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Abstract

With this paper we present an extension of our recent ISSAC paper about computations of
Gröbner(-Shirshov) bases over free associative algebras Z〈X〉. We present all the needed proofs
in details, add a part on the direct treatment of the ring Z/mZ as well as new examples and
applications to e.g. Iwahori-Hecke algebras. The extension of Gröbner bases concept from
polynomial algebras over fields to polynomial rings over rings allows to tackle numerous appli-
cations, both of theoretical and of practical importance. Gröbner and Gröbner-Shirshov bases
can be defined for various non-commutative and even non-associative algebraic structures. We
study the case of associative rings and aim at free algebras over principal ideal rings. We concen-
trate ourselves on the case of commutative coefficient rings without zero divisors (i.e. a domain).
Even working over Z allows one to do computations, which can be treated as universal for fields
of arbitrary characteristic. By using the systematic approach, we revisit the theory and present
the algorithms in the implementable form. We show drastic differences in the behavior of Gröb-
ner bases between free algebras and algebras, close to commutative. Even the process of the
formation of critical pairs has to be reengineered, together with the implementing the criteria
for their quick discarding. We present an implementation of algorithms in the Singular subsys-
tem called Letterplace, which internally uses Letterplace techniques (and Letterplace Gröbner
bases), due to La Scala and Levandovskyy. Interesting examples and applications accompany
our presentation.
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Introduction

We present an extension of our recent ISSAC paper (Levandovskyy et al., 2020b) on the com-
putations of Gröbner(-Shirshov) bases over free associative algebras like Z〈X〉. In the extended
version we have added and proved new results for non-commutative Gröbner bases over rings
with zero-divisors using factorization and lifting techniques. The proof of Lemma 10 received
substantial enhancements, since it is essential for the correctness of our algorithm. We added
details to the proof of Lemma 20 and showed the corresponding Lemma 21. New examples and
applications are introduced in Example 25 and Example 26. Older examples are revisited and
enhanced.

By 2010’s the techniques, based on Gröbner bases were well-established in the sciences and
applications and widely known. A number of generalizations of them to various settings have
been proposed and discussed. However, especially when it came to non-commutative and non-
associative cases, generalizations of, in particular, Gröbner bases, were often met with sceptical
expressions like “as expected”, “straightforward”, “more or less clear” and so on. This is not true
in general since generalizations to various flavours of non-commutativity require deep analysis
of procedures (and in case of provided termination, algorithms) based on intricate knowledge
of properties of rings and modules over them. Characteristically, in this paper we demonstrate
in e.g. Example 6 and 7 how intrinsically different Gröbner bases over Z〈X〉 are even when
compared with Gröbner bases over Q〈X〉, not taking the commutative case into account. An
example can illustrate this better than a thousand words:

Example 1. Consider the set F = {2x, 3y}. While taken over Z〈x, y〉, it has a finite strong
Gröbner basis {2x, 3y, yx, xy}. On the other hand, considered over Z〈x, y, z1, . . . , zm〉 for any
m ≥ 1, F has an infinite Gröbner basis, which contains e.g. xzk

i y and yzk
i x for any natural k.

In his recent articles and in the book (Mora, 2016) Teo Mora has presented "a manual for creating
your own Gröbner bases theory" over effective associative rings. This development is hard to
underestimate, for it presents a unifying theoretical framework for handling very general rings. In
particular, we can address the Holy Grail of computational algebra, that is the unified algorithmic
treatment of finitely presented modules over the rings like

R = (Z〈Y〉/J) 〈X〉/I

where Y and X are finite sets of variables, J is a two-sided ideal from the free ring Z〈Y〉 and I
is a two-sided ideal from the associative ring (Z〈Y〉/J) 〈X〉. The extension of (Z〈Y〉/J) with X
and I can be iterated. In order to compute within such a ring, it turns out to be enough to have
two-sided Gröbner bases over Z〈Z〉 for a finite set of variables Z, with respect to – among other
– block elimination orderings. Then, indeed, the concrete computation, still valid over R will
take place in Z〈Y ∪ X〉/(I + J). Further on, over the factor-algebra R one needs left and right
Gröbner bases for ideals and submodules of free bimodules. We provide these components over
fields and over rings Z.

The theory of non-commutative Gröbner bases was developed by many prominent scientists
since the Diamond Lemma of G. Bergman (Bergman, 1977). Especially L. Pritchard (Pritchard,
1996) proved versions of the PBW Theorem and advanced the theory of bimodules, also over
rings. On the other hand, procedures and even algorithms related to Gröbner bases in such
frameworks are still very complicated. Therefore, when aiming at implementation, one faces
the classical dilemma: generality versus performance. Perhaps the most general implementation
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which exists is the JAS system by H. Kredel (Kredel, 2020, 2015). In our designs we balance the
generality with the performance; based on Singular, we utilize its’ long, successful and widely
recognized experience with data structures and algorithms in commutative algebra. Notably,
the recent years have seen the in-depth development of Gröbner bases in commutative algebras
with coefficients in principal ideal rings (O. Wienand, G. Pfister, A. Frühbis-Krüger, A. Popescu,
C. Eder, T. Hofmann and others), see e.g. (Eder and Hofmann, 2019; Eder et al., 2016, 2021;
Lichtblau, 2012). This required massive changes in the structure of algorithms; ideally, one
has one code for several instances of Gröbner bases with specialization to individual cases. In
particular, the very generation of critical pairs and the criteria for discarding them without much
effort were intensively studied. These developments were additional motivation for us in the task
of attacking Gröbner bases in free algebras over commutative principal ideal rings, with Z at
the first place. Currently, to the best of our knowledge, no computer algebra system is able to
do such computations. Also, a number of highly interesting applications wait to be solved: in
studying representation theory of a finitely presented algebra (i.e. the one, given by generators
and relations), computations over Z remain valid after specification to any characteristic and
thus encode a universal information, see for example Example 25. In the system Felix by Apel
et al. (Apel and Klaus, 1991), such computations were experimentally available, though not
documented. In his paper (Apel, 2000), Apel demonstrates Gröbner bases of several nontrivial
examples over Z〈X〉, the correctness of which we can easily confirm now.

Our secret weapon is the Letterplace technology (La Scala and Levandovskyy, 2009, 2013;
Levandovskyy et al., 2013; La Scala, 2014), which allows the usage of commutative data struc-
tures at the lowest level of algorithms. We speak, however, in theory, the language of free alge-
bras over rings, since this is mutually bijective with the language of Letterplace.

This paper is organized as follows: In the first chapter we establish the notations which
are necessary when dealing with polynomial rings. Subsequently, in the second chapter we
generalize the notion of Gröbner bases for our setup, present a theoretical version of Buchberger’s
algorithm and give examples to visualize significant differences compared to the field case or the
commutative case. Implementation of Buchberger’s algorithm depends on and benefits from the
gentle handling of critical pairs, which we will discuss in the third chapter. This is followed up
by computational examples, applications and discussion on the implementational aspects.

1. Preliminaries

All rings are assumed to be associative and unital, but not necessarily commutative. We want
to discuss non-commutative Gröbner bases over the integers Z. Equivalently one can take any
commutative Euclidean domain or principal ideal domain1 R.

We work towards an implementation and therefore we are interested in algorithms, which
terminate after a finite number of steps. Since Z〈X〉 is not Noetherian, there exist finite generating
sets whose Gröbner bases are infinite with respect to any monomial well-ordering. Therefore,
our typical computation is executed subject to the length bound (where length is meant literally,
applied to words from the free monoid 〈X〉), specified in the input, and therefore terminates per
assumption. Thus, we talk about algorithms in this sense.

1This concept can be extended to principal ideal rings. It was done in (Eder and Hofmann, 2019) for the commutative
case with so-called annihilator polynomials.
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Our main goal is to obtain an algorithm to construct a Gröbner basis over such a ring, finding
or adjusting criteria for critical pairs and setting up an effective method to implement Buch-
berger’s algorithm in the computer algebra system Singular. The problem of applying the state-
ments of commutative Gröbner basis over Euclidean domains and principal ideal rings, such as
in (Eder et al., 2021, 2016; Lichtblau, 2012; Markwig et al., 2015), are divisibility conditions of
leading monomials.

Let X = {x1, . . . , xn} denote the finite alphabet with n letters. We set P = R〈X〉, the free
R-algebra of X, where all words on X form a basis B = 〈X〉 of P as a free R-module. From now
on we say “B is an R-basis”. Moreover, let Pe = P ⊗R P

opp be the free enveloping R-algebra
with basis Be = {u ⊗ v | u, v ∈ B}. The natural action Pe × P → P, (u ⊗ v, t) 7→ (u ⊗ v)t := utv
makes a bimodule P into a left Pe-module. We call the elements of B monomials.

Let � be a monomial well-ordering on B. With respect to �, a polynomial f ∈ P \ {0}
has a leading coefficient lc( f ) ∈ R , a leading monomial lm( f ) ∈ B and a leading term
lt( f ) = lc( f ) lm( f ) , 0. We denote by |w| the length of the word w ∈ B. An ordering � is called
length-compatible, if u � v implies |u| ≤ |v|. Every subset G ⊆ P yields a two-sided ideal, the
ideal of leading terms L(G) = 〈lt( f ) | f ∈ G \ {0}〉.

Naturally, the notions of coefficient, monomial and term carry over to an element h ∈ Pe by
considering h · 1 ∈ P.

Definition 2.
Let u, v ∈ B. We say, that u and v have an overlap, if there exist monomials t1, t2 ∈ B, such that
at least one of the four cases

(1) ut1 = t2v (2) t1u = vt2 (3) t1ut2 = v (4) u = t1vt2

holds. Additionally, we say, that u and v have a non-trivial overlap, if (3) or (4) holds, or if
in (1) or (2) we have |t1| < |v| and |t2| < |u|. In (3), respectively (4), we say, that u divides v,
respectively v divides u. The set of all elements, which are divisible by both u and v, is denoted
by cm(u, v) (cm: common multiple). The set of all minimal, non-trivial elements, which are
divisible by both u and v, is denoted by lcm(u, v) (lcm: least ...), i.e. t ∈ lcm(u, v), if and only if
there exist τu, τv ∈ B

e, such that t = τuu = τvv, representing non-trivial overlaps of u and v, and
if t, t̃ ∈ lcm(u, v) with t̃ = τt for some τ ∈ Be, then t = t̃ and τ = 1 ⊗ 1. If there are only trivial
overlaps, then lcm(u, v) = ∅. Moreover, if lm(g) divides lm( f ) for f , g ∈ P, then lm(g) � lm( f ).

2. Non-commutative Gröbner Bases

A Gröbner basis G ⊆ P \ {0} is a generating set for a two-sided ideal I ⊆ P with the property
L(I) ⊆ L(G). In the field case, this guarantees the existence of a so-called Gröbner representa-
tion, which will be recalled subsequently, and for any f ∈ I \ {0} it also guarantees the existence
of an element g ∈ G, such that lt(g) divides lt( f ).

Definition 3.
Let f , g ∈ P\ {0}, G ⊆ P\ {0} a countable set and I ⊆ P an ideal. Fix a monomial well-ordering
� on B.

We say, that g lm-reduces f , if lm(g) divides lm( f ) with lm( f ) = τ lm(g) for some τ ∈ Be and
there are a, b ∈ R, a , 0 and |b| < | lc( f )| (in the Euclidean norm), such that lc( f ) = a lc(g) + b.
Then the lm-reduction of f by g is given by f − aτg.
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We say, that f has a strong Gröbner representation w.r.t. G, if f =
∑m

i=1 higi with m ∈ N, gi ∈

G, hi ∈ P
e \ {0} and there exists a unique 1 ≤ j ≤ m, such that lm( f ) = lm(h jg j) and lm( f ) �

lm(higi) for all i , j.
G is called a strong Gröbner basis for I, if G is a Gröbner basis for I and for all f ′ ∈ I\{0}

there exists g′ ∈ G, such that lt(g′) divides lt( f ′).

Such lm-reductions are the key to obtain a remainder after division through a finite generating set
G for an ideal and they are used in Buchberger’s algorithm to construct a Gröbner basis from G.
In this sense, the idea of a Gröbner basis is to deliver a unique remainder when dividing through
it. Since we operate in a polynomial ring of multiple variables, the expression “reduction” is more
justified than “division” to describe a chain of lm-reductions. The outcome of such a reduction,
or the “remainder of the division”, is then known as a normal form.

The following normal form algorithm uses lm-reductions and can be compared to the normal
form algorithms, which is used for algebras over fields in (Levandovskyy, 2005).

NormalForm

input: f ∈ P \ {0}, G ⊆ G finite and partially ordered
output: normal form of f w.r.t. G
01: h = f
02: while h , 0 and Gh = {g ∈ G | g lm-reduces h} , ∅ do
03: choose g ∈ Gh

04: choose a, b ∈ R with:
a , 0, lc(h) = a lc(g) + b and |b| < | lc(h)|

05: choose τ ∈ Be with lm(h) = τ lm(g)
06: h = h − aτg, the lm-reduction of h by g
07: end while
08: return h

Every normal form of the zero-polynomial is zero. Termination and correctness are analogous to
the proof in (Levandovskyy, 2005).

The output of the algorithm is in general not unique, but depends on the choice of elements
g ∈ Gh which are used for the reduction.

We confirm, that the proof of the following theorem carries over verbatim from the commu-
tative case in (Lichtblau, 2012).

Theorem 4. ((Lichtblau, 2012), Theorem 9)
Let G ⊆ P \ {0} and {0} , I ⊆ P an ideal. Then the following statements with respect to G and
a fixed monomial well-ordering � are equivalent:

1. G is a strong Gröbner basis for I.

2. Every f ∈ I \ {0} has a strong Gröbner representation.

3. Every f ∈ P \ {0} has a unique normal form after reduction.

An earlier non-commutative version was also proven by Pritchard for “weak” Gröbner bases in
(Pritchard, 1996).
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A strong Gröbner basis can be computed with Buchberger’s algorithm using syzygy-relations
between leading terms of generating polynomials. In the field case, the computation is done with
S-polynomials. It is known from the commutative case over rings (Lichtblau, 2012), that it does
not suffice to take so called “syzygy-polynomials” as in Definition 5 to obtain a strong Gröbner
basis. To see this, let I = 〈 f = 3x, g = 2y〉. Then every syzygy-polynomial of f and g is zero,
but clearly xy = f y − xg ∈ I has a leading term which is neither divisible by lt( f ) nor lt(g).
Thus, { f , g} is not a strong Gröbner basis for I. The problematic polynomial xy is constructed
by looking at the greatest common divisor of the leading coefficients of f and g.

Definition 5.
Let f , g ∈ P \ {0}. Choose τ f , τg ∈ B

e, such that τ f lm( f ) = τg lm(g) ∈ cm(lm( f ), lm(g)).
Furthermore, let a = lcm(lc( f ), lc( f )) and a f , ag ∈ R, such that a = a f lc( f ) = ag lc(g). In
a Euclidean domain, the least common multiple is uniquely determined up to a unit and so are
a f , ag. Then an S-polynomial of f and g is defined as

spoly( f , g) := a f τ f f − agτgg.

Furthermore, let b = gcd(lc( f ), lc( f )) and b f , b f ∈ R, such that b = b f lc( f ) + bg lc(g) (the
Bézout identity for the leading coefficients). As above, b is unique in a Euclidean domain as a
greatest common divisor, although the Bézout coefficients b f , bg may not be, but depend on the
implementation of a Euclidean algorithm. A G-polynomial of f and g is defined as

gpoly( f , g) := b f τ f f + bgτgg.

So far everything seems to work out as in the commutative case. We consider some examples to
see, that this assumption is wrong.

Example 6.
Let f = 2xy, g = 3yz ∈ Z〈x, y, z〉. Usually we would compute an S-polynomial 3 f z − 2xg = 0
and a G-polynomial

gpoly( f , g) := (−1) · 2xy · z + 1 · x · 3yz = xyz

and add them to { f , g} to obtain a strong Gröbner basis for I = 〈 f , g〉 ⊆ P. But for every w ∈ B

gpoly′( f , g) := (−1) · 2xy · w · yz + 1 · xy · w · 3yz = xywyz

is also a G-polynomial of f , g and must be added to the basis. In other words there is no finite
Gröbner basis for I and we have to be satisfied with computing up to a fixed maximal leading
monomial or word length. Note that in the case of gpoly we computed a G-polynomial in the
canonical way by looking for a non-trivial overlap of xy and yz. In the case of gpoly′ we ignored
this overlap. In the commutative case this is irrelevant, because gpoly( f , g) divides gpoly′( f , g).
Furthermore, in the field case this is also irrelevant, because we do not need G-polynomials.

Similar problems occur for S-polynomials.

Example 7.
Let f = 2xy + x, g = 3yz + z. Then spoly( f , g) = 3 f z − 2xg = xz is an S-polynomial of f and g.
However, so are all polynomials

spoly′( f , g) := 3 f wyz − 2xywg = 3xwyz − 2xywz
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for any monomial w ∈ B. Now we can reduce spoly′( f , g) to

(spoly′( f , g) − xwg) + f wz = −2xywz + f wz = xwz

which is not reducible any further. Therefore, we have to add spoly′( f , g) to the basis. And even
this is not enough. For f = 2xy + x we see that

spoly′′( f , f ) := f wxy − xyw f = xwxy − xywx , 0

is an S-polynomial of f with itself which does not reduce any further and we need lm( f )w lm( f ) ∈
cm(lm( f ), lm( f )), although it is clearly not contained in lcm(lm( f ), lm( f )).

Thus, in general even principal ideals do not have finite strong Gröbner bases! Such
behavior of S-polynomials does not occur for non-commutative polynomials over fields.

Note, that we do not consider any further extensions of the leading monomials, meaning
that the S- and G-polynomial corresponding to t ∈ lcm(lm( f ), lm(g)) or lm( f )w lm(g) make any
further (trivial) overlap relations τt or τ(lm( f )w lm(g)) for τ ∈ Be redundant. Therefore, in the
definition of lcm(x, y) we stress the importance of the minimality.

The previous example shows, that we have to consider all possible S- and G-polynomials, but
those are infinitely many. Moreover, the set cm(lm( f ), lm(g)) contains too many elements that
are redundant whereas the set lcm(lm( f ), lm(g)) is too small. The following definition is made
to classify two types of S- and G-polynomials, namely those corresponding to non-trivial overlap
relations and those corresponding to trivial ones.

Definition 8.
Let f , g ∈ P\ {0} and a f , ag, b f , bg ∈ R as in Definition 5. We distinguish between the following
two cases.

If lm( f ) and lm(g) have a non-trivial overlap, then there exist t ∈ lcm(lm( f ), lm(g)) and
τ f , τg ∈ B

e, such that t = τ f lm( f ) = τg lm(g). Furthermore, we assume that τ f = 1 ⊗ t f , τg =

tg ⊗ 1 or τ f = 1⊗ 1, τg = tg ⊗ t′g for t f , tg, t′g ∈ B with |t f | < | lm(g)|, |tg|, |t′g| < | lm( f )|. We define
a first type S-polynomial of f and g w.r.t. t to be

spolyt
1( f , g) := a f τ f f − agτgg

and a first type G-polynomial of f and g w.r.t. t to be

gpolyt
1( f , g) := b f τ f f + bgτgg.

If such τ f , τg do not exist, we set the first type S- and G-polynomials both to zero. Since two
monomials may have several non-trivial overlaps, these τ f , τg are not unique. More precisely,
this follows from the fact that P is not a unique, but a finite factorization domain (Bell et al.,
2016). For any w ∈ B we define the second type S-polynomial of f and g w.r.t. w to be

spolyw
2 ( f , g) := a f f w lm(g) − ag lm( f )wg

and the second type G-polynomial of f and g w.r.t. w to be

gpolyw
2 ( f , g) := b f f w lm(g) + bg lm( f )wg.
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Remark 9.
Clearly, it only makes sense to consider first type S- and G-polynomials if there is a non-trivial
overlap of the leading monomials. However, as Example 6 shows, we always need to consider
second type S- and G-polynomials. For any w ∈ B we have lm( f )w lm(g) ∈ cm(lm( f ), lm(g)) and
lm(g)w lm( f ) ∈ cm(lm( f ), lm(g)), which are distinct in general. Therefore, we need to consider
both spolyw

2 ( f , g) and spolyw
2 (g, f ) and the same holds for second type G-polynomials. Also,

note that the set of first type S- and G-polynomials is finite, because our monomial ordering is
a well-ordering, whereas the set of second type S- and G-polynomials is infinite. Therefore, we
need to fix an upper bound for the length of monomials which may be involved.

It is important to point out, that the elements τ f , τg are not uniquely determined. Take for
example f = 2xyx + y, g = 3x + 1. Then t := xyx = lm( f ) = xy lm(g) ∈ lcm(lm( f ), lm( f )),
but also t = lm(g)yx and thus spolyt

1( f , g) = −3 f + 2gyx = 2yx − 3y and (spolyt
1)′( f , g) =

−3 f + 2xyg = 2xy − 3y are both first type S-polynomials with different leading monomials.

A finite set G ⊆ P is called length-bounded strong Gröbner basis for an ideal I, if there is a
Gröbner basis G′ for I, such that G ⊆ G′ contains precisely the elements of G′ of length smaller
or equal to d for some d ∈ N.

The following algorithm uses Buchberger’s criterion 10 as a characterization for strong Gröb-
ner bases, which we will prove subsequently. It computes S- and G-polynomials up to a fixed
degree and reduces them with the algorithm NormalForm in order to obtain a length-bounded
strong Gröbner basis for an input ideal given by a finite generating set.

BuchbergerAlgorithm

input: I = 〈 f1, . . . , fk〉 ⊆ R〈X〉, d ∈ N, NormalForm
output: length-bounded strong Gröbner basis G for I
01: G = { f1, . . . , fk}
02: L = {spolyt

1( fi, f j), gpolyt
1( fi, f j) | ∀ t ∗, i, j}

03: L = L ∪ {spolyw
2 ( fi, f j), gpolyw

2 ( fi, f j) | ∀w ∗∗, i, j}
04: while L , ∅ do
05: choose h ∈ L
06: L = L \ {h}
07: h = NormalForm(h, G)
08: if h , 0 then
09: G = G ∪ {h}
10: for g ∈ G do
11: L = L ∪ {spolyt

1(g, h), gpolyt
1(g, h) | ∀ t ∗}

L = L ∪ {spolyt
1(h, g), gpolyt

1(h, g) | ∀ t ∗}
L = L ∪ {spolyw

2 (g, h), gpolyw
2 (g, h) | ∀w ∗∗}

L = L ∪ {spolyw
2 (h, g), gpolyw

2 (h, g) | ∀w ∗∗}

12: end do
13: end if
14: end while
15: return G

∗ t ∈ lcm(•, •), such that |t| < d
∗∗ w ∈ B, such that | lm(•)| + |w| + | lm(•)| < d
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For the algorithm to terminate we need the set L to eventually become empty. This happens,
if and only if after finitely many steps every S- and G-polynomial based on any combination of
leading terms has normal form zero w.r.t G, i.e. there exists a chain of lm-reductions, such that
the current S- or G-polynomial reduces to zero. However, lm-reductions only use polynomials of
smaller or equal length and all of these are being computed. Therefore, the algorithm terminates.

For the correctness of the algorithm we still need a version of Buchberger’s criterion. More
precisely, we want G to be a Gröbner basis for I, if and only if for every pair f , g ∈ G all their S-
and G-polynomials reduce to zero. Moreover, we only want to consider first and second type S-
and G-polynomials, i.e. only use t ∈ cm(lm( f ), lm(g)), such that one of the following four cases

(1) t = lm( f )t′f = tg lm(g) (2) t = lm( f ) = tg lm(g)t′g
(3) t = t f lm( f ) = lm(g)t′g (4) t = t f lm( f )t′f = lm(g)

holds for t f , t′f , tg, t′g ∈ B. This excludes all cases where t is not minimal, i.e. t = τt′ for τ ∈ Be

and t′ satisfying one of the above four cases. Pritchard has proven in (Pritchard, 1996), that for a
generating set of the left syzygy module (which is not finitely generated in general) we may use
only minimal syzygies.

Lemma 10. ((Lichtblau, 2012), Theorem 10)
Let G ⊆ P \ {0}. Then G is a strong Gröbner basis for 〈G〉, if and only if for every pair f , g ∈ G
their first and second type S- and G-polynomials reduce to zero w.r.t. G.

Proof. The idea of the proof goes back to (Lichtblau, 2012); we only need to show the “if”
part. Let 0 , f ∈ 〈G〉 =: I with f =

∑
i higi for some hi ∈ P

e. We set t := max(lm(higi))
and M := {i ∈ N | lm(higi) = t}. Clearly lm( f ) � t and we may assume that there is no
other representation of f where t is smaller. Without loss of generality let M = {1, . . . , m}.
Moreover, since the Euclidean norm induces a well ordering, we can choose a representation
where

∑m
i=1 | lc(hi) lc(gi)| is minimal w.r.t. t. If M contains exactly one element, then t = lm( f )

and we have a strong standard representation of f w.r.t. G. Suppose otherwise that card(M) > 1.
Then t � lm( f ). Note that t = lm(higi) = lm(hi) lm(gi) for i ≤ m. Then there exist monomials
t1, t′1, t2, t′2 ∈ X, such that t = t1 lm(g1)t′1 = t2 lm(g2)t′2. This induces an overlap relation of the
leading monomials, because then there exist s1, s′1, s2, s′2 ∈ X, such that

• T := lm(g1)s′1 = s2 lm(g2),

• T := lm(g1) = s2 lm(g2)s′2,

• T := s1 lm(g1) = lm(g2)s′2 or

• T := s1 lm(g1)s′1 = lm(g2)

and t = τT for some monomial τ ∈ Pe. Moreover, let τ1, τ2 result from s1, s′1, s2, s′2, such that
τ1T = lm(g1), τ2T = lm(g2). Furthermore, let

a1 :=
lcm(lc(g1), lc(g2))

lc(g1)
, a2 :=

lcm(lc(g1), lc(g2))
lc(g2)

d := gcd(lc(g1), lc(g2)) = b1 lc(g1) + b2 lc(g2) ∈ R, the Bézout identity for the leading coef-
ficients. Now if T corresponds to a non-trivial overlap, then we can compute spolyT

1 (g1, g2),
gpolyT

1 (g1, g2) or spolyT
1 (g2, g1), spolyT

1 (g2, g1). Otherwise, there exists a w ∈ B, such that
9



T = lm(g1)w lm(g2) or T = lm(g2)w lm(g1). In this case we are interested in spolyw
2 (g1, g2),

gpolyw
2 (g1, g2) or spolyw

2 (g2, g1), gpolyw
2 (g2, g1). By definition

spoly(g1, g2) := a1τ1g1 − a2τ2g2
and gpoly(g1, g2) := b1τ1g1 + b2τ2g2

are first or second type S- and G-polynomials and lm(h1) = ττ1, lm(h2) = ττ2. Choose a, b ∈
R \ {0}, such that lc(h1) lc(g1) + lc(h2) lc(g2) = ad and lc(h1) = ab1 + ba1, lc(h2) = ab2 − ba2.
Then, since |a1 lc(g1) + a2 lc(g2)| > 0 and by the triangle inequality, we have

| lc(h1) lc(g1)| + | lc(h2) lc(g2)|
=|(ab1 + ba1) lc(g1)| + |(ab2 − ba2) lc(g2)|
≥|ab1 lc(g1)| + |ba1 lc(g1)| + |ab2 lc(g2)| + |ba2 lc(g2)|
>|ab1 lc(g1)| + |ab2 lc(g2)| ≥ |ab1 lc(g1) + ab2 lc(g2)| = |ad|,

thus |ad| < | lc(h1) lc(g1)| + | lc(h2) lc(g2)|. Furthermore, we have

h1g1 + h2g2 =(lc(h1) lm(h1) tail(h1))g1 + (lc(h2) lm(h2) tail(h2))g2

=(ab1 + ba1)ττ1g1 + tail(h1)g1 + (ab2 − ba2)ττ2g2 + tail(h2)g1

=aτ(b1τ1g1 + b2τ2g2) + bτ(a1τ1g1 − a2τ2g2) + tail(h1)g1 + tail(h2)g1

=aτ gpoly(g1, g2) + bτspoly(g1, g2) + tail(h1)g1 + tail(h2)g1.

Since the S- and the G-polynomial are of first or second type they reduce to zero w.r.t. G. Hence
we can write h1g1 + h2g2 =

∑
j h′jg j for h′j ∈ P

e and define M′ := { j ∈ N | lm(h′jg j) = t}. Since
lm(τspoly(g1, g2)) ≺ t, lm(tail(h1)g1) ≺ t and lm(tail(h2)g1) ≺ t we have∑

j∈M′
| lc(h′j) lc(g j)|

=
∑
j∈M′
| lc(h′jg j)|

=| lc(dτ gpoly(g1, g2))|
=|ad|

<| lc(h1) lc(g1)| + | lc(h2) lc(g2)|,

which contradicts our assumption that the leading coefficient of our original representation are
minimal. Therefore, M contains exactly one element and thus we have a strong Gröbner repre-
sentation of f w.r.t. G, i.e. G is a strong Gröbner basis for I.

It is possible to define monic (that is, with leading coefficients being 1) and reduced Gröbner
bases (Li, 2012; Pauer, 2007) in our setup. Let G ⊆ P \ {0}. It is called a reduced Gröbner
basis, if

1. every g ∈ G has leading coefficient with signum 1,

2. L(G \ {g}) ( L(G) for every g ∈ G and

3. lt(tail(g)) < L(G) for every g ∈ G.
10



The first condition states, that in the case of R = Z every element of a reduced Gröbner basis
has leading coefficient in Z+. The second condition is sometimes referred to as “simplicity”
and means that the leading ideal becomes strictly smaller when removing an element, thus no
element is useless. The third condition, “tail-reduced”, is required in the classical field case with
commutative polynomials to ensure that a reduced Gröbner basis is unique. However, this does
not suffice in our setup: for instance, Pritchard gave the following counterexample in (Pritchard,
1996).

Let f = 2y2, g = 3x2 + y2 and I = 〈 f , g〉. Then { f , g} is a Gröbner basis for I with respect
to any ordering x � y and satisfies the above three conditions. On the other hand, this is also
true for { f , g′} where g′ = g − f = 3x2 − y2, so we have two different reduced Gröbner bases for
I. In the field case the polynomial g is not tail-reduced. This example can be used in both the
commutative and non-commutative case.

When implementing a version of Buchberger’s algorithm, one should always aim to have a
reduced Gröbner basis as an output. In fact this is more practical, because removing elements,
which are not simplified or tail reduced speeds up the computation, since we do not need to
consider them in critical pairs.

Lemma 11.
Let G ⊂ P \ {0} be finite and contain only polynomials up to degree d ∈ N. Assume moreover,
that no new polynomials are added to G, while computing a length-bounded Gröbner basis up to
degree 3d − 1 with the BuchbergerAlgorithm.
Then G is a strong Gröbner basis for 〈G〉.

Proof. Suppose, that continuing the procedure beyond degree 3d would yield a new polynomial
p ∈ 〈G〉 from a pair f , g with leading monomial lm( f )w lm(g) for some w ∈ B, such that
| lm( f )| = | lm(g)| = |w| = d. Then lm( f )w′ lm(g) can not yield a new leading monomial for every
subword w′ of w with length up to d−1. Hence we may assume, that lm( f ), lm(g) are coprime and
f , g, w satisfy the conditions of Buchberger’s product criterion in the non-commutative ring case.
We will prove this criterion in Lemma 16. Therefore p must reduce to zero, a contradiction.

In the non-commutative case over fields the bound is 2d − 1. Here we gain an extra d, because
we have to consider S- and G-polynomials of the second kind corresponding to w. As we will
see, the product criterion does not generalize simply from the field case. Generic examples show,
that the bound 3d − 1 is sharp.

3. Coefficient Rings with Zero-divisors

When the ring of coefficients is not a domain like Z, but a Euclidean ring like Zm := Z/mZ for
some non-zero m ∈ Z, which is neither a unit nor a prime, then we can make use of factorizations
of m. Recall, that a factorization of m, say m = ab for some coprime a, b ∈ Z, implies, that xy ,
m for a - x | a, b - y | b. Suppose, that cx = a, dy = b and xy = m. Then m = ab = cxdy = cdm
and so m(1 − cd) = 0, which implies 1 = cd, because Z is a domain. But then c is a unit, which
contradicts a - x.

This was easy to see, but it also means, that we have to choose our coefficients wisely, when
using lifting methods. For a, b ∈ Z coprime, we consider the canonical projections

π : Z〈X〉 → Zm〈X〉,
πa : Zm〈X〉 � (aZ + bZ)/mZ〈X〉 → Za〈X〉

and πb : Zm〈X〉 � (aZ + bZ)/mZ〈X〉 → Zb〈X〉.

11



For an ideal J of Zm〈X〉 =: Pm, we assume, that there exist countable sets Ga = {ga, i}i, Gb =

{gb, j} j ⊆ Pm, such that πa(Ga) is a strong Gröbner basis for πa(J) and πb(Gb) is a strong Gröbner
basis for πb(J). Additionally, let π(a) ∈ Ga, π(b) ∈ Gb, π(a) - lc(ga, i) | π(a) for ga, i , π(a) and
π(b) - lc(gb, j) | π(b) for gb, j , π(b). This implies, that each leading coefficient is a non-trivial
zero divisor in the respective quotient ring. For every pair (i, j) of indices there exist monomials
τi, j, τ j, i ∈ B

e, such that τi, j lm(ga, i) = τ j, i lm(gb, j) and four following cases occur

• τi, j = 1 ⊗ x′, τ j, i = y ⊗ 1,

• τi, j = x ⊗ 1, τ j, i = 1 ⊗ y′,

• τi, j = 1 ⊗ 1, τ j, i = y ⊗ y′ or

• τi, j = x ⊗ x′, τ j, i = 1 ⊗ 1

for suitable monomials x, x′, y, y′ ∈ Be. These are precisely the overlap relations corresponding
to first and second type S- and G-polynomials. We define

fi, j := π(ar) lc(ga, i)τ j, igb, j + π(bs) lc(gb, j)τi, jga, i.

Theorem 12.
Let m = ab ∈ Z with a, b coprime such that ar + bs = 1 for some r, s ∈ Z. Furthermore, let J
be an ideal of Pm accompanied by the sets Ga and Gb defined as above.
Then G := { fi, j | τi, j lm(ga, i) = τ j, i lm(gb, j)} is a strong Gröbner basis for J .

Proof. By the second isomorphism theorem we have

Zm/aZm = Zm/(π(a)Zm) � Za

and Zm/bZm = Zm/(π(b)Zm) � Zb.

From this and the forthcoming Theorem 13.1 it follows that Ga ∪ {a} = Ga, Gb ∪ {b} = Gb are
strong Gröbner basis of I + aPm, I + bPm respectively. Then, again using the isomorphism
theorem, all conditions of Theorem 13.2 are satisfied and it follows, that G is a strong Gröbner
basis for I.

Note, that the τi, j, τ j, i are not uniquely determined since all overlap relations of the leading
monomials have to be considered. The above lemma improves our algorithm for computing
Gröbner bases over principal ideal rings. It remains to show, that the Theorems 10 and 12
from (Eder and Hofmann, 2019), formulated in the commutative case also hold in the non-
commutative one.

Theorem 13. ((Eder and Hofmann, 2019), Theorems 10 and 12)
1. Let m ∈ Z \ {0} and I an ideal of P. Let G ⊆ P, such that π(G) is a strong Gröbner basis of
π(I). Additionally, we assume that m - lc(g) | m for every g ∈ G, i.e. π(lc(g)) is a non-trivial zero
divisor in Zm. Then G ∪ {m} is a strong Gröbner basis for I + mP.

2. Let J be an ideal of Pm and a, b, r, s ∈ Zm, such that ab = 0 and a, b coprime with
ar + bs = 1. Let Ga, Gb be Gröbner bases for J + aPm and J + bPm respectively, such

12



that for every ga, i ∈ Ga \ Zm we have a - lc(ga, i) | a. Assume, that the same holds for Gb. For
ga, i ∈ Ga and gb, j ∈ Gb we define

fi, j := π(ar) lc(ga, i)τ j, igb, j + π(bs) lc(gb, j)τi, jga, i

and assume that lc(ga, i) lc(gb, j) , 0 for all i, j.
Then G := { fi, j}i, j is a strong Gröbner basis for J .

Proof. 1. Clearly G ∪ {m} is a subset of I + mP. Let f ∈ I. If π( f ) = 0, then m | lt( f ). So
we may assume π( f ) , 0 and m - lc( f ). Then lm(π( f )) = lm( f ) and there exists g ∈ G such
that lt(π(g)) | lt(π( f )), because π(G) is a Gröbner basis and we can find a term h ∈ Pe with
π(h) lt(π(g)) = lt(π( f )). Thus lm(h) lm(g) = lm( f ) and π(h lt(g) − lt( f )) = 0. Thus, we have
h lt(g) − lt( f ) = c lm( f ) for some c ∈ mZ and hence lt(g) | lt( f ), because lc(g) | m by our addi-
tional assumption and lm(g) | lm( f ). In other words G∪{m} is a strong Gröbner basis for I+mP.

2. By our assumptions we haveJ = arJ+bsJ = ar(J+bPm)+bs(J+aPm) = ar〈Gb〉+bs〈Ga〉.
Since a and b are coprime and lc(ga, i) | a, lc(gb, j) | b, we see that lc(ga, i) and lc(gb, j) are coprime
as well. Furthermore, we have lc(ga, i) lc(gb, j)Zm = lc(ga, i)Zm ∩ lc(gb, j)Zm ) aZm ∩ bZm = {0}
and thus lt( fi, j) = lc(ga, i) lc(gb, j)τ j, i lm(gb, j). Now let f ∈ J ⊆ (J + aPm) ∩ (J + bPm). Then
there exist ga, i ∈ Ga and gb, j ∈ Gb, such that lt(ga, i) | lt( f ) and lt(gb, j) | lt( f ). Especially
τi, j lm(ga, i) | lm( f ) and lcm(lc(ga, i), lc(gb, j)) | lc( f ). Finally, lt( fi, j) | lt( f ) and G is a strong
Gröbner basis for J .

4. Forming and Discarding Critical Pairs

To improve the procedure BuchbergerAlgorithm, we need criteria to determine which pairs of
polynomials of the input set yield S- and G-polynomials, which reduce to zero. In the following
we will recall the criteria for discarding critical pairs known from the commutative case and
analyze, which of them can be applied in the case R〈X〉.

Remark 14.
Consider the case t := lm( f ) is divisible by (or even equal to) lm(g). Then lcm(lm( f ), lm(g))
contains exactly one element, namely t, because it is the only minimal element that is divisible
by both leading monomials. Therefore, spolyt

1( f , g) and gpolyt
1( f , g) are the only first type S-

and G-polynomials. However, these are not uniquely determined, we might have more overlap
relations of lm( f ), lm(g), as we have seen in the previous example of Remark 9, and we still need
second type S-polynomials.

The following Lemma justifies why G-polynomials are redundant over fields.

Lemma 15. (Buchberger’s criterion (Eder et al., 2021; Lichtblau, 2012))
Let f , g ∈ P \ {0}. If lc( f ) | lc(g) in R, then every G-polynomial of f and g is redundant.

Proof. By the hypothesis we have b = lcm(lc( f ), lc(g)) = lc( f ). Let r ∈ R, such that r lc( f ) =

lc(g). Then lc( f ) = (nr + 1) lc( f )−n lc(g) yields any possible Bézout identity for b, where n ∈ Z.
Thus, with t = τ f lm( f ) = τg lm(g), every G-polynomial of f and g has shape gpoly( f , g) =

(nr + 1)τ f f − nτgg = lc( f )t + n(rτ f tail( f ) − τg tail(g)) + τ f tail( f ). Subtracting τ f f , we can
reduce this to n(rτ f tail( f ) − τg tail(g)). Note that rτ f tail( f ) − τg tail(g) is an S-polynomial of
f and g. Hence, every G-polynomial of f and g reduces to zero, after we compute their S-
polynomials.
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For f ∈ P \ {0}, we iteratively define tail0( f ) := f and taili( f ) := tail(taili−1( f )) for i ≥ 1.

Lemma 16. (Buchberger’s product criterion (Eder et al., 2021; Lichtblau, 2012))
Let f , g ∈ P \ {0} and w ∈ B, such that

1. lc( f ) and lc(g) are coprime over R,

2. lm( f ) and lm(g) only have trivial overlaps and

3. for all i, j ≥ 1 the inequality lm(taili( f ))w lm(g) , lm( f )w lm(tail j(g)) takes place.

Then s := spolyw
2 ( f , g) reduces to zero w.r.t. { f , g}.

Proof. Under the assumptions (1) and (2) we have s = f w lt(g)− lt( f )wg = f w(g− tail(g))− ( f −
tail( f ))wg = tail( f )wg − f w tail(g). Note that tail( f )wg reduces to zero w.r.t. g and f w tail(g)
reduces to zero w.r.t. f .

By (3) we can assume without loss of generality that lt(s) = lt(tail( f ))w lt(g). Then s reduces
to s′ := s − lt(tail( f ))wg and lm(s′) ≺ lm(s). Again by (3) there is no cancellation of leading
terms and, since ≺ is a well ordering, we iteratively see that s reduces to zero.

Remark 17.
The commutative version of Buchberger’s product criterion in (Eder et al., 2021; Lichtblau,
2012) states, that the S-polynomial reduces to zero, if the leading terms are coprime over Z[X].

Condition (3), or rather its negation, describes a very specific relation between the terms of
f and g. There is only a finite amount of w ∈ B, that satisfy such relation and are at the same
time considered in BuchbergerAlgorithm, because we only compute up to a certain length.

The version over fields for this criterion is much simpler, because then we only consider w
to be the empty word which clearly satisfies (3). Moreover, (1) is redundant and Buchberger’s
product criterion states that an S-polynomial reduces to zero when the leading monomials have
only trivial overlap relations.

We consider further situations, in which we might find applications for criteria.

Example 18.
If lm( f ) and lm(g) have no non-trivial overlap and the leading coefficients are not coprime, i.e.
lcm(lc( f ), lc(g)) , 1, then we can make no a priori statement about reduction. This only applies
to second type S- and G-polynomials. Take for example f = 4xy + x, g = 6zy + z ∈ Z〈X〉 =

Z〈x, y, z〉 in the degree left lexicographical ordering with x � y � z. Then both

spoly1
2( f , g) = 3 f zy − 2xyg = 3xzy − 2xyz

and gpoly1
2( f , g) = (−1) f zy + 1xyg = 2xyzy + xyz − xzy

do not reduce any further. Thus, they must be added to the Gröbner basis just as any other
second type S- and G-polynomial. Finally, the Gröbner basis of 〈4xy + x, 6zy + z〉 with respect
to classical monomial orderings seem to be infinite, containing several infinite parametrizable
series like {zyizy − zyi+1z : i ≥ 0}.

When the leading coefficients are not coprime, no statement for S- and G-polynomials of
the first type can be made. For example, in the case of f = 4xy + y, g = 6yz + y we have
spolyxyz

1 ( f , g) = 3 f z−2xg = 3yz−2xy and gpolyxyz
1 ( f , g) = (−1) f z + 1xg = 2xyz− yz + xy which

do not reduce any further.
The Gröbner basis of 〈4xy+y, 6yz+y〉with respect to classical monomial orderings seem to be

infinite as the one above. This time we see infinite parametrizable series like {yziy − y2zi : i ≥ 0}.
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Remark 19.
In the commutative case, according to (Eder et al., 2021), a pair { f , g} with lm( f ) = lm(g) can
be replaced by the new pair {spoly( f , g), gpoly( f , g)}. Now set lm( f ) = lm(g) =: t, then in
the definition of S- and G-polynomials of the first type we have τ f = τg = 1 ⊗ 1 and therefore
spolyt

1( f , g) = a f f − agg and gpolyt
1( f , g) = b f f + bgg. This yields a linear equation(

spolyt
1( f , g)

gpolyt
1( f , g)

)
=

(
a f −ag

b f bg

) (
f
g

)
,

where the defining matrix has determinant a f bg+agb f = 1, thus it is invertible overR! Hence, we
can recover f and g back from their S- and G- polynomials and replace them. The importance of
this statement was discussed for the commutative case in (Eder et al., 2021) and its effectiveness
translates equivalently to the non-commutative one.

The following two lemmata are chain criteria, which are based on the idea to have two critical
pairs and derive a third one from them under certain conditions. The commutative versions for
both criteria were proven in (Eder et al., 2021).

Lemma 20. (Buchberger’s S-chain criterion (Eder et al., 2021; Lichtblau, 2012))
Let G ⊆ P \ {0} and f , g, h ∈ G. For p, q ∈ { f , g, h} let lcm(lm(p), lm(q)) , ∅ and fix
Tpq ∈ lcm(lm(p), lm(q)) and choose τpq ∈ B

e with τpq lm(p) = Tpq. There exist τqp ∈ B
e, such

that τqp lm(q) = Tpq. Assume Tpq = Tqp and let

1. Thg = Tgh be divisible by both Th f and Tg f with δg f Th f = Thg and δh f Tg f = Tgh for some
δg f , δh f ∈ B

e,

2. lc( f ) | lcm(lc(g), lc(h)) over R and

3. spolyT f g

1 ( f , g) and spolyT f h

1 ( f , h) both have strong Gröbner representations w.r.t. G.

Then spolyTgh

1 ( f , g) has a strong Gröbner representation w.r.t. G.

Proof. Let cpq :=
lcm(lc(p), lc(q))

lc(p)
for p, q ∈ { f , g, h}. Then one can check, that

chg

ch f
δg f spolyT f h

1 ( f , h) −
cgh

cg f
δh f spolyT f g

1 ( f , g)

=cghδh f τg f g − chgδg f τh f h +

(
chgc f h

ch f
δg f τ f h −

cghc f g

cg f
δh f τ f g

)
f .

Using relations for the monomial expressions τpq, Tpq, δpq and the coefficients cpq, we see that
the first term on the right hand side is equal to spolyTgh

1 (g, h) and we obtain

spolyTgh

1 (g, h) =
chg

ch f
δg f spolyT f h

1 ( f , h) −
cgh

cg f
δh f spolyT f g

1 ( f , g),

which shows that spolyTgh

1 (g, h) has a strong Gröbner representation w.r.t. G. This works anal-
ogously for second type S-polynomials spolyw

2 (g, h) or spolyw̃
2 (h, g), if we choose w or w̃, such

that either lm(g)w lm(h) = Tgh or lm(h)w̃ lm(g) = Thg.
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We give a similar criterion for G-polynomials.

Lemma 21. (Buchberger’s G-chain criterion, cf. (Eder et al., 2021; Lichtblau, 2012))
Let G ⊆ P \ {0} and f , g, h ∈ G. We keep the notations Tpq and τpq from Lemma 20. Let

1. Thg = Tgh be divisible by both Th f and Tg f with δg f Th f = Thg and δh f Tg f = Tgh for some
δg f , δh f ∈ B

e and

2. lc( f ) | gcd(lc(g), lc(g)) with d :=
gcd(lc(g), lc(g))

lc( f )
.

Then gpolyTgh

1 (g, h) has a strong Gröbner representation w.r.t. G.

Proof. First we observe, that

gpolyTgh

1 (g, h) = gcd(lc(g), lc(h))Tgh + bgτgh tail(g) + bhτhg tail(h),

spolyT f g

1 ( f , g) =
lc(g)
lc( f )

τ f g f − τg f g =
lc(g)
lc( f )

τ f g tail( f ) − τg f tail(g)

and spolyT f h

1 ( f , h) =
lc(h)
lc( f )

τ f h f − τh f h =
lc(h)
lc( f )

τ f h tail( f ) − τh f tail(h).

Since T f h divides Tgh, there exists a w ∈ Be with w lm( f ) = Tgh and

w lm( f ) = Tgh = δg f T f h = δg f T f h lm( f ).

Hence, w = δg f τ f h and analogously w = δh f τ f g. Moreover, dw lc( f ) lm( f ) = gcd(lc(g), lc(h))Tgh

and finally we obtain

gpolyTgh

1 − dw f + bgδh f spolyT f g

1 + bhδg f spolyT f h

1

= gcd(lc(g), lc(h))Tgh − (gcd(lc(g), lc(h))Tgh + dw tail( f ))

+ bgτgh tail(g) + bgδh f

(
lc(g)
lc( f )

τ f g tail( f ) − τg f tail(g)
)

+ bhτhg tail(h) + bhδg f

(
lc(h)
lc( f )

τ f h tail( f ) − τh f tail(h)
)

= bgτgh tail(g) + bhτhg tail(h) − dw tail( f ) + bg
lc(g)
lc( f )

δh f τ f g tail( f )

− bg δh f τg f︸︷︷︸
=τgh

tail(g) + bh
lc(h)
lc( f )

δg f τ f h︸︷︷︸
=δh f τ f g

tail( f ) − bh δg f τh f︸︷︷︸
=τhg

tail(h)

=

(
bg lc(g) + lc(h)

lc( f )
δh f τ f g − dw

)
tail( f ) = d(δh f τ f g − w) tail( f ) = 0.

Finally, we can write gpolyTgh

1 as

gpolyTgh

1 = dw f − bgδh f spolyT f g

1 − bhδg f spolyT f h

1 ,

which is a strong Gröbner representation.
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We conclude, that the well-known criteria for S- and G-polynomials from the commutative case
can also be applied in the non-commutative case with modifications, if we distinguish between
first and second type S- and G-polynomials. Computations show how hard these requirements
are to be satisfied compared to the commutative case by specifically counting the number of
applications of product and chain criteria.

5. Examples

We give examples for Gröbner bases that have been computed up to a certain length bound over
the integers. These examples also show that although computing over Z delivers infinite results
much more often than when computing over fields, non-commutative Gröbner bases over Z can
be finite as well.

We start with the examples from (Apel, 2000) until Example 24. Let P = Z〈x, y, z〉 with the
degree left lexicographical ordering and x � y � z (if not indicated otherwise).

Example 22.
We consider the ideal I = 〈 f1 = yx − 3xy − 3z, f2 = zx − 2xz + y, f3 = zy − yz − x〉 ⊂ P. We
investigated it over Q〈x, y, z〉 in (Levandovskyy et al., 2020d) where we also comment in details
on syntax and commands of Singular:Letterplace.
At first, we analyze this ideal over the field Q:

LIB "freegb.lib"; // initialization of free algebras
ring r = 0,(z,y,x),Dp; // degree left lex ord on z>y>x
ring R = freeAlgebra(r,7); // length bound is 7
ideal I = y*x - 3*x*y - 3*z, z*x - 2*x*z +y, z*y-y*z-x;
option(redSB); option(redTail); // for minimal reduced GB
option(intStrategy); // avoid divisions by coefficients
ideal J = twostd(I); // compute a two-sided GB of I
J; // prints generators of J

The output is a finite Gröbner basis{
4xy + 3z, 3xz − y, 4yx − 3z, 2y2 − 3x2, 2yz + x, 3zx + y, 2zy − x, 3z2 − 2x2, 4x3 + x

}
.

As we see, original generators have decomposed. In order to compute their expressions in the
Gröbner basis above, one can use the lift command. In particular

yx − 3xy − 3z = −
3
4

(4xy + 3z) +
1
4

(4yx − 3z).

Now, it seems from the form of leading monomials, that Q〈x, y, z〉/J is finite dimensional vector
space. Let us check it:

LIB "fpadim.lib"; // load the library for K-dimensions
lpMonomialBasis(7,0,J); // compute all monomials
// of length up to 7 in Q<x,y,z>/J

which results in
{
1, z, y, x, x2

}
.
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LIB "freegb.lib"; //initialization of free algebras
ring r = integer,(z,y,x),Dp; //degree left lex ord z>y>x
ring R = freeAlgebra(r,7); // length bound is 7
ideal I = y*x - 3*x*y - 3*z, z*x - 2*x*z +y, z*y-y*z-x;
option(redSB); // Groebner basis will be minimal
option(redTail); // Groebner basis will be tail-reduced
ideal J = twostd(I); // compute a two-sided GB of I
J; // print generators of J

The output has plenty of elements in each degree (which is the same as length because of the
degree ordering), what hints at potentially infinite Gröbner basis (what we confirm below) and
the elements, which can be subsequently constructed, are

{ f1, f2, f3, 12xy + 9z, 9xz − 3y, 6y2 − 9x2, 6yz + 3x,

3z2 + 2y2 − 5x2, 6x3 − 3yz, 4x2y + 3xz, 3x2z + 3xy + 3z,

2xy2 + 3x3 + 3yz + 3x, 3xyz + 3y2 − 3x2, 2y3 + x2y + 3xz,

2x4 + y2 − x2, 2x3y + 3y2z + 3xy + 3z, x2yz + xy2 − x3,

xy2z − y3 + x2y, x5 − y3z − xy2 + x3, y3z2 − x4y,

x4z + x3y + 2y2z + x2z + 3xy + 3z, xy3z − y4 + x4 − y2 + x2,

xy4z − y5 + x2y3, xy5z − y6 + x4y2 + y4 + x4 + 2y2 − 2x2}

Indeed, we can show that I contains an element with the leading monomial xyiz for all i ≥ 2.
Therefore this Gröbner basis is infinite, but can be presented in finite terms. Note, that the
original generators have been preserved in a Gröbner basis, while over Q (see (Levandovskyy
et al., 2020d)) they were decomposed. Also, over Q the input ideal has a finite Gröbner basis of
degree at most 3.

Example 23.
Let I = 〈 f1 = yx − 3xy − z, f2 = zx − xz + y, f3 = zy − yz − x〉 ⊂ P. Then I has a finite strong
Gröbner basis, namely{

f1, f2, f3, 8xy + 2z, 4xz − 2y, 4yz + 2x, 2x2 − 2y2, 4y2 − 2z2, 2z3 − 2xy
}
.

As we can see, the leading coefficients of the Gröbner basis above might vanish, if we pass to
the field of characteristic 2. Therefore the bimodule M := Z〈x, y, z〉/I might have nontrivial
2-torsion, i.e. there is a nonzero submodule T2(M) := {p ∈ M : ∃n ∈ N0 2n · p ∈ I}. By adopting
the classical method of Caboara and Traverso for computing colon (or quotient) ideals to our
situation, where we use the fact that the ground ring is central (i.e. commutes with all variables),
we do the following:

LIB "freegb.lib"; //we will use position-over-term order
ring r = integer,(x,y,z),(c,dp);
ring R = freeAlgebra(r,7,2); // 2==number of components
ideal I = y*x - 3*x*y - z, z*x - x*z +y, z*y-y*z-x;
option(redSB); option(redTail);
ideal J = twostd(I); module N;
N = 2*ncgen(1)*gen(1)+ncgen(2)*gen(2),J*ncgen(1)*gen(1);
module SN = twostd(N); SN;
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Above, gen(i) stands for the i-th canonical basis vector (commuting with everything) and
ncgen(i) - for the i-th canonical generator of the free bimodule, which commutes only with
constants. The output, which is a list of vectors, looks as follows:

...
SN[9]=[0,z*z*z*ncgen(2)-x*y*ncgen(2)]
SN[10]=[2*ncgen(1),ncgen(2)]
SN[11]=[z*y*ncgen(1)-y*z*ncgen(1)-x*ncgen(1)]
...

From this output we gather all vectors with 0 in the first component ncgen(1)*gen(1), and
form an ideal, whose Gröbner basis is{

zy − yz − x, zx − xz + y, yx + xy, 2yz + x, 2xz − y, 2y2 − z2, 4xy + z, x2 − y2, z3 − xy
}
.

Another colon computation does not change this ideal, therefore it is the saturation ideal of I
at 2, denoted by L = I : 2∞ ⊂ Z〈x, y, z〉. It is the presentation for the 2-torsion submodule
T2(M) = Z〈x, y, z〉L/I and, moreover, 2 · L ⊂ I ⊂ L holds.

Example 24.
In this example we have to run a Gröbner basis of 〈 f1 = zy− yz + z2, f2 = zx + y2, f3 = yx−3xy〉
up to length bound 11. We use degree right lexicographical ordering and obtain a finite Gröbner
basis

{zy − yz + z2, zx + y2, yx − 3xy, 2y3 + y2z − 2yz2 + 2z3, y2z2 − 4yz3 + 6z4,

y4 + 27xy2z − 54xyz2 + 54xz3, 54xy2z − y3z − 108xyz2 + 108xz3 + 62yz3 − 124z4,

14z5, 14yz3 − 28z4, 2yz4 − 6z5, 2xyz3 − 4xz4, xy3z, 2z6, 2xz5}.

As we can see from the leading terms, the corresponding module might have 2- and 7-torsion
submodules. There have been 17068 critical pairs created, and internal total length of interme-
diate elements was 11. The product criterion has been used 196 times, while the chain criterion
was invoked 36711 times. Totally, up to 2.9 GB of memory was allocated.

Comparing the data with increasing the length bound to the presumably unlucky 13, we had
to create over 135300 critical pairs, while the product criterion has been used 1876 and the
chain criterion 365367 times. This illustrates the explosive behaviour of the number of critical
pairs when dealing with rings as coefficients.

In the contrast, the Gröbner basis computation of the same input over Q considered only 14
critical pairs, went up to total degree 6 of intermediate elements, used no product criterion and
9 times the chain criterion with less than 1 MB of memory. The result is

{zy − yz + z2, zx + y2, yx − 3xy, 2y3 + y2z − 2yz2 + 2z3,

y2z2 − 2z4, xy2z − 2xyz2 + 2xz3, yz3 − 2z4, z5}.

This demonstrates once again, how technically involved computations with free algebras over
rings as coefficients are.

Example 25.
The important class of Iwahori-Hecke algebras (Humphreys, 1990) is associated to Coxeter
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groups and are constructed by means of finite presentation over Z[q, q−1] where q will later be
specialized, most frequently to the root of unity over a finite field. Consider the Iwahori-Hecke
algebra of type A3, then the presentation is as follows:

Z[q, q−1]〈x, y, z〉/〈x2 + (1−q)x−q, y2 + (1−q)y−q, z2 + (1−q)z−q, zx− xz, yxy− xyx, zyz− yzy〉,

where we observe braid relations between x, y and y, z. In order to treat the ground ring Z[q, q−1]
appropriately, we do the following:

• introduce two free variables q, iq with the latter standing for q−1,

• use a block ordering for the variables, giving eliminating preference to the block x, y, z,

• to the ideal of relations above we insert new commutation relations (q, iq mutually com-
mute with x,y,z) and reciprocity relations.

LIB "freegb.lib";
ring r = integer,(x,y,z,iq,q),(a(1,1,1,0,0),Dp);
ring R = freeAlgebra(r,7);
ideal I = x^2 + (1-q)*x - q, y^2 + (1-q)*y - q, z^2 + (1-q)*z - q,
z*x - x*z, y*x*y - x*y*x, z*y*z - y*z*y,
bracket(q,x), bracket(q,y), bracket(q,z),
bracket(iq,x), bracket(iq,y), bracket(iq,z), q*iq -1, iq*q-1;
option(redSB); option(redTail);
ideal J = twostd(I);

The resulting Gröbner basis is finite, and has only one new generator xyzx − yxyz of degree 4.
We also observe, that no integers, other than ±1, appear among the coefficients from Z. Now we
specialize q to the primitive third root of unity.

ideal L = J, q^2+q+1;
L = twostd(L);

In the output we see the relation iq + q + 1 = 0, which has been used to replace iq. Since
except for the minimal polynomial q2 +q+1 and commutativity relations, no q appear as leading
coefficients, we can proceed to the ground field K := Q[q]/〈q2 + q + 1〉. One of the possibilities
to do this is the localization at Z\{0}. Now, with the abilities of Letterplace over fields we easily
establish, that specialized over K, the Iwahori-Hecke algebra of type A3 is finite-dimensional of
dimension 24. Hence further computations with modules over this algebra can be carried on.

Example 26.
Over K[X], an ideal is called binomial, if it is generated by polynomials of length at most two. A
distinct property of binomial ideals, which is easy to prove, is that with respect to any monomial
ordering, a binomial ideal possesses a Gröbner basis, consisting of binomials. This is not true
over rings anymore, as, for instance, a Gröbner basis with respect to the degree reverse lexico-
graphical ordering of {2x − 3y, xy − 3x} is {2x − 3y, 3y2 − 9y, xy + x − 6y}.
In the setting of a free algebra, the binomiality of a Gröbner basis still holds over K〈X〉. As
expected, it breaks over rings since in the very same example the commutativity relation yx − xy
is a binomial. Hence, a strong minimal Gröbner basis of {2x − 3y, xy − 3x, yx − xy} ⊂ Z〈x, y〉 is{

2x − 3y, 3y2 − 9y, xy + x − 6y, yx + x − 6y
}
,

which cannot be made binomial.
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6. Implementation

We have created a powerful implementation called Letterplace (Levandovskyy et al., 2020a,d,c)
in the framework of Singular (Decker et al., 2020). Its’ extension to coefficient rings like Z
addresses the following functions with the current release for ideals and subbimodules of a free
bimodule with finite rank. We provide a vast family of orderings on monoids and modules
including three kinds of orderings, which eliminate variables or free bimodule components.

• twostd: a two-sided Gröbner basis; when executed with respect to an elimination or-
dering, it allows to eliminate variables (Borges and Borges, 1998), and thus to compute
kernels of ring morphisms and preimages of ideals under such morphisms;

• reduce (NF): a normal form of a vector or a polynomial with respect to a two-sided
Gröbner basis;

• syz: a generating set of a syzygy bimodule (Bluhm and Kreuzer, 2007) of an input;

• modulo: kernel of a bimodule homomorphism;

• lift: computation of a transformation matrix between a module and its submodule, in
other words expressing generators of a submodule in terms of generators of a module;

• liftstd: computation of a two-sided Gröbner basis and a transformation matrix of a
given ideal or subbimodule and, optionally, a syzygy bimodule.

Caveats: As every software, which is intensively used, our implementation has some artefacts,
which we cannot overcome and therefore describe as caveats.

a) Computing with the options redSB and redTail enabled, sometimes the resulting Gröb-
ner basis will not be minimal. This occurs only with rings as coefficients and cannot be
changed at this time. Computing a Gröbner basis of the result one more time produces a
minimal Gröbner basis.

b) A computation, involving Gröbner bases, might stop with the following error message:

? degree bound of Letterplace ring is 9, but at least
10 is needed for this multiplication

This is not a bug or an error. It indicates that internally a potentially non-Noetherian
reduction has been invoked, what often happens for monomial orderings, which are not
compatible with the length of monomials. We recommend to increase the length bound on
the ring, and keep polynomials or vectors tail-reduced.

c) In Example 23 a built-in command modulo can be used instead of the construction of the
module SN and gathering the vectors from the first component. However, because of the
multiplication bound as in b), encountered internally, modulo is not coming to a result
even after increasing the length bound to high values. Therefore in such cases the explicit
construction, like the one of the module SN in Example 23 will lead to the result.
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7. Conclusion and Future Work

Following Mora’s “manual for creating own Gröbner basis theory” (Mora, 2016), we have con-
sidered the case of free non-commutative Gröbner bases for ideals and bimodules over Z〈X〉. We
have derived novel information on the building critical pairs and on criteria to discard them when
possible. Armed with this theoretical and algorithmic knowledge, we have created an implemen-
tation in a Singular subsystem Letterplace, which offers a rich functionality at a decent speed.
We are not aware of yet other systems or packages, which can do such computations.

In this paper we have demonstrated several important applications of our algorithms and their
implementation, in particular the determination of torsion submodules with respect to natural
numbers, and operations with Iwahori-Hecke algebras.

A further extension of our implementation to the explicitly given Z/mZ is planned, along
the lines, discussesd in Section 3. Also, we plan to develop (in theory and in practice) one-
sided Gröbner bases in factor algebras (over fields, Letterplace already offers rightStd and
more functions are under development). More functions for dealing with matrices and one-sided
modules will make possible the usage of our implementation as a backend from the system
HomAlg (Barakat et al., 2019). This system performs homological algebra computations within
computable Abelian categories and uses other computer algebra systems as backends for concrete
calculations with matrices over rings. Other existing systems like SageMath (Stein et al., 2020)
and OSCAR (The OSCAR Team, 2020) can use our implementation as backend, since they have
a low-level communication with Singular.
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