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A mixed variational formulation of dynamic viscoelastic problems with adhesion and friction
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The aim of this work is to study a class of dynamic contact problems coupling adhesion and friction between two viscoelastic bodies with nonlinear viscosity operators. The boundary conditions concern relaxed unilateral contact, pointwise friction and adhesion including possible recoverable behavior. A mixed variational formulation of these problems is given as a ve-eld evolution implicit equation coupled with a dierential inclusion describing the evolution of the intensity of adhesion. Based on several estimates and a classical xed point theorem for multivalued functions, the existence of a strong variational solution is proved.

Introduction

This paper deals with the analysis of a class of nonsmooth dynamic contact problems which describe various surface interactions between two viscoelastic bodies with nonlinear viscosity operators. These interactions include some relaxed unilateral contact, friction with slip depending coecient of friction, and complex adhesion conditions.

The quasistatic elastic problems with unilateral contact and local Coulomb friction have been studied in [START_REF] Andersson | Existence results for quasistatic contact problems with Coulomb friction[END_REF][START_REF] Rocca | Existence and approximation of a solution to quasistatic Signorini problem with local friction[END_REF][START_REF] Rocca | Numerical analysis of quasistatic unilateral contact problems with local friction[END_REF] and extensions by taking into account the adhesion, described by the intensity of adhesion introduced in [START_REF] Frémond | Adhérence des solides[END_REF][START_REF] Frémond | Contact with adhesion[END_REF], were investigated in [START_REF] Raous | A consistent model coupling adhesion, friction, and unilateral contact[END_REF][START_REF] Cocou | Existence results for unilateral quasistatic contact problems with friction and adhesion[END_REF], see also [START_REF] Shillor | Models and Analysis of Quasistatic Contact[END_REF] and references therein.

Dynamic frictional contact problems with normal compliance laws have been studied in [START_REF] Martins | Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws[END_REF][START_REF] Kuttler | Dynamic friction contact problems for general normal and friction laws[END_REF][START_REF] Chau | A dynamic frictional contact problem with normal damped response[END_REF] and (non)local friction laws were considered in [START_REF] Kuttler | Dynamic bilateral contact with discontinuous friction coecient[END_REF][START_REF] Kuttler | Dynamic contact with Signorini's condition and slip rate depending friction[END_REF][START_REF] Eck | Unilateral Contact Problems -Variational Methods and Existence Theorems[END_REF][START_REF] Cocou | Existence of solutions of a dynamic Signorini's problem with nonlocal friction in viscoelasticity[END_REF][START_REF] Cocou | Analysis of a dynamic unilateral contact problem for a cracked viscoelastic body[END_REF], for viscoelastic bodies. Dynamic frictionless problems with adhesion have been studied in [START_REF] Chau | Dynamic frictionless contact with adhesion[END_REF][START_REF] Kuttler | Existence and regularity for dynamic viscoelastic adhesive contact with damage[END_REF][START_REF] Sofonea | Analysis and Approximation of Contact Problems with Adhesion or Damage[END_REF] and dynamic viscoelastic problems coupling unilateral contact, recoverable adhesion and nonlocal friction have been analyzed in [START_REF] Cocou | A dynamic unilateral contact problem with adhesion and friction in viscoelasticity[END_REF][START_REF] Cocou | A class of implicit evolution inequalities and applications to dynamic contact problems[END_REF].

Using the hemivariational inequalities theory, several nonsmooth quasistatic and dynamic contact problems were investigated, see [START_REF] Migorski | A unied approach to dynamic contact problems in viscoelasticity[END_REF][START_REF] Migórski | Nonlinear Inclusions and Hemivariational Inequalities[END_REF][START_REF] Naniewicz | Mathematical Theory of Hemivariational Inequalities and Applications[END_REF][START_REF] Panagiotopoulos | Hemivariational Inequalities: Applications in Mechanics and Engineering[END_REF] and references therein. An elastic contact problem with relaxed unilateral conditions and pointwise Coulomb friction in the static case was studied in [START_REF] Rabier | Fixed points of multi-valued maps and static Coulomb friction problems[END_REF] and the extension to an elastic quasistatic contact problem was investigated in [START_REF] Cocou | A variational inequality and applications to quasistatic problems with Coulomb friction[END_REF]. The corresponding viscoelastic dynamic case was analyzed in [START_REF] Cocou | A class of implicit evolution inequalities and applications to dynamic contact problems[END_REF][START_REF] Cocou | A variational analysis of a class of dynamic problems with slip dependent friction[END_REF][START_REF] Cocou | A class of dynamic contact problems with Coulomb friction in viscoelasticity[END_REF][START_REF] Cocou | A dynamic viscoelastic problem with friction and ratedepending contact interactions[END_REF] for dierent contact conditions.

Based on a new mixed variational formulation, given as a ve-eld evolution implicit equation coupled with a dierential inclusion that describes the evolution of the intensity of adhesion, this work generalizes and extends the results presented in [START_REF] Cocou | A class of implicit evolution inequalities and applications to dynamic contact problems[END_REF][START_REF] Cocou | A variational analysis of a class of dynamic problems with slip dependent friction[END_REF][START_REF] Cocou | A class of dynamic contact problems with Coulomb friction in viscoelasticity[END_REF].

The results presented in this paper extend some of those proved in [START_REF] Cocou | A dynamic viscoelastic problem with friction and ratedepending contact interactions[END_REF] in the more general case of rate-depending contact interactions, but with a limited adhesion (there is no intensity of adhesion), a linear viscosity operator and under stronger regularity assumptions.

The approach described in this paper enables to consider more general constitutive laws, as, for example, the ones characterizing some elastoviscoplastic materials investigated in [START_REF] Cristescu | Viscoplasticity[END_REF].

The paper is organized as follows. In Section 2 the classical formulation of the dynamic contact problem is presented. In Section 3 two mixed variational formulations and some auxiliary results are given. Section 4 is devoted to the existence of a strong variational solution which is proved for an equivalent xed point problem for a multi-valued function.

Classical formulation

We consider two viscoelastic bodies that occupy the reference domains Ω α of the three-dimensional Euclidean point space E with Lipschitz boundaries denoted by

Γ α = ∂Ω α , α = 1, 2. Let Γ α U , Γ α F and Γ α C denote three open disjoint suciently smooth parts of Γ α such that Γ α = Γ α U ∪ Γ α F ∪ Γ α C
and, to simplify the estimates, meas(Γ α U ) > 0, α = 1, 2. We assume the small deformation hypothesis and we use Cartesian coordinates representations with the summation convention for i, j, k, l = 1, 2, 3.

To simplify the presentation of the functional framework, we shall continue to use the vector and tensor notations for some inclusions.

Let y α (x α , t) denote the position at time t ∈ [0, T ], where 0 < T < +∞, of the material point x α represented by the coordinates x α = (x α 1 , x α 2 , x α 3 ) in the reference conguration Ω α , and u α (x α , t) = y α (x α , t) -x α denote the displacement vector of x α at time t, with the components u α = (u α 1 , u α 2 , u α 3 ). Let ε α , with the components ε α = (ε ij (u α )), and σ α , with the components σ α = σ α ij , be the innitesimal strain tensor and the stress tensor, respectively, corresponding to Ω α , α = 1, 2.

Denote by (S, • , ∥.∥ S ) the space of symmetric second-order tensors with its inner product and the associated norm.

Let A α : Ω α × S → S be the linear elasticity tensor corresponding to Ω α and denote by A α = (A α ijkl ) its components satisfying the following classical symmetry and ellipticity conditions:

A α ijkl = A α jikl = A α klij ∈ L ∞ (Ω α ), ∀ i, j, k, l = 1, 2, 3, ∃ k α 1 > 0 such that A α ijkl τ ij τ kl ≥ k α 1 τ ij τ ij ∀ τ = (τ ij ) ∈ R 9 verifying τ ij = τ ji ∀ i, j = 1, 2, 3, α = 1, 2.
Thus, for all τ ∈ S with components τ = (τ ij ), A α (x α , τ ) has the components A α (x α ) ijkl τ ij ∀ k, l = 1, 2, 3, α = 1, 2, and A α satises the following conditions for α = 1, 2:

(A α (x α , τ )) • τ ≥ k α 1 ∥τ ∥ 2 S a.e. x α ∈ Ω α , ∀ τ ∈ S, ∃ k α 2 > 0 such that ∥A α (x α , τ )∥ S ≤ k α 2 ∥τ ∥ S a.e. x α ∈ Ω α , ∀ τ ∈ S.
Let B α : Ω α ×S → S denote the nonlinear viscosity tensor corresponding to Ω α , satisfying the following conditions for α = 1, 2:

∃ k α 3,4 > 0 such that a.e. x α ∈ Ω α , ∀ τ 1,2 ∈ S, (B α (x α , τ 1 ) -B α (x α , τ 2 )) • (τ 1 -τ 2 ) ≥ k α 3 ∥τ 1 -τ 2 ∥ 2 S , ∥B α (x α , τ 1 ) -B α (x α , τ 2 )∥ S ≤ k α 4 ∥τ 1 -τ 2 ∥ S , B α (•, 0) = 0, ∀ τ ∈ S, B α (•, τ ) is measurable on Ω α .
Assume that the displacements u α = 0 on Γ α U × (0, T ), α = 1, 2, and that the densities of both bodies are equal to 1. Let

f 1 = (f 1 1 , f 2 1 ), f 2 = (f 1 2 , f 2 
2 ) be the given densities of body forces in Ω 1 ∪ Ω 2 and of tractions on

Γ 1 F ∪ Γ 2 F , respectively. Let u 0 = (u 1 0 , u 2 0 ), u 1 = (u 1 1 , u 2 1
) denote the initial displacements and velocities of the bodies, respectively.

Suppose that the solids can be in contact between the potential contact surfaces Γ 1 C and Γ 2 C which are parametrized by two C 1 functions, φ 1 , φ 2 , dened on an open and bounded subset

Ξ of R 2 , such that φ 1 (ξ) -φ 2 (ξ) ≥ 0 ∀ ξ ∈ Ξ and each Γ α C is the graph of φ α on Ξ that is Γ α C = {(ξ, φ α (ξ)) ∈ R 3 ; ξ ∈ Ξ}, α = 1, 2,
see, e.g., [START_REF] Boieri | Existence, uniqueness, and regularity results for the two-body contact problem[END_REF]. Dene an initial normalized gap between the two contact surfaces by

g 0 (ξ) = φ 1 (ξ) -φ 2 (ξ) 1 + |∇φ 1 (ξ)| 2 ∀ ξ ∈ Ξ.
Let n α denote the unit outward normal vector to Γ α , α = 1, 2.

We introduce the following notations for the normal and tangential components of a displacement eld v α , of the relative displacement corresponding to v := (v 1 , v 2 ) and of the stress vector

σ α n α on Γ α C , α = 1, 2, respectively: v α (ξ, t) := v α (ξ, φ α (ξ), t), v α N (ξ, t) := v α (ξ, t) • n α (ξ), v N (ξ, t) := v 1 N (ξ, t) + v 2 N (ξ, t), [v N ](ξ, t) := v N (ξ, t) -g 0 (ξ), v α T (ξ, t) := v α (ξ, t) -v α N (ξ, t)n α (ξ), v T (ξ, t) := v 1 T (ξ, t) -v 2 T (ξ, t), σ α N (ξ, t) := (σ α (ξ, t)n α (ξ)) • n α (ξ), σ α T (ξ, t) = σ α (ξ, t)n α (ξ) -σ α N (ξ, t)n α (ξ)
, for all ξ ∈ Ξ and for all t ∈ [0, T ], where we denoted the inner product of two vectors by " • ".

In Ξ, we consider an internal state variable β (see [START_REF] Frémond | Adhérence des solides[END_REF][START_REF] Frémond | Contact with adhesion[END_REF]) that represents the intensity of adhesion: β = 1 means that the adhesion is total, β = 0 means that there is no adhesion and 0 < β < 1 is the case of partial adhesion. We assume that the evolution of β is governed, for all t ∈ (0, T ), by the inclusion β ∈ ψ([u N ], β) in Ξ, where ψ is a given constitutive set-valued mapping. Denote by β 0 the initial intensity of adhesion.

Let κ, κ : R 2 → R be two mappings with κ lower semicontinuous and κ upper semicontinuous, satisfying the following conditions for all s ∈ R 2 :

κ(s) ≤ κ(s) and 0 / ∈ (κ(s), κ(s)), (2.1) 
∃ r 0 ≥ 0 such that max(|κ(s)|, |κ(s)|) ≤ r 0 , (2.2) 
Let µ : Ξ × R 3 → R + be the sliding velocity dependent coecient of friction and assume that µ is a bounded function such that for a.e. ξ ∈ Ξ µ(ξ, •) is Lipschitz continuous with the Lipschitz constant independent of ξ, and for every

v ∈ R 3 µ(•, v) is measurable. Dene a truncation operator ϑ = ϑ l 0 by ϑ : R → R, ϑ(s) = -l 0 if s ≤ -l 0 , ϑ(s) = s if |s| < l 0 and ϑ(s) = l 0 if s ≥ l 0 ,
where l 0 > 0 is a given characteristic length, see, e.g., [START_REF] Raous | A consistent model coupling adhesion, friction, and unilateral contact[END_REF][START_REF] Sofonea | Analysis and Approximation of Contact Problems with Adhesion or Damage[END_REF].

We choose the following state variables: the innitesimal strain tensor

(ε 1 , ε 2 ) = (ε(u 1 ), ε(u 2 )) in Ω 1 ∪ Ω 2 , the normal relative displacement [u N ] = u 1 N + u 2 N -g 0 , the tangential relative displacement [u T ] = u 1 T -u 2 T ,

and the intensity of adhesion β in Ξ.

Consider the following dynamic viscoelastic contact problem coupling adhesion and Coulomb friction.

Problem P c : Find u = (u 1 , u 2 ) and β such that u(0) = u 0 , u(0) = u 1 , β(0) = β 0 in Ξ and, for all t ∈ (0, T ), üα -div σ α (u α , uα ) = f α 1 in Ω α , σ α (u α , uα ) = A α ε(u α ) + B α ε( uα ) in Ω α , u α = 0 on Γ α U , σ α n α = f α 2 on Γ α F , α = 1, 2, σ 1 n 1 + σ 2 n 2 = 0 in Ξ, κ([u N ], β) ≤ σ N ≤ κ([u N ], β) in Ξ, |σ T | ≤ µ( uT ) |σ N | in Ξ and uT ̸ = 0 ⇒ σ T = -µ( uT )|σ N | uT | uT | , β ∈ [0, 1] and β ∈ ψ(ϑ([u N ]), β) in Ξ,
where, for all (x α , t) ∈ Ω α × (0, T ),

A α ε(u α )(x α , t) = A α (x α , ε(u α (x α , t))), B α ε( uα )(x α , t) = B α (x α , ε( uα (x α , t))), σ α = σ α (u α , uα ), α = 1, 2, σ N := σ 1 N , σ T := σ 1
T . The nonlinear constitutive law represents a generalization of the classical Kelvin-Voigt law.

Dierent choices for κ, κ and ψ give various contact and friction conditions, including irreversible or recoverable (healing) adhesion, see [START_REF] Raous | A consistent model coupling adhesion, friction, and unilateral contact[END_REF][START_REF] Cocou | Existence results for unilateral quasistatic contact problems with friction and adhesion[END_REF][START_REF] Cocou | A dynamic unilateral contact problem with adhesion and friction in viscoelasticity[END_REF][START_REF] Cocou | A class of dynamic contact problems with Coulomb friction in viscoelasticity[END_REF][START_REF] Cocou | A class of implicit evolution inequalities and applications to dynamic contact problems[END_REF].

We also remark that in this model friction and adhesion are strongly coupled, as sliding friction can occur even under tensile loads [START_REF] Mergel | Continuum contact models for coupled adhesion and friction[END_REF], but the case of the solely compressive loads can be easily considered.

Mixed variational formulations and approximation results

We adopt the following notations:

H s (Ω α ) := H s (Ω α ; R 3 ), α = 1, 2, H s := H s (Ω 1 ) × H s (Ω 2 ) ∀ s ∈ R, V α = {v α ∈ H 1 (Ω α ); v α = 0 a.e. on Γ α U }, α = 1, 2, V := V 1 × V 2 , H := H 0 = L 2 (Ω 1 ; R 3 ) × L 2 (Ω 2 ; R 3 ).
(H, |.|) and (V , ∥.∥) are Hilbert spaces with the associated inner products denoted by (. , .) and by ⟨. , .⟩, respectively, V ⊂ H ⊂ V ′ with the inclusion mapping of V into H continuous and densely dened, where (V ′ , ∥.∥ V ′ ) is the dual of V and H is identied with its own dual. Let ⟨. , .⟩ V ′ ,V denote the duality pairing between V ′ and V .

Dene

Ξ T = Ξ × (0, T ), the closed convex cones L 2 + (Ξ), L 2 + (Ξ T ) and the closed convex set L 2 [0,1] (Ξ)
as follows:

L 2 + (Ξ) := {δ ∈ L 2 (Ξ); δ ≥ 0 a.e. in Ξ}, L 2 + (Ξ T ) := {η ∈ L 2 (Ξ T ); η ≥ 0 a.e. in Ξ T }, L 2 [0,1] (Ξ) := {δ ∈ L 2 (Ξ); δ ∈ [0, 1] a.e. in Ξ}. Let A : V → V ′ , B : V → V ′ be two operators dened by ⟨Av, w⟩ V ′ ,V = α=1,2 Ω α (A α ε(v α )) • ε(w α ) dx, ⟨Bv, w⟩ V ′ ,V = α=1,2 Ω α (B α ε(v α )) • ε(w α ) dx ∀ v = (v 1 , v 2 ), w = (w 1 , w 2 ) ∈ V .
Under the above assumptions on A α , B α , α = 1, 2, it follows that there exist M A , M B , such that, for all v, w ∈ V ,

∥Av∥ V ′ ≤ M A ∥v∥ V , ∥Bv -Bw∥ V ′ ≤ M B ∥v -w∥ V . (3.1) 
As meas(Γ α U ) > 0, by using Korn's inequality it also follows that there exist m A , m B > 0 such that, for all v, w ∈ V ,

⟨Av, v⟩ V ′ ,V ≥ m A ∥v∥ 2 V , (3.2) ⟨Bv -Bw, v -w⟩ V ′ ,V ≥ m B ∥v -w∥ 2 V . (3.3) Assume u 0 ∈ V , u 1 ∈ H, g 0 ∈ L 2 + (Ξ), f α 1 ∈ L 2 (0, T ; L 2 (Ω α ; R 3 )), f α 2 ∈ L 2 (0, T ; L 2 (Γ α F ; R 3 )), α = 1, 2, and dene the mapping f ∈ L 2 (0, T ; V ′ ) by ⟨f , v⟩ V ′ ,V = α=1,2 Ω α f α 1 • v α dx + α=1,2 Γ α F f α 2 • v α ds ∀ v = (v 1 , v 2 ) ∈ V , a.e. t ∈ [0, T ].
Assume also the following initial conditions:

β 0 ∈ L 2 [0,1] (Ξ), [u 0N ] ≤ 0, and κ([u 0N ], β 0 ) = 0 a.e. in Ξ.
For every

ζ = (ζ 1 , ζ 2 ) ∈ L 2 (0, T ; (L 2 (Ξ)) 2 ) = (L 2 (Ξ T )) 2
, dene the following nonempty, closed, and convex sets:

Λ 0 (ζ 1 , ζ 2 ) = {η ∈ L 2 (Ξ T ); κ • (ζ 1 , ζ 2 ) ≤ η ≤ κ • (ζ 1 , ζ 2 ) a.e. in Ξ T }, Λ 0 + (ζ 1 , ζ 2 ) = {η ∈ L 2 + (Ξ T ); κ + • (ζ 1 , ζ 2 ) ≤ η ≤ κ + • (ζ 1 , ζ 2 ) a.e. in Ξ T }, Λ 0 -(ζ 1 , ζ 2 ) = {η ∈ L 2 + (Ξ T ); κ -• (ζ 1 , ζ 2 ) ≤ η ≤ κ -• (ζ 1 , ζ 2 ) a.e. in Ξ T },
where, for each r ∈ R, r + := max(0, r) and r -:= max(0, -r) denote the positive and negative parts, respectively. Also, for every w ∈ W 1,2 (0, T ; V ), υ ∈ L 2 (Ξ T ), dene the following nonempty and closed sets:

Λ 1 (w, υ) = {(η, ς) ∈ L 2 (Ξ T ) × (L 2 (Ξ T )) 3 ; η ∈ Λ 0 ([w N ], υ), |ς| ≤ µ( ẇT ) |η|, ς • ẇT + µ( ẇT ) |η| | ẇT | = 0 a.e. in Ξ T }, Λ 2 (w, υ) = {(η, ς) ∈ L 2 (Ξ T ) × (L 2 (Ξ T )) 3 ; η + ∈ Λ 0 + ([w N ], υ), η -∈ Λ 0 -([w N ], υ), |ς| ≤ µ( ẇT ) (η + + η -), ς • ẇT + µ( ẇT ) (η + + η -) | ẇT | = 0 a.e. in Ξ T }, Λ 3 (w, υ) = {(η 1 , η 2 , ς) ∈ (L 2 (Ξ T )) 5 ; η 1 ∈ Λ 0 + ([w N ], υ), η 2 ∈ Λ 0 -([w N ], υ), |ς| ≤ µ( ẇT ) (η 1 + η 2 ), ς • ẇT + µ( ẇT ) (η 1 + η 2 ) | ẇT | = 0 a.e. in Ξ T }.

The relations meas(Ξ) < ∞ and (2.2) imply that for all

ζ = (ζ 1 , ζ 2 ) ∈ L 2 (Ξ T ) the sets Λ 0 (ζ),Λ 0 + (ζ) and Λ 0 -(ζ) are bounded in norm in L 2 (0, T ; L 2 (Ξ))=L 2 (Ξ T )
by R 0 = r 0 (meas(Ξ)) 1/2 T and are bounded in norm in L ∞ (0, T ; L ∞ (Ξ)) by r 0 .

As the coecient of friction µ is a bounded function, it follows that for all w ∈ W 1,2 (0, T ; V ), υ ∈ L 2 (Ξ T ) the sets Λ 1 (w, υ), Λ 2 (w, υ), and Λ 3 (w, υ) are bounded in norm. Thus, there exists

R 1 > 0 such that Λ 3 (w, υ) ⊂ D 0 × D 1 for all w ∈ W 1,2 (0, T ; V ), υ ∈ L 2 (Ξ T ), where D 0 = {(η 1 , η 2 ) ∈ (L 2 (Ξ T )) 2 ; ∥η 1 ∥ L 2 (Ξ T ) ≤ R 0 , ∥η 2 ∥ L 2 (Ξ T ) ≤ R 0 } and D 1 = {ς ∈ (L 2 (Ξ T )) 3 ; ∥ς∥ (L 2 (Ξ T )) 3 ≤ R 1 }.
A rst variational formulation of the problem P c is the following.

Problem P 1 v : Find u ∈ C 1 ([0, T ]; H) ∩ W 1,2 (0, T ; V ) ∩ W 2,2 (0, T ; V ′ ), λ ∈ L 2 (Ξ T ), γ ∈ (L 2 (Ξ T )) 3 , β ∈ W 1,∞ (0, T ; L ∞ (Ξ)), such that (λ, γ) ∈ Λ 1 (u, β), β(t) ∈ L 2 [0,1] (Ξ) for all t ∈ (0, T ), u(0) = u 0 , u(0) = u 1 , β(0) = β 0 , and for almost all t ∈ (0, T ) ⟨ü, v⟩ V ′ ,V + ⟨Au, v⟩ V ′ ,V + ⟨B u, v⟩ V ′ ,V -(λ, v N ) L 2 (Ξ) -(γ, v T ) (L 2 (Ξ)) 3 = ⟨f , v⟩ V ′ ,V ∀ v ∈ V , (3.4) 
β ∈ ψ(ϑ([u N ]), β) a.e. in Ξ T ,
where (•, •) L 2 (Ξ) and (•, •) (L 2 (Ξ)) 3 denote the inner products of the corresponding spaces.

The formal equivalence between the variational problem P 1 v and the classical problem P c can be proved as usual by Green's formula, where the Lagrange multipliers λ, γ satisfy the relations λ = σ N , γ = σ T .

The sets

Λ 0 (ζ 1 , ζ 2 ), Λ 0 + (ζ 1 , ζ 2 ) and Λ 0 -(ζ 1 , ζ 2 ) have the following useful properties, see [9]. Lemma 3.1. Let (ζ 1 , ζ 2 ) ∈ (L 2 (Ξ)) 2 and (η 1 , η 2 ) ∈ Λ 0 + (ζ 1 , ζ 2 ) × Λ 0 -(ζ 1 , ζ 2 ).
Then η 1 η 2 = 0 a.e. in Ξ T and there exists η

∈ Λ 0 (ζ 1 , ζ 2 ) such that η + = η 1 , η -= η 2 a.e. in Ξ T . Since λ ∈ Λ 0 ([u N ], β) if and only if (λ + , λ -) ∈ Λ 0 + ([u N ], β) × Λ 0 -([u N ], β)
, the previous lemma enables to consider the following variational problem P 2 v , which has the same solutions u, γ, β as the problem P 1 v and the solutions λ 1 , λ 2 satisfy the relation λ = λ 1 -λ 2 , where λ is a solution of P 1 v .

Problem P 2 v : Find u ∈ C 1 ([0, T ]; H) ∩ W 1,2 (0, T ; V ) ∩ W 2,2 (0, T ; V ′ ), (λ 1 , λ 2 ) ∈ (L 2 (Ξ T )) 2 , γ ∈ (L 2 (Ξ T )) 3 , β ∈ W 1,∞ (0, T ; L ∞ (Ξ)), such that (λ 1 , λ 2 , γ) ∈ Λ 3 (u, β), β(t) ∈ L 2 [0,1] (Ξ) for all t ∈ (0, T ), u(0) = u 0 , u(0) = u 1 , β(0) = β 0 , and for almost all t ∈ (0, T ) ⟨ü, v⟩ V ′ ,V + ⟨Au, v⟩ V ′ ,V + ⟨B u, v⟩ V ′ ,V -(λ 1 -λ 2 , v N ) L 2 (Ξ) -(γ, v T ) (L 2 (Ξ)) 3 (3.5) = ⟨f , v⟩ V ′ ,V ∀ v ∈ V , β ∈ ψ(ϑ([u N ]), β) a.e. in Ξ T , (3.6) 
Assume that the set-valued mapping ψ : (L 2 (Ξ T )) 2 → 2 L 2 (Ξ T ) veries the following properties: for each u ∈ W 1,2 (0, T ; V ) there exists a unique solution

β u ∈ W 1,∞ (0, T ; L ∞ (Ξ)) of the inclusion (3.6), such that β(0) = β 0 , β(t) ∈ L 2
[0,1] (Ξ) for all t ∈ (0, T ), and if β u 1 , β u 2 are the solutions of (3.6) corresponding to u 1 , u 2 ∈ W 1,2 (0, T ; V ), respectively, with the same initial condition β 0 , then the following estimate holds for all t ∈ [0, T ]:

∥β u 1 (t) -β u 2 (t)∥ 2 L 2 (Ξ) ≤ C 0 t 0 ∥u 1 (s) -u 2 (s)∥ 2 ds, (3.7) 
where

C 0 is a positive constant independent of u 1 , u 2 , β u 1 , β u 2 .
Several choices of ψ, as subdierentials or single-valued mappings satisfying the previous properties, have been considered, see, e.g., [START_REF] Raous | A consistent model coupling adhesion, friction, and unilateral contact[END_REF][START_REF] Shillor | Models and Analysis of Quasistatic Contact[END_REF][START_REF] Cocou | A dynamic unilateral contact problem with adhesion and friction in viscoelasticity[END_REF][START_REF] Cocou | A class of implicit evolution inequalities and applications to dynamic contact problems[END_REF].

The existence of strong solutions to problem P 2 v will be established by using some auxiliary results and an equivalent xed point problem.

Similar arguments to those used to prove Theorem 5.2 in [START_REF] Sofonea | Analysis and Approximation of Contact Problems with Adhesion or Damage[END_REF], now applied to the product space V = V 1 × V 2 and to the simple case without adhesion, enable to obtain the following existence and uniqueness result for the strong solution, in the V ′ sense, of the following intermediate problem. Lemma 

For each

(η 1 , η 2 ) ∈ (L 2 (Ξ T )) 2 , ς ∈ (L 2 (Ξ T )) 3 , there exists a unique function u = u (η 1 ,η 2 ,ς) ∈ C 1 ([0, T ]; H)∩W 1,2 (0, T ; V )∩W 2,2 (0, T ; V ′ ), such that u(0) = u 0 , u(0) = u 1 , and for almost all t ∈ (0, T ) ⟨ü, v⟩ V ′ ,V + ⟨Au, v⟩ V ′ ,V + ⟨B u, v⟩ V ′ ,V -(η 1 -η 2 , v N ) L 2 (Ξ) -(ς, v T ) (L 2 (Ξ)) 3 (3.8) = ⟨f , v⟩ V ′ ,V ∀ v ∈ V ,
where ü is the second order strong derivative of u considered in V ′ .

For the involved abstract mathematical result, see, e.g., Theorem 4.10 in [START_REF] Barbu | Nonlinear Dierential Equations of Monotone Types in Banach Spaces[END_REF]. Lemma 3.3. Let u (η 1 ,η 2 ,ς 1 ) , u (δ 1 ,δ 2 ,ς 2 ) be the solutions of variational equation

(3.8) corresponding to (η 1 , η 2 ), (δ 1 , δ 2 ) ∈ (L 2 (Ξ T )) 2 , ς 1 , ς 2 ∈ (L 2 (Ξ T )) 3 , respectively.
Then there exists a constant C 1 > 0, independent of (η 1 , η 2 ), (δ 1 , δ 2 ), and

ς 1 , ς 2 , such that for all t ∈ [0, T ] | u(η 1 ,η 2 ,ς 1 ) (t) -u(δ 1 ,δ 2 ,ς 2 ) (t)| 2 + ∥u (η 1 ,η 2 ,ς 1 ) (t) -u (δ 1 ,δ 2 ,ς 2 ) (t)∥ 2 + t 0 ∥ u(η 1 ,η 2 ,ς 1 ) -u(δ 1 ,δ 2 ,ς 2 ) ∥ 2 dτ ≤ C 1 t 0 {(η 1 -η 2 -δ 1 + δ 2 , u(η 1 ,η 2 ,ς 1 )N -u(δ 1 ,δ 2 ,ς 2 )N ) L 2 (Ξ) +(ς 1 -ς 2 , u(η 1 ,η 2 ,ς 1 )T -u(δ 1 ,δ 2 ,ς 2 )T ) (L 2 (Ξ)) 3 } dτ. (3.9) Proof. Let (η 1 , η 2 ), (δ 1 , δ 2 ) ∈ (L 2 (Ξ T )) 2 and ς 1 , ς 2 ∈ (L 2 (Ξ T )) 3 with u 1 := u (η 1 ,η 2 ,ς 1 ) , u 2 := u (δ 1 ,δ 2 ,ς 2 )
the corresponding solutions of (3.8) which exist according to Lemma 3.2. Taking in each equation v = u1 -u2 , for a.e. τ ∈ (0, T ) it follows that

⟨ü 1 -ü2 , u1 -u2 ⟩ V ′ ,V + ⟨Au 1 -Au 2 , u1 -u2 ⟩ V ′ ,V +⟨B u1 -B u2 , u1 -u2 ⟩ V ′ ,V = (η 1 -η 2 -δ 1 + δ 2 , u1N -u2N ) L 2 (Ξ) +(ς 1 -ς 2 , u1T -u2T ) (L 2 (Ξ)) 3 . Since the solutions u 1 , u 2 belong to u ∈ C 1 ([0, T ]; H) ∩ W 1,2 (0, T ; V ) ∩ W 2,2 ( 
0, T ; V ′ ) and verify the same initial conditions, by integrating over (0, t) it follows that for all t ∈ [0, T ]

1 2 | u1 (t) -u2 (t)| 2 + 1 2 ⟨A(u 1 -u 2 ), u 1 -u 2 ⟩ V ′ ,V + t 0 ⟨B u1 -B u2 , u1 -u2 ⟩ V ′ ,V dτ = t 0 {(η 1 -η 2 -δ 1 + δ 2 , u1N -u2N ) L 2 (Ξ) } dτ + t 0 {(ς 1 -ς 2 , u1T -u2T ) (L 2 (Ξ)) 3 } dτ.
By (3.2) and (3.3), the estimate (3.9) follows.

For all v ∈ L 2 (0, T ; V ), by (3.10) we have

T 0 ⟨ü n , v⟩ V ′ ,V dt + T 0 ⟨Au n , v⟩ V ′ ,V dt + T 0 ⟨B un , v⟩ V ′ ,V dt - T 0 (η n 1 -η n 2 , v N ) L 2 (Ξ) dt - T 0 (ς n , v T ) (L 2 (Ξ)) 3 dt = T 0 ⟨f , v⟩ V ′ ,V dt.
This relation and the estimates (3.1), (3.11) imply that there exists a positive constant C 4 , depending only on C 3 , M A , and M B , such that

∀ n ∈ N, ∥ü n ∥ L 2 (0,T ;V ′ ) ≤ C 4 . (3.12) 
From (3.11), (3.12), it follows that there exist a subsequence (u n k ) k and ũ such that

un k ⇀ * u in L ∞ (0, T ; H), u n k ⇀ * ũ in L ∞ (0, T ; V ), un k ⇀ u in L 2 (0, T ; V ), ün k ⇀ ü in L 2 (0, T ; V ′ ).
Since V ⊂ H ι ⊂ H ⊂ V ′ with compact embedding from V into H ι , according to a classical compactness result, see, e.g., [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF], it follows that

un k → u in L 2 (0, T ; H ι ), where 1 > ι > 1 2
, so that, by the trace theorem,

un k → u in L 2 (0, T ; (L 2 (Ξ)) 3 ) = (L 2 (Ξ T )) 3 . (3.13) 
By Lemma 3.3, for all k ∈ N and t ∈ (0, T ] we have

| un k (t) -u(t)| 2 + ∥u n k (t) -u(t)∥ 2 + t 0 ∥ un k -u∥ 2 dτ ≤ C 1 t 0 {(η n k 1 -η n k 2 -η 1 + η 2 , un k N -uN ) L 2 (Ξ) +(ς n k -ς, un k T -uT ) (L 2 (Ξ)) 3 } dτ.
Using the weak convergence properties of (η n 1 ) n , (η n 2 ) n , (ς n ) n , and the strong convergence property (3.13), we can pass to limits in the right hand side of the previous estimates for (u n k ) k and so we obtain that u = ũ and

u n k → u in C 1 ([0, T ]; H) ∩ W 1,2 (0, T ; V ). (3.14) 
As for every subsequence of (u n ) n , by using the same arguments as above that enabled to obtain the relation (3.14), one can always nd a (sub)subsequence converging to u in C 1 ([0, T ]; H) ∩ W 1,2 (0, T ; V ), it follows that 

u (η n 1 ,η n 2 ,ς n ) → u (η 1 ,η 2 ,ς) in C 1 ([0, T ]; H) ∩ W 1,2 (0, T ; V ). ( 3 
(Ξ T )) 2 × (L 2 (Ξ T )) 3 → 2 (L 2 + (Ξ T )) 2 ×(L 2 (Ξ T )) 3 \ {∅} be the set-valued mapping dened by ∀(η 1 , η 2 , ς) ∈ (L 2 + (Ξ T )) 2 × (L 2 (Ξ T )) 3 Φ(η 1 , η 2 , ς) = Λ 3 (u (η 1 ,η 2 ,ς) , β u (η 1 ,η 2 ,ς) ) (4.1) 
where u (η 1 ,η 2 ,ς) is the solution of the variational equation (3.8) which corresponds to (η 1 , η 2 , ς) according to Lemma 3.2 and

β u (η 1 ,η 2 ,ς) is the solution of (3.6) corresponding to u = u (η 1 ,η 2 ,ς) . Since (λ 1 , λ 2 , γ) is a xed point of Φ, i.e. (λ 1 , λ 2 , γ) ∈ Φ(λ 1 , λ 2 , γ), if and only if (u (λ 1 ,λ 2 ,γ) , λ 1 , λ 2 , γ, β u (λ 1 ,λ 2 ,γ)
) is a solution of the Problem P 2 v , we consider the problem which consists in nding a xed point of the set-valued mapping Φ, called also multivalued function or multifunction.

The existence of a xed point of the multifunction Φ will be proved by using a corollary of the Ky Fan's xed point theorem [START_REF] Fan | Fixed points and minimax theorems in locally convex topological linear spaces[END_REF], proved in [START_REF] Rabier | Fixed points of multi-valued maps and static Coulomb friction problems[END_REF] in the particular case of a reexive Banach space. We recall this result for the reader's convenience. Theorem 4.2. Under the assumptions of Sections 2 and 3, there exists

(λ 1 , λ 2 , γ) ∈ (L 2 + (Ξ T )) 2 × (L 2 (Ξ T )) 3 such that (λ 1 , λ 2 , γ) ∈ Φ(λ 1 , λ 2 , γ). For First, the relations (4.5) are equivalent to ω κ([u nN ], β n ) ≤ ω (δ n 1 -δ n 2 ) ≤ ω κ([u nN ], β n ), (4.8) 
for every measurable subset ω ⊂ Ξ T and for all n ∈ N. By (4.3) and a converse of Lebesgue's dominated convergence theorem, it follows that there exists a subsequence of (u n ) n , denoted by (u n k ) k , such that [u n k N ] → [u ηN ], un k T → uηT a.e. in Ξ T . (4.9)

The rst convergence property in (4.9) enables to pass to limits in (4.8) with respect to n k according to Fatou's lemma, by using (4.4), the semi-continuity of κ and κ, the relation (2.2), and the convergence property

ω (δ n 1 -δ n 2 ) → ω (δ 1 -δ 2 ).
Thus, we obtain for every measurable subset ω ⊂ Ξ T and for all n ∈ N. By the second convergence property in (4.9), we have

µ( un k T ) | un k T | → µ( uηT ) | uηT | in L 1 (Ξ T ), (4.13) 
and, by the relations (2.2), (4.5), From (4.10), (4.11), (4.15), it follows that (δ 1 , δ 2 , ϖ) ∈ Φ(η 1 , η 2 , ς), so that we may apply the Proposition 4.1 to conclude the proof.

δ n 1 + δ n 2 ⇀ * δ 1 + δ 2 in L ∞ (Ξ T ).

Denition 4 . 1 .

 41 Let Y be a reexive Banach space, D a weakly closed set in Y , and F : D → 2 Y \ {∅} be a set-valued mapping. F is called sequentially weakly upper semicontinuous if z n ⇀ z, y n ∈ F (z n ) and y n ⇀ y imply y ∈ F (z).

Proposition 4 .

 4 1. ([START_REF] Rabier | Fixed points of multi-valued maps and static Coulomb friction problems[END_REF]) Let Y be a reexive Banach space, D a convex, closed and bounded set in Y , and F : D → 2 D \ {∅} a sequentially weakly upper semicontinuous set-valued mapping such that F (z) is convex for every z ∈ D. Then F has a xed point.

ω 1 + δ n k 2

 12 κ([u ηN ], β η ) ≤ ω (δ 1 -δ 2 ) ≤ ω κ([u ηN ], β η ),for every measurable subset ω ⊂ Ξ T , which impliesκ([u ηN ], β η ) ≤ δ 1 -δ 2 ≤ κ([u ηN ], β η ) a.e. in Ξ T .(4.10)Second, the relation (4.6) is equivalent toω |ϖ n | ≤ ω µ( unT ) (δ n 1 + δ n 2 ),for every measurable subset ω ⊂ Ξ T and for all n ∈ N. As µ(ξ, •) is Lipschitz continuous with the Lipschitz constant independent of ξ, by using the second convergence property in (4.9) and passing to limits with respect to n k we obtainω |ϖ| ≤ lim inf ω |ϖ n k | ≤ lim ω µ( un k T ) (δ n k uηT ) (δ 1 + δ 2 ),for every measurable subset ω ⊂ Ξ T , which implies |ϖ| ≤ µ( uηT ) (δ 1 + δ 2 ) a.e. in Ξ T . (4.11) Finally, consider the relation (4.7) which is equivalent to ω ϖ n • unT + ω µ( unT ) (δ n 1 + δ n 2 ) | unT | = 0, (4.12)

(4. 14 )

 14 Passing to limits in (4.12) by using (4.13) and (4.14), we obtainω ϖ • uηT + ω µ( uηT ) (δ 1 + δ 2 ) | uηT | = 0,for every measurable subset ω ⊂ Ξ T , which impliesϖ • uηT + µ( uηT ) (δ 1 + δ 2 ) | uηT | = 0.(4.15)

 Lemma 3.4.Under the assumptions of Sections 2 and 3, for every (η 1 , η 2 ) ∈ (L 2 + (Ξ T )) 2 and every ς ∈ (L 2 (Ξ T )) 3 , let (η n 1 , η n 2 ) n be a sequence in (L 2 + (Ξ T )) 2 and (ς n ) n be a sequence in (L 2 (Ξ T )) 3 such that η n 1 ⇀ η 1 , η n 2 ⇀ η 2 in L 2 (Ξ T ), and ς n ⇀ ς in (L 2 (Ξ T )) 3 . Let u (η n 1 ,η n 2 ,ς n ) be the solution of (3.8) corresponding to (η n 1 , η n 2 , ς n ) according to Lemma 3.2, for every n ∈ N. Then

Proof. We adopt the following notations:

, so that we have for almost all t ∈ (0, T )

By Lemma 3.3, for all n ∈ N and t ∈ (0, T ] we have

where C 2 is a positive constant dependent only on u.

Since the sequences 3 , respectively, by Young's inequality it follows that there exists a positive constant C 3 , depending only on u, C 1 , C 2 , the bounds of (η n 1 , η n 2 ) n and (ς n ) n , such that the following estimates hold for all n ∈ N: 5 is clearly convex, closed, and bounded. For all w ∈ W 1,2 (0, T ; V ), υ ∈ L 2 (Ξ T ), the set Λ 3 (w, υ) is nonempty, closed, and convex, so that Φ(η 1 , η 2 , ς) is a nonempty, closed, and convex subset of D for every (η 1 , η 2 , ς) ∈ D.

In order to prove that the multifunction Φ is sequentially weakly upper semicontinuous, let

We adopt the following notations:

where β u (η n 1 ,η n 2 ,ς n ) is the solution of (3.6) corresponding to u (η n 1 ,η n 2 ,ς n ) and β u (η 1 ,η 2 ,ς) is the solution of (3.6) corresponding to u (η 1 ,η 2 ,ς) .

By Lemma 3.4, we have

which implies

and, by (3.7), for all n ∈ N.