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Abstract

The aim of this work is to study a class of dynamic contact prob-

lems coupling adhesion and friction between two viscoelastic bodies

with nonlinear viscosity operators. The boundary conditions concern

relaxed unilateral contact, pointwise friction and adhesion including

possible recoverable behavior. A mixed variational formulation of these

problems is given as a �ve-�eld evolution implicit equation coupled

with a di�erential inclusion describing the evolution of the intensity of

adhesion. Based on several estimates and a classical �xed point the-

orem for multivalued functions, the existence of a strong variational

solution is proved.

1 Introduction

This paper deals with the analysis of a class of nonsmooth dynamic contact
problems which describe various surface interactions between two viscoelastic
bodies with nonlinear viscosity operators. These interactions include some
relaxed unilateral contact, friction with slip depending coe�cient of friction,
and complex adhesion conditions.
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The quasistatic elastic problems with unilateral contact and local Coulomb
friction have been studied in [1, 32, 33] and extensions by taking into account
the adhesion, described by the intensity of adhesion introduced in [18, 19],
were investigated in [31, 12], see also [34] and references therein.

Dynamic frictional contact problems with normal compliance laws have
been studied in [24, 20, 4] and (non)local friction laws were considered in
[21, 22, 16, 6, 13], for viscoelastic bodies. Dynamic frictionless problems with
adhesion have been studied in [5, 23, 36] and dynamic viscoelastic problems
coupling unilateral contact, recoverable adhesion and nonlocal friction have
been analyzed in [14, 7].

Using the hemivariational inequalities theory, several nonsmooth qua-
sistatic and dynamic contact problems were investigated, see [26, 27, 28, 29]
and references therein. An elastic contact problem with relaxed unilateral
conditions and pointwise Coulomb friction in the static case was studied in
[30] and the extension to an elastic quasistatic contact problem was investi-
gated in [10]. The corresponding viscoelastic dynamic case was analyzed in
[7, 8, 9, 11] for di�erent contact conditions.

Based on a new mixed variational formulation, given as a �ve-�eld evo-
lution implicit equation coupled with a di�erential inclusion that describes
the evolution of the intensity of adhesion, this work generalizes and extends
the results presented in [7, 8, 9].

The results presented in this paper extend some of those proved in [11]
in the more general case of rate-depending contact interactions, but with a
limited adhesion (there is no intensity of adhesion), a linear viscosity operator
and under stronger regularity assumptions.

The approach described in this paper enables to consider more general
constitutive laws, as, for example, the ones characterizing some elastovis-
coplastic materials investigated in [15].

The paper is organized as follows. In Section 2 the classical formulation of
the dynamic contact problem is presented. In Section 3 two mixed variational
formulations and some auxiliary results are given. Section 4 is devoted to the
existence of a strong variational solution which is proved for an equivalent
�xed point problem for a multi-valued function.

2 Classical formulation

We consider two viscoelastic bodies that occupy the reference domains Ωα

of the three-dimensional Euclidean point space E with Lipschitz boundaries
denoted by Γα = ∂Ωα, α = 1, 2. Let Γα

U , Γα
F and Γα

C denote three open
disjoint su�ciently smooth parts of Γα such that Γα = Γ

α

U ∪Γ
α

F ∪Γ
α

C and, to
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simplify the estimates, meas(Γα
U) > 0, α = 1, 2.

We assume the small deformation hypothesis and we use Cartesian coor-
dinates representations with the summation convention for i, j, k, l = 1, 2, 3.
To simplify the presentation of the functional framework, we shall continue
to use the vector and tensor notations for some inclusions.

Let yα(xα, t) denote the position at time t ∈ [0, T ], where 0 < T < +∞,
of the material point xα represented by the coordinates xα = (xα1 , x

α
2 , x

α
3 ) in

the reference con�guration Ωα, and uα(xα, t) = yα(xα, t) − xα denote the
displacement vector of xα at time t, with the components uα = (uα1 , u

α
2 , u

α
3 ).

Let εα, with the components εα = (εij (u
α)), and σα, with the compo-

nents σα =
(
σα
ij

)
, be the in�nitesimal strain tensor and the stress tensor,

respectively, corresponding to Ωα, α = 1, 2.
Denote by (S, · , ∥.∥S) the space of symmetric second-order tensors with

its inner product and the associated norm.
Let Aα : Ωα × S → S be the linear elasticity tensor corresponding

to Ωα and denote by Aα = (Aα
ijkl) its components satisfying the follow-

ing classical symmetry and ellipticity conditions: Aα
ijkl = Aα

jikl = Aα
klij ∈

L∞(Ωα), ∀ i, j, k, l = 1, 2, 3, ∃ kα1 > 0 such that Aα
ijklτijτkl ≥ kα1 τijτij

∀ τ = (τij) ∈ R9 verifying τij = τji ∀ i, j = 1, 2, 3, α = 1, 2. Thus,
for all τ ∈ S with components τ = (τij), A

α(xα, τ ) has the components
Aα(xα)ijklτij ∀ k, l = 1, 2, 3, α = 1, 2, and Aα satis�es the following condi-
tions for α = 1, 2:

(Aα(xα, τ )) · τ ≥ kα1 ∥τ∥2S a.e. xα ∈ Ωα,∀ τ ∈ S,

∃ kα2 > 0 such that

∥Aα(xα, τ )∥S ≤ kα2 ∥τ∥S a.e. xα ∈ Ωα,∀ τ ∈ S.

Let Bα : Ωα×S → S denote the nonlinear viscosity tensor corresponding
to Ωα, satisfying the following conditions for α = 1, 2:

∃ kα3,4 > 0 such that a.e. xα ∈ Ωα,∀ τ1,2 ∈ S,

(Bα(xα, τ1)−Bα(xα, τ2)) · (τ1 − τ2) ≥ kα3 ∥τ1 − τ2∥2S,

∥Bα(xα, τ1)−Bα(xα, τ2)∥S ≤ kα4 ∥τ1 − τ2∥S,

Bα(·,0) = 0,

∀ τ ∈ S, Bα(·, τ ) is measurable on Ωα.

Assume that the displacements uα = 0 on Γα
U × (0, T ), α = 1, 2, and

that the densities of both bodies are equal to 1. Let f1 = (f 1
1 ,f

2
1 ), f2 =

(f 1
2 ,f

2
2 ) be the given densities of body forces in Ω1 ∪ Ω2 and of tractions on
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Γ1
F ∪ Γ2

F , respectively. Let u0 = (u1
0,u

2
0), u1 = (u1

1,u
2
1) denote the initial

displacements and velocities of the bodies, respectively.
Suppose that the solids can be in contact between the potential contact

surfaces Γ1
C and Γ2

C which are parametrized by two C1 functions, φ1, φ2,
de�ned on an open and bounded subset Ξ of R2, such that φ1(ξ)− φ2(ξ) ≥
0 ∀ ξ ∈ Ξ and each Γα

C is the graph of φα on Ξ that is Γα
C = {(ξ, φα(ξ)) ∈

R3; ξ ∈ Ξ}, α = 1, 2, see, e.g., [3]. De�ne an initial normalized gap between
the two contact surfaces by

g0(ξ) =
φ1(ξ)− φ2(ξ)√
1 + |∇φ1(ξ)|2

∀ ξ ∈ Ξ.

Let nα denote the unit outward normal vector to Γα, α = 1, 2.
We introduce the following notations for the normal and tangential com-

ponents of a displacement �eld vα, of the relative displacement corresponding
to v := (v1,v2) and of the stress vector σαnα on Γα

C , α = 1, 2, respectively:

vα(ξ, t) := vα(ξ, φα(ξ), t), vαN(ξ, t) := vα(ξ, t) · nα(ξ),

vN(ξ, t) := v1N(ξ, t) + v2N(ξ, t),

[vN ](ξ, t) := vN(ξ, t)− g0(ξ),

vα
T (ξ, t) := vα(ξ, t)− vαN(ξ, t)n

α(ξ),

vT (ξ, t) := v1
T (ξ, t)− v2

T (ξ, t),

σα
N(ξ, t) := (σα(ξ, t)nα(ξ)) · nα(ξ),

σα
T (ξ, t) = σα(ξ, t)nα(ξ)− σα

N(ξ, t)n
α(ξ),

for all ξ ∈ Ξ and for all t ∈ [0, T ], where we denoted the inner product of
two vectors by ” · ”.

In Ξ, we consider an internal state variable β (see [18, 19]) that represents
the intensity of adhesion: β = 1 means that the adhesion is total, β = 0
means that there is no adhesion and 0 < β < 1 is the case of partial adhesion.
We assume that the evolution of β is governed, for all t ∈ (0, T ), by the
inclusion β̇ ∈ ψ([uN ], β) in Ξ, where ψ is a given constitutive set-valued
mapping. Denote by β0 the initial intensity of adhesion.

Let κ, κ : R2 → R be two mappings with κ lower semicontinuous and κ
upper semicontinuous, satisfying the following conditions for all s ∈ R2:

κ(s) ≤ κ(s) and 0 /∈ (κ(s), κ(s)), (2.1)

∃ r0 ≥ 0 such that max(|κ(s)|, |κ(s)|) ≤ r0, (2.2)

Let µ : Ξ × R3 → R+ be the sliding velocity dependent coe�cient of
friction and assume that µ is a bounded function such that for a.e. ξ ∈ Ξ
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µ(ξ, ·) is Lipschitz continuous with the Lipschitz constant independent of ξ,
and for every v ∈ R3 µ(·,v) is measurable. De�ne a truncation operator
ϑ = ϑl0 by ϑ : R → R, ϑ(s) = −l0 if s ≤ −l0, ϑ(s) = s if |s| < l0 and
ϑ(s) = l0 if s ≥ l0, where l0 > 0 is a given characteristic length, see, e.g.,
[31, 36].

We choose the following state variables: the in�nitesimal strain tensor
(ε1, ε2) = (ε(u1), ε(u2)) in Ω1 ∪Ω2, the normal relative displacement [uN ] =
u1N + u2N − g0, the tangential relative displacement [uT ] = u1

T −u2
T , and the

intensity of adhesion β in Ξ.
Consider the following dynamic viscoelastic contact problem coupling ad-

hesion and Coulomb friction.
Problem Pc : Find u = (u1,u2) and β such that u(0) = u0, u̇(0) = u1,
β(0) = β0 in Ξ and, for all t ∈ (0, T ),

üα − divσα(uα, u̇α) = fα
1 in Ωα,

σα(uα, u̇α) = Aαε(uα) +Bαε(u̇α) in Ωα,

uα = 0 on Γα
U , σ

αnα = fα
2 on Γα

F , α = 1, 2,

σ1n1 + σ2n2 = 0 in Ξ,

κ([uN ], β) ≤ σN ≤ κ([uN ], β) in Ξ,

|σT | ≤ µ(u̇T ) |σN | in Ξ and

u̇T ̸= 0 ⇒ σT = −µ(u̇T )|σN |
u̇T

|u̇T |
,

β ∈ [0, 1] and β̇ ∈ ψ(ϑ([uN ]), β) in Ξ,

where, for all (xα, t) ∈ Ωα × (0, T ),
Aαε(uα)(xα, t) = Aα(xα, ε(uα(xα, t))),
Bαε(u̇α)(xα, t) = Bα(xα, ε(u̇α(xα, t))),
σα = σα(uα, u̇α), α = 1, 2, σN := σ1

N , σT := σ1
T .

The nonlinear constitutive law represents a generalization of the classical
Kelvin-Voigt law.

Di�erent choices for κ, κ and ψ give various contact and friction condi-
tions, including irreversible or recoverable (healing) adhesion, see [31, 12,
14, 9, 7].

We also remark that in this model friction and adhesion are strongly
coupled, as sliding friction can occur even under tensile loads [25], but the
case of the solely compressive loads can be easily considered.
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3 Mixed variational formulations and approxi-

mation results

We adopt the following notations:

Hs(Ωα) := Hs(Ωα;R3), α = 1, 2,

Hs := Hs(Ω1)×Hs(Ω2) ∀ s ∈ R,

V α = {vα ∈ H1(Ωα); vα = 0 a.e. on Γα
U}, α = 1, 2,

V := V 1 × V 2, H := H0 = L2(Ω1;R3)× L2(Ω2;R3).

(H , |.|) and (V , ∥.∥) are Hilbert spaces with the associated inner products
denoted by (. , .) and by ⟨. , .⟩, respectively, V ⊂ H ⊂ V ′ with the inclusion
mapping of V into H continuous and densely de�ned, where (V ′, ∥.∥V ′) is
the dual of V and H is identi�ed with its own dual. Let ⟨. , .⟩V ′,V denote
the duality pairing between V ′ and V .

De�ne ΞT = Ξ× (0, T ), the closed convex cones L2
+(Ξ), L

2
+(ΞT ) and the

closed convex set L2
[0,1](Ξ) as follows:

L2
+(Ξ) := {δ ∈ L2(Ξ); δ ≥ 0 a.e. in Ξ},

L2
+(ΞT ) := {η ∈ L2(ΞT ); η ≥ 0 a.e. in ΞT},

L2
[0,1](Ξ) := {δ ∈ L2(Ξ); δ ∈ [0, 1] a.e. in Ξ}.

Let A : V → V ′, B : V → V ′ be two operators de�ned by

⟨Av,w⟩V ′,V =
∑
α=1,2

∫
Ωα

(Aαε(vα)) · ε(wα) dx,

⟨Bv,w⟩V ′,V =
∑
α=1,2

∫
Ωα

(Bαε(vα)) · ε(wα) dx

∀v = (v1,v2), w = (w1,w2) ∈ V .

Under the above assumptions on Aα, Bα, α = 1, 2, it follows that there exist
MA, MB, such that, for all v,w ∈ V ,

∥Av∥V ′ ≤MA∥v∥V , ∥Bv −Bw∥V ′ ≤MB∥v −w∥V . (3.1)

As meas(Γα
U) > 0, by using Korn's inequality it also follows that there exist

mA, mB > 0 such that, for all v,w ∈ V ,

⟨Av,v⟩V ′,V ≥ mA∥v∥2V , (3.2)

⟨Bv −Bw,v −w⟩V ′,V ≥ mB∥v −w∥2V . (3.3)
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Assume u0 ∈ V , u1 ∈ H , g0 ∈ L2
+(Ξ), f

α
1 ∈ L2(0, T ;L2(Ωα;R3)), fα

2 ∈
L2(0, T ;L2(Γα

F ;R3)), α = 1, 2, and de�ne the mapping f ∈ L2(0, T ;V ′) by

⟨f ,v⟩V ′,V =
∑
α=1,2

∫
Ωα

fα
1 · vα dx+

∑
α=1,2

∫
Γα
F

fα
2 · vα ds

∀v = (v1,v2) ∈ V , a.e. t ∈ [0, T ].

Assume also the following initial conditions: β0 ∈ L2
[0,1](Ξ), [u0N ] ≤ 0, and

κ([u0N ], β0) = 0 a.e. in Ξ.
For every ζ = (ζ1, ζ2) ∈ L2(0, T ; (L2(Ξ))2) = (L2(ΞT ))

2, de�ne the fol-
lowing nonempty, closed, and convex sets:

Λ0(ζ1, ζ2) = {η ∈ L2(ΞT );κ ◦ (ζ1, ζ2) ≤ η

≤ κ ◦ (ζ1, ζ2) a.e. in ΞT },

Λ0
+(ζ1, ζ2) = {η ∈ L2

+(ΞT );κ+ ◦ (ζ1, ζ2) ≤ η

≤ κ+ ◦ (ζ1, ζ2) a.e. in ΞT },

Λ0
−(ζ1, ζ2) = {η ∈ L2

+(ΞT );κ− ◦ (ζ1, ζ2) ≤ η

≤ κ− ◦ (ζ1, ζ2) a.e. in ΞT },

where, for each r ∈ R, r+ := max(0, r) and r− := max(0,−r) denote the
positive and negative parts, respectively. Also, for every w ∈ W 1,2(0, T ;V ),
υ ∈ L2(ΞT ), de�ne the following nonempty and closed sets:

Λ1(w, υ) = {(η, ς) ∈ L2(ΞT )× (L2(ΞT ))
3;

η ∈ Λ0([wN ], υ), |ς| ≤ µ(ẇT ) |η|,

ς · ẇT + µ(ẇT ) |η| |ẇT | = 0 a.e. in ΞT },

Λ2(w, υ) = {(η, ς) ∈ L2(ΞT )× (L2(ΞT ))
3;

η+ ∈ Λ0
+([wN ], υ), η− ∈ Λ0

−([wN ], υ),

|ς| ≤ µ(ẇT ) (η+ + η−),

ς · ẇT + µ(ẇT ) (η+ + η−) |ẇT | = 0 a.e. in ΞT },

Λ3(w, υ) = {(η1, η2, ς) ∈ (L2(ΞT ))
5; η1 ∈ Λ0

+([wN ], υ),

η2 ∈ Λ0
−([wN ], υ), |ς| ≤ µ(ẇT ) (η1 + η2),

ς · ẇT + µ(ẇT ) (η1 + η2) |ẇT | = 0 a.e. in ΞT }.

The relations meas(Ξ) <∞ and (2.2) imply that for all ζ = (ζ1, ζ2) ∈ L2(ΞT )
the sets Λ0(ζ),Λ0

+(ζ) and Λ
0
−(ζ) are bounded in norm in L2(0, T ;L2(Ξ))=L2(ΞT )
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by R0 = r0(meas(Ξ))
1/2T and are bounded in norm in L∞(0, T ;L∞(Ξ)) by

r0.
As the coe�cient of friction µ is a bounded function, it follows that for all

w ∈ W 1,2(0, T ;V ), υ ∈ L2(ΞT ) the sets Λ1(w, υ), Λ2(w, υ), and Λ3(w, υ)
are bounded in norm. Thus, there exists R1 > 0 such that Λ3(w, υ) ⊂
D0 ×D1 for all w ∈ W 1,2(0, T ;V ), υ ∈ L2(ΞT ), where
D0 = {(η1, η2) ∈ (L2(ΞT ))

2; ∥η1∥L2(ΞT ) ≤ R0, ∥η2∥L2(ΞT ) ≤ R0} and
D1 = {ς ∈ (L2(ΞT ))

3; ∥ς∥(L2(ΞT ))3 ≤ R1}.
A �rst variational formulation of the problem Pc is the following.

Problem P 1
v : Find u ∈ C1([0, T ];H) ∩ W 1,2(0, T ;V ) ∩ W 2,2(0, T ;V ′),

λ ∈ L2(ΞT ), γ ∈ (L2(ΞT ))
3, β ∈ W 1,∞(0, T ;L∞(Ξ)), such that (λ,γ) ∈

Λ1(u, β), β(t) ∈ L2
[0,1](Ξ) for all t ∈ (0, T ), u(0) = u0, u̇(0) = u1, β(0) =

β0, and for almost all t ∈ (0, T )

⟨ü,v⟩V ′,V + ⟨Au,v⟩V ′,V + ⟨Bu̇,v⟩V ′,V

−(λ, vN)L2(Ξ) − (γ,vT )(L2(Ξ))3 = ⟨f ,v⟩V ′,V ∀v ∈ V , (3.4)

β̇ ∈ ψ(ϑ([uN ]), β) a.e. in ΞT ,

where (·, ·)L2(Ξ) and (·, ·)(L2(Ξ))3 denote the inner products of the correspond-
ing spaces.

The formal equivalence between the variational problem P 1
v and the clas-

sical problem Pc can be proved as usual by Green's formula, where the La-
grange multipliers λ, γ satisfy the relations λ = σN , γ = σT .

The sets Λ0(ζ1, ζ2), Λ0
+(ζ1, ζ2) and Λ0

−(ζ1, ζ2) have the following useful
properties, see [9].

Lemma 3.1. Let (ζ1, ζ2) ∈ (L2(Ξ))2 and (η1, η2) ∈ Λ0
+(ζ1, ζ2) × Λ0

−(ζ1, ζ2).
Then η1η2 = 0 a.e. in ΞT and there exists η ∈ Λ0(ζ1, ζ2) such that η+ = η1,
η− = η2 a.e. in ΞT .

Since λ ∈ Λ0([uN ], β) if and only if (λ+, λ−) ∈ Λ0
+([uN ], β)×Λ0

−([uN ], β), the
previous lemma enables to consider the following variational problem P 2

v ,
which has the same solutions u, γ, β as the problem P 1

v and the solutions
λ1, λ2 satisfy the relation λ = λ1 − λ2, where λ is a solution of P 1

v .

Problem P 2
v : Find u ∈ C1([0, T ];H) ∩ W 1,2(0, T ;V ) ∩ W 2,2(0, T ;V ′),

(λ1, λ2) ∈ (L2(ΞT ))
2, γ ∈ (L2(ΞT ))

3, β ∈ W 1,∞(0, T ;L∞(Ξ)), such that
(λ1, λ2,γ) ∈ Λ3(u, β), β(t) ∈ L2

[0,1](Ξ) for all t ∈ (0, T ), u(0) = u0,
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u̇(0) = u1, β(0) = β0, and for almost all t ∈ (0, T )

⟨ü,v⟩V ′,V + ⟨Au,v⟩V ′,V + ⟨Bu̇,v⟩V ′,V

−(λ1 − λ2, vN)L2(Ξ) − (γ,vT )(L2(Ξ))3 (3.5)

= ⟨f ,v⟩V ′,V ∀v ∈ V ,

β̇ ∈ ψ(ϑ([uN ]), β) a.e. in ΞT , (3.6)

Assume that the set-valued mapping ψ : (L2(ΞT ))
2 → 2L

2(ΞT ) veri�es
the following properties: for each u ∈ W 1,2(0, T ;V ) there exists a unique
solution βu ∈ W 1,∞(0, T ;L∞(Ξ)) of the inclusion (3.6), such that β(0) = β0,
β(t) ∈ L2

[0,1](Ξ) for all t ∈ (0, T ), and if βu1 , βu2 are the solutions of (3.6)

corresponding to u1,u2 ∈ W 1,2(0, T ;V ), respectively, with the same initial
condition β0, then the following estimate holds for all t ∈ [0, T ]:

∥βu1(t)− βu2(t)∥2L2(Ξ) ≤ C0

∫ t

0

∥u1(s)− u2(s)∥2 ds, (3.7)

where C0 is a positive constant independent of u1, u2, βu1 , βu2 .
Several choices of ψ, as subdi�erentials or single-valued mappings satis-

fying the previous properties, have been considered, see, e.g., [31, 34, 14, 7].
The existence of strong solutions to problem P 2

v will be established by
using some auxiliary results and an equivalent �xed point problem.

Similar arguments to those used to prove Theorem 5.2 in [36], now applied
to the product space V = V 1×V 2 and to the simple case without adhesion,
enable to obtain the following existence and uniqueness result for the strong
solution, in the V ′ sense, of the following intermediate problem.

Lemma 3.2. For each (η1, η2) ∈ (L2(ΞT ))
2, ς ∈ (L2(ΞT ))

3, there exists a
unique function u = u(η1,η2,ς) ∈ C1([0, T ];H)∩W 1,2(0, T ;V )∩W 2,2(0, T ;V ′),
such that u(0) = u0, u̇(0) = u1, and for almost all t ∈ (0, T )

⟨ü,v⟩V ′,V + ⟨Au,v⟩V ′,V + ⟨Bu̇,v⟩V ′,V

−(η1 − η2, vN)L2(Ξ) − (ς,vT )(L2(Ξ))3 (3.8)

= ⟨f ,v⟩V ′,V ∀v ∈ V ,

where ü is the second order strong derivative of u considered in V ′.

For the involved abstract mathematical result, see, e.g., Theorem 4.10 in
[2].
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Lemma 3.3. Let u(η1,η2,ς1), u(δ1,δ2,ς2) be the solutions of variational equation
(3.8) corresponding to (η1, η2), (δ1, δ2) ∈ (L2(ΞT ))

2, ς1, ς2 ∈ (L2(ΞT ))
3,

respectively.
Then there exists a constant C1 > 0, independent of (η1, η2), (δ1, δ2), and

ς1, ς2, such that for all t ∈ [0, T ]

|u̇(η1,η2,ς1)(t)− u̇(δ1,δ2,ς2)(t)|2 + ∥u(η1,η2,ς1)(t)− u(δ1,δ2,ς2)(t)∥2

+

∫ t

0

∥u̇(η1,η2,ς1) − u̇(δ1,δ2,ς2)∥2 dτ

≤ C1

∫ t

0

{(η1 − η2 − δ1 + δ2, u̇(η1,η2,ς1)N − u̇(δ1,δ2,ς2)N)L2(Ξ)

+(ς1 − ς2, u̇(η1,η2,ς1)T − u̇(δ1,δ2,ς2)T )(L2(Ξ))3} dτ. (3.9)

Proof. Let (η1, η2), (δ1, δ2) ∈ (L2(ΞT ))
2 and ς1, ς2 ∈ (L2(ΞT ))

3 with u1 :=
u(η1,η2,ς1), u2 := u(δ1,δ2,ς2) the corresponding solutions of (3.8) which exist
according to Lemma 3.2. Taking in each equation v = u̇1 − u̇2, for a.e.
τ ∈ (0, T ) it follows that

⟨ü1 − ü2, u̇1 − u̇2⟩V ′,V + ⟨Au1 −Au2, u̇1 − u̇2⟩V ′,V

+⟨Bu̇1 −Bu̇2, u̇1 − u̇2⟩V ′,V

= (η1 − η2 − δ1 + δ2, u̇1N − u̇2N)L2(Ξ)

+(ς1 − ς2, u̇1T − u̇2T )(L2(Ξ))3 .

Since the solutions u1, u2 belong to u ∈ C1([0, T ];H) ∩ W 1,2(0, T ;V ) ∩
W 2,2(0, T ;V ′) and verify the same initial conditions, by integrating over (0, t)
it follows that for all t ∈ [0, T ]

1

2
|u̇1(t)− u̇2(t)|2 +

1

2
⟨A(u1 − u2),u1 − u2⟩V ′,V

+

∫ t

0

⟨Bu̇1 −Bu̇2, u̇1 − u̇2⟩V ′,V dτ

=

∫ t

0

{(η1 − η2 − δ1 + δ2, u̇1N − u̇2N)L2(Ξ)} dτ

+

∫ t

0

{(ς1 − ς2, u̇1T − u̇2T )(L2(Ξ))3} dτ.

By (3.2) and (3.3), the estimate (3.9) follows.
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Lemma 3.4. Under the assumptions of Sections 2 and 3, for every (η1, η2) ∈
(L2

+(ΞT ))
2 and every ς ∈ (L2(ΞT ))

3, let (ηn1 , η
n
2 )n be a sequence in (L2

+(ΞT ))
2

and (ςn)n be a sequence in (L2(ΞT ))
3 such that ηn1 ⇀ η1, η

n
2 ⇀ η2 in L

2(ΞT ),
and ςn ⇀ ς in (L2(ΞT ))

3. Let u(ηn1 ,η
n
2 ,ς

n) be the solution of (3.8) corre-
sponding to (ηn1 , η

n
2 , ς

n) according to Lemma 3.2, for every n ∈ N. Then
(u(ηn1 ,η

n
2 ,ς

n))n is strongly convergent in C1([0, T ];H)∩W 1,2(0, T ;V ) to the so-
lution u = u(η1,η2,ς) of (3.8) corresponding to (η1, η2, ς) according to Lemma
3.2.

Proof. We adopt the following notations:

un := u(ηn1 ,η
n
2 ,ς

n), unN := u(ηn1 ,ηn2 ,ςn)N ,

so that we have for almost all t ∈ (0, T )

⟨ün,v⟩V ′,V + ⟨Aun,v⟩V ′,V + ⟨Bu̇n,v⟩V ′,V

−(ηn1 − ηn2 , vN)L2(Ξ) − (ςn,vT )(L2(Ξ))3 (3.10)

= ⟨f ,v⟩V ′,V ∀v ∈ V .

By Lemma 3.3, for all n ∈ N and t ∈ (0, T ] we have

1

2
|u̇n(t)|2 +

1

2
∥un(t)∥2 +

1

2

∫ t

0

∥u̇n∥2 dτ

≤ |u̇n(t)− u̇(t)|2 + ∥un(t)− u(t)∥2 +
∫ t

0

∥u̇n − u̇∥2 dτ

+|u̇(t)|2 + ∥u(t)∥2 +
∫ t

0

∥u̇∥2 dτ

≤ C1

∫ t

0

{(ηn1 − ηn2 − η1 + η2, u̇nN − u̇N)L2(Ξ)

+(ςn − ς, u̇nT − u̇T )(L2(Ξ))3} dτ + C2,

where C2 is a positive constant dependent only on u.
Since the sequences (ηn1 , η

n
2 )n, (ς

n)n are bounded in (L2(ΞT ))
2, (L2(ΞT ))

3,
respectively, by Young's inequality it follows that there exists a positive con-
stant C3, depending only on u, C1, C2, the bounds of (ηn1 , η

n
2 )n and (ςn)n,

such that the following estimates hold for all n ∈ N:

|u̇n(t)| ≤ C3, ∥un(t)∥ ≤ C3 ∀t ∈ [0, T ], ∥u̇n∥L2(0,T ;V ) ≤ C3. (3.11)
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For all v ∈ L2(0, T ;V ), by (3.10) we have∫ T

0

⟨ün,v⟩V ′,V dt+

∫ T

0

⟨Aun,v⟩V ′,V dt

+

∫ T

0

⟨Bu̇n,v⟩V ′,V dt−
∫ T

0

(ηn1 − ηn2 , vN)L2(Ξ) dt

−
∫ T

0

(ςn,vT )(L2(Ξ))3 dt =

∫ T

0

⟨f ,v⟩V ′,V dt.

This relation and the estimates (3.1), (3.11) imply that there exists a positive
constant C4, depending only on C3, MA, and MB, such that

∀n ∈ N, ∥ün∥L2(0,T ;V ′) ≤ C4. (3.12)

From (3.11), (3.12), it follows that there exist a subsequence (unk
)k and ũ

such that

u̇nk
⇀∗ ˙̃u in L∞(0, T ;H), unk

⇀∗ ũ in L∞(0, T ;V ),

u̇nk
⇀ ˙̃u in L2(0, T ;V ), ünk

⇀ ¨̃u in L2(0, T ;V ′).

Since V ⊂ H ι ⊂ H ⊂ V ′ with compact embedding from V into H ι,
according to a classical compactness result, see, e.g., [35], it follows that

u̇nk
→ ˙̃u in L2(0, T ;H ι),

where 1 > ι >
1

2
, so that, by the trace theorem,

u̇nk
→ ˙̃u in L2(0, T ; (L2(Ξ))3) = (L2(ΞT ))

3. (3.13)

By Lemma 3.3, for all k ∈ N and t ∈ (0, T ] we have

|u̇nk
(t)− u̇(t)|2 + ∥unk

(t)− u(t)∥2 +
∫ t

0

∥u̇nk
− u̇∥2 dτ

≤ C1

∫ t

0

{(ηnk
1 − ηnk

2 − η1 + η2, u̇nkN − u̇N)L2(Ξ)

+(ςnk − ς, u̇nkT − u̇T )(L2(Ξ))3} dτ.

Using the weak convergence properties of (ηn1 )n, (η
n
2 )n, (ς

n)n, and the strong
convergence property (3.13), we can pass to limits in the right hand side of
the previous estimates for (unk

)k and so we obtain that u = ũ and

unk
→ u in C1([0, T ];H) ∩W 1,2(0, T ;V ). (3.14)
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As for every subsequence of (un)n, by using the same arguments as above that
enabled to obtain the relation (3.14), one can always �nd a (sub)subsequence
converging to u in C1([0, T ];H) ∩W 1,2(0, T ;V ), it follows that

u(ηn1 ,η
n
2 ,ς

n) → u(η1,η2,ς) in C
1([0, T ];H) ∩W 1,2(0, T ;V ). (3.15)

4 An equivalent �xed point problem and exis-

tence result

Let Φ : (L2
+(ΞT ))

2 × (L2(ΞT ))
3 → 2(L

2
+(ΞT ))2×(L2(ΞT ))3 \ {∅} be the set-valued

mapping de�ned by

∀(η1, η2, ς) ∈ (L2
+(ΞT ))

2 × (L2(ΞT ))
3

Φ(η1, η2, ς) = Λ3(u(η1,η2,ς), βu(η1,η2,ς)
) (4.1)

where u(η1,η2,ς) is the solution of the variational equation (3.8) which corre-
sponds to (η1, η2, ς) according to Lemma 3.2 and βu(η1,η2,ς)

is the solution of
(3.6) corresponding to u = u(η1,η2,ς).

Since (λ1, λ2,γ) is a �xed point of Φ, i.e. (λ1, λ2,γ) ∈ Φ(λ1, λ2,γ), if
and only if (u(λ1,λ2,γ), λ1, λ2,γ, βu(λ1,λ2,γ)

) is a solution of the Problem P 2
v , we

consider the problem which consists in �nding a �xed point of the set-valued
mapping Φ, called also multivalued function or multifunction.

The existence of a �xed point of the multifunction Φ will be proved by
using a corollary of the Ky Fan's �xed point theorem [17], proved in [30] in
the particular case of a re�exive Banach space. We recall this result for the
reader's convenience.

De�nition 4.1. Let Y be a re�exive Banach space, D a weakly closed set in
Y , and F : D → 2Y \ {∅} be a set-valued mapping. F is called sequentially
weakly upper semicontinuous if zn ⇀ z, yn ∈ F (zn) and yn ⇀ y imply
y ∈ F (z).

Proposition 4.1. ( [30]) Let Y be a re�exive Banach space, D a convex,
closed and bounded set in Y , and F : D → 2D \ {∅} a sequentially weakly
upper semicontinuous set-valued mapping such that F (z) is convex for every
z ∈ D. Then F has a �xed point.

Theorem 4.2. Under the assumptions of Sections 2 and 3, there exists
(λ1, λ2,γ) ∈ (L2

+(ΞT ))
2 × (L2(ΞT ))

3 such that (λ1, λ2,γ) ∈ Φ(λ1, λ2,γ). For
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each �xed point (λ1, λ2,γ) of the multifunction Φ, (u(λ1,λ2,γ), λ,γ, βu(λ1,λ2,γ)
),

where λ = λ1−λ2, is a solution of the Problem P 1
v and (u(λ1,λ2,γ), λ1, λ2,γ, βu(λ1,λ2,γ)

)

is a solution of the Problem P 2
v .

Proof. We apply Proposition 4.1 to Y = (L2(ΞT ))
5, F = Φ and D =

[(L2
+(ΞT ))

2 ∩D0]× [(L2(ΞT ))
3 ∩D1].

The set D ⊂ (L2(ΞT ))
5 is clearly convex, closed, and bounded.

For all w ∈ W 1,2(0, T ;V ), υ ∈ L2(ΞT ), the set Λ3(w, υ) is nonempty,
closed, and convex, so that Φ(η1, η2, ς) is a nonempty, closed, and convex
subset of D for every (η1, η2, ς) ∈ D.

In order to prove that the multifunction Φ is sequentially weakly upper
semicontinuous, let (ηn1 , η

n
2 , ς

n) ∈ D, (δn1 , δ
n
2 ,ϖ

n) ∈ Φ(ηn1 , η
n
2 , ς

n) ∀n ∈ N,
(ηn1 , η

n
2 , ς

n) ⇀ (η1, η2, ς), (δ
n
1 , δ

n
2 ,ϖ

n) ⇀ (δ1, δ2,ϖ) and let us verify that
(δ1, δ2,ϖ) ∈ Φ(η1, η2, ς).

We adopt the following notations:

un := u(ηn1 ,η
n
2 ,ς

n), unN := u(ηn1 ,ηn2 ,ςn)N ,

uη := u(η1,η2,ς), uηN := u(η1,η2,ς)N ,

βn := βu(ηn1 ,ηn2 ,ςn)
, βη := βu(η1,η2,ς)

,

where βu(ηn1 ,ηn2 ,ςn)
is the solution of (3.6) corresponding to u(ηn1 ,η

n
2 ,ς

n) and

βu(η1,η2,ς)
is the solution of (3.6) corresponding to u(η1,η2,ς).

By Lemma 3.4, we have

un → uη in C1([0, T ];H) ∩W 1,2(0, T ;V ), (4.2)

which implies
un → uη, u̇n → u̇η in (L2(ΞT ))

3, (4.3)

and, by (3.7),

βn(t) → βη(t) in L2(Ξ) for all t ∈ [0, T ]. (4.4)

Now, by Lemma 3.1, if (δn1 , δ
n
2 ,ϖ

n) ∈ Φ(ηn1 , η
n
2 , ς

n) = Λ3(u(ηn1 ,η
n
2 ,ς

n), βu(ηn1 ,ηn2 ,ςn)
)

for all n ∈ N, then

κ([unN ], βn) ≤ δn1 − δn2 ≤ κ([unN ], βn) a.e. in ΞT , (4.5)

|ϖn| ≤ µ(u̇nT ) (δ
n
1 + δn2 ) a.e. in ΞT , (4.6)

ϖn · u̇nT + µ(u̇nT ) (δ
n
1 + δn2 ) |u̇nT | = 0 a.e. in ΞT , (4.7)

for all n ∈ N.
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First, the relations (4.5) are equivalent to∫
ω

κ([unN ], βn) ≤
∫
ω

(δn1 − δn2 ) ≤
∫
ω

κ([unN ], βn), (4.8)

for every measurable subset ω ⊂ ΞT and for all n ∈ N.
By (4.3) and a converse of Lebesgue's dominated convergence theorem,

it follows that there exists a subsequence of (un)n, denoted by (unk
)k, such

that
[unkN ] → [uηN ], u̇nkT → u̇ηT a.e. in ΞT . (4.9)

The �rst convergence property in (4.9) enables to pass to limits in (4.8) with
respect to nk according to Fatou's lemma, by using (4.4), the semi-continuity
of κ and κ, the relation (2.2), and the convergence property∫

ω

(δn1 − δn2 ) →
∫
ω

(δ1 − δ2).

Thus, we obtain∫
ω

κ([uηN ], βη) ≤
∫
ω

(δ1 − δ2) ≤
∫
ω

κ([uηN ], βη),

for every measurable subset ω ⊂ ΞT , which implies

κ([uηN ], βη) ≤ δ1 − δ2 ≤ κ([uηN ], βη) a.e. in ΞT . (4.10)

Second, the relation (4.6) is equivalent to∫
ω

|ϖn| ≤
∫
ω

µ(u̇nT ) (δ
n
1 + δn2 ),

for every measurable subset ω ⊂ ΞT and for all n ∈ N. As µ(ξ, ·) is Lipschitz
continuous with the Lipschitz constant independent of ξ, by using the second
convergence property in (4.9) and passing to limits with respect to nk we
obtain ∫

ω

|ϖ| ≤ lim inf

∫
ω

|ϖnk | ≤ lim

∫
ω

µ(u̇nkT ) (δ
nk
1 + δnk

2 )

=

∫
ω

µ(u̇ηT ) (δ1 + δ2).

Thus ∫
ω

|ϖ| ≤
∫
ω

µ(u̇ηT ) (δ1 + δ2),
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for every measurable subset ω ⊂ ΞT , which implies

|ϖ| ≤ µ(u̇ηT ) (δ1 + δ2) a.e. in ΞT . (4.11)

Finally, consider the relation (4.7) which is equivalent to∫
ω

ϖn · u̇nT +

∫
ω

µ(u̇nT ) (δ
n
1 + δn2 ) |u̇nT | = 0, (4.12)

for every measurable subset ω ⊂ ΞT and for all n ∈ N. By the second
convergence property in (4.9), we have

µ(u̇nkT ) |u̇nkT | → µ(u̇ηT ) |u̇ηT | in L1(ΞT ), (4.13)

and, by the relations (2.2), (4.5),

δn1 + δn2 ⇀
∗ δ1 + δ2 in L

∞(ΞT ). (4.14)

Passing to limits in (4.12) by using (4.13) and (4.14), we obtain∫
ω

ϖ · u̇ηT +

∫
ω

µ(u̇ηT ) (δ1 + δ2) |u̇ηT | = 0,

for every measurable subset ω ⊂ ΞT , which implies

ϖ · u̇ηT + µ(u̇ηT ) (δ1 + δ2) |u̇ηT | = 0. (4.15)

From (4.10), (4.11), (4.15), it follows that (δ1, δ2,ϖ) ∈ Φ(η1, η2, ς), so
that we may apply the Proposition 4.1 to conclude the proof.
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