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Abstract
Relating the effects of foraging niche variation to reproductive dynamics is critical 
to understand species response to environmental change. We examined foraging 
niche variations of the slender-billed gull (Chroicocephalus genei), a nomadic colonial 
waterbird species during its range expansion along the French Mediterranean coast 
over a 16-year period (1998–2013). We investigated whether range expansion was 
associated with a change in chick diet, breeding success, and chicks body condition. 
We also examined whether breeding success and chicks body condition were ex-
plained by diet and colonial characteristics (number of pairs, laying phenology, habi-
tat, and locality). Diet was characterized using dual-stable isotopic proxies (δ13C and 
δ15N) of feather keratin from 331 individuals subsampled from a total of 4,154 chicks 
ringed and measured at 18 different colonies. δ13C decreased and δ15N increased 
significantly during range expansion suggesting that chicks were fed from preys of 
increasing trophic level found in the less salty habitat colonized by the end of the 
study period. Niche shift occurred without significant change of niche width which 
did not vary among periods, habitats, or localities either. Breeding success and chick 
body condition showed no consistent trends over years. Breeding success tended 
to increase with decreasing δ13C at the colony level while there was no relationship 
between stable isotope signatures and chick body condition. Overall, our results sug-
gest that even if range expansion is associated with foraging niche shift toward the 
colonization of less salty and more brackish habitats, the shift had marginal effect on 
the breeding parameters of the Slender-billed gull. Niche width appears as an asset of 
this species, which likely explains its ability to rapidly colonize new locations.
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1  | INTRODUC TION

Global changes have been shown to sharply and rapidly affect the 
distribution of bird populations (Barnosky et al., 2011; Cahill et al., 
2014). These changes may either ease the spread of species or re-
strain their distribution depending on their ability to track changes 
in habitat distribution and availability. If species fail to adapt and/or 
cannot shift their geographic range to track suitable conditions, then 
they may face disadvantage or exhibit extinction (e.g., Walther et 
al., 2002). Conversely, climate change has progressively offered new 
suitable habitats to high-temperature dwelling species that have in 
turn gradually increased or shifted their range northward (Devictor, 
Julliard, Jiguet, & Couvet, 2008). Climate change may also increase 
preys availability that promote population growth and in turn coloni-
zation of new areas by opportunistic species expanding their range 
(e.g., in yellow-legged gulls [Duhem, Roche, Vidal, & Tatoni, 2008] 
or cormorants [Takahashi, Kameda, Kawamura, & Nakajima, 2016]). 
Finally, some species increase their range after successful introduc-
tion of individuals in novel and appropriate habitats (e.g., invasive 
species; Dukes & Mooney, 1999; Stohlgren & Schnase, 2006). The 
ability of species to cope with such change of their environments, 
either by local adaptation or plasticity in resource exploitation, will 
largely determine their persistence in a fast-changing world (Toor et 
al., 2017).

Diagnosing the causes of distribution changes, that is, whether 
it results from improvement or degradation of the overall status of a 
species, is a key question for conservation. These distribution shifts 
may indeed be associated with the evolution of several behavioral 
processes or traits (Whitney & Gabler, 2008) that may lead to niche 
shift or expansion or may correspond to simple stochastic successful 
colonization events of suitable, but previously unused, areas (Oro 
& Ruxton, 2001). Overall, changes in distribution reflect processes 
at individual and population levels that remain poorly understood 
and difficult to investigate in detail (Payo-Payo et al., 2017). Among 
the axes of the niche, foraging niche is of crucial importance in case 
of new environment colonization. Despite the known importance of 

diet on population dynamics (e.g., on survival [Descamps, Boutin, 
Berteaux, McAdam, & Gaillard, 2009, Ford, Ellis, Olesiuk, & Balcomb, 
2010, Duriez, Ens, Choquet, Pradel, & Klaassen, 2012] and repro-
duction [Kvarnemo, 1997; Rutz & Bijlsma, 2006; Tavecchia, Pradel, 
Genovart, & Oro, 2007; Wise, 1979]), how foraging niche shift 
shapes species distribution during phases of range expansion has 
poorly been studied (Skórka, Lenda, Martyka, & Tworek, 2009). Both 
diet shift and range expansion could influence each other. Indeed, 
range expansion can lead to diet shift as species adapt to novel prey 
resources available in the newly colonized area. Conversely, diet 
shift to prey of higher profitability may drive range expansion by fa-
voring the tracking of novel preys in their preferred habitats.

To study the relationship between range expansion and foraging 
niche, information on both parameters must be available on a large 
number of individuals. Colonial birds are perfect models to gather 
information on a large number of individuals, and colonies are often 
easy to detect which make it simple to follow their distribution.

Here, we studied a highly mobile colonial waterbird, which ex-
hibited spectacular range expansion in the south of France in the last 
50 years and explored the relationship between its range expansion 
and its foraging niche. The Slender-billed gull, Chroicocephalus genei, 
is a colonial waterbird exhibiting low colony site philopatry (Acker 
et al., 2017). This species settled in the south of France in the late 
1960s and remained confined to the Camargue (Rhône river delta; 
Figure 1) for thirty years. In the 2000s, the population exhibited an 
abrupt range expansion with new colonies establishing alongside 
the eastern and western section of the French Mediterranean coast 
(Doxa et al., 2013; Simon et al., in prep). Two questions emerged 
from this expansion pattern: (a) Is this expansion associated with a 
change in foraging niche? and if so, (b) is the change in foraging niche 
favorable to the species and lead to an increase in breeding success 
and chick body condition?

To answer these questions, we explored variations in diet of 
Slender-billed gulls over a 16-year period (1998–2013) in 18 col-
onies (23 colony-year) and evaluated if these variations were re-
lated to breeding success and body condition of chicks. We used 

F I G U R E  1   Geographic distribution 
of the Slender-billed gulls breeding sites 
between 1967 and 2013 along the French 
Mediterranean coast
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dual-stable isotopes signatures (carbon δ13C and nitrogen δ15N) of 
feathers sampled from 331 chicks as proxies to (a) assess prey nu-
trient sources (Mizutani, 1990) and to (b) detect possible spatio-
temporal variations in the diet and foraging niche of slender-billed 
gulls during their range expansion. We then evaluated if chicks 
body condition was related to variations in stable isotope values 
and the corresponding isotopic niche width while taking into ac-
count (a) habitat type (lagoon vs. saltpans) since the diversity of 
prey is relatively reduced in saltpans (Britton & Johnson, 1987), (b) 
seasonal phenology (date of colony settlement) since the availabil-
ity of prey can vary along the breeding season (Yohannes, Arnaud, 
& Béchet, 2014), (c) the location of the colony, inside or outside 
the Camargue, since the protection of the Rhône delta—a Natural 
Regional Park—may provide resources in higher density, and (d) 
colony size since it can influence either favorably or negatively the 
capacity of parental provision to chicks and the number of chicks 
per pair (Gonzalez-Solis, Oro, Jover, Ruiz, & Pedrocchi, 1997; Ward 
& Zahavi, 1973).

2  | MATERIAL AND METHODS

2.1 | Study species

The Slender-billed gull is a colonial bird (Laridae) with a range ex-
tending from western India to West Africa (del Hoyo, Elliott, & 
Sargatal, 1996). Several life history traits of this species suggest it 
is adapted to unstable and ephemeral habitats such as high breed-
ing dispersal capacities between years and short breeding period as-
sociated with crèching behavior allowing them to reduce the time 
spent on the breeding site (Besnard, Gimenez, & Lebreton, 2002). 
Slender-billed gulls generally forage by swimming at the surface of 
the water (del Hoyo et al., 1996). While they feed on aquatic inverte-
brates such as brine shrimps (Artemia sp.) in saltpans (del Hoyo et al., 
1996), they are also known to feed on small fish or scavenge on fish 
discards following fishermen (e.g., Atherina, Snow, Gillmor, & Perrins, 
1998) either in freshwater and brackish coastal areas or at sea (e.g., 
Anchovies or Sardines; Bicknell, Oro, Camphuysen, & Votier, 2013; 
Cama, Abellana, Christel, Ferrer, & Vieites, 2012; Fasola, Bogliani, 
Saino, & Canova, 1989).

2.2 | Population census and distribution change

Exhaustive colony censuses were conducted over the entire 
French Mediterranean coast since 1967, the earliest record of the 
first breeding pairs. Before 1973, only one or two pairs were re-
ported in the Camargue and no specific monitoring of the colo-
nies was conducted. Afterward, the species has been censused 
all along the French Mediterranean coast with annual aerial sur-
veys in the Camargue to quickly detect colonies in vast wetland 
complexes (the rest of the area, where access is easier, being ex-
tensively censused by a network of volunteers). The number of 

breeding pairs was then recorded by nest counts at the peak of the 
egg-laying period, and the number of chicks fledged was estimated 
by weekly counts of the crèche (Sadoul, 1996). These censuses 
were first conducted every three years between 1973 and 1991, 
then annually between 1993 and 2016. No data are available for 
1992 and 1996.

From few pairs in the 1970s, the population increased through 
the 1990s, up to 850 pairs in 2001, and remained roughly at this 
size afterward (Doxa et al., 2013). From 1967 to 2003, all colonies 
were located in a relatively small area of c.60 km long. Breeding sites 
were located within two main areas of the Camargue: the saltpans 
of Aigues-Mortes and of Salin-de-Giraud (Figure 1). In 2004, a col-
ony was established in the saltpans of Lapalme, 130 km west from 
the closest previous colonies of Aigues-Mortes. Grand Bastit and 
the saltpans of Fos-sur-Mer were colonized in 2006, these two sites 
being at the exterior border of the Camargue. In 2009, a colony set 
up at the saltpans of Pesquiers, 145 km east from the previous east-
ern sites of Salin-de-Giraud saltpans (Figure 1).

2.3 | Breeding success, feather sampling, and body 
measurements

For 16 successive breeding seasons (1998–2013), chicks of a set 
of colonies were counted and caught just before fledging by herd-
ing the crèche into a corral. All chicks captured were ringed and 
measured (tarsus length to the nearest 1 mm and body weight 
to the nearest 50 g using a 5-kg Pesola spring balance). We ran-
domly selected feathers of 8–16 ringed fledglings at one to three 
colonies each year (23 colony-year from 18 different colony sites 
over the study period), in order to explore both interannual and 
intra-annual variations in isotope signatures. Overall, we obtained 
a complete dataset of 4,154 chicks measured (full dataset) from 
which we extracted a subsample of 331 individuals with isotope 
data (reduced dataset).

2.4 | Stable isotope laboratory analysis

Prior to laboratory analysis, feathers were washed in 2:1 
chloroform:methanol solution and then rinsed with distilled water. 
Stable isotope assays were performed on air-dried and homog-
enized samples of approximately 0.6 mg that were weighed into 
tin cups and combusted using Vario Micro cube elemental analyzer 
(Germany). CO2 and N2 gases emitted were then analyzed in an in-
terfaced Micromass (Manchester, UK) Isoprime Isotope Ratio Mass 
Spectrometer (IRMS) with every 7 unknowns separated by two labo-
ratory standards; two sulfanilamides (Iso-prime internal standards) 
and two casein standards. All stable isotope ratios are expressed 
in per mil (‰) using the δ notation: δX = [(Rsample/Rstandard) − 1] × 1,
000; where X is the 15N or 13C and R is the corresponding ratio 
of heavy/light (13C/12C or 15N/14N) isotope. Rstandard is the ratio of 
the international references, which for carbon is Vienna Pee Dee 
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belemnite (PDB), and for nitrogen is AIR. Internal laboratory stand-
ards indicated measurement errors (SD) of ±0.03‰ for δ13C, ±0.12‰ 
for δ15N. All isotope analyses were performed at the Limnological 
Institute, University of Constance, Germany.

2.5 | Spatiotemporal variations of Slender-billed 
gull diet

We distinguished four periods based on the spatial dynamics of the 
species: (a) 1998–2000 corresponding to a period when all colonies 
were located in the saltpans of the Camargue, either at Salin-de-
Giraud or at Aigues-Mortes; (b) 2001–2005 marked by first colony 
settlements outside saltpans and high emigration rates outside 
France (Acker et al., 2017); (c) 2006–2010 corresponding to the re-
turn of many individuals back from outside the study area and the 
subsequent colonization of Grand Bastit and Hyères; (d) 2011–2013 
corresponding to the stabilization of a set of colonies outside the 
Camargue.

We first used linear mixed model (LMM with Gaussian distribu-
tion and identity link) to evaluate δ13C and δ15N variations among the 
four periods, habitats (lagoon vs. saltpans), location of the colony in/
out the Camargue, colony size, and phenology (peak of laying date 
expressed as the number of days elapsed after the 1st of May). We 
used colony site nested within year as a random factor. We then used 
standard ellipse area (SEAc) as a measure of the isotopic niche width 
of each colony (Jackson et al., 2012; Newsome, del Rio Martinez Rio, 
Bearhop, & Phillips, 2007). This measure is derived from Bayesian 
inference and is particularly adapted to small samples and variations 
of sample size as we have here (Batschelet, 1981; Jackson, Inger, 
Parnell, & Bearhop, 2011; Syväranta, Lensu, Marjomäki, Oksanen, 
& Jones, 2013). We tested whether SEAc differed between periods, 
habitats, location of the colony in/out the Camargue, colony size, 
and phenology. As SEAc did not follow a Gaussian distribution, we 
used Kruskal–Wallis tests for the first three analyses and Spearman's 
rank tests for the two last ones.

2.6 | Slender-billed gull colony breeding success

We then explored if—at the colony level—breeding success varied 
as a function of diet. For this, we first modeled the probability of re-
productive failure using a logistic model (binomial distribution of the 
error term) and then modeled the number of chicks fledged at a col-
ony as a response variable, using the number of breeding pairs (log 
transformed) as an offset (negative binomial distribution of the error 
term). We evaluated through model selection if average δ13C, aver-
age δ15N, or SEAc would improve model fit. We found no correlation 
between our variables (Pearson's correlation: δ13C and SEAc, r = −.37 
[IC95%: −0.67; 0.05]; δ13C vs. δ15N, r = −.4 [IC95%: −0.7; 0.02]; and 
δ15N vs. SEAc, r = −.12 [IC95%: −0.051; 0.305]). We also evaluated 
if breeding success varied along years and periods over the global 
dataset of all colonies monitored along the French Mediterranean 

to ascertain that our sample of colonies was representative of the 
global picture.

2.7 | Slender-billed gull chicks' body condition

When estimating body condition, chick tarsus length was used as a 
body size indicator, which significantly correlates with chicks mass 
(standardized major axis (SMA) regression of the log-transformed 
mass–length relationship; R2 = .49; p < .0001, slope = 2.48). We used 
the scaled mass index to estimate chicks' body condition (Peig & 
Green, 2009, 2010).

Using the full dataset, we examined if chicks body condition 
varied among periods, between habitats and colony location (in/
out the Camargue) using linear mixed models (with Gaussian distri-
bution and identity link) with colony site nested in year as a random 
factor. We also evaluated if colony average δ13C, δ15N, SEAc, phe-
nology, and colony size could improve the model fit. We performed 
the same analysis on the reduced dataset to evaluate the direct ef-
fect of individual δ13C and δ15N feather signature on chicks' body 
condition.

For both datasets, we included all variables in the analyses and 
then fitted all possible combinations of variables without interac-
tions. We centered and scaled all explanatory variables prior model 
fitting. Model comparison was based on the AICc. Model averaging 
was used to produce estimates and 95% confidence intervals of the 
effects retained on a set made of models within less than 2 points of 
AIC of the best model (Burnham & Anderson, 2002).

All analyses were conducted under R environment (R 
Development Core Team, 2017). More specifically, SEAc was es-
timated with package SIBER (Stable Isotope Bayesian Ellipse R; 
Jackson et al., 2011) and linear mixed models were fitted with lme4 
package (Bates, Mächler, Bolker, & Walker, 2015). Model compar-
isons were performed using the “Dredge” function of package 
MuMIn (Barton, 2015).

2.8 | Ethics statement

All the conducted field works comply with current laws of France 
(permit delivered by the Research Center by Ringing Bird Populations, 
Natural History Museum of Paris; program n°326).

3  | RESULTS

3.1 | Spatiotemporal variations of chick diet

Slender-billed gulls chicks feathers had an overall mean δ13C of 
−14.66‰ (range: −25.40‰; −10.35‰) and of δ15N of +13.21‰ 
(range: +9.46‰; +19.20‰). δ13C varied significantly among periods 
with the second and last periods showing the lowest values (Tukey's 
post hoc tests, Figure 2a). No other colony characteristics (size, 
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habitat, location, and phenology) were retained after model aver-
aging to explain δ13C variations (ESM Table S1a). δ15N was lower in 
saltpans than outside (β = −1.42 ± 0.3173) and increased significantly 

along periods (Tukey's post hoc tests, Figure 2b). No other colony 
characteristics were retained by model selection to explain δ15N 
variation (ESM Table S1b).

F I G U R E  2   Box plot of the variation 
of δ13C and δ15N along the study period 
with the median and the upper and lower 
quartiles represented, respectively, by 
the bold line and the limit of the boxes. 
Differences between periods are shown 
by colors and compact letter display as 
the result of Tukey's post hoc tests (box 
plot that share the same letters are not 
significantly different)

F I G U R E  3   Standard ellipse area (SEAc) 
of Slender-billed gull colonies along the 
four time periods considered. Each dot 
corresponds to the isotopic signature 
of an individual. SEAc did not differ 
significantly from one another
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Overall, the standard ellipse area did not differ among periods 
(Kruskal–Wallis χ2 = 4.61, df = 3, p = .20; Figure 3), neither between 
habitats (Kruskal–Wallis χ2 = 0.96, df = 1, p = .32), nor between loca-
tions in/out the Camargue (Kruskal–Wallis χ2 = 1.14, df = 1, p = .28). 
Finally, SEAc was not significantly correlated with colony size nor 
to phenology (Spearman's rank tests rs = .24, p = .26 and rs = −.16, 
p = .44, respectively).

3.2 | Slender-billed gull breeding success

Among the 79 colonies of the global dataset of Slender-billed 
gulls monitored along the French Mediterranean coast from 1998 
to 2013, there were 42 cases of complete failure, with no varia-
tion of colony failure proportion among periods (χ2 = 3.57, df = 3, 
p = .31). Whether we considered the global dataset (N = 37 colo-
nies without complete failure) or the isotope dataset (23 colonies), 
model selection indicated no clear temporal trend in breeding suc-
cess. However, we found a significant lower breeding success in 
the second period of the study compared with the other periods 
(β = −0.67 ± 0.30 and β = −0.46 ± 0.17 for the global and isotope 
dataset, respectively; ESM, Table S2a,b). Breeding success also in-
creased with decreasing values of the average δ13C of the colony 
(β = −0.18 ± 0.04) but was not correlated neither with δ15N nor 
with SEAc (ESM, Table S2b).

3.3 | Slender-billed gull chicks' body condition

Chicks body condition did not vary significantly between periods 
(Figure 4), but there were sometimes quite important differences 
among colonies of the same year (ESM Figure S2), suggesting that 
some colonies might benefit from better foraging areas. Model se-
lection did not retain any covariable significantly correlated with 
body condition variations among chicks either on the full or on the 
isotope dataset (ESM Tables S3 and S4).

4  | DISCUSSION

Our results show that the range expansion of the Slender-billed gull 
that occurred over 1998–2013 was accompanied by a shift in forag-
ing niche used by breeding birds. While δ15N values in chicks' dietary 
sources increased over the entire study period (particularly in 2011), 
δ13C values decreased in the second and last period of range expan-
sion. Yet, despite the changes in diet detected, we found no signifi-
cant change in niche width (SEAc). Only lower δ13C, associated with 
less saline waters (Ramirez et al., 2012; Rendon, Rendon-Martos, 
Garrido, & Amat, 2011; Yohannes et al., 2014), translated in improve-
ment of colony breeding success suggesting possible provisioning 
constraints in saltpans.

The shift in foraging niche appears to be associated with the 
gulls expanding their range into a new habitat, that is, colonizing 

the less salty habitat of the lagoons but it remains unclear whether 
dispersal caused diet change or the other way around. Because 
high breeding dispersal rate is a well-documented evolutionary 
strategy for the Slender-billed gull (Besnard, 2001), the observed 
range expansion might only be the result of this behavior which 
has consequently forced gulls to change their diet accordingly. If 
Slender-billed gull colony choice is mainly determined by factors 
linked to breeding island intrinsic qualities regarding terrestrial 
predator avoidance, diet flexibility is an asset to adapt to the need 
to track the best nesting conditions. High interannual colony dy-
namics of this species observed in very stable habitats like saltpans 
makes it a probable process. In this case, it would be range expan-
sion that would have forced gulls to adapt their diet. Alternately, 
despite their interest for predator protection, saltpans offer preys 
of lower profitability (because fish like Atherina sp. cannot main-
tain themselves above 50 g/L) than more brackish areas so that 
Slender-billed gull breeding success may be constrained in such 
habitat. In this case, range expansion may have been favored by 
increased profitability of preys in the new habitats. Slender-billed 
gulls are generally observed wandering in small groups all along 
the Mediterranean coast before stopping to settling at only a few 
colony sites (unpublished data). This prospection time may be 
used as a mean to evaluate foraging habitat quality. Prospection 
has been showed to play a key role in site selection in other colo-
nial gulls (Boulinier, Danchin, Monnat, Doutrelant, & Cadiou, 1996; 
Ponchon et al., 2015).

4.1 | Spatiotemporal diet variation despite isotopic 
niche width upholding

Isotopic signatures from chick feathers of Slender-billed gull found 
in our study were generally on a par with those reported from Spain 
where gulls used saltpans, natural marshes but also fish farms: 
−14.66‰ versus −16.62‰ for δ13C and 13.21‰ versus 13.12‰ for 
δ15N (Ramirez et al., 2012). Here, isotopic signatures suggest tempo-
ral changes in diet concomitant with the geographic spread of gull 
colonies along the French Mediterranean coast. The decreasing δ13C 
values also suggest that birds tended to feed in less saline waters 
over years (Yohannes et al., 2014), which is in accordance with the 
spread of French colonies from saltpans to lagoons and more brack-
ish habitats. The temporal trend of δ15N is in accordance with the 
change of habitats since prey composition differs between saltpans 
and less salty habitats. Indeed, the increased of δ15N during the study 
period suggests an increase in prey trophic level used by adults to 
feed their chicks (Peterson & Fry, 1987). In our case, using prey iso-
topic signatures from the study of the species in Spain (Ramirez et 
al., 2012), it likely means that along the study period Slender-billed 
gulls foraged in an increasing proportion of fish preys (e.g., Atherina 
boyeri) available in lagoons and more brackish habitats relative to 
brine shrimps (Artemia spp.) only found in saltpans. In its eastern 
core areas, fish composed half of its diet which is also composed on 
marine insects captured in the mud and plant materials (del Hoyo et 
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al., 1996; Snow, Gillmor, & Perrins, 1998). The shift of foraging niche 
appears thus associated with the colonization of brackish wetlands 
which correspond to a preference for fish diet as described in their 
core areas.

However, the lack of a clear association between colony location 
and foraging niche parameters and width suggests that change in 
nesting habitat does not necessarily translate in change of foraging 
habitat. Indeed, in some years, we found high signatures of δ15N in 
chicks raised in high salinity ponds of saltpans suggesting that adults 
were able to get prey items from the surrounding brackish canals 
or wetlands, typically characterized with higher δ15N values, such as 
fish (Ramirez et al., 2012). For example in 2011, the value of δ15N 
was very high even if over 3 sites, and 2 were situated in saltpans. 
This distinction between foraging and breeding areas is well-known 
in colonial birds (Gibbs & Kinkel, 1997) and seems to concern the 
Slender-billed gull as well. Interestingly, these high values of δ15N 
were associated with successful reproduction in each colony in 2011. 
There must be an advantage of foraging further to find high-quality 
preys even when breeding in saltpans (where fish cannot survive).

The wide isotopic niche breadth of the Slender-billed gull could 
be explained either by the co-occurrence of different individual for-
aging strategies or by the individual foraging shift along the breeding 
season. Tracking individual foraging strategies along chick provision-
ing with GPS devices could allow discriminating between these two 
hypotheses.

4.2 | Influence of environment on breeding 
success and chick body condition

Interestingly, a lower breeding success was found during the second 
period of the study marked with high emigration rate outside the 

south of France and first colony settlements outside saltpans (Acker 
et al., 2017). However, Slender-billed gulls were able to maintain 
their breeding parameters during the consecutive periods of range 
expansion despite a noticeable change in diet. Indeed, both breeding 
success and chicks' body condition remained stable across periods 
afterward.

Given the likely higher profitability of preys used by gulls at 
the end of the study period as shown by δ15N isotopic variations, 
this raises the question of the reasons for the lack of apparent 
benefit for productivity. Since quality and abundance of preys are 
two side of the same coin to explain foraging ecology (Stephens 
& Krebs, 1986; Wright, Both, Cotton, & Bryant, 1998), there may 
exist a trade-off between prey profitability and prey availability 
in our system. Indeed, in saltpans, Artemia spp constitute low 
profitability but abundant, easy to catch and highly predictable 
resource during the breeding season as the salinity which drives 
its abundance is optimized annually by dedicated management 
aimed at salt production (Paracuellos et al., 2002). On the con-
trary, while in lagoons gulls may find preys of higher trophic levels 
such as fish, their availability (or catchability) may be lower. The 
potential quality-availability trade-off observed in our study has 
also been shown in pigeon guillemots (Litzow, Piatt, Abookire, & 
Robards, 2004) another species foraging on unpredictable patchy 
environment.

4.3 | Slender-billed gull range expansion

Slender-billed gulls first stayed confined to the Camargue area 
until 2004 when the population size sharply increased. Then from 
2004 to 2015, colonies started to spread over both the West and 
the East of the Camargue to extend progressively along about 

F I G U R E  4   Body condition of chicks 
(expressed as scaled mass index in g—see 
Section 2) among the four periods. We 
found no difference between time periods 
during the range expansion of the Slender-
billed gull
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250 km of coastline (Figure 1). However, this large spread hap-
pened when breeding population size remained relatively stable 
(Doxa et al., 2013). Our results do not support the hypothesis that 
improvement of breeding success was the main driver of large-
scale dispersal. Although improved breeding success was not de-
tectable, the availability of suitable food in lagoons could have 
assisted slender-billed gulls dispersal by maintaining their repro-
ductive effort/output.

Range expansion may then have resulted from other processes 
such as a behavioral adaptation to habitat unpredictability. Indeed, 
the Slender-billed gull present low site tenacity as shown for the pop-
ulation breeding in southern France (Acker et al., 2017). Its ability to 
change colony site from one year to another is likely an adaptation to 
environmental stochasticity (Sanz-Aguilar et al., 2014). Yet, the scale 
at which this colony displacements occur is not clearly described 
in the literature. In France, colony locations have changed almost 
every year at the local scale but individual birds show a relatively 
strong philopatry at the French Mediterranean coast scale (Acker et 
al., 2017). Hence, when the habitat is good enough, Slender-billed 
gull may try to breed in the same ecological patch from year to 
years even if they change exact location of colony site every year 
(for other reason such as being less predictable for predators for in-
stance; Besnard et al., 2002).

4.4 | Potential evolutionary responses to 
global change

Current climate change scenarios predict increasing temperatures, 
changes in precipitation, drought, and sea-level rise, but also altered 
hydrological cycles, including wetland salinization, a major constraint 
for waterbirds (Masero et al., 2017). A key challenge for species fac-
ing these changes will be their ability to cope up with the rapid rate 
of changes either by plasticity or by evolutionary response. Our re-
sults provide support that foraging niche width is advantageous to 
exploit changing habitats and decrease the physiological constraints 
imposed by high salinity. However, further research on the effect 
of diet change on other life history parameters (e.g., survival) is re-
quired to assess possible evolutionary responses to such changes 
(Radchuk et al., 2019).

4.5 | Perspectives

Isotopic approach proved to be useful in unveiling diet variations 
in the Slender-billed gull. However, the behavioral components of 
niche width remain unknown. For now, we cannot reject the hy-
pothesis where birds moved for whatever reason (evolution strat-
egy, disturbance at previous sites, avoidance of predation, etc.) and 
eat according to the availability of preys around the new site. Diet 
shift may thus only be a by-product of dispersal. Foraging distances, 
habitat use, and the relative role of individual and population varia-
tions in niche width would deserve further investigation. Defining 

home range size would help to further understand the link between 
foraging choices and population dynamics and eventually support 
efficient conservation measures. Indeed, coupling isotopic studies 
with adult tracking during the provisioning period using modern GPS 
tracking devices (e.g., Veen, Dallmeijer, Schlaich, Veen, & Mullié, 
2019) could provide a better understanding of how species will 
adjust their effort to environmental variations in order to maintain 
their fitness.
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