Characterization of a new aerosol antibiotic/adjuvant combination for the treatment of P. aeruginosa lung infections
Résumé
The lack of novel classes of antibiotics as well as the constant increase of multidrug resistant bacteria are leaving the clinicians disarmed to treat bacterial infections, especially those caused by Gram-negative pathogens. Among all the investigated solutions, the design of adjuvants able to enhance antibiotics activities appears to be one of the most promising. In this context, a polyamino-isoprenyl derivative has been recently identified to be able to potentiate, at a very low concentration the activity of doxycycline against P. aeruginosa bacterial strains by increasing its intracellular concentration. On the other hand, since aerosol therapy allows a rapid drug administration and targets the respiratory system by avoiding the first pass effect and minimizing undesirable systemic effects, we have developed the first adjuvant/antibiotic combination in an aerosolized form and demonstrated the feasibility of such an approach. Thus, combination aerosol droplets have been demonstrated in sizes suitable for inhalation (3.4 and 4.4 μm mass median aerodynamic diameter and 54 and 60% of the aerodynamic particle size distribution less than 5 μm, as measured for the adjuvant NV716 and doxycycline, respectively and with properties (stoichiometric 1:1 ratio of NV716 salt to drug) that would support further development as an inhaled dosage form. Taken together, our results suggest that these molecules could be successfully delivered at the requested concentration in the lungs and then able to decrease drug consumption as well as increase treatment efficacy.
Domaines
Maladies infectieusesOrigine | Fichiers produits par l'(les) auteur(s) |
---|