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On the effective behavior of viscoelastic composites in three dimensions

We address the calculation of the effective properties of non-aging linear viscoelastic composite materials. This is done by solving the microscale periodic local problems obtained via the Asymptotic Homogenization Method (AHM) by means of finite element threedimensional simulations. The work comprises the investigation of the effective creep and relaxation behavior for a variety of fiber and inclusion reinforced structures (e.g. polymeric matrix composites). As starting point, we consider the elastic-viscoelastic correspondence principle and the Laplace-Carson transform. Then, a classical asymptotic homogenization approach for composites with discontinuous material properties and perfect contact at the interface between the constituents is performed. In particular, we reach to the stress jump conditions from local problems and obtain the corresponding interface loads. Furthermore, we solve numerically the local problems in the Laplace-Carson domain, and compute the effective coefficients. Moreover, the inversion to the original temporal space is also carried out. Finally, we compare our results with those obtained from different homogenization approaches, such as the Finite-Volume Direct Averaging Micromechanics (FVDAM) and the Locally Exact Homogenization Theory (LEHT).

Introduction

The study of creep and relaxation in viscoelastic heterogeneous materials, in which the phases generally involve both instant elastic and time-dependent viscous behavior, has gone some way towards enhancing our understanding of these kinds of composites. Several examples of man-made materials consist of viscoelastic constituents and are designed with practical purposes (see [START_REF] Liu | Multiscale modeling of viscoelastic behaviors of textile composites[END_REF][START_REF] Dastjerdi | On the effect of viscoelasticity on behavior of gyroscopes[END_REF]. Others are found in nature such as biological tissues (see [START_REF] Carpenter | A review on the biomechanics of coronary arteries[END_REF]Gholipour, Ghayesh, Zander, & Psaltis, 2020;[START_REF] Kumar | Fluid structure interaction study of stenosed carotid artery considering the effects of blood pressure[END_REF][START_REF] Malhotra | Linear viscoelastic and microstructural properties of native male human skin and in vitro 3d reconstructed skin models[END_REF]. From the point of view of modeling and manufacturing, 1 the high cost associated to experimental evaluations of the effective viscoelastic properties of composites motivates the development of predictive modeling techniques.

Recently, several studies have addressed the problem of modeling viscoelastic composites. For instance, in [START_REF] Sevostianov | Effective viscoelastic properties of short-fiber reinforced composites[END_REF] , the calculation of the effective viscoelastic properties of a short fiber reinforced composite is studied, wherein the orientation distribution of the fibers varies from perfectly aligned to randomly oriented ones. Moreover, in [START_REF] Vilchevskaya | Replacement relations for a viscoelastic material containing multiple inhomogeneities[END_REF] , the overall properties of viscoelastic porous materials obtained by infilling of pores with either a viscoelastic solid or fluid are investigated. In [START_REF] Smirnov | Evaluation of the effective viscoelastic properties of a material containing multiple oblate inhomogeneities using fraction-exponential operators[END_REF] , the Authors studied materials containing multiple inhomogeneities of oblate shape. In particular, they use this framework to model the viscoelastic properties of blood. In these three works, the viscoelastic properties are expressed in terms of the fraction-exponential operators of Scott BlairRabotnov [START_REF] Sevostianov | Maxwell's methodology of estimating effective properties: Alive and well[END_REF]. On the other hand, in [START_REF] Ebrahimi | A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures[END_REF] , a nonlocal higher-order refined magneto-electro-viscoelastic beam model for vibration analysis of smart nanostructures is considered. Moreover, a RVE-based Finite Element algorithm for evaluating the effective viscoelastic creep behaviors of aligned short fiber composites is developed in [START_REF] Wang | Numerical analysis on viscoelastic creep responses of aligned short fiber reinforced composites[END_REF] . Furthermore, in [START_REF] Nguyen | A coupled hygrothermo-mechanical viscoelastic analysis of multilayered composite plates for long-term creep behaviors[END_REF] , the higher-order zigzag theory is used to analyze the hygrothermo-mechanical behavior of viscoelastic composite laminated plates. In addition, a thermodynamic framework for viscoelastic polymers undergoing microstructural changes is studied in [START_REF] Song | A thermodynamically consistent model for viscoelastic polymers undergoing microstructural changes[END_REF] , and an approach for predicting the five independent viscoelastic constants of a unidirectional carbon fibre epoxy resin composite is experimentally validated in [START_REF] Hine | Validating a micromechanical modelling scheme for predicting the five independent viscoelastic constants of unidirectional carbon fibre composites[END_REF] . Besides, in [START_REF] Rodríguez-Ramos | Computation of the relaxation effective moduli for fibrous viscoelastic composites using the asymptotic homogenization method[END_REF] , the two-scale asymptotic homogenization method is extended to the viscoelastic case and analytical closed form expressions, in Laplace-Carson space, for the effective coefficients of fibrous viscoelastic composites with square and hexagonal cells are reported. In [START_REF] Farajpour | Nonlocal nonlinear mechanics of imperfect carbon nanotubes[END_REF] , the effects of viscoelasticity as well as geometrical imperfections on the mechanics of carbon nanotubes with large deformations are analysed via a modified nonlocal elasticity model. Finally, in [START_REF] Omari | Modeling of the viscoelastic properties of thermoset vinyl ester nanocomposite using artificial neural network[END_REF] and [START_REF] Rahmanpanah | Prediction of load-displacement curve in a complex structure using artificial neural networks: A study on a long bone[END_REF] , the Authors use an artificial neural network to model the viscoelastic properties of a thermoset vinyl ester nanocomposite and predict the load-displacement curve in a long bone, respectively.

The AHM has proved to be advantageous in the description of the coarse scale mechanics of composite materials. Many studies have dealt with the theoretical bases of the method, see e.g., [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF] , [START_REF] Sanchez-Palencia | Non-Homogeneous media and vibration theory[END_REF] , [START_REF] Bakhvalov | Homogenisation: Averaging processes in periodic media: Mathematical problems in the mechanics of composite materials[END_REF] , [START_REF] Allaire | Multiscale convergence and reiterated homogenisation[END_REF] , [START_REF] Auriault | Homogenization of coupled phenomena in heterogenous media[END_REF] . In general, the AHM permits to obtain an effective characterization of the heterogeneous system or phenomenon under study by encoding the information available at the microscale into the so-called effective coefficients. This, in turn, reduces dramatically the computational complexity of the resulting boundary problems. However, the main disadvantage of AHM is that the analytical solution of the local problems has been derived for only a few composite structures (see [START_REF] Guinovart-Díaz | Influence of parallelogram cells in the axial behaviour of fibrous composite[END_REF][START_REF] Willoughby | Homogenization methods to approximate the effective response of random fibrereinforced composites[END_REF][START_REF] Kalamkarov | Asymptotic analysis of fiber-reinforced composites of hexagonal structure[END_REF]. For instance, in [START_REF] Cruz-González | A hierarchical asymptotic homogenization approach for viscoelastic composites[END_REF] and [START_REF] Otero | Asymptotic and numerical homogenization methods applied to fibrous viscoelastic composites using Prony's series[END_REF] , the Authors report a set of formulae for laminated and fiber reinforced viscoelastic composites, respectively. Therefore, in order to handle complex microstructures, numerical approaches based on the finite element method (FEM) offer a potential alternative to solve the local problems.

The aim of this work is to apply a semi-analytical technique that combines the theoretical strengths of the AHM with numerical computations based on FEM. The novelty of this study lies in the computations of the effective properties of non-aging linear viscoelastic composites in three dimensions. This is done via suitable generalization of the theoretical and computational platform presented in Penta andGerisch (2016, 2017) for linear elastic composites. To the best of our knowledge, there are no studies addressing numerical computations of the properties of viscoelastic composites by varying the microstructure within the periodic cell.

In addition, the manuscript presents some differences with respect to previous works of some of the authors ( Otero et al., 2020;Penta & Gerisch, 2016;[START_REF] Rodríguez-Ramos | Computation of the relaxation effective moduli for fibrous viscoelastic composites using the asymptotic homogenization method[END_REF] and with others in the literature [START_REF] Chen | Finite-volume homogenization of elastic/viscoelastic periodic materials[END_REF][START_REF] Chen | A micromechanics-based constitutive model for linear viscoelastic particle-reinforced composites[END_REF][START_REF] Li | A novel implementation of asymptotic homogenization for viscoelastic composites with periodic microstructures[END_REF]Wang & Pindera, 2016a ). Specifically, the numerical solution of the local problem is tackled by means of the finite element software COMSOL Multiphysics® and LiveLink TM for Matlab® scripting, and the solution's convergence is analyzed through three types of mesh discretization. We compute the effective coefficients for several types of fiber and inclusion reinforced structures with isotropic components and perfect contact at the interfaces. In particular, Maxwell's model, four parameter model, as well as Prony's series are employed to describe the viscoelastic effects in the sub-phases and the results are tabulated in Section 4.5 .

The manuscript is organized as follows. In Section 2 , we give a brief overview of the linear viscoelastic heterogeneous problem. In Section 3 , we describe the mathematical and computational methodology. In Section 4 , we compare our numerical results with different methods existing in the literature. By doing this, we offer an alternative way to compute the effective coefficients of non-aging linear viscoelastic composites.

Linear viscoelastic heterogeneous problem

Let us denote by ∈ R 3 a linear, viscoelastic composite material with well-separated length scales ℓ and L . Particularly, ℓ refers to the characteristic length scale of the microstructure, while L is the characteristic length of the composite medium (see Fig. 1 ). Then, we introduce the dimensionless, scaling parameter

ε := ℓ L ≪ 1 .
(1) Moreover, by denoting with x the macroscopic, or slow, variable, and using Eq. ( 1) , we define the microscopic, or fast, variable y as

y := x ε . (2) 
The heterogeneous material is assumed to be a two-phase composite where =

ε 1 ∪ ε 2 and ε 1 ∩ ε 2 = ε 1 ∩ ε 2 = ∅ . In particular, we consider ε 2 = ∪ N i =1 i ε 2 ,
where N represents the number of inclusions, and the interface between ε We remark that in the remainder of this work, the notation φ ε (x, t ) = φ(x, y, t ) is considered, where φ is assumed to be periodic in y .

Statement of the problem

Here, we consider that the constitutive response of the constituents of to be linear viscoelastic. Then, the balance of linear momentum, neglecting inertial terms, reads

∇ • σ σ σ ε (x, t ) = 0 0 0 in ( \ Ŵ ε ) × R , (3a) u u u ε (x, t ) = 0 0 0 on Ŵ ε × R , (3b) σ σ σ ε (x, t ) • n n n (y ) = 0 0 0 on Ŵ ε × R . (3c) Boundary conditions on ∂ × R , u u u ε (x, t ) = ū u u , (3d) σ σ σ ε (x, t ) • n n n = S S S . (3e) Initial condition in × { 0 } , u u u ε (x, t ) = 0 0 0 . (3f) 
In Eqs. (3a) -(3f) , σ σ σ ε represents the second-order stress tensor and it is given by the expression, [START_REF] Christensen | Theory of viscoelasticity. An introduction -2nd edition[END_REF] 

σ σ σ ε (x, t ) = t 0 R ε (x, t -τ ) : ∂ ξ ξ ξ ( u u u ε (x, τ )) ∂τ dτ, ( 4 
)
where the term u u u ε stands for the displacement field and R ε refers to the relaxation modulus, which is assumed to be a smooth function of x in ( \ Ŵ ε ) × R . In general, however, we consider discontinuous material properties on Ŵ ε × R .

Moreover, the symmetry properties

R ε ijkl = R ε jikl = R ε ijlk = R ε
kli j hold true. Furthermore, ξ ξ ξ represents the second-order strain tensor and is defined by the formula

ξ ξ ξ ( u u u ε (x, t ) ) := 1 2 ∇ u u u ε (x, t ) + (∇ u u u ε (x, t )) T .
(5)

We notice that in Eqs. (3b) -(3c) , we impose continuity conditions for displacements and tractions on Ŵ ε , in which the term n n n (y ) stands for the outward unit vector to the surface Ŵ ε and the operator φ ε denotes the "jump" of φ ε across the interface between the constituents. Since the scale-dependent constitutive law (4) corresponds to a non-aging linear viscoelastic material, we can employ the elastic-viscoelastic correspondence principle (see [START_REF] Lakes | Viscoelastic materials[END_REF][START_REF] Maghous | Periodic homogenization in thermoviscoelasticity: case of multilayered media with ageing[END_REF] for further details) and state the problem (3a) -(3f) in the Laplace-Carson space. Before doing this, we introduce the Laplace-Carson transform, for all real numbers t ≥ 0, of φ ε namely, Christensen (1982) ˆ

φ ε (x, p) := p ∞ 0 e -pt φ ε (x, t ) dt ,
where the "hat" symbol denotes the Laplace-Carson transform of φ ε and p represents the variable in the Laplace-Carson space.

Then, taking into account the above considerations, we rewrite the system (3a) -(3f) in the Laplace-Carson space, as follows

∇ • ˆ R ε ( x, p ) : ξ ξ ξ ˆ u u u ε ( x, p ) = 0 0 0 in ( \ Ŵ ε ) × [0 , + ∞ ) , (6a) 
ˆ u u u ε (x, p) = 0 0 0 on Ŵ ε × [ 0 , + ∞ ) , (6b) 
ˆ R ε ( x, p ) : ξ ξ ξ ˆ u u u ε ( x, p ) • n n n (y ) = 0 0 0 on Ŵ ε × [0 , + ∞ ) . (6c) Boundaryconditionson ∂ × [0 , + ∞ ) , ˆ u u u ε ( x, p ) = u u u , (6d) 
ˆ R ε ( x, p ) : ξ ξ ξ ˆ u u u ε ( x, p ) • n n n = S S S . (6e) Initialconditionin × { 0 } , ˆ u u u ε (x, p) = 0 0 0 . (6f)

Description of the semi-analytical technique

In this section, we describe the semi-analytical technique adopted in this work. Specifically, we highlight the main results of the AHM, and show the procedure for the computation of the effective properties of the composite. It is worth to recall that, in this study, we adapt the methodology described in Penta andGerisch (2016, 2017) to our purposes, and extend the results to the case of non-aging, linear viscoelastic composite materials.

Two-scale asymptotic homogenization approach

We notice that, according to the chain rule and Eq. ( 2) , the following relation is obtained

∂ ˆ φ ε i ( x, p ) ∂x j = ∂ ˆ φ i ( x, y, p ) ∂x j + 1 ε ∂ ˆ φ i ( x, y, p ) ∂y j . (7) 
Therefore, Eq. ( 5) becomes,

ξ kl ( ˆ φ ε ( x, p ) ) = ξ kl ( ˆ φ(x, y, p)) + 1 ε ξ (y ) kl ( ˆ φ(x, y, p)) , (8) 
with

ξ (y ) kl ( ˆ φ(x, y, p)) = 1 2 ∂ ˆ φ k (x, y, p) ∂y l + ∂ ˆ φ l (x, y, p) ∂y k . ( 9 
)
Now, we propose the solution of the heterogeneous problem (6a) -(6f) as a formal multi-scale expansion of the displacement ˆ u u u ε in powers of ε, [START_REF] Bakhvalov | Homogenisation: Averaging processes in periodic media: Mathematical problems in the mechanics of composite materials[END_REF] , [START_REF] Cioranescu | An introduction to homogenization[END_REF]

) ˆ u u u ε (x, p) = + ∞ i =0 ε i ˆ u u u (i ) (x, y, p) . ( 10 
)
After replacing ( 10) into (6a) -(6f) and using the relations ( 7) and ( 8) , the procedure follows by grouping the resulting equations in powers of the smallness parameter ε. Specifically, by performing some algebraic manipulations, we reach the following sequence of problems, (we refer the reader to Rodríguez-Ramos et al. ( 2020) , Cruz-González et al. ( 2020) for further details)

Problem for ε -2 ∂ ∂y j ˆ R ijkl (y, p) ξ (y ) kl ( ˆ u u u (0) (x, y, p)) = 0 in (Y \ Ŵ Y ) × [0 , + ∞ ) , (11a) 
ˆ u (0) i (x, y, p) = 0 on Ŵ Y × [0 , + ∞ ) , (11b) 
ˆ R ijkl (y, p) ξ (y ) kl ( ˆ u u u (0) (x, y, p)) n (y ) j = 0 on Ŵ Y × [0 , + ∞ ) . (11c) Initial condition in Y × { 0 } , ˆ u ( 0 ) i ( x, y, p ) = 0 . ( 11d 
)
Since the right hand side of (11a) is zero, the problem can be solved using the solvability condition reported in [START_REF] Bakhvalov | Homogenisation: Averaging processes in periodic media: Mathematical problems in the mechanics of composite materials[END_REF] , Persson, Persson, Svanstedt, & Wyller, 1993 , wherein 

ˆ u u u (0) is a solution of (11a) -(11c) if
and only if it is constant in relation to the variable y , i.e.

ˆ u u u

( 0 ) (x, y, p) = ˆ v v v (x, p) , (12) 
where ˆ

v v v is a smooth function. Problem for ε -1 ∂ ∂y j ˆ R ijkl (y, p) ξ (y ) kl ( ˆ u u u (1) (x, y, p)) + ξ kl ( ˆ u u u (0) (x, y, p)) = 0 in (Y \ Ŵ Y ) × [0 , + ∞ ) , (13a) 
ˆ u (1) i (x, y, p) = 0 on Ŵ Y × [0 , + ∞ ) , (13b) 
ˆ R ijkl (y, p) ξ (y ) kl ( ˆ u u u (1) (x, y, p)) + ξ kl ( ˆ u u u (0) (x, y, p)) n (y ) j = 0 on Ŵ Y × [0 , + ∞ ) . (13c) Initial condition in Y × { 0 } , ˆ u ( 1 ) i ( x, y, p ) = 0 . (13d) 
The solvability condition also applies in this case, ensuring the existence and uniqueness, up to a y -constant function, of the solution to the problem (13a) -( 13d) . An expression for the aforementioned solution can be derived by means of the method of separation of variables, namely [START_REF] Bakhvalov | Homogenisation: Averaging processes in periodic media: Mathematical problems in the mechanics of composite materials[END_REF][START_REF] Persson | The homogenization method[END_REF]

, ˆ u (1) m (x, y, p) = ˆ χ klm (y, p) ξ kl ( ˆ v v v (x, p)) , (14) 
where the third order tensor ˆ χ klm , which is periodic in y , is the solution of the following problem referred to as the ε-local

problem , ∂ ∂y j ˆ R ijpq (y, p) ξ (y ) pq ( ˆ χ χ χ kl (y, p)) + ˆ R ijkl (y, p) = 0 in (Y \ Ŵ Y ) × [0 , + ∞ ) , (15a) 
ˆ χ klm (x, y, p) = 0 on Ŵ Y × [0 , + ∞ ) , (15b) 
( ˆ R ijpq (y, p) ξ (y ) pq ( ˆ χ χ χ kl (y, p)) + ˆ R ijkl (y, p)) n (y ) j = 0 on Ŵ Y × [0 , + ∞ ) . (15c) Initial condition in Y × { 0 } , ˆ χ klm ( y, p ) = 0 . ( 15d 
)
Where,

ξ (y ) pq ( ˆ χ χ χ kl (y, p)) := 1 2 ∂ ˆ χ kl p (y, p) ∂y q + ∂ ˆ χ klq (y, p) ∂y p . ( 16 
)
According to the problem (15a) -(15d) , a further condition is required to obtain uniqueness of the solution, for instance, by requiring that ˆ χ klm y = 0 ( Penta & Gerisch, 2016; 2017 ) or alternately, by fixing the value of ˆ χ klm at one point of the reference cell Y . Here, the notation φ y stands for the cell average operator and is defined as,

φ y := 1 | Y | Y φ dy, ( 17 
)
where | Y | represents the volume of the periodic cell Y .

Problem for ε 0

Now, by considering relation ( 14) , the homogenized problem can be written in the form ˆ R ( * )

ijkl (p) ∂ ∂x j ξ kl ( ˆ v v v (x, p)) = 0 in h × [0 , + ∞ ) . (18a) Boundaryconditionson ∂ h × [0 , + ∞ ) , ˆ v i (x, p) = u i , (18b) ˆ R ( * ) ijkl (p) ξ kl ( ˆ v v v (x, p)) n j = S i . (18c) Initialconditionin h × { 0 } , ˆ v i (x, p) = 0 . (18d) 
In Eq. ( 18a) , ˆ R ( * ) represents the effective relaxation modulus in the Laplace-Carson space and is defined through the expression ˆ R ( * )

ijkl (p) := ˆ R ijkl (y, p) + ˆ R ijpq (y, p) ξ (y ) pq ˆ χ χ χ kl (y, p) y .
(19)

Computational approach

In this section, we report some of the main aspects of the computational approach used in this work. In particular, for simplicity in our computations, we assume a y -constant expression for the relaxation modulus

( ˆ R ijkl ) in each phase of the periodic cell, i.e. ˆ R ijpq (y, p) = ˆ R (1) ijpq (p) , if y ∈ Y 1 , ˆ R (2) ijpq (p) , if y ∈ Y 2 , (20) 
where the superscripts (1) and ( 2) indicate the matrix and the inclusion phases, respectively (see Fig. 1 ). Therefore, the local problem (15a) -(15d) can be rewritten as,

∂ ∂y j ˆ R (1) ijpq (p) ξ (y ) pq ( ˆ χ χ χ (1) kl (y, p)) = 0 in Y 1 × [0 , + ∞ ) , (21a) 
∂ ∂y j ˆ R (2) ijpq (p) ξ (y ) pq ( ˆ χ χ χ (2) kl (y, p)) = 0 in Y 2 × [0 , + ∞ ) , (21b) 
ˆ

χ (1) klm (y, p) = ˆ χ (2) klm (y, p) on Ŵ Y × [0 , + ∞ ) , (21c) 
ˆ R ( 1 ) ijpq ( p ) ξ ( y ) pq ˆ χ ( 1 ) kl ( y, p ) n ( y ) j -ˆ R ( 2 ) ijpq ( p ) ξ ( y ) pq ˆ χ ( 2 ) kl ( y, p ) n ( y ) j = ˆ R ( 2 ) ijkl ( p ) -ˆ R ( 1 ) ijkl ( p ) n ( y ) j on Ŵ Y × [ 0 , + ∞ ) . (21d) Initial condition in Y × { 0 } , ˆ χ klm ( y, p ) = 0 . ( 21e 
)
We notice that, in Eq. ( 21d) , the interface loads f f f For completeness of the analysis in the calculation of the effective creep compliance J ( * ) , the mathematical relationship between both magnitudes R ( * ) and J ( * ) is presented in Laplace-Carson space as follows, ˆ R ( * )

(y ) kl := ˆ R (2) ijkl -ˆ R (1) ijkl n (y )
ijmn (p) ˆ J ( * ) mnkl (p) = I ijkl , ( 22 
)
where I is the fourth order identity tensor [START_REF] Hashin | Theory of fiber reinforced materials[END_REF]. We notice that expression ( 22) is used to compute J ( * ) once ˆ R ( * ) is known.

Numerical results and discussion

In this section, we compute the effective properties of a composite for several periodic cell configurations, report the results of our computations and compare them with other approaches found in the literature. By doing this, we validate the methodology described in Section 3 and highlight its major advantages. We notice that in the remainder of this manuscript the acronym PM stands for present model.

To start with, in Sub-Section 4.1 we address the instant elastic response of a composite material reinforced with long circular fibers aligned along the axis Ox 3 (see Fig. 9 (a)), and we study the solution's convergence through three types of mesh discretization. Moreover, in Sub-Section 4.2 , we compute the effective relaxation modulus and the effective creep compliance for unidirectionally-reinforced glass/epoxy composites. Specifically, the four parameter model is employed to describe the viscoelastic polymeric matrix. In Sub-Section 4.3 , we compute the effective relaxation modulus for viscoelastic composites reinforced with spherical inclusions. In this case, the matrix viscoelastic properties are expressed in terms of a Maxwell's model. In Sub-Section 4.4 , we consider three different inclusion shapes for the calculation of the effective relaxation modulus. Here, the Prony's series are used to describe both viscoelastic constituents. Finally, in Sub-Section 4.5 , we take into account all the inclusions shapes displayed in Fig. 9 for the computation of the effective relaxation modulus.

Instant elastic response

We start our analysis by considering a composite with periodically distributed and non-overlapping long fibers with circular cross-sections and perfectly bonded to the matrix (see Fig. 9 (a)). Besides, we assume that the both constituents of the heterogeneous material are linear elastic and isotropic. We notice that, by referring to Eq. ( 4) , the instant elastic response of the composite can be obtained by considering t = 0 . In this limit case, the composite describe a linear elastic material, and R ( * ) ijkl will represents the effective elastic tensor. In the present context, we determine the instant elastic effective response in a wide range of volume fractions, and assume that ν 1 = 0 . 39 , ν 2 = 0 . 2 . Particularly, we focus on the porous ( μ 2 = 0 ) and moderate contrast ( μ 2 /μ 1 = 6 ) cases. We notice that the notation ν 1 ( ν 2 ) stands for Poisson's ratio and μ 1 ( μ 2 ) for the shear modulus of the matrix (fibers). The values of these parameters have been obtained from [START_REF] Mogilevskaya | Evaluation of some approximate estimates for the effective tetragonal elastic moduli of two-phase fiber-reinforced composites[END_REF] .

It is worth to remark that, here, we keep track of the solution's convergence through three types of mesh discretization for the periodic cells (see Fig. 2 ). In particular, the mesh of the periodic cell Y is built such that, first, we create surface meshes of free triangular type for the interface Ŵ Y , and then, the latter are extended into a three-dimensional mesh of free tetrahedral type, which covers the whole periodic cell (see Fig. 2 ). The increasing mesh refinements are described in Table 1 . We notice that the mesh on the interface between the matrix and the inclusion is more refined to better capture the boundary loads contribution. The mesh statistic outlines that, for instance, the number of tetrahedra subvolumes for a volume fractions of 0.3 are 1015 (Mesh A), 8460 (Mesh B) and 37 067 (Mesh C), respectively.

The values of the normalized effective elastic coefficients, denoted by (R ( * )

11 -R ( * ) 12 ) / 2 μ 0 , R ( * ) 55 /μ 0 , R ( * )
13 / R (1) 13 and R ( * )

33 / R (1) 33 , as functions of the volume fraction ( V f ), are reported in Fig. 3 (a)-(d) for both porous and moderate contrast A closer look at the data in Fig. 3 (a)-(d) reveals that there is good agreement in the comparisons between PM and RUC and no significant differences are found in relation to K& B and L & B . The most notable discrepancy arises from the data corresponding to the non-int approach in Fig. 3 (a), nonetheless the remaining coefficients are consistent within the comparisons. Additionally, we note the three types of mesh discretizations are barely distinguishable.

The relative errors with respect to RUC , for both porous and moderate contrast of the three mesh discretizations are shown in Fig. 3 (e)-(h). The results provide further evidence of the good correlation between PM and RUC . A remarkable pattern is that with the increased mesh refinement the relative error is improved, however, even with the coarser mesh (Mesh A) the maximum observed error is less than 3%, highlighting the good convergence of the present model.

Then, based on the good performance of the three mesh discretizations and the execution time, the remaining calculations are performed using Mesh B (see Fig. 2 ).

Viscoelastic response: four-parameter model

Now, the potential of PM in the calculation of the effective relaxation modulus and the effective creep compliance for unidirectionally-reinforced glass/epoxy composites (see Fig. 9 (a)) is shown. Particularly, the linear isotropic constituents of the heterogeneous structure are elastic glass fibers embedded into a viscoelastic polymeric matrix. The latter is described using the four-parameter model or Burger's model (see [START_REF] Mainardi | Creep, relaxation and viscosity properties for basic fractional models in rheology[END_REF], where the expression of the creep compliance is given as follows,

J(t ) = 1 E 0 + 1 E 1 1 -exp - E 1 η 1 t + t η 2 . ( 23 
)
The material constants for this model are E 0 = 3 . 27 GPa , E 1 = 1 . 8 GPa , η 1 = 300 GPa • h and η 2 = 80 0 0 GPa • h , where E and η represent the elastic modulus of spring and the constitutive parameter of dashpot, respectively. Furthermore, the matrix Poisson's ratio is assumed to be ν 1 = 0 . 38 , and the mechanical properties of the fibers are E 2 = 68 . 77 GPa and ν 2 = 0 . 21 . The data has been taken from [START_REF] Cavalcante | Homogenization of periodic materials with viscoelastic phases using the generalized FVDAM theory[END_REF] , [START_REF] Chen | Finite-volume homogenization of elastic/viscoelastic periodic materials[END_REF] .

In Fig. 4 , we compare the results of PM with those obtained by the Locally exact homogenization theory (LEHT) reported in Wang and Pindera (2016a,b) , the finite-volume direct averaging micromechanics theory (FVDAM 2D) proposed in [START_REF] Cavalcante | Homogenization of periodic materials with viscoelastic phases using the generalized FVDAM theory[END_REF] , and the three-dimensional FVDAM developed in [START_REF] Chen | Finite-volume homogenization of elastic/viscoelastic periodic materials[END_REF] . These results correlate fairly well in the comparison against LEHT and FVDAM for three fiber volume fractions 20%, 30% and 40%. Additionally, Fig. 5 shows the relative errors of PM with respect to both FVDAM and LEHT. We can notice that the maximum error is less than 1%.

Finally, in Fig. 6 we report the values of the effective creep compliance J ( * ) and compare them with those resulting from FVDAM 2D. The data for FVDAM 2D were collected from Fig. 12 of Cavalcante and Marques (2014) by using the free software G3Data.

Viscoelastic response: Maxwell's model

We now consider a spherical reinforced composite whit repeating unit cell of the type shown in Fig. 9 (h), and analyze the overall viscoelastic behavior under the assumption of isotropic phases. In particular, the spherical inclusions are assumed to be linear elastic with Young's modulus and Poisson's ratio being E 2 = 168 . 4 GPa and ν 2 = 0 . 443 , respectively, whereas the matrix is described as a linear viscoelastic constituent and the Maxwell's model (see [START_REF] Lakes | Viscoelastic materials[END_REF][START_REF] Mainardi | Creep, relaxation and viscosity properties for basic fractional models in rheology[END_REF] is used to simulate its properties, namely

S(t ) = 1 E 0 + t η 0 . (24) 
In the above equation, E 0 = 4 . 082 GPa and η 0 = 159 . 81 GPa • min . Moreover, the matrix Poisson's ratio is ν 1 = 0 . 311 . The input data can be found in [START_REF] Chen | Finite-volume homogenization of elastic/viscoelastic periodic materials[END_REF] . As illustrated in Fig. 7 (a)-(c), there is a good agreement between PM, FVDAM and FEM in the calculation of the effective relaxation moduli using three different volume fractions (10%, 20%, 30%). Moreover, due to low relative errors in relation to FVDAM (see Fig. 7 (d)-(f)), we can confirm the complete consistence between PM and FVDAM. In contrast, as time passes, much higher values for the relative errors with respect to FEM are reported. A possible explanation for this is tackled in [START_REF] Chen | Finite-volume homogenization of elastic/viscoelastic periodic materials[END_REF] , wherein it is suggested that the values of the effective relaxation moduli become small after 50 min .

Viscoelastic response: Prony's series

In this section, we take inspiration from [START_REF] Kouri | Mathematical modeling of the overall time-dependent behavior of non-ageing viscoelastic reinforced composites[END_REF] and consider three different inclusion shapes for the calculation of the effective relaxation modulus i.e. fibrous, spherical and ellipsoidal (see Fig. 9 (a),(h) and (i), respectively). Moreover, both constituents are assumed isotropic and linear viscoelastic.

The shear and bulk relaxation functions G ( t ) and K ( t ) can be computed in terms of Prony's series as follows, 2 . We take all this magnitudes with GPa dimension and pointed out this possible limitation in the paper [START_REF] Kouri | Mathematical modeling of the overall time-dependent behavior of non-ageing viscoelastic reinforced composites[END_REF] . Now, in order to support our results, we perform a numerical experiment only for the case of a fiber reinforced composite. That is, we consider the fiber's volumetric fraction equal to zero, so that the heterogeneous material is reduced to the homogeneous matrix with the properties of the soft material in Table 2 . In this respect, the coefficients R ( * )

G ( t ) = G ∞ + N G i =1 G i exp - t ξ (G ) i , (25a) 
(GPa) (GPa) (GPa) (GPa) (GPa) (GPa) ξ (G ) i ξ (K) j G i K j G ∞ = 10 0 ξ (G ) i ξ (K) j G i K j G ∞ =
12 and R ( * ) 44 for t = 0 can be obtained from (25a) -(25b) as,

G (0) = G ∞ + N G i =1 G i = 1677 . 979 (27a) K ( 0 ) = K ∞ + N K j=1 K j = 3300 (27b) R ( * ) 44 (0) = G (0) = 1677 . 979 (27c) R ( * ) 12 (0) = K(0) - 2 3 G (0) = 2181 . 347 (27d) 
In particular, Fig. 8 (c)-(d) highlights the values of the effective coefficients R ( * ) 12 and R ( * ) 44 for t = 0 . 01 when the fiber's volumetric fraction is equal to zero. As predicted, they are very close to those calculated in Eqs. (27c) -(27d) for t = 0 and provide positive evidence in support of the present study.

Tabulation of results for different inclusions shapes

We conclude our discussion by presenting a tabulation of the effective relaxation modulus through three different numerical tests (see Tables 345). In particular, each case refers to one of the models analyzed in Sections 4.2 -4.4 which describe the viscoelastic behavior of the constituents, i.e. four parameter model, Maxwell's model and Prony's series, respectively. Specifically, we closely examine, for fixed values of time, some of the numerical results shown in Figs. 45678. Besides, we go further and perform the computations for all the inclusions shapes displayed in Fig. 9 . Regarding the geometrical details, we consider a unit periodic cell. Moreover, we notice that the aspect ratio for the ellipsoidal inclusion is b = c = 4 5 a and for the elliptical fibers b = 4 5 a, where a is the largest semi axis. It is worth mentioning that these computations used Mesh B and the fibers are considered aligned along Ox 3 .

Conclusions

In this paper, we use a semi-analytical technique that naturally appear as a combination of the two-scale asymptotic homogenization method and a three dimensional computational study, by means of the finite element software COMSOL Multiphysics®. Particularly, the methodology is framed to the investigation of the effective creep and relaxation behavior of non-aging linear viscoelastic composite materials. The results derived from the AHM's procedure are based on the elasticviscoelastic correspondence principle and the Laplace-Carson transform, and comprised the local and homogenized problem, and the expression for the effective coefficients. Moreover, the stress jump conditions and the corresponding interface loads for composites with discontinuous material properties and perfect contact at the interfaces as well as significantly details of the three dimensional computational study are provided.

The strength of our work lies in achieving accurate results for the calculation of the effective properties of composite materials reinforced with several types of inclusions. This is evidenced by the good correlation and low relative errors in the comparisons with others methods reported in the literature. In this respect, an study of the solution's convergence through three different mesh discretizations for the particular case of linear elastic composites is performed. In the computational simulations, we describe the viscoelastic behavior of the constituents by having recourse to Maxwell's model, four parameter model and Prony's series.

One of the limitations of this work is related to the computational time involved to pass from the Laplace-Carson space to the time domain. One way to deal with this issue can be through parallel computing. This concern is part of our current investigations.

Finally, we take the occasion to notice that our work can be adapted to model biological and bioinspired materials with hierarchical structure, e.g. bones [START_REF] Eberhardsteiner | Layered water in crystal interfaces as source for bone viscoelasticity: Arguments from a multiscale approach[END_REF][START_REF] Nguyen | A homogenization approach for the effective drained viscoelastic properties of 2d porous media and an application for cortical bone[END_REF][START_REF] Penta | Can a continuous mineral foam explain the stiffening of aged bone tissue? A micromechanical approach to mineral fusion in musculoskeletal tissues[END_REF]. Furthermore, the present framework can also be suitable for the study of the effective behavior of piezoelectricpolymeric composites (see [START_REF] Jayendiran | Numerical modelling and experimental characterization of temperature-dependent viscoelastic effect on the ferroelastic behaviour of 1-3 piezocomposites[END_REF][START_REF] Zhang | Connectivity and shape effects on the effective properties of piezoelectricpolymeric composites[END_REF].

Future developments of the present work include the consideration of imperfect contact conditions (see [START_REF] Dumont | Soft and hard interface models for bonded elements[END_REF][START_REF] Ye | A new three-dimensional parametric FVDAM for investigating the effective elastic moduli of particle-reinforced composites with interphase[END_REF] and the extension to ageing viscoelastic composite materials (see [START_REF] Barthlmy | Effective properties of ageing linear viscoelastic media with spheroidal inhomogeneities[END_REF][START_REF] Yang | A three-scale asymptotic analysis for ageing linear viscoelastic problems of composites with multiple configurations[END_REF].
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Fig. 1 .

 1 Fig. 1. (a) Macroscale: viscoelastic heterogeneous material. (b) ε-structural level. (c) Microscale: periodic cell. The inclusions do not intersect the boundaries and the matrix and the sub-phases are perfectly bonded.

  by Ŵ ε (see Fig. 1 (b)). Furthermore, Y stands for the unitary periodic cell and its constituents, Y 1 and Y 2 , satisfy the constraint Y = Y 1 ∪ Y 2 and Y 1 ∩ Y 2 = Y 1 ∩ Y 2 = ∅ . Finally, Ŵ Y represents the interface between Y 1 and Y 2 (see Fig. 1 (c)).

j

  represent the driving forces leading to nontrivial solutions of the six elastic-type local problems(( k, l ), k ≥ l ) when discontinuities in the coefficients (20) , between the matrix and inclusions, arise (seePenta & Gerisch, 2016;[START_REF] Penta | The asymptotic homogenization elasticity tensor properties for composites with material discontinuities[END_REF]. Now, in order to compute the numerical solution of the six elastic-type local problems (21a) -(21e) and the effective viscoelastic properties of the given composite material, we employ a combination of the finite element software COMSOL Multiphysics® with LiveLink TM for Matlab® scripting. The procedure can be summarized as follows: (I) To define the geometry of the periodic cell Y , introduce the parameters, set the properties of the materials and implement the six elastic-type local problems (21a) -(21e) in COMSOL Multiphysics®. In this first step, the scheme proposed in Penta and Gerisch (2016) is adapted for our purposes. (II) To integrate into a Matlab script the codes for working with LiveLink TM for Matlab®, the viscoelastic material properties and the algorithm for the numerical inversion of the Laplace-Carson transform. (III) To solve, for every value of p , the set of elastic local problems (21a) -(21e) in Laplace-Carson space and to calculate the effective relaxation modulus ˆ R ( * ) using (19) , updating in each iteration the corresponding parameters and the properties of the materials. (IV) To invert to the original time domain. The function INVLAP, developed in Juraj (2020) is used for this purpose. The algorithm needs to calculate 40 points in Laplace-Carson's space in order to found one point for the effective coefficient in the time domain.

Fig. 2 .

 2 Fig. 2. Three types of mesh discretization for the periodic cells: Mesh A, B and C.

Fig. 3 .

 3 Fig. 3. Charts (a)-(d) show the calculation of the instant elastic response for normalized effective coefficients. The comparisons are carried out with Tables 1-5 of[START_REF] Mogilevskaya | Evaluation of some approximate estimates for the effective tetragonal elastic moduli of two-phase fiber-reinforced composites[END_REF] . In addition, charts (e)-(h) displaythe relative errors with respect to RUC , for both porous and moderate contrast of the three mesh discretizations.

Fig. 4 .

 4 Fig. 4. Computation of the effective relaxation modulus for unidirectionally-reinforced glass/epoxy composites and the comparison against LEHT and FV-DAM. The comparisons are made with Fig. 11 of Chen et al. (2017) .

Fig. 5 .

 5 Fig. 5. The estimation of relative errors of PM with respect to both FVDAM and LEHT for three different volume fractions.

Fig. 6 .

 6 Fig. 6. Computation of the effective creep compliance. The comparisons are performed with Fig. 12 of Cavalcante and Marques (2014) .

Fig. 7 .

 7 Fig. 7. Charts (a)-(c) show the calculation of the effective relaxation modulus for spherical reinforced composites. Our results are compared with Fig. 6 of Chen et al. (2017) . Moreover, charts (d)-(f) present the relative errors of PM with respect to FVDAM and FEM.

Fig. 8 .

 8 Fig. 8. Charts (a)-(b) display comparisons with Figs. 2 and 3 of Kouri et al. (2016) . Charts (c)-(d) present the results of a numerical experiment for the fiber's volumetric fraction equal to zero.

Fig. 9 .

 9 Fig. 9. Representation of the analyzed periodic cells. The acronyms LCF, LEF, LRF, LSF stands for long circular, elliptical, rhombic and square fibers, respectively. In addition, we consider Two LSF and Three LSF to denote two and three long square fibers and CI, SI, EI for cubic, spherical and ellipsoidal inclusions, respectively.

Table 1

 1 Mesh discretization of the unit cells. These figures display the results obtained by the present model ( PM ), for each of the meshes A, B and C, with respect to the volume fraction. Moreover, in Fig.3we compare with different sets of simple, closed-form and approximate formulae given by Kantor and Bergman ( K& B ), Luciano and Barbero ( L & B ), non-interacting Maxwell's approximations ( non-int ) and exact periodic solutions ( RUC )[START_REF] Mogilevskaya | Evaluation of some approximate estimates for the effective tetragonal elastic moduli of two-phase fiber-reinforced composites[END_REF] .

		Element Size	
	-	Interface ( Ŵ Y )	Remaining ( Y ࢨŴ Y )
	Mesh A	Coarser	Extremely Coarse
	Mesh B	Fine	Coarse
	Mesh C	Finer	Fine
	cases.		

Table 2

 2 Input data for Prony's series (see Table1of[START_REF] Kouri | Mathematical modeling of the overall time-dependent behavior of non-ageing viscoelastic reinforced composites[END_REF] ). ) Shear moduli Bulk moduli Asymptotic moduli Relaxation times ( s ) Shear moduli Bulk moduli Asymptotic moduli

	Stiff material	Soft material
	Relaxation times ( s	

Table 3

 3 The input data for the sub-phases are the same as Section 4.3 .

		Maxwell's model									
	TIME (min)	R ( * ) ij ( V.F .)	LCF	LEF	LRF	LSF	Two LSF	Three LSF	CI	SI	EI

Table 4

 4 The input data for the sub-phases are the same as Section 4.2 .

		The four-parameter model (Burgers model)						
	TIME (hrs)	R ( * ) ij	LCF	LEF	LRF	LS	Two LSF	Three LSF	CI	SI	EI
	0.01	R ( * ) 22 (10%) R ( * ) 44 (10%) R ( * ) 66 (10%)	6.9280 1.4236 1.3701	6.8556 1.3823 1.3652	6.9408 1.4481 1.4097	7.0033 1.4462 1.3652	10.3621 1.6315 1.3926	9.3053 1.4867 1.4860	7.2770 1.4416 1.4416	7.0949 1.4238 1.4238	7.0470 1.4088 1.4306
		R ( * ) 22 (20%) R ( * ) 44 (20%) R ( * ) 66 (20%)	7.9713 1.7177 1.5665	7.7699 1.6128 1.5561	8.0122 1.7847 1.6536	8.1660 1.7648 1.5568	15.2759 2.5510 1.6254	13.0746 1.9982 1.9984	8.8627 1.7160 1.7160	8.4295 1.6865 1.6865	8.2657 1.6442 1.7071
		R ( * ) 22 (30%) R ( * ) 44 (30%) R ( * ) 66 (30%)	9.3467 2.0884 1.7921	8.9045 1.8788 1.7722	9.4856 2.2494 1.9535	9.7073 2.1589 1.7775	20.8178 4.1179 1.8954	17.4240 2.8360 2.8353	10.9678 2.0357 2.0357	10.3008 2.0120 2.0118	9.8516 1.9096 2.0878
	100	R ( * ) 22 (10%) R ( * ) 44 (10%) R ( * ) 66 (10%)	3.2059 0.6589 0.6315	3.1673 0.6377 0.6290	3.2145 0.6726 0.6547	3.2509 0.6716 0.6294	6.9821 0.8409 0.6475	5.8175 0.7273 0.7268	3.4141 0.6706 0.6706	3.2980 0.6590 0.6590	3.2716 0.6512 0.6625
		R ( * ) 22 (20%) R ( * ) 44 (20%) R ( * ) 66 (20%)	3.7383 0.8042 0.7262	3.6285 0.7497 0.7209	3.7659 0.8426 0.7778	3.8580 0.8310 0.7219	11.8724 1.6098 0.7655	9.4425 1.1235 1.1238	4.2871 0.8071 0.8072	3.9976 0.7880 0.7880	3.9039 0.7660 0.7989
		R ( * ) 22 (30%) R ( * ) 44 (30%) R ( * ) 66 (30%)	4.4583 0.9906 0.8358	4.2105 0.8802 0.8257	4.5513 1.0853 0.9345	4.6886 1.0315 0.8293	17.4378 3.0636 0.9009	13.6729 1.8531 1.8522	5.4964 0.9674 0.9675	5.0246 0.9510 0.9509	4.7535 0.8968 0.9934
	600	R ( * ) 22 (10%) R ( * ) 44 (10%) R ( * ) 66 (10%)	2.2114 0.4545 0.4355	2.1846 0.4398 0.4338	2.2174 0.4640 0.4519	2.2430 0.4633 0.4341	6.0825 0.6258 0.4478	4.8869 0.5230 0.5226	2.3576 0.4628 0.4628	2.2751 0.4546 0.4545	2.2568 0.4492 0.4570
		R ( * ) 22 (20%) R ( * ) 44 (20%) R ( * ) 66 (20%)	2.5791 0.5549 0.5009	2.5031 0.5172 0.4972	2.5985 0.5815 0.5372	2.6636 0.5735 0.4980	10.9497 1.3449 0.5297	8.4549 0.8837 0.8841	2.9666 0.5572 0.5572	2.7593 0.5437 0.5436	2.6941 0.5284 0.5512
		R ( * ) 22 (30%) R ( * ) 44 (30%) R ( * ) 66 (30%)	3.0773 0.6836 0.5765	2.9053 0.6072 0.5696	3.1427 0.7497 0.6462	3.2405 0.7122 0.5721	16.5020 2.7572 0.6231	12.6307 1.5785 1.5775	3.8148 0.6680 0.6680	3.4727 0.6563 0.6562	3.2830 0.6188 0.6858
	marized in Table										

Table 5

 5 The input data for the sub-phases are the same as Section 4.4 .

	Prony's series									
	TIME (s) R ( * ) ij	LCF	LEF	LRF	LSF	Two LSF	Three LSF	CI	SI	EI
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where N G and N K are the number of terms for the corresponding modulus, ξ (G ) i and ξ (K) j stand for the corresponding relaxation times, G ∞ and K ∞ denote the asymptotic moduli and, G i and K j represent the shear elastic modulus and bulk elastic modulus, respectively. Furthermore, by applying Laplace-Carson transform to Eqs. ( 25a) -(25b) the following expressions are obtained

The parameters for the viscoelastic constituents used in the computations are reported in Table 2 . In particular, we consider the fiber as the stiff material and the matrix as the soft one.

In Fig. 8 (a)-(b), we display the effective relaxation moduli R ( * ) 12 and R ( * ) 44 considering PM and the asymptotic homogenization method (AHM) developed in [START_REF] Rodríguez-Ramos | Computation of the relaxation effective moduli for fibrous viscoelastic composites using the asymptotic homogenization method[END_REF] , [START_REF] Otero | Asymptotic and numerical homogenization methods applied to fibrous viscoelastic composites using Prony's series[END_REF] . The formulae for AHM involve two orders of truncation in the calculation of the effective properties, which are denoted by AHMT1 and AHMT2, respectively (see [START_REF] Bravo-Castillero | Unified analytical formulae for the effective properties of periodic fibrous composites[END_REF]. We notice that the curves in Fig. 8 (a)-(b) show similar trends to those reported in Fig. 1 and 2 of [START_REF] Kouri | Mathematical modeling of the overall time-dependent behavior of non-ageing viscoelastic reinforced composites[END_REF] except for an order of 10. This apparent lack of correlation can be attributed to the assumed dimensions in relation to shear, bulk and asymptotic modulus sum-