This yields a linear equation

(

spolyt
1( f , g)

gpolyt
1( f , g)

)

=

(

a f −ag

b f bg

) (

f

g

)

,

where the defining matrix has determinant a f bg + agb f = 1, thus it is invertible over R! Hence,

we can recover f and g back from their S- and G- polynomials and replace them. The importance

of this statement for the commutative case was discussed in (Eder et al., 2021). Its effectiveness

carries over to the non-commutative case.

The following two lemmata are chain criteria, which are based on the idea to have two critical

pairs and derive a third one from them under certain conditions. The commutative versions for

both criteria were proven in (Eder et al., 2021).

Assertion for both upcoming theorems is the following. Given three polynomials f , g, h ∈

P \ {0}, we assume for each pair p, q ∈ { f , g, h}, that lcm(lm(p), lm(q)) , ∅, where lcm(•, •) is

defined as in Definition 2. For each such pair p, q consider monomials Tpq ∈ B and τpq ∈ B
e

with

Tpq ∈ lcm(lm(p), lm(q)) τpq lm(p) = Tpq Tpq = Tqp. (1)

Lemma 26. (S-chain criterion, generalization of (Eder et al., 2021; Lichtblau, 2012))

Let G ⊆ P\ {0} and f , g, h ∈ G with lc( f ) | lcm(lc(g), lc(h)) over R. For every pair p, q ∈ { f , g, h}

we assume that lcm(lm(p), lm(q)) , ∅. There exist Tpq ∈ B and τpq ∈ B
e, such that Equation (1)

holds. Assume that Thg = Tgh is divisible by both Th f and Tg f .

If spoly
T f g

1
( f , g) and spoly

T f h

1
( f , h) both have strong Gröbner representations w.r.t. G, then so

does spoly
Tgh

1
(g, h).

Proof. Let cpq :=
lcm(lc(p), lc(q))

lc(p)
for p, q ∈ { f , g, h}. Then one can check, that

chg

ch f

δg f spoly
T f h

1
( f , h) −

cgh

cg f

δh f spoly
T f g

1
( f , g)

=cghδh f τg f g − chgδg f τh f h +

(
chgc f h

ch f

δg f τ f h −
cghc f g

cg f

δh f τ f g

)

f .

Using relations for the monomial expressions τpq, Tpq, δpq and the coefficients cpq, we see that

the first term on the right hand side is equal to spoly
Tgh

1
(g, h) and we obtain

spoly
Tgh

1
(g, h) =

chg

ch f

δg f spoly
T f h

1
( f , h) −

cgh

cg f

δh f spoly
T f g

1
( f , g),

which shows that spoly
Tgh

1
(g, h) has a strong Gröbner representation w.r.t. G. This works anal-

ogously for second type S-polynomials spolyw
2 (g, h) or spolyw̃

2 (h, g), if we choose w or w̃, such

that either lm(g)w lm(h) = Tgh or lm(h)w̃ lm(g) = Thg.
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We give a similar criterion for G-polynomials.

Lemma 27. (G-chain criterion, generalization of (Eder et al., 2021; Lichtblau, 2012))

Let G ⊆ P \ {0} and f , g, h ∈ G. For every pairs p, q ∈ { f , g, h} let Tpq ∈ B and τpq ∈ B
e, such

that Equation (1) holds. Additionally we assume, that lc( f ) | gcd(lc(g), lc(h)) and that Thg = Tgh

is divisible by both Th f and Tg f .

Then gpoly
Tgh

1
(g, h) has a strong Gröbner representation w.r.t. G.

Proof. The divisibility condition on the leading coefficient of f yields an element d ∈ R with

d lc( f ) = gcd(lc(g), lc(h)). Furthermore, there exist δg f , δh f ∈ B
e, such that δg f Th f = Thg and

δh f Tg f = Tgh.

First observe that

gpoly
Tgh

1
(g, h) = gcd(lc(g), lc(h))Tgh + bgτgh tail(g) + bhτhg tail(h),

spoly
T f g

1
( f , g) =

lc(g)

lc( f )
τ f g f − τg f g =

lc(g)

lc( f )
τ f g tail( f ) − τg f tail(g)

and spoly
T f h

1
( f , h) =

lc(h)

lc( f )
τ f h f − τh f h =

lc(h)

lc( f )
τ f h tail( f ) − τh f tail(h).

Since T f h divides Tgh, there exists a w ∈ Be with w lm( f ) = Tgh and

w lm( f ) = Tgh = δg f T f h = δg f T f h lm( f ).

Hence, w = δg f τ f h and analogously w = δh f τ f g. Moreover, dw lc( f ) lm( f ) = gcd(lc(g), lc(h))Tgh

and we obtain

gpoly
Tgh

1
(g, h) − dw f + bgδh f spoly

T f g

1
( f , g) + bhδg f spoly

T f h

1
( f , h)

= gcd(lc(g), lc(h))Tgh − (gcd(lc(g), lc(h))Tgh + dw tail( f ))

+ bgτgh tail(g) + bgδh f

(

lc(g)

lc( f )
τ f g tail( f ) − τg f tail(g)

)

+ bhτhg tail(h) + bhδg f

(

lc(h)

lc( f )
τ f h tail( f ) − τh f tail(h)

)

= bgτgh tail(g) + bhτhg tail(h) − dw tail( f ) + bg

lc(g)

lc( f )
δh f τ f g tail( f )

− bg δh f τg f
︸︷︷︸

=τgh

tail(g) + bh

lc(h)

lc( f )
δg f τ f h
︸︷︷︸

=δh f τ f g

tail( f ) − bh δg f τh f
︸︷︷︸

=τhg

tail(h)

=

(
bg lc(g) + lc(h)

lc( f )
δh f τ f g − dw

)

tail( f ) = d(δh f τ f g − w) tail( f ) = 0.

Finally, we can write gpoly
Tgh

1
(g, h) as

gpoly
Tgh

1
(g, h) = dw f − bgδh f spoly

T f g

1
( f , g) − bhδg f spoly

T f h

1
( f , h),

which is a strong Gröbner representation.
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We conclude, that the well-known criteria for S- and G-polynomials from the commutative case

can also be applied in the commutative case with modifications, if we distinguish between first

and second type S- and G-polynomials. Computations show how hard these requirements are to

be satisfied compared to the commutative case by specifically counting the number of applica-

tions of product and chain criteria.

5. Examples

We give examples for Gröbner bases that have been computed up to a certain length bound over

the integers. These examples also show that although computing over Z delivers infinite results

much more often than when computing over fields, commutative Gröbner bases over Z can be

finite as well.

We start with the examples from (Apel, 2000) until Example 30. Let P = Z〈x, y, z〉 with the

degree left lexicographical ordering and x ≻ y ≻ z (if not indicated otherwise).

Example 28.

We consider the ideal I = 〈 f1 = yx − 3xy − 3z, f2 = zx − 2xz + y, f3 = zy − yz − x〉 ⊂ P.

We investigated it over Q〈x, y, z〉 in (Levandovskyy et al., 2020b) where we provided detailed

comments on syntax and commands of Singular:Letterplace.

At first, we analyze this ideal over the field Q:

LIB "freegb.lib"; // initialization of free algebras

ring r = 0,(z,y,x),Dp; // degree left lex ord on z>y>x

ring R = freeAlgebra(r,7); // length bound is 7

ideal I = y*x - 3*x*y - 3*z, z*x - 2*x*z +y, z*y-y*z-x;

option(redSB); option(redTail); // for minimal reduced GB

option(intStrategy); // avoid divisions by coefficients

ideal J = twostd(I); // compute a two-sided GB of I

J; // prints generators of J

The output is a finite Gröbner basis

{

4xy + 3z, 3xz − y, 4yx − 3z, 2y2 − 3x2
, 2yz + x, 3zx + y, 2zy − x, 3z2 − 2x2

, 4x3
+ x

}

.

As we see, original generators have decomposed. In order to compute their expressions in the

Gröbner basis above, one can use the lift command. In particular

yx − 3xy − 3z = −
3

4
(4xy + 3z) +

1

4
(4yx − 3z).

Now, it seems from the form of leading monomials, that Q〈x, y, z〉/J is finite dimensional vector

space. Let us check it:

LIB "fpadim.lib"; // load the library for K-dimensions

lpMonomialBasis(7,0,J); // compute all monomials

// of length up to 7 in Q<x,y,z>/J

which results in the set
{

1, z, y, x, x2
}

, being a monomial Q-basis of Q〈x, y, z〉/J.
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Now, we proceed to work over Z. For doing this, we need just one change in the code above,

LIB "freegb.lib"; //initialization of free algebras

ring r = integer,(z,y,x),Dp; //degree left lex ord z>y>x

ring R = freeAlgebra(r,7); // length bound is 7

ideal I = y*x - 3*x*y - 3*z, z*x - 2*x*z +y, z*y-y*z-x;

option(redSB); // Groebner basis will be minimal

option(redTail); // Groebner basis will be tail-reduced

ideal J = twostd(I); // compute a two-sided GB of I

J; // print generators of J

The output has plenty of elements in each degree (which is the same as length because of the

degree ordering), what hints at potentially infinite Gröbner basis (what we confirm below) and

the elements, which can be subsequently constructed, are

{ f1, f2, f3, 12xy + 9z, 9xz − 3y, 6y2 − 9x2, 6yz + 3x,

3z2
+ 2y2 − 5x2

, 6x3 − 3yz, 4x2y + 3xz, 3x2z + 3xy + 3z,

2xy2
+ 3x3

+ 3yz + 3x, 3xyz + 3y2 − 3x2, 2y3
+ x2y + 3xz,

2x4
+ y2 − x2, 2x3y + 3y2z + 3xy + 3z, x2yz + xy2 − x3,

xy2z − y3
+ x2y, x5 − y3z − xy2

+ x3, y3z2 − x4y,

x4z + x3y + 2y2z + x2z + 3xy + 3z, xy3z − y4
+ x4 − y2

+ x2,

xy4z − y5
+ x2y3

, xy5z − y6
+ x4y2

+ y4
+ x4
+ 2y2 − 2x2}

Indeed, we can show that I contains an element with the leading monomial xyiz for all i ≥ 2.

Therefore this Gröbner basis is infinite, but can be presented in finite terms. Note, that the

original generators have been preserved in a Gröbner basis, while over Q (as above) they were

decomposed. Also, over Q the input ideal has a finite Gröbner basis of degree at most 3.

Example 29.

Let I = 〈 f1 = yx − 3xy − z, f2 = zx − xz + y, f3 = zy − yz − x〉 ⊂ P. Then I has a finite strong

Gröbner basis, namely

{

f1, f2, f3, 8xy + 2z, 4xz − 2y, 4yz + 2x, 2x2 − 2y2, 4y2 − 2z2, 2z3 − 2xy
}

.

As we can see, the leading coefficients of the Gröbner basis above might vanish, if we pass to

the field of characteristic 2. Therefore, the bimodule M := Z〈x, y, z〉/I might have nontrivial

2-torsion, i.e. there is a nonzero submodule T2(M) := {p ∈ M : ∃ n ∈ N0 2n · p ∈ I}. In

(Hoffmann and Levandovskyy, 2021), the classical method of Caboara and Traverso for comput-

ing colon (or quotient) ideals has been generalized to non-commutative case. Using the fact that

the ground ring is central (i.e. commutes with all variables), we follow that recipe and do the

following:

LIB "freegb.lib"; //we will use position-over-term order

ring r = integer,(x,y,z),(c,dp);

ring R = freeAlgebra(r,7,2); // 2==the rank of free bimodule

ideal I = y*x - 3*x*y - z, z*x - x*z +y, z*y-y*z-x;

option(redSB); option(redTail);
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ideal J = twostd(I); module N;

N = 2*ncgen(1)*gen(1)+ncgen(2)*gen(2),J*ncgen(1)*gen(1);

module SN = twostd(N); SN;

Above, gen(i) stands for the i-th canonical basis vector (commuting with everything) and

ncgen(i) - for the i-th canonical generator of the free bimodule, which commutes only with

constants. The output, which is a list of vectors, looks as follows:

...

SN[9]=[0,z*z*z*ncgen(2)-x*y*ncgen(2)]

SN[10]=[2*ncgen(1),ncgen(2)]

SN[11]=[z*y*ncgen(1)-y*z*ncgen(1)-x*ncgen(1)]

...

From this output we gather all vectors with 0 in the first component ncgen(1)*gen(1), and

form an ideal of the generators from the second component, whose Gröbner basis is
{

zy − yz − x, zx − xz + y, yx + xy, 2yz + x, 2xz − y, 2y2 − z2, 4xy + z, x2 − y2, z3 − xy
}

.

Another colon computation does not change this ideal, therefore it is the saturation ideal of I

at 2, denoted by L = I : 2∞ ⊂ Z〈x, y, z〉. It is the presentation for the 2-torsion submodule

T2(M) = Z〈x, y, z〉L/I and, moreover, 2 · L ⊂ I ⊂ L holds.

Example 30.

In this example we have to run a Gröbner basis of 〈 f1 = zy− yz+ z2, f2 = zx+ y2, f3 = yx−3xy〉

up to length bound 11. We use degree right lexicographical ordering and obtain a finite Gröbner

basis

{zy − yz + z2, zx + y2, yx − 3xy, 2y3
+ y2z − 2yz2

+ 2z3, y2z2 − 4yz3
+ 6z4,

y4
+ 27xy2z − 54xyz2

+ 54xz3, 54xy2z − y3z − 108xyz2
+ 108xz3

+ 62yz3 − 124z4,

14z5, 14yz3 − 28z4, 2yz4 − 6z5, 2xyz3 − 4xz4, xy3z, 2z6, 2xz5}.

As we can see from the leading terms, the corresponding module might have 2- and 7-torsion

submodules. There have been 17068 critical pairs created, and internal total length of interme-

diate elements was 11. The product criterion has been used 196 times, while the chain criterion

was invoked 36711 times. Totally, up to 2.9 GB of memory was allocated.

Comparing the data with increasing the length bound to the presumably unlucky 13, we had

to create over 135300 critical pairs, while the product criterion has been used 1876 and the

chain criterion 365367 times. This illustrates the explosive behaviour of the number of critical

pairs when dealing with rings as coefficients.

In the contrast, the Gröbner basis computation of the same input over Q considered only 14

critical pairs, went up to total degree 6 of intermediate elements, used no product criterion and

9 times the chain criterion with less than 1 MB of memory. The result is

{zy − yz + z2, zx + y2, yx − 3xy, 2y3
+ y2z − 2yz2

+ 2z3,

y2z2 − 2z4, xy2z − 2xyz2
+ 2xz3, yz3 − 2z4, z5}.

This demonstrates once again, how technically involved computations with free algebras over

rings as coefficients are.
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Example 31.

The important class of Iwahori–Hecke algebras (Humphreys, 1990) is associated to Coxeter

groups. These algebras are constructed by means of finite presentation over Z[q, q−1] where q

will later be specialized, most frequently to the root of unity over a finite field. Consider the

Iwahori–Hecke algebra of type A3, then it is presented as the factor-algebra of Z[q, q−1]〈x, y, z〉

modulo the ideal

〈x2
+ (1 − q)x − q, y2

+ (1 − q)y − q, z2
+ (1 − q)z − q, zx − xz, yxy − xyx, zyz − yzy〉.

We observe braid relations between x, y and y, z. In order to treat the ground ring Z[q, q−1]

appropriately, we do the following:

• introduce free variables q, iq where the latter denotes the forthcoming q−1,

• use a block ordering for the variables, giving eliminating preference to the block x, y, z,

• to the ideal of relations above we insert new commutation relations (that is, q,iq mutually

commute with x,y,z) and reciprocity relations for q,iq.

LIB "freegb.lib";

ring r = integer,(x,y,z,iq,q),(a(1,1,1,0,0),Dp);

ring R = freeAlgebra(r,7);

ideal I = x^2 + (1-q)*x - q, y^2 + (1-q)*y - q, z^2 + (1-q)*z - q,

z*x - x*z, y*x*y - x*y*x, z*y*z - y*z*y,

bracket(q,x), bracket(q,y), bracket(q,z),

bracket(iq,x), bracket(iq,y), bracket(iq,z), q*iq -1, iq*q-1;

option(redSB); option(redTail);

ideal J = twostd(I);

The resulting Gröbner basis is finite, and consists of the original relations (from the ideal I

above) and the only new generator xyzx − yxyz of length 4. We also observe, that no integers,

other than ±1, appear among the coefficients of polynomials from I. Now we specialize q to the

primitive third root of unity.

ideal L = J, q^2+q+1;

L = twostd(L);

In the output, as one would expect, only q,iq have been affected. The relation iq + q + 1 = 0

has been used to replace iq via −q − 1. Since except for the minimal polynomial q2
+ q + 1 and

commutativity relations, no q appear as leading coefficients, we can proceed to the ground field

K := Q[q]/〈q2
+ q+ 1〉. One of the possibilities to do this is the localization at Z \ {0}. Now, with

the abilities of Letterplace over fields we easily establish, that specialized over K, the Iwahori-

Hecke algebra of type A3 is finite-dimensional of dimension 24. Hence further computations with

modules over this algebra can be carried on.

Example 32.

Over K[X], an ideal is called binomial, if it is generated by polynomials of length at most two. A

distinct property of binomial ideals, which is easy to prove, is that with respect to any monomial

ordering, a binomial ideal possesses a Gröbner basis, consisting of binomials. This is not true
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over rings anymore, as, for instance, a Gröbner basis with respect to the degree reverse lexico-

graphical ordering of {2x − 3y, xy − 3x} is {2x − 3y, 3y2 − 9y, xy + x − 6y}.

In the setting of a free algebra, the binomiality of a Gröbner basis still holds over K〈X〉. As

expected, it breaks over rings since in the very same example the commutativity relation yx − xy

is a binomial. Hence, a strong minimal Gröbner basis of {2x − 3y, xy − 3x, yx − xy} ⊂ Z〈x, y〉 is

{

2x − 3y, 3y2 − 9y, xy + x − 6y, yx + x − 6y
}

,

which cannot be made binomial.

6. Implementation

We have created a powerful implementation called Letterplace (Levandovskyy et al., 2021,

2020b) in the framework of Singular (Decker et al., 2021). Its’ extension to coefficient rings

like Z addresses the following functions with the current release for ideals and subbimodules of

a free bimodule of finite rank. We provide a vast family of monomial orderings for ideals and

submodules, such as degree right and left lexicographical, including three kinds of orderings,

which eliminate variables or free bimodule components. For modules, position-over-term and

term-over-position constructions are available.

• twostd: a two-sided Gröbner basis of a module; when executed with respect to an elim-

ination ordering, it allows to eliminate variables (Borges and Borges, 1998), and thus to

compute kernels of ring morphisms and preimages of ideals under such morphisms;

• reduce (or NF): a normal form of a vector (resp. a polynomial) with respect to a two-

sided Gröbner basis of a submodule (resp. an ideal);

• syz: a generating set of a syzygy bimodule (Bluhm and Kreuzer, 2007) of a module;

• modulo: kernel of a bimodule homomorphism;

• lift: a transformation matrix between a module and a submodule; in other words, lift

allows to express generators of a submodule in terms of generators of a module;

• liftstd: (1) a two-sided Gröbner basis together with (2) a transformation matrix between

the input module and its Gröbner basis, and, optionally, (3) a generating set of a syzygy

bimodule of the input module; compared to running twostd, lift, syz alone, this

command does not add much computational overhead.

Caveats: As every software, which is intensively used, our implementation has some artefacts,

which we cannot overcome and therefore describe as caveats.

a) Computing with the options redSB and redTail enabled, sometimes the resulting Gröb-

ner basis will not be minimal. This occurs only with rings as coefficients and cannot be

changed at this time. Computing a Gröbner basis of the result one more time produces a

minimal Gröbner basis.

b) A computation, involving Gröbner bases, might stop with the following error message:

? degree bound of Letterplace ring is 9, but at least

10 is needed for this multiplication
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This is neither a bug nor an error. It indicates that internally a potentially Noetherian

reduction has been invoked, what often happens for monomial orderings, which are not

compatible with the length of monomials. We recommend to increase the length bound on

the ring, and keep polynomials or vectors tail-reduced via option(redTail).

c) In Example 29 a built-in command modulo can be used instead of the construction of the

module SN and gathering the vectors from the first component. However, because of the

degree bound as in b), encountered internally during some multiplication, modulo is not

coming to a result even after increasing the length bound to high values. Therefore in such

cases the explicit construction, like the one of the module SN in Example 29 will lead to

the result.

7. Conclusion and Future Work

Following Mora’s “manual for creating own Gröbner basis theory” (Mora, 2016), we have con-

sidered the case of free commutative Gröbner bases for ideals and bimodules over Z〈X〉. We

have derived novel information on the building critical pairs and on criteria to discard them when

possible. Armed with this theoretical and algorithmic knowledge, we have created an implemen-

tation in a Singular subsystem Letterplace, which offers a rich functionality at a decent speed.

We are not aware of yet other systems or packages, which can do such computations.

In this paper we have demonstrated several important applications of our algorithms and their

implementation, in particular the determination of torsion submodules with respect to natural

numbers, and operations with Iwahori-Hecke algebras.

A further extension of our implementation to the explicitly given Z/mZ is planned, along

the lines, discussesd in Section 3. Also, we plan to develop (in theory and in practice) one-

sided Gröbner bases in factor algebras (over fields, Letterplace already offers rightStd and

more functions are under development). More functions for dealing with matrices and one-sided

modules will make possible the usage of our implementation as a backend from the system

HomAlg (Barakat et al., 2021). This system performs homological algebra computations within

computable Abelian categories and uses other computer algebra systems as backends for concrete

calculations with matrices over rings. Other existing systems like SageMath (Stein et al., 2020)

and OSCAR (The OSCAR Team, 2021) can use our implementation as backend, since they have

a low-level communication with Singular. Indeed, thanks to developments in OSCAR in 2019–

2021, Letterplace functions (Levandovskyy et al., 2021) can be called from and deliver their

results to OSCAR. Enhancing this connection is a subject of an ongoing work.

Last but not least, in the opinion of its creators, mathematical software is still not satisfactorily

cited. We ask therefore our users to cite our system Singular:Letterplace as (Levandovskyy et al.,

2021), which applies both to coefficients over fields and over rings.
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