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ABSTRACT   

We demonstrate experimentally that optical chaos generated by laser diode with optical feedback is suitable for 

compressive sensing of sparse signals. Specifically, we find that a wide range of the laser operational parameters and 

dynamical complexity guarantees that the generation of a sensing matrix, necessary for sparse reconstruction, has a 

comparable level of performance to those constructed with Gaussian random sequences. Our result opens new avenues 

for the use of optical chaotic devices for signal processing applications at ultra-high speed. 
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1. INTRODUCTION  

Reconstructing quasi-perfectly sparse signals (i.e. equal to zeros most of the time) sampled below the Shannon-

Nyquist limit is possible. Typically, for a baseband signal with total bandwidth 2B it is necessary to sample the signal 

with a frequency Fs >> 2B to reconstruct perfectly the signal. This is known as the Shannon-Nyquist limit. However, in 

the case of sparse signal, the informative content of the signal can be very limited with respect to the occupied 

bandwidth; hence, it is possible to exploit this property to design advanced reconstruction algorithm. This is known as 

compressive sensing (CS) [1-3]. 

The CS technique has found many applications in various fields of image processing and in applied physics. For 

example, this has been used in medical imaging to improve acquisition of MRI data [4], in quantum mechanics to 

reconstruct the density operator matrix [5], and in optics for holographic reconstruction [6].  

To achieve CS, the sparse signal of interest is projected on a basis of vectors with component constructed with 

random variables. This is called sensing. Based on theory developed by E. Candès and T. Tao [1,2]. To achieve the best 

level of performance for sensing, it is known that independent identically distributed (iid) Gaussian random variables are 

a suitable choice.  

The apparent randomness of optical chaos, although it does not have Gaussian statistics, has been harnessed in 

information processing such as secure communications [7] and the generation of true random numbers [8]. Here, we aim 

at realizing a sensing mechanism using optical chaos rather than numerically generated Gaussian random numbers.  

In this study, we propose to use experimental measurements of the optical intensity generated by a laser diode 

subjected to optical feedback in its coherence collapse regime for the sensing mechanism. We show on a typical 

benchmarking problem from CS that it is possible to reconstruct sparse signal using chaotic samples generated by our 

chaotic laser with reconstruction performance close to identical to those of using Gaussian random variables, although 
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our chaos-based sensing mechanism has statistical and spectral properties that are very different to those considered in 

the optimal case. 

 

2. EXPERIMENT AND CHAOS-BASED SENSING 

 

In our experimental setup, which is illustrated in Fig.1, we use a single-longitudinal-mode DFB laser diode with an 

emission centered at 1550 nm. The laser is subjected to optical feedback, which introduces a delay in the dynamics of 

approximately τ = 4.3 ns. In the external cavity, we have introduced a polarizer and a quarter-wave plate to control the 

amount of light fed back in the laser cavity. The maximum feedback strength accounts for approximately 20 % of the 

total optical power of the laser diode (measured to be around 15 mW). Finally, to sample and acquire the optical chaotic 

time series, we use an amplified photodiode NewFocus 1544-B with a 12 GHz bandwidth, and a fast oscilloscope 

Agilent DSO 80804B with 12 GHz bandwidth. This setup is identical to the one used in Ref. [9]. 

 

 
 

Figure 1 – Experimental setup of an external-cavity semiconductor laser (ECSL) for the generation of chaotic time-series.  The 

optical feedback is composed a polarizer, a quarter wave-plate (QWP), which both allow to control the feedback strength and 

of a mirror mounted on a translation stage to adjust the feedback phase. The ECSL intensity is detected by a NewFocus 

photodiode (PD) and digitized by a fast oscilloscope. 

 

In our experiment, the chaotic intensity time-series is sampled with period Ts = 25 ps and is converted to a 

digital representation with an 8-bits precision (see Fig. 2(a) for an example of intensity time series). We first analyze the 

spectral properties of our digitized time series, and evaluate the necessary decorrelation time that guarantees consecutive 

samples are statistically uncorrelated. In this study, we consider the following experimental parameters: J = 1.2 Jth, 

where Jth is the threshold of the free-running laser and feedback strength η = 12% of the total optical power. For this 

particular set of parameters, we compute the autocorrelation function (ACF) defined by 

 

𝐴𝐶𝐹(𝜃) =
1

𝜎𝐼
〈𝐼(𝑡 + 𝜃) − 𝜇𝐼〉〈𝐼(𝑡) − 𝜇𝐼〉,                          (1) 

 

where μI = <I(t)> is the time average of the intensity time series and σI = <(I(t)- μI)2>1/2 is the standard deviation of the 

time series. The evolution of the autocorrelation function is shown in Fig. 2. The time-lag values for which the 

correlation between samples is approximately zero corresponds to θ = Tsub-s = 50 Ts = 1.25 ns. With such decorrelation 

properties, the chaotic samples are iid, which is one of the requirements to generate suitable sensing matrices according 

to CS theory. Interestingly, time-delay systems such as ECSLs can display, under certain experimental conditions, 

relatively strong revival of their correlation for time lags which are integer multiple of the time delay τ [10,11]. Over the 

past decade, this phenomenon has been exhaustively documented in various photonic devices [12-13]. However, because 

of the particular choice of construction of the sensing matrix explained below this does not constitute a practical problem 
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and only the decorrelation at time lag close to zero is important. Another way to circumvent the correlation signatures of 

the time delay is to resample the time trace with a sub-sampling factor so that the ratio τ /Tsub-s is not an integer. For 

example, with our current sampling precision, we have τ = 182 Ts and Tsub-s  = 50 Ts. 

 

The samples are used to form the sensing matrix later used in CS. We arrange the consecutive sampled by 

column of size M. We stop the construction of the matrix when we reach N >>M columns, where N is the size of the 

sparse signal to be reconstructed and M corresponds to the number of measurements. Such a construction for the chaos-

based sensing matrix is reminiscent of the method used in Ref. [14], where a logistic map was numerically implemented 

for the generation of chaotic samples. 

 

 

 
 

Figure 2 – (a) Experimental time series generated by the semiconductor laser with optical feedback with J=1.2 Jth and η = 

12%. (b) Autocorrelation function of the experimental intensity time series. The autocorrelation shows oscillations associated 

with the undamped relaxation oscillations and is identically equal to zero for time lags  
 

In the CS theory, we generate M measurements by realizing the scalar product between the unknown sparse 

signal x to be reconstructed and the M rows of the sensing matrix Φ. This can be mathematically described by the 

following relationship 𝑦 = Φ𝑥. This mathematical operation realizes a projection on a lower-dimensional subspace such 

that the amount of information about x is significantly reduced. However, if the sensing matrix has the so-called 

restrictive isometry property (which is satisfied by Gaussian random matrices), it is possible to reconstruct quasi-

perfectly the original sparse signal with a high probability.   

 

The reconstruction in the framework of CS is achieved with the resolution of a linear optimization problem with 

linear constraints. Mathematically, this reads 

 

𝑥̂ = min
𝑥

‖𝑥‖𝐿1
   𝑤𝑖𝑡ℎ     𝑦 = Φ𝑥,                        (2) 

 

where ‖∙‖𝐿1
denoting the measurement with the chaotic sensing matrix is the linear constraint in the linear program. We 

solve this linear program using the L1-Magic Toolbox developed by Candès and Romberg [16]. 

 

3. RESULTS  

 
To demonstrate the performance of CS using chaotic sequence generated by an external cavity semiconductor laser, we 

consider a standard benchmark known as the basis pursuit problem. This consists of generating a sparse signal of size N 

comprising K<N non-zeros values distributed randomly and with values also taken randomly in the set {−1,1} with equal 

probability 1/2. In this benchmark, we apply the compressive sensing reconstruction algorithm to sparse signal with 

decreasing sparsity (increasing values of K) and evaluate the probability of successful reconstruction. The threshold of 

accurate reconstruction is determined by having a relative error between the original signal and reconstructed signal 𝜖 =
‖𝑥−𝑥‖

‖𝑥‖
 less than 0.01. At a given value of M, there exists a maximum level of sparsity so that the probability of accurate 

reconstruction drops rapidly.  



 

 
 

 

We realize a first experiment at high and low sparsity levels K=5 and K = 40, respectively, for a signal of size N 

= 100 and M = 50 measurements realized with our chaos-based sensing matrix. The results are shown in Fig. 3. In Fig. 

3(a1)-(a2), we have represented the original sparse signal used in the basis pursuit problem, in Fig. 3(b1)-(b2), the 

reconstructed signal, and in Fig. 3(c1)-(c2), the reconstruction error between the two signals. In the case of accurate 

reconstruction, the relative error is far below the upper bound for success and the spiky structure of the original signal is 

well preserved. On the other hand, when the sparsity is low, we observe that the reconstruction did not preserve the spiky 

structure at all leading to an important relative error. The results would have been similar with a sensing matrix based on 

Gaussian random variables. 

 

 
 

Figure 3 – (a1-a2) Original sparse signal with sparsity level K=5 and K=40, respectively. (b1-b2) Reconstructed signal using the 

linear optimization problem described by Eq. (2) and in the context of chaos-based sensing. (c1-c2) Reconstruction error 

between the two signals for each sparsity level. 
 

However, the deterioration of performance may occur for different sparsity level depending on the type of 

sensing mechanism used in the linear optimization problem in Eq. (2). Hence, a systematic study comparing the 

performance between the optimal case of Gaussian sensing and chaotic sensing was performed. For each value of 𝐾 ∈
⟦1,50⟧, we have performed a thousand reconstructions for various instantiations of the sparse signal and sensing matrices 

in the chaotic and Gaussian cases, respectively. The results are shown in Figure 4. We observe that in both cases the 

transition toward poor reconstruction performance occurs for a similar sparsity level, around K=15. The two curves are 

almost superimposed. This proves that chaotic sensing performs as well as the Gaussian and is therefore quasi-optimal. It 

also shows that a chaotic-based sensing matrix satisfies empirically the RIP property. 

 
 

 
 

 

Figure 4 – Reconstruction performance curve showing the probability of successful reconstruction for increasing values of K 

from 1 to 50. For each value of K, 1000 reconstruction are realized with different instantiations of sparse signals and sensing 

matrices. The Gaussian and chaotic sensing are representing in red dashed lines and solid blue lines respectively. We have 

used the following numerical values for the reconstruction : N=100 and M=50. 



 

 
 

 

 

4. CONCLUSION 

 
In this study, we have shown that it was possible to exploit optical chaos for a type of signal processing 

application that is different from the random bit generation or chaos cryptography. We highlighted that the chaotic 

intensity values generated by a semiconductor laser with optical feedback can be readily used as elements of a sensing 

matrix to perform the quasi-perfect reconstruction of sparse signal in the framework of compressive sensing. We have 

also highlighted that the chaos-based sensing mechanism has a performance comparable to the optimal case of Gaussian 

random variables. Because of the very large bandwidth of photonics devices, our study provides a first step towards a 

physical implementation of advanced algorithms for sparse reconstruction at ultra-high speed. 
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