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Abstract

Although the nonhomogeneous Poisson process has been intensively applied in

practice, it has also its own limitations. In this paper, a new counting process

model (called Poisson Generalized Gamma Process) is developed to overcome the

limitations of the nonhomogeneous Poisson process. Initially, some basic stochas-

tic properties are derived. It will be seen that this new counting process model

includes both the generalized Pólya and Poisson Lindley processes as special cases.

The influence of the model parameters on the behavior of the new counting pro-

cess model is analyzed. The increments of the new process are shown to exhibit

positive dependence properties. The corresponding compound process is defined

and studied as well.

Keywords: Poisson generalized gamma process; stochastic properties; restarting prop-
erty; generalized Pólya process; positive dependence
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1. Introduction

In practice, the most typical counting process models for modeling random recurrent
events are the renewal process and the nonhomogeneous Poisson process (NHPP), in-
cluding the homogeneous Poisson process (HPP) as a special case in both models. The
HPP can be characterized by the independent and identically distributed inter arrival
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times following an exponential distribution. The most important feature of the HPP
is that it possesses both the independent and stationary increments properties. In a
renewal process, the inter arrival times are independent and identically distributed ac-
cording to an arbitrary distribution having a nonnegative support (Cox (1962)). In the
NHPP, the stationary increments property of the HPP is dropped, but the independent
increments property is kept. This allows explicit results in many applications (Cha and
Finkelstein (2009, 2011a)), which is one of the important merits of the NHPP.

Until now, there has been much effort to generalize those basic counting processes to
more general ones. For example, the compound, filtered, two dimensional, and marked
Poisson processes generalize the HPP or the NHPP (see Kao, 1997). Recently, semi-
Markov processes are also intensively studied and employed as one of the generalized
counting processes in many applications (see, Limnios and Oprişan, 2001; Barbu and
Limnios, 2008).

As mentioned in Cha (2019), the NHPP has also critical limitations which can be
restrictive in various practical applications. The first critical limitation is that the vari-
ance and the mean of the number of events in (0, t] are equal: V ar[N(t)] = E[N(t)].
Due to this, the NHPP is not suitable for situations where the observations are over
or under dispersed. Another critical limitation is its independent increments property,
which can be too restrictive to describe real life problems. For instance, in reliability
applications for repairable systems, the number of failure events in the future time in-
terval often depends on the failure event history in the past time interval and, in this
case, the independent increments property obviously does not hold.

The aim of this paper is to develop a ‘mathematically tractable’ new counting pro-
cess model, which overcomes the previous limitations of the NHPP. The mathematical
tractability of the new model is a very important feature, as it allows explicit expres-
sion of the likelihood function in estimation procedure for instance and, accordingly, it
makes the developed model practically useful for the applications. A first mathematically
tractable extension of the NHPP called Poisson Lindley process was already proposed
in Cha (2019). It is constructed as a mixed non homogeneous Poisson process with a
Lindley mixing distribution. Though it addresses the previous limitations of the NHPP,
the Lindley distribution has one single parameter and it is not that much flexible. This
might make the Poisson Lindley process too restrictive for some applications. We here
suggest to consider a more general model which encompasses the Poisson Lindley pro-
cess. The approach employed in this paper is as follows. The new process is constructed
as a mixed Poisson process with a generalized gamma mixing distribution. Then, based
on this construction, some basic properties of the process (such as the distribution of the
number of events on some time intervals) are derived. When the only available observa-
tion is the number of events occurred in some time intervals, the likelihood function can
easily be derived from such results. Furthermore, the characterization of the process is
provided in terms of its stochastic intensity. This stochastic intensity would allow the
construction of the likelihood function based on the complete observation of the process
in some time interval(s). The generalized gamma distribution encompasses the Lind-
ley distribution and thus the new model allows to enlarge the possible behavior of the
process when compared to a Poisson Lindley process, while remaining quite tractable
from a mathematical point of view. As we will see, it also encompasses the general-

2



ized Pólya process in Cha (2014). It hence appears as a new flexible tool for modeling
random recurrent events in various practical applications, which encompasses several
models from the previous literature and could be used instead of the NHPP, wherever
it is not appropriate due to its limitations.

The paper is organized as follows. In Section 2, we suggest the definition of the new
counting process model. The distributions for the number(s) of events in some time
interval(s) are derived, together with the corresponding moment generating function
and moments. In addition, the influence of the model parameters on the properties of
the new counting process model is studied. In Section 3, the stochastic intensity of the
counting process model is given, which allows to see that the new counting process model
includes the generalized Pólya process as a special case. Furthermore, the dependence
structure of the counting process model is analyzed. In Section 4, the corresponding
compound process is defined and studied.

2. Poisson Generalized Gamma Process and Its Basic Prop-
erties

To develop the new counting process model, we first recall the generalized gamma distri-
bution introduced by Agarwal and Kalla (1996) and Ghitany (1998). A random variable
Φ is said to follow the generalized gamma distribution (GGD) with parameters (ν, k, α, l),
where ν ≥ 0, k, α, l > 0, if its probability density function (pdf) is given by

f(φ) =
αk−ν

Γν(k, αl)

φk−1 exp{−αφ}
(φ+ l)ν

, φ > 0, (1)

where

Γν(k, β) =

∫ ∞
0

yk−1 exp{−y}
(y + β)ν

dy

for all β > 0, with

Γν(k, αl) =

∫ ∞
0

yk−1 exp{−y}
(y + αl)ν

dy =

∫ ∞
0

αk−νyk−1 exp{−αy}
(y + l)ν

dy. (2)

The function Γν(k, β) is called the generalized gamma function (see Kobayashi (1991))
and if ν = 0, then

Γ0(k, β) =

∫ ∞
0

yk−1 exp{−y}dy = Γ(k), ∀k > 0.

Thus, when ν = 0, it can be seen that the pdf in (1) becomes that of a gamma distri-
bution with parameter (k, α). In the same way, considering l = 1, ν = −1 and k = 1,
it is easy to check that we recover the pdf of a Lindley distribution with parameter α.
Hence, the GGD includes both the gamma and Lindley distributions as special cases.

Coming back to the general case, one can note from Gupta & Ong (2004) that

Γν(k, β) =
Γ (k)

βν−k
ϕ (k, k − ν + 1; β)
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where

ϕ (a, c;x) =
1

Γ (a)

∫ ∞
0

e−xtta−1

(1 + t)a−c+1dt

is the confluent hypergeometric function of the second kind. This allows an easy compu-
tation of Γν(k, β), as ϕ (a, c;x) and Γ (k) are implemented in most statistical or mathe-
matical software.

Finally, we recall from Ghitany (1998) that the moment generating function of Φ is

MΦ(s) = E(esΦ) =
(

1− s

α

)ν−k Γν (k, (α− s)l)
Γν (k, αl))

, s < α, (3)

and that its r-th moment about the origin is

E(Φr) = α−r
Γν (k + r, αl)

Γν (k, lα))
, r ∈ N∗. (4)

Now, we will define the new counting process model using the GGD. Let {M(t), t ≥
0} be an orderly counting process. Throughout this paper, as in Cha (2019), we shall
use the notation

{M(t), t ≥ 0} ∼ NHPP(η(t))

to indicate that the counting process {M(t), t ≥ 0} follows the NHPP with intensity
function η(t). Furthermore, we shall use the notation Φ ∼ GG(ν, k, α, l) to represent
that the continuous random variable Φ follows the GGD with parameters (ν, k, α, l). In
the following definition, we define the Poisson generalized gamma process (PGGP).

Definition 1. (Poisson Generalized Gamma Process) A counting process {N(t), t ≥
0} is called the Poisson generalized gamma process (PGGP) with the set of parameters
(λ(t), ν, k, α, l), λ(t) > 0, ∀t ≥ 0, ν ≥ 0, k, α, l > 0, if
(i) {N(t), t ≥ 0}|(Φ = φ) ∼ NHPP(φλ(t));
(ii) Φ ∼ GG(ν, k, α, l).

A Poisson generalized gamma process hence is a mixed Poisson process with a generalized
gamma mixing distribution. Thus, it could be understood as a Poisson process having
a random intensity function which is a product of the deterministic intensity function
and a random variable. Throughout this paper, the PGGP with the set of parameters
(λ(t), ν, k, α, l) will be denoted by PGGP(λ(t), ν, k, α, l) and we define Λ(t) ≡

∫ t
0
λ(x)dx,

t ≥ 0. Now we will derive some basic properties of PGGP(λ(t), ν, k, α, l).

Proposition 1.
(i) {M(t), t ≥ 0} is a PGGP(1, ν, k, α, l) if and only if {N (t) = M(Λ (t)), t ≥ 0} is a
PGGP(λ(t), ν, k, α, l).
(ii) For c > 0, let λ̃(t) = λ(t)/c, α̃ = αc and l̃ = l/c. Then, a PGGP(λ̃(t), ν, k, α̃, l̃) is
a PGGP(λ(t), ν, k, α, l).
Proof.
(i) Let us observe that a counting process {m(t), t ≥ 0} is a NHPP (φ) if and only
if {n (t) = m(Λ (t)), t ≥ 0} is a NHPP (φλ(t)). Hence {M(t), t ≥ 0}|(Φ = φ) is a
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NHPP (φ) if and only if {N(t) = M (Λ (t)) , t ≥ 0}|(Φ = φ) is a NHPP (φλ(t)), which
provides the result, based on the definition of a PGGP.
(ii) A PGGP(λ̃(t), ν, k, α̃, l̃) is such that {Ñ(t), t ≥ 0}|(Φ̃ = φ̃) ∼ NHPP (φ̃λ̃(t)) and
Φ̃ ∼ GG(ν, k, α̃, l̃). Now, it is known from Ghitany (1998) that cΦ̃ ∼ GG(ν, k, α̃/c, cl̃),
that is cΦ̃ ∼ GG(ν, k, α, l). Setting φ̃ = cφ and Φ = cΦ̃, and noting that φ̃λ̃(t) = φλ (t),
we derive that {Ñ(t), t ≥ 0}|(Φ = φ) ∼ NHPP (φλ (t)) and Φ ∼ GG(ν, k, α, l), which
achieves this proof.

Remark 1. Based on the second point of the previous proposition, the PGGP model
as given in Definition 1 is not identifiable. Hence, whenever we are concerned with
statistical issues (which is not the point of the present paper), an additional constraint
should be added. A possibility (among others) might be to consider that l = 1, as a
PGGP(λ(t)/l, ν, k, αl, 1) is just a PGGP(λ(t), ν, k, α, l).

When dealing with a counting process model, one may be interested in the distribu-
tions of the number(s) of events in some time interval(s), as provided in the following
theorem. The proof follows the same steps as in Proposition 1 in Cha (2019) and it is
omitted.

Theorem 1. Let {N(t), t ≥ 0} be the PGGP(λ(t), ν, k, α, l). Then, for t > 0 and
0 ≡ t0 < t1 < t2 < · · · < tm, the following properties hold:

(i) P (N(t) = n) =
αk−ν

(α + Λ(t))k+n−ν
Γν(k + n, (α + Λ(t))l)

Γν(k, αl)

Λ(t)n

n!
.

(ii) P (N(t2)−N(t1) = n)

=
αk−ν

(α + (Λ(t2)− Λ(t1)))k+n−ν
Γν(k + n, (α + (Λ(t2)− Λ(t1)))l)

Γν(k, αl)

(Λ(t2)− Λ(t1))n

n!
.

(iii) P (N(ti)−N(ti−1) = ni, i = 1, 2, · · · ,m)

=
αk−ν

(α +
∑m

i=1(Λ(ti)− Λ(ti−1)))k+
∑m
i=1 ni−ν

× Γν(k +
∑m

i=1 ni, (α +
∑m

i=1(Λ(ti)− Λ(ti−1)))l)

Γν(k, αl)

[
m∏
i=1

(Λ(ti)− Λ(ti−1))ni

ni!

]
.

In most practical applications, the moments of N(t) are of great importance, which
are given in the following theorem. In the following, the notation MN(t)(s) ≡ E[esN(t)]
stands for the moment generating function ofN(t). Note that similar results are provided
in Cha (2019) for points (i) and (iii) in the specific case of a Poisson Lindley process,
with not exactly the same arguments for point (iii) however. We hence prefer providing
the proofs of all the three points here, for sake of clarity and completeness.

Theorem 2. Let {N(t), t ≥ 0} be the PGGP(λ(t), ν, k, α, l). Then the following
properties hold.
(i) The moment generating function of N(t) is given by

MN(t)(s) =

(
1− Λ (t)

es − 1

α

)ν−k
Γν [k, (α− Λ (t) (es − 1))l]

Γν (k, αl)
, s < ln

(
α + Λ(t)

Λ(t)

)
.
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(ii) The r-th moment about zero of N (t) is

E [N (t)r] =
r∑
i=1

(
Λ (t)

α

)i
Γν (k + i, αl)

Γν (k, αl))

{
r

i

}
, r ∈ N∗,

where the {braces} denote Stirling numbers of the second kind.
(iii) The mean and variance of N(t) are given by

E[N(t)] =
Λ(t)

α

Γν(k + 1, αl)

Γν(k, αl)
,

and

V ar[N(t)] =
Λ(t)

α

Γν(k + 1, αl)

Γν(k, αl)
+

(
Λ(t)

α

)2
[

Γν(k + 2, αl)

Γν(k, αl)
−
(

Γν(k + 1, αl)

Γν(k, αl)

)2
]
.

Proof.
(i) Conditioning by Φ, we have:

MN(t) (s) = E
[
E
(
esN(t)|Φ

)]
where [N (t) |Φ = φ] is Poisson distributed with parameter Λ (t)φ. Based on the moment
generating function of a Poisson distribution, see, e.g., Ross (2003), we derive:

MN(t) (s) = E [exp (Λ (t) (es − 1) Φ)]

= MΦ [Λ (t) (es − 1)]

=

(
1− Λ (t)

es − 1

α

)ν−k
Γν [k, (α− Λ (t) (es − 1))l]

Γν (k, αl)

for all s < ln
(
α+Λ(t)

Λ(t)

)
, due to (3).

(ii) Using a similar procedure, we have:

E [N (t)r] = E [E (N (t)r |Φ)] =
r∑
i=1

E
[
(Λ (t) Φ)i

]{r
i

}
,

see Riordan (1937) for the previous expression for moments of Poisson distributions with
respect to Stirling numbers of the second kind.

Using (4), we derive

E [N (t)r] =
r∑
i=0

(
Λ (t)

α

)i
Γν (k + i, αl)

Γν (k, αl))

{
r

i

}
.

(iii) The expression of E [N (t)] is clear from the previous point. As for the variance,
it is easily derived from

V ar[N(t)] = E[N(t)2]− (E[N(t)])2.
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In the following proposition, we compare the expectation and variance of N(t) under
a more general setting, when Φ follows a general distribution. The proof follows the
same arguments as in Cha (2019) and it is omitted.

Proposition 2. For any mixed Poisson process {N(t), t ≥ 0}, V ar[N(t)] ≥ E[N(t)].

Thus, we can see that the PGGP would be suitable for the cases where the observa-
tions are overdispersed with respect to a Poisson process case, for which the mean is
equal to the variance.

We next investigate the influence of the parameter sets of the generalized gamma
distribution on some properties of the number of events N(t) in a PGGP. Let us first
recall that a non negative continuous random variable Z with pdf fZ and survival func-
tion F̄Z is said to be Increasing (Decreasing) Hazard Rate (IHR/DHR) as soon as its
hazard rate function

hZ (z) =
fZ (z)

F̄Z (z)
, z ∈ R+ such that F̄Z (z) > 0,

decreases (increases) with z. Also, it is said to be upside-down bathtub shaped when
hZ (z) first increases and next decreases. In the same way, a discrete random variable
M with range N is said to be Increasing (Decreasing) Hazard Rate (IHR/DHR) as soon
as

HM (n) =
P (M ≥ n+ 1)

P (M ≥ n)
= 1− P (M = n)

P (M ≥ n)
, n ∈ N (5)

decreases (increases) with n. It is said to be upside-down bathtub shaped when HM (z)
first increases and next decreases. See Lai & Xie (2006) for more details.

It is well-known that any Poisson random variable is IHR, see Barlow & Proschan
(1996). This however is not always the case for a mixed Poisson generalized gamma
distribution, as shown in the next proposition.

Proposition 3. Let {N (t) , t ≥ 0} be a PGGP(λ(t), ν, k, α, l). We have the following
results:
(i) If 0 ≤ ν ≤ k − 1, then N(t) is IHR;
(ii) If k ≤ 1, then N(t) is DHR;
(iii) If ν > k − 1 > 0, then N(t) is upside-down bathtub shaped, that is HN(t) (n) first
increases and next decreases, where HN(t) (n) is defined in a similar way as HM in (5).

Proof. Based on Proposition 7.2. in Grandell (1997), we know that N(t) is IFR (DFR)
as soon as Φ ∼ GG(λ(t), ν, k, α, l) is IFR (DFR). Also, due to Theorem 4 in Ghitany
(1998), the random variable Φ is IFR (resp. DFR) as soon as 0 ≤ ν ≤ k − 1 (resp.
k ≤ 1). This allows to conclude for points (i) and (ii).

For point (iii), remember from Theorem 4 in Ghitany (1998) that Φ is upside-down
bathtub shaped when ν > k−1 > 0. Following similar steps as in the proof of Proposition
7.2. in Grandell (1997) allows to conclude that the same property holds for N(t), which
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concludes the proof.

Remark 2. Considering l = 1, ν = −1 and k = 1, the previous proposition shows that,
in case of a Poisson Lindley process, N(t) always is IHR. The extension to a PGGP
hence allows to enlarge the possible behavior of the process, with respect to a Poisson
Lindley process.

We now introduce some basic properties of stochastic orders for further characterization
of the PGGP. In the following, we denote by X1 ≤st X2, X1 ≤fr X2 and X1 ≤lr X2

the usual stochastic order, the failure rate order and the likelihood ratio order between
two random variables X1 and X2, respectively. The definitions for these concepts can
be found, e.g., in Shaked and Shanthikumar (2007).

Lemma 1 (Shaked and Shanthikumar, 2007).
(i) If X1 ≤st X2 and g(·) is any increasing (decreasing) function, then E[g(X1)] ≤ (≥
)E[g(X2)].
(ii) If X1 and X2 are two nonnegative random variables, then the following holds:

X1 ≤lr X2 ⇒ X1 ≤fr X2 ⇒ X1 ≤st X2 ⇒ E[X1] ≤ E[X2].

Proposition 4. Let {N (t) , t ≥ 0} be a PGGP(λ(t), ν, k, α, l). Then, N (t) increases
in the likelihood ordering when t increases.

Proof. Based on point (i) in Proposition 1 and Remark 1, it is enough to show the
result when λ (t) ≡ 1 and l = 1.

Let t1 < t2. The aim is to show that N (t1) ≤lr N (t2), namely that

g (n) =
P (N (t2) = n)

P (N (t1) = n)

increases with respect to n. Based on point (i) in Theorem 1, we may write

g (n) = K

(
α
t1

+ 1
α
t2

+ 1

)n
Γν(k + n, α + t2)

Γν(k + n, α + t1)
.

where K is a constant. The term [(α/t1 + 1) / (α/t2 + 1)]n increases with respect to n
because t1 < t2. It is hence enough to show that

h (n) =
Γν(n, α2)

Γν(n, α1)

increases with respect to n whenever α1 < α2. Considering n ∈ R∗+, the sign of h′ (n) is
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the same as that of

κ (n) =

(∫ ∞
0

yn−1
1 e−y1

(y1 + α1)ν
dy1

)(∫ ∞
0

ln (y2) yn−1
2 e−y2

(y2 + α2)ν
dy2

)
−
(∫ ∞

0

ln (y1) yn−1
1 e−y1

(y1 + α1)ν
dy1

)(∫ ∞
0

yn−1
2 e−y2

(y2 + α2)ν
dy2

)
=

∫ ∫
R2
+

(y1y2)n−1 e−(y1+y2) ln (y2)− ln (y1)

(y1 + α1)ν (y2 + α2)ν
dy1 dy2

= κ1 (n) + κ2 (n)

where

κ1 (n) =

∫ ∫
{y2>y1}

(y1y2)n−1 e−(y1+y2) ln (y2)− ln (y1)

(y1 + α1)ν (y2 + α2)ν
dy1 dy2,

κ2 (n) =

∫ ∫
{y2<y1}

(y1y2)n−1 e−(y1+y2) ln (y2)− ln (y1)

(y1 + α1)ν (y2 + α2)ν
dy1 dy2.

Now switching y1 and y2 in κ2 (n), we get

κ2 (n) =

∫ ∫
{y2>y1}

(y1y2)n−1 e−(y1+y2) ln (y1)− ln (y2)

(y2 + α1)ν (y1 + α2)ν
dy1 dy2.

Gathering κ1 (n) and κ2 (n), we derive

κ (n) =

∫ ∫
{y2>y1}

(y1y2)n−1 e−(y1+y2) (ln (y2)− ln (y1))

×
(

1

(y1 + α1)ν (y2 + α2)ν
− 1

(y2 + α1)ν (y1 + α2)ν

)
dy1 dy2. (6)

Now observe that

y1 + α1

y2 + α1

=
y1 − y2

y2 + α1

+ 1 ≤ y1 − y2

y2 + α2

+ 1 =
y1 + α2

y2 + α2

due to α1 < α2 and y2 > y1. This entails that the term between brackets in the sec-
ond line of (6) is non negative. Hence the whole integrand in (6) is non negative and
κ (n) ≥ 0. This shows that h (n) increases with respect to n and achieves the proof.

Proposition 5. Let {Ni (t) , t ≥ 0} be a PGGP(λi(t), νi, ki, αi, 1) for i ∈ {1, 2}, where
we take li = 1, as is allowed from Remark 1.

Assume that Λ2 (t) ≤ Λ1 (t) for all t ≥ 0 and that one of the following points is true:

• α1 = α2, k1 ≥ k2 and k1 − k2 ≥ ν1 − ν2;

• α1 < α2 and (α2 − α1 + k1 − k2 + ν2 − ν1)2 − 4 (α2 − α1) (k1 − k2) ≤ 0;

• α1 < α2 and α2 − α1 + k1 − k2 + ν2 − ν1 ≥ 0.
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Then N2 (t) ≤lr N1 (t) for all t ≥ 0.

Proof. Let us first show that each of the two points in the proposition implies that
Φ2 ≤lr Φ1.

Let fi (φ) be the pdf of Φi ∼ GG(νi, ki, αi, 1). Then

h (φ) =
f1 (φ)

f2 (φ)
= Kφk (φ+ 1)ν eαφ,

where K is a positive constant, k = k1 − k2, ν = ν2 − ν1 and α = α2 − α1.
We have

h′ (φ) = K
(
αφ2 + (α + k + ν)φ+ k

)
φk−1 (φ+ 1)ν−1 eαφ

so that h′ (φ) and αφ2 + (α + k + ν)φ+ k share the same sign.
Now, if α = 0, k + ν ≥ 0 and k ≥ 0, h′ (φ) is non negative for all φ. Note that this

property is not possible if α < 0.
Assume α > 0. Then h′ (φ) is non negative for all φ if (α + k + ν)2 − 4αk ≤ 0 or if

(α + k + ν)2 − 4αk > 0 and

− (α + k + ν) +

√
(α + k + ν)2 − 4αk ≤ 0,

which is equivalent to α + k + ν ≥ 0 (as α, k > 0).
As a summary, h′ (φ) is non negative for all φ if either one of the following points is

true:

• α = 0, k + ν ≥ 0 and k ≥ 0;

• α > 0 and (α + k + ν)2 − 4αk ≤ 0;

• α > 0 and α + k + ν ≥ 0.

Note that these conditions are just equivalent to the three points in the proposition.
Hence, under one of these three points, the function h (φ) is non decreasing, which
implies that Φ2 ≤lr Φ1.

Now, let {Mi (t) , t ≥ 0} be a PGGP(t, νi, ki, αi, 1) for i ∈ {1, 2}.
Then [Mi (t) |Φi = φ] ∼ Poi(φt) (Poisson distribution with parameter φt), which

increases in the likelihood ordering when φ increases, see Belzunce et al. (2016) page
104. As Φ2 ≤lr Φ1, we derive from Theorem 1.C.17. in Shaked and Shanthikumar (2007)
that M2 (t) ≤lr M1 (t) for all t ≥ 0.

Then M2 (Λ2 (t)) ≤lr M1 (Λ2 (t)). Now, as Λ2 (t) ≤ Λ1 (t), we have M1 (Λ2 (t)) ≤lr
M1 (Λ1 (t)) from Proposition 4. Finally, we obtain M2 (Λ2 (t)) ≤lr M1 (Λ1 (t)), which
provides the result, based on point (i) in Proposition 1.

As a by-product of the previous proposition, one can see that, if all parameters are
fixed except from one, then N (t) increases in the likelihood ordering when Λ(t) or k
increases, or when ν or α decreases.
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3. Further Properties of Poisson Generalized Gamma Pro-
cess

We now derive the stochastic intensity of the PGGP. Let {N(t), t ≥ 0} be an orderly
point process and let Ht− be the σ-field generated by {N(u), 0 ≤ u < t}, that is Ht−
stands for the history of the process on [0, t). Observe that Ht− can be equivalently
defined in terms of the number of events in [0, t) denoted by N(t−) and the sequential
arrival times of events, i.e., 0 ≤ T1 ≤ T2 ≤ · · · ≤ TN(t−) < t. As discussed, e.g., in Cha
and Finkelstein (2011b), and Cha (2014), the stochastic intensity λt of an orderly point
process {N(t), t ≥ 0} is defined as the following limit:

λt ≡ lim
∆t→0

P (N(t, t+ ∆t) = 1|Ht−)

∆t

= lim
∆t→0

E [N(t, t+ ∆t)|Ht−]

∆t
, (7)

where N(t1, t2), t1 < t2, represents the number of events in [t1, t2). Then the above
stochastic intensity in (7) has the following heuristic interpretation: λtdt = E [dN(t)|Ht−],
which is very similar to the ordinary failure rate or hazard rate of a random variable
(Aven and Jensen (1999)). Note that a similar result as the following theorem was pro-
vided in Cha (2019) in the specific case of a Poisson Lindley process, with different (and
longer) arguments however.

Theorem 3. Let {N(t), t ≥ 0} be the PGGP(λ(t), ν, k, α, l). The stochastic inten-
sity λt of {N(t), t ≥ 0} is given by

λt =
1

(α + Λ(t))

Γν(k +N(t−) + 1, (α + Λ(t))l)

Γν(k +N(t−), (α + Λ(t))l)
λ(t). (8)

Proof. Let us first consider the case of a PGGP {M(t), t ≥ 0} with parameter(
λ(0) (t) = t, ν, k, α, l

)
. In that case, it is known from Proposition 4.1 page 65 in Grandell

(1997) that the corresponding stochastic intensity λ
(0)
t is

λ
(0)
t =

∫∞
0
φN(t−)+1e−φtf(ν,k,α,l)(φ)dφ∫∞

0
φN(t−)e−φtf(ν,k,α,l)(φ)dφ

, (9)

where f(ν,k,α,l) stands for the pdf of a GGD with parameters (ν, k, α, l). Inserting the
expression of this pdf (see (1)) into (9), we obtain

λ
(0)
t =

∫∞
0
φk+N(t−) e−φ(t+α)

(φ+l)ν
dφ∫∞

0
φk+N(t−)−1 e−φ(t+α)

(φ+l)ν
dφ

=
Γν(k +N (t−) + 1, (α + t)l)

(α + t)k+N(t−)+1−ν × (α + t)k+N(t−)−ν

Γν(k +N (t−) , (α + t)l)
.

through normalization of the pdf of f(ν,k+N(t−)+1,α+t,l) and f(ν,k+N(t−),α+t,l), which appear
in the numerator and denominator, respectively.

Now, it is known from Proposition 1, that the PGGP(λ(t), ν, k, α, l) can be recovered
through setting {N (t) = M(Λ (t)), t ≥ 0}.
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The result is next easily derived from page 79 in Grandell (1997), which implies that

λt = λ
(0)
Λ(t) λ (t) .

From Theorem 3, we can see that the PGGP has the Markov property, namely the
conditional distribution of the process state N(t) at time t given its full history Ht−
only depends on the last state of the process N(t−). Furthermore, due to the explicit
result in Theorem 3 and as briefly discussed in Remark 1 of Cha (2019) for the case of
Poisson Lindley process, it is possible to construct likelihood function for the estimation
of model parameters, which would be crucial for practical application of the developed
model.

Based on Theorem 3, it can be shown that the PGGP includes the generalized Pólya
process (GPP) studied in the literature (Cha (2014)) as a special case. To show this, we
first recall the definition of the GPP here.

Definition 2. (Generalized Pólya Process) A counting process {N(t), t ≥ 0} is
called the generalized Pólya process (GPP) with the set of parameters (κ(t), γ, τ), γ ≥ 0,
τ > 0, if
(i) N(0) = 0;
(ii) The stochastic intensity of {N(t), t ≥ 0} is given by λt = (γN(t−) + τ)κ(t).

The GPP defined in Definition 2 will be denoted by GPP(κ(t), γ, τ).

Proposition 6. Let {N(t), t ≥ 0} be the PGGP(λ(t), ν, k, α, l). If we set λ(t) =
κ(t) exp{γ

∫ t
0
κ(u)du}, t ≥ 0, ν = 0, k = τ/γ, and α = 1/γ, then this counting process

{N(t), t ≥ 0} under this specific setting becomes the GPP(κ(t), γ, τ), regardless of l.

Proof.
As explained before, when ν = 0,

Γν(k, αl) = Γ(k).

Thus, under the specific setting with λ(t) = κ(t) exp{γ
∫ t

0
κ(u)du}, t ≥ 0, ν = 0,

k = τ/γ, and α = 1/γ, the stochastic intensity in (8) now becomes

λt =
1

(1/γ + 1/γ(exp{γ
∫ t

0
κ(u)du} − 1))

Γ(τ/γ +N(t−) + 1)

Γ(τ/γ +N(t−))
κ(t) exp{γ

∫ t

0

κ(u)du}

= (γN(t−) + τ)κ(t),

which completes the proof.

In the following, it will be shown that the PGGP has the so-called ‘restarting prop-
erty’ introduced in Cha (2014).

Definition 3. Restarting Property
Let t > 0 be an ‘arbitrary’ time point. If the conditional future stochastic process from t,
given the history until time t, follows the same type of stochastic process with possibly
different set of process parameters, then the process is said to possess the restarting
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property. A stochastic process that enjoys the restarting property is called a restarting
process.

The restarting property is explained in much more details in Cha (2014), where several
examples are given.

Proposition 7. Let {N(t), t ≥ 0} be PGGP(λ(t), ν, k, α, l). At an arbitrary time
u > 0, given {N(u−) = n, T1 = t1, T2 = t2, · · · , Tn = tn}, the conditional future process
{Nu(t), t ≥ 0}, where Nu(t) ≡ N(u+ t)−N(u), is a PGGP with the set of parameters
(λ(u+ t), ν, k + n, α + Λ(u), l).

Proof.
From (8), given {N(u−) = n, T1 = t1, T2 = t2, · · · , Tn = tn}, the stochastic intensity of
the future process {Nu(t), t ≥ 0}, denoted by λut , is given by

λut =
1

(α + Λ(u) + Λu(t))

Γν(k + n+Nu(t−) + 1, (α + Λ(u) + Λu(t))l)

Γν(k + n+Nu(t−), (α + Λ(u) + Λu(t))l)
λu(t),

where λu(t) ≡ λ(u + t), and Λu(t) ≡
∫ t

0
λu(x)dx. Thus, it can be seen that λut is the

stochastic intensity of PGGP with the set of parameters (λ(u+ t), ν, k+ n, α+ Λ(u), l).

Relying on Proposition 7, some conditional properties of the PGGP can be conve-
niently obtained. For example, let us consider P (N(u+t)−N(u) = n|N(u) = m). From
Proposition 7, given N(u) = m, the conditional process {Nu(t), t ≥ 0} is a PGGP with
the set of parameters (λ(u+ t), ν, k +m,α + Λ(u), l). Then, from Theorem 1-(i),

P (N(u+ t)−N(u) = n|N(u) = m) =
(α + Λ(u))k+m−ν

(α + Λ(u) + Λu(t))k+m+n−ν

× Γν(k +m+ n, (α + Λ(u) + Λu(t))l)

Γν(k +m, (α + Λ(u))l)

Λu(t)
n

n!
.

In the following proposition, we show that λt in (8) is increasing in N(t−), implying
that the proneness to the future event occurrence is increasing with the number of
previously occurred events.

Proposition 8. Let {N(t), t ≥ 0} be the PGGP(λ(t), ν, k, α, l). Then the stochastic
intensity λt of {N(t), t ≥ 0} is increasing in N(t−).

Proof.
It is sufficient to show that

η(k) ≡ Γν(k + 1, αl)

Γν(k, αl)

is increasing in k > 0 for any ν ≥ 0, α, l > 0. Observe that, from the second expression
in (2),

η′(k) =
1

Γν(k, αl)
2

[∫ ∞
0

ln(y) · yk exp{−y}
(y + αl)ν

dy ·
∫ ∞

0

yk−1 exp{−y}
(y + αl)ν

dy
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−
∫ ∞

0

ln(y) · yk−1 exp{−y}
(y + αl)ν

dy ·
∫ ∞

0

yk exp{−y}
(y + αl)ν

dy

]

=
Γν(k, αl)Γν(k + 1, αl)

Γν(k, αl)
2

[∫ ∞
0

1

Γν(k + 1, αl)

ln(y) · yk exp{−y}
(y + αl)ν

dy

−
∫ ∞

0

1

Γν(k, αl)

ln(y) · yk−1 exp{−y}
(y + αl)ν

dy

]
.

Denote by Y1 the random variable which has the corresponding pdf

fY1(y) =
1

Γν(k, αl)

yk−1 exp{−y}
(y + αl)ν

,

and denote by Y2 the random variable which has the corresponding pdf

fY2(y) =
1

Γν(k + 1, αl)

yk exp{−y}
(y + αl)ν

,

respectively. Then,

fY1(y)

fY2(y)
=

Γν(k + 1, αl)

Γν(k, αl)

1

y
,

which is decreasing in y. Then, from Definition 3, Y1 ≤lr Y2 and, by Lemma 1, Y1 ≤st Y2.
Furthermore, ln(y) is an increasing function of y. Thus, again from Lemma 1,∫ ∞

0

1

Γν(k + 1, αl)

ln(y) · yk exp{−y}
(y + αl)ν

dy = E[ln(Y2)]

≥ E[ln(Y1)] =

∫ ∞
0

1

Γν(k, αl)

ln(y) · yk−1 exp{−y}
(y + αl)ν

dy,

which implies η′(k) ≥ 0, k > 0, and, accordingly, η(k) is increasing in k.

As mentioned before, Proposition 8 implies that the proneness to the future event oc-
currence is increasing in the number of events occurred previously. This again implies a
kind of positive dependent increments property. In the following, we analyze the depen-
dence structure in the increments of PGGP. For this, we recall a concept of multivariate
positive dependence for multivariate increments in a counting process model suggested
in Cha (2019).

Definition 4. (Positive Upper Orthant Dependent Increments) A counting
process {N(t), t ≥ 0} is said to have positive upper orthant dependent increments if for
any arbitrary integer m ≥ 2 and 0 < t1 < t2 < · · · < tm,

P (N(ti + ∆ti)−N(ti) > ni, i = 1, 2, · · · ,m) ≥
m∏
i=1

N(ti + ∆ti)−N(ti) > ni),

for all ni, i = 1, 2, · · · ,m, where ti + ∆ti ≤ ti+1, i = 1, 2, · · · ,m− 1.
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Theorem 4. Any mixed Poisson process has positive upper orthant dependent incre-
ments.

Proof. The proof is similar to that of Theorem 2 in Cha (2019) and it is omitted.

We now derive the conditional joint distribution of the arrival times in (0, t], given
N(t), t > 0, in any mixed Poisson process.

Theorem 5. For any mixed Poisson process, the conditional joint distribution (pdf) of
the arrival times (

T1, T2, · · · , Tn|N(t) = n
)

is given by

f(T1,T2,··· ,TN(t)|N(t))(t1, t2, · · · , tn|n) = n!
n∏
i=1

(
λ(ti)

Λ(t)

)
, (10)

where 0 < t1 ≤ t2 ≤ · · · ≤ tn ≤ t.

Proof.
Note that the conditional joint arrival times distribution (pdf) in the process can be
expressed as

f(T1,T2,··· ,Tn|N(t))(t1, · · · , tn|n)
= E(Φ|N(t)=n)[f(T1,T2,··· ,Tn|N(t),Φ)(t1, · · · , tn|n,Φ)],

where f(T1,T2,··· ,Tn|N(t),Φ)(t1, · · · , tn|n, φ) is the conditional joint distribution of

(T1, T2, · · · , Tn|N(t) = n,Φ = φ).

It is well known that the conditional arrival time distribution of T1, T2, · · · , TN(t) in
(0, t], given that N(t) = n,Φ = φ, is given by (Ross, 1996)

n!
n∏
i=1

(
φλ(ti)

φΛ(t)

)
= n!

n∏
i=1

(
λ(ti)

Λ(t)

)
, 0 < t1 ≤ t2 ≤ · · · ≤ tn ≤ t.

which is independent of φ. Therefore, we now have the desired result.

It can be seen from Theorem 5 that whatever the mixing distribution is, given N(t) =
n, the n first arrival times T1, T2, · · · , Tn in a mixed Poisson process have the same
distribution as the order statistics corresponding to n independent random variables
identically distributed according to (pdf)(

λ(x)

Λ(t)

)
, 0 < x ≤ t.
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4. Compound PGGP

Let a stochastic process {W (t), t ≥ 0} be defined by

W (t) =

N(t)∑
i=1

Xi, t ≥ 0, (11)

where {N(t), t ≥ 0} is the PGGP, and {Xi, i ≥ 1} is a family of independent and
identically distributed random variables that is independent of {N(t), t ≥ 0}. Then the
stochastic process {W (t), t ≥ 0} is said to be a compound Poisson generalized gamma
process. Various practical applications of such compound process defined in (11) can be
found in Ross (2003).

Let MX(s) ≡ E[esXi ], the MGF of Xi. The following result gives the moment
generating function, the mean and the variance of W (t). Note that similar results were
provided in Cha (2019) in the specific case of a Poisson Lindley process, with different
and longer arguments however.

Theorem 6. The moment generating function of W (t), which is denoted by MW (t)(s),
is given by

MW (t)(s) =
αk−ν

(α + Λ(t)−MX(s)Λ(t))k−ν
Γν(k, (α + Λ(t)−MX(s)Λ(t))l)

Γν(k, αl)
,

and the mean and variance of W (t) are

E[W (t)] =
Λ(t)E[X]

α

Γν(k + 1, αl)

Γν(k, αl)
,

and

V ar[W (t)] =
Λ(t)E[X2]

α

Γν(k + 1, αl)

Γν(k, αl)

+

(
Λ(t)E[X]

α

)2
[

Γν(k + 2, αl)

Γν(k, αl)
−
(

Γν(k + 1, αl)

Γν(k, αl)

)2
]
.

Proof.
Given Φ, the random variable W (t) is known to be conditionally distributed as a com-
pound Poisson distribution, with ΦΛ (t) as parameter for the Poisson distribution.

Based on the formula for the moment generating function of a compound Poisson
distribution, we have:

MW (t)(s) = E
[
E
(
es

∑N(t)
i=1 Xi |Φ

)]
= E

[
eΦΛ(t)(MX(s)−1)

]
.

This can be written as

MW (t)(s) = MΦ [Λ (t) (MX (s)− 1)]
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where MΦ is provided by (3). This easily provides the first result.
E[W (t)] and V ar[W (t)] can next be obtained by usingM ′

W (t)(s)|s=0 andM ′′
W (t)(s)|s=0.

Proposition 9. Let {W (t) , t ≥ 0} be a compound Poisson generalized gamma process,
as previously described. Then we have the following results.

1. If X1 is IHR , then W (t1) ≤hr W (t2) for all t1, t2 ≥ 0 such that t1 ≤ t2.

2. If the pdf of X1 is log-concave, then W (t1) ≤lr W (t2) for all t1, t2 ≥ 0 such that
t1 ≤ t2.

Proof. Based on Proposition 4, we have N (t1) ≤lr N (t2) for all t1, t2 ≥ 0 such that
t1 ≤ t2. Theorems 1.C.11 and 1.C.12 page 47 in Shaked & Shantikumar (2007) then
allow to conclude for both points.

Remark 3. A similar result as the first point is valid assuming X1 to have a decreasing
reversed hazard rate, which leads to the conclusion that W2 (t) is smaller than W1 (t)
in the sense of the reversed hazard rate ordering, see Shaked & Shantikumar (2007) for
more details.

Proposition 10. Let {Wi (t) , t ≥ 0}, i ∈ {1, 2} be two compound Poisson generalized
gamma processes constructed from the same sequence {Xn, n ≥ 1} and two different
PGGP(λi(t), νi, ki, αi, 1), i ∈ {1, 2}, where we take li = 1, as is allowed from Remark 1.
Assume that Λ2 (t) ≤ Λ1 (t) for all t ≥ 0 and that one of the points from Proposition 5
is true. Then we have the following results.

1. If X1 is IHR. then W2 (t) ≤hr W1 (t) for all t ≥ 0.

2. If the pdf of X1 is log-concave, then W2 (t) ≤lr W1 (t) for all t ≥ 0.

The proof is similar to that of Proposition 9 and it is omitted. A similar remark to
Remark 3 is also valid.
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