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Boundary slidingmode control of a systemof linear

hyperbolic equations: a Lyapunov approach

Thibault Liard a, Ismäıla Balogoun a, Swann Marx a, Franck Plestan a

aLS2N, Ecole Centrale de Nantes and CNRS UMR 6004, Nantes, France.

Abstract

This paper introduces a new sliding mode methodology for a system of two hyperbolic equations. The main difference with
the existing literature is the definition of the sliding variable, given here by the gradient of a Lyapunov functional. We state
and prove an existence theorem and a global asymptotic stability result. The efficiency of our feedback-law is illustrated by
some numerical simulations relying on implicit schemes.
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1 Introduction

This paper is concerned with the generalization of the
sliding mode control (for short SMC) strategy for a class
of partial differential equations (for short PDEs) subject
to an unknown boundary disturbance. To be more pre-
cise, our focus will be on a system of two hyperbolic sys-
tems controlled from the boundary (see [9] for a review
on this class of system).

Stabilization of systems of linear transport equations
of one dimension have been considered for many years.
This is surely because this kind of systems models many
physical phenomena. If [9] provides a good overview of
the actual research lines concerning this topic of stabi-
lization, it is worth mentioning some important articles
in that direction. In [14], the local stabilization of a 2×2
nonlinear hyperbolic system is considered, where some
distributed couplings are allowed. The feedback-law is
built thanks to the backstepping method (see e.g., [22]
for an overview on this topic). In [10], hyperbolic sys-
tems with some non-local terms are studied. More pre-
cisely, the design method relies on a Fredholm transform
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instead of a more usual Volterra one. Generalizations to
the case of systems of n linear hyperbolic equations have
been considered in [17] or [21], to cite only few of the
numerous papers dealing with such a topic. Let us also
mention some recent papers about optimal time of sta-
bilization [5,13] or about delay-robust stabilization [4,6].

For many years, the SMC strategy has been proved to
be efficient for the robust control of nonlinear systems
described with ordinary differential equations (for short
ODEs). Most of the classical techniques for ODEs are
exposed in [32,35]. Roughly speaking, this technique is
decomposed into two steps: firstly, one selects a sliding
variable such that the trajectories reach a sliding surface,
where the global asymptotic stability is ensured; sec-
ondly, one designs a state feedback-law so that the slid-
ing variable reaches the surface in finite-time on which
the disturbance is rejected.

To the best of our knowledge, robust control for PDEs
has been investigated for only few years. Most of the ex-
isting papers (see e.g., [34] or [26]) use PI controllers. In
contrast with the sliding mode strategy, this imposes to
consider disturbances which do not depend on time. In
[15,16], a feedback-law constructed using the backstep-
ping method is proposed to reject periodic disturbances.
This design, based on the internal model approach, al-
lows to reject disturbances which might not match with
the control, at the price of firstly assuming the distur-
bances to be periodic, and of secondly knowing the re-
lated frequencies. It is in contrast with the sliding mode
approach, which only requires to know the bounds of
the perturbations. However, the sliding mode approach
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needs the disturbances to match with the control.

The generalization of the SMC procedure to the PDE
case is not new. However, many questions remain open.
We believe that the main challenge is the choice of the
sliding variable. Indeed, since one faces with an infinite-
dimensional system, there exist many ways to select it.
In [20], [33] [30], a backstepping strategy is used in order
to design a sliding mode controller. Note that an active
disturbance rejection control 1 (ADRC for short) strat-
egy is also followed in [20] and [18], which is a different
approach from the SMC one. In [33], the use of the back-
stepping method imposes to measure the full-state, and
therefore the boundaries, where are located the control
and the disturbance. Let us also mention [7,8,29], where
a distributed SMC is considered. In the latter case, the
sliding variable is the full state itself.

In this paper, a different strategy is followed. The sliding
variable is derived from the gradient of some well-known
Lyapunov functional in the hyperbolic context [9, Sec-
tion 2.1.2]. We thus assume that we measure this quan-
tity, which does not imply the knowledge of the bound-
aries where are located the control and the disturbance.
Moreover, in contrast with the usual backstepping strat-
egy, the bound on the derivative of the disturbance does
not need to be known. Furthermore, the global asymp-
totic analysis is provided in some Lp space, which is not
common in the literature. Indeed, most of the existing
works give their stability results in the Hilbertian space
L2. Let us mention however some recent works in that
direction: [12], [3] or [11]. We also emphasize on the fact
that our approach is adjustable to more general SMC
methods such as adaptive approaches. Adaptive tech-
niques [31,37] are interesting, due to the fact that re-
duced knowledge of the model is required (bounds of per-
turbations are not required). To that end, we illustrate
numerically the efficiency of the adaptive SMC taken
from [31] in our context.

It is also important to note that our approach could be
extended to more general systems. Indeed, as soon as
one has a Lyapunov function, the sliding variable and its
related sliding control can be derived from it in a system-
atic way. As a consequence, one may consider the case of
n×n linear hyperbolic equations with space varying ve-
locities [9, Section 2.3] or distributed coupling terms as
in [14]. In the latter ones, the length of the domain has to
be sufficiently small as explained in [9, Section 5.6]. Sys-
tems of nonlinear hyperbolic equations may be also con-
sidered, but the results would become local. However, in

1 ADRC method proposes to build an observer allowing the
estimation of the disturbance. This estimation is then added
in the feedback-law and allows to reject the perturbation. An
interesting aspect of this strategy relies on the fact that the
disturbance does not need to be matched with the control,
i.e. it does not need to be located at the same place than the
control.

order to avoid any further technicalities, and in order to
ease the reading of our paper, we chose to focus on the
case of a system of 2× 2 linear hyperbolic equations.

This paper is organized as follows. Section 2 presents the
system of linear hyperbolic equations, the sliding mode
method and introduces the notion of solutions that will
be used all along the paper. Section 3 gathers the main
results of the paper, namely an existence theorem and
a global asymptotic result. Section 4 is devoted to the
proof of the main theorems. Section 5 illustrates via nu-
merical simulations the efficiency of our sliding mode
control. Finally, Section 6 collects some remarks and in-
troduces some future research lines to be followed.

Notation. The set of non-negative real numbers is
denoted in this paper by R+. When a function f
only depends on the time variable t (resp. on the

space variable x), its derivative is denoted by ḟ (resp.
f ′). Given any subset of R denoted by Ω (R+ or
an interval, for instance), Lp(Ω;Rn) denotes the set
of (Lebesgue) measurable functions f1, . . ., fn such
that, for i = {1, . . . , n},

∫
Ω
|fi(x)|pdx < +∞ when

p 6= +∞ and such that sup essx∈Ω|fi(x)| < +∞
when p = +∞. The associated norms are, for
p 6= +∞, ‖(f1, . . . , fn)‖pLp(Ω;Rn) :=

∫
Ω
|f1(x)|pdx+ . . .+∫

Ω
|fn(x)|pdx and, for p = +∞, ‖f1, . . . fn‖L∞(Ω;Rn) :=

sup essx∈[0,L]|f1(x)| + . . . + |fn(x)|. For any p ∈ [1,∞],

the Sobolev space W 1,p(Ω; Rn) is defined by the set
{(f1, . . . , fn) ∈ Lp(Ω; Rn) | (f ′1, . . . , f

′
n) ∈ Lp(Ω; Rn)}.

When n = 1, we simplify the notation and use Lp(Ω)
or W 1,p(Ω). Given an interval Ω of R, the set C∞c (Ω)
denotes the set of infinitely differentiable functions with
compact support. All along the paper, we will say a.e. to
denote properties satisfied almost everywhere, i.e. prop-
erties satisfied everywhere except in a set of Lebesgue
measure equal to 0.

Acknowledgement: We would like to thank Vincent
Andrieu, Yacine Chitour and Vincent Perrollaz for fruit-
ful discussions, which improve significantly the results
of the paper.

2 Problem statement

2.1 Boundary linear Hyperbolic System

Let λ1 > 0, λ2 > 0 and k2 ∈ IR. We consider the follow-
ing linear hyperbolic system

∂tR1(t, x) + λ1∂xR1(t, x) = 0,

∂tR2(t, x)− λ2∂xR2(t, x) = 0,

R1(t, 0) = u(t) + d(t),

R2(t, L) = k2R1(t, L),

R1(0, x) = R0
1(x), R2(0, x) = R0

2(x),

(1)
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where d(·) ∈ L∞(IR) is an unknown disturbance and u is
a control function. When the system (1) is undisturbed
(d = 0), it is nowadays well-known that the control func-
tion

u(t) := k1R2(t, 0),

allows to stabilize the system when |k1k2| < 1, see [9,
Theorem 2.4.]. The proof, for the L2-topology, relies on
the Lyapunov functional

V2(t) =

∫ L

0

(
p1

λ1
R2

1(t, x)e
−νx
λ1 +

p2

λ2
R2

2(t, x)e
νx
λ2

)
dx.

(2)
As classical in the SMC literature, our goal is to find
a state feedback control u which allows to reject the
disturbance and to globally asymptotically stabilize the
system around the equilibrium point (0, 0) in the func-
tional space Lp(0, L; R2). As mentioned in the introduc-
tion, one seeks a sliding surface (i.e., a subspace of the
state space) where some desired global asymptotic sta-
bility properties are satisfied.

In our case, our aim is to find a sliding surface on which
(1) becomes

∂tR1(t, x) + λ1∂xR1(t, x) = 0,

∂tR2(t, x)− λ2∂xR2(t, x) = 0,

R1(t, 0) = k1R2(t, 0),

R2(t, L) = k2R1(t, L),

(3)

in finite time t0 > 0 with k1 chosen such that |k1k2| < 1.
We know from [9, Theorem 2.1 and 2.2] that (0, 0) is ex-
ponentially stable for (3). The next section will provide
a definition of this sliding surface (and its related sliding
variable) together with the sliding mode controller.

Remark 1 (Generalization to n× n systems) Our
approach could be extended to systems in the form

∂tR(t, x) + Λ∂xR(t, x) = 0, (t, x) ∈ R+ × [0, L], (4)

where R(t, x) ∈ Rn and Λ is a diagonal matrix defined
by Λ := diag(λ1, . . . , λm,−λm+1, . . . ,−λn) with λi > 0
for any i ∈ {1, . . . , n}. Associated to these velocities, one
defines

R+(t, x) :=


R1(t, x)

...

Rm(t, x)

 , R−(t, x) :=


Rm+1(t, x)

...

Rn(t, x)


(5)

In this case, one may consider

R+(t, 0) = B(u(t)+d(t)), R−(t, L) = K2R+(t, L) (6)

with u and d scalar valued functions, and B ∈ Rm×1 and
K2 ∈ R(n−m)×m. As in (1), u denotes the control and d
the disturbance.

On the sliding surface that one aims at reaching, the
system becomes


∂tR(t, x) + Λ∂xR(t, x) = 0, (t, x) ∈ R+ × [0, L],

R+(t, 0) = BK1R
−(t, 0), t ∈ R+,

R−(t, L) = K2R+(t, L), t ∈ R+,

R(0, x) = R0(x),
(7)

with K1 ∈ IR1×(n−m) such that the pair (BK1,K2) sat-
isfies the condition given in [9, Theorem 3.2.]. This im-
poses to assume some stabilizability condition on the pair
(K1,B).

2.2 Sliding surface

Let p ∈ [1,∞]. We introduce the following sliding surface
Σ defined as follows. For any t > 0

Σ :=
{

(R1(t, ·), R2(t, ·)) ∈ Lp(0, L)2 | S(t) = 0
}
,

with S : IR+ → IR defined by

S(t) :=

∫ L

0

(
p1

λ1
R1(t, x)e

−νx
λ1 +

p2

λ2
R2(t, x)e

νx
λ2

)
dx.

(8)
We will sometimes write S(t) by S(R1(t, ·), R2(t, ·)) to
lighten the statements. This function represents the slid-
ing variable mentioned earlier. As explained in [28], this
sliding variable represents the gradient of the Lyapunov
function (2). We consider the set-valued sliding mode
controller u defined by, for a.e t > 0,

u(t) = k1R2(t, 0)−Ksign(S(t)), (9)

where k1 is defined later, S is introduced in (8), the
gain K > ‖d‖L∞(R+) and the set-valued function sign is
defined by

sign(z) =


−1 if z < 0,

[−1, 1] if z = 0,

1 if z > 0.

From (9), the system (1) is rewritten as


∂tR1(t, x) + λ1∂xR1(t, x) = 0,

∂tR2(t, x)− λ2∂xR2(t, x) = 0,

R1(t, 0) = k1R2(t, 0)−Ksign(S(t)) + d(t),

R2(t, L) = k2R1(t, L),

R1(0, x) = R0
1(x), R2(0, x) = R0

2(x).

(10)
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For a.e t > 0, we can deduce, after some formal integra-
tion by parts, that

Ṡ(t) = −νS(t)− [p1e
−νL
λ1 − p2k2e

νL
λ2 ]R1(t, L).

+[p1k1 − p2]R2(t, 0)−Kp1sign(S(t)) + p1d(t).

One picks p2 = k1 = e
−ν
(
L
λ1

+ L
λ2

)
k2

and p1 = 1. Then, we
deduce that

Ṡ(t) = −νS(t)−Ksign(S(t)) + d(t).

Hence, since K > ‖d‖L∞(R+), for all t sufficiently large,
the solution (R1, R2) belongs to the sliding surface Σ

and S(t) = Ṡ(t) = 0. This implies that the latter equa-
tion reduces to be Ksign(S(t)) + d(t) = 0. Going back
to R1(t, 0) in (1), one therefore obtains that R1(t, 0) =
u(t) + d(t) = k1R2(t, 0). This shows (formally) that, on
the sliding surface Σ, (1) is equal to (3).

Remark 2 (Space-varying velocities) When the ve-
locities λ1 and λ2 are space-varying, we may consider the
following sliding variable defined by

S(t) :=

∫ L

0

(q1(x)R1(t, x) + q2(x)R2(t, x)) dx,

with

q1(x) =
p1

λ1(x)
e
−
(∫ x

0

µ
λ1(y)

dy
)
,

q2(x) =
p2

λ2(x)
e

(∫ x
0

µ
λ2(y)

dy
)
.

The positive constants p1 and p2 are chosen in an appro-
priate way.

Remark 3 (SMC for n× n systems (4)) At the light
of Remark 1, the sliding variable would become for the
system (4):

S(t) :=

m∑
i=1

pi
λi

∫ L

0

e
− µ
λi
x
Ri(t, x)dx

+

n∑
i=m+1

pi
λi

∫ L

0

e
µ
λiRi(t, x)dx,

with the positive constants pi and µ chosen in an appro-
priate way.

2.3 Weak solution to the Cauchy problem

This subsection is devoted to the introduction of some
notions of solutions. As usual in the PDE context, one
needs to consider a weak notion of solutions, i.e. solu-
tions admitting discontinuities in their domain. One can

expect such phenomena since the initial data and the
control under consideration in this paper are naturally
discontinuous.

Definition 1 Let p ∈ [1,∞] and R0
1, R

0
2 ∈ Lp(0, L). We

say that a map (R1, R2) : [0,∞) × (0, L) → R2 is a
solution of the Cauchy problem (10) if there exists u ∈
Lp(IR) such that

(1) If p 6= ∞, (R1, R2) ∈ C0([0,∞);Lp((0, L); R2)). If
p =∞, (R1, R2) ∈ C0([0,∞);L1((0, L); R2)).

(2) For every T > 0, for every test functions (ϕ1, ϕ2) ∈
C1([0, T ]× [0, L]; R2)

λ1ϕ1(t, L)− k2λ2ϕ2(t, L) = 0, (11)

we have∫ L
0

(ϕ1(T, x)R1(T, x) + ϕ2(T, x)R2(T, x)) dx

−
∫ L

0

(
ϕ1(0, x)R0

1(x) + ϕ2(0, x)R0
2(x)

)
dx

−
∫ T

0
λ1ϕ1(t, 0)(u(t) + d(t))− λ2ϕ2(t, 0)R2(t, 0)dt

−
∫ L

0

∫ T
0

(∂tϕ1(t, x) + λ1∂xϕ1(t, x))R1(t, x)

+(∂tϕ2(t, x)− λ2∂xϕ2(t, x))R2(t, x) dtdx = 0.

(12)
(3) For a.e t > 0,

R1(t, 0) ∈ k1R2(t, 0)−Ksign(S(t)) + d(t),

with S given in (8).

Remark 4 They may exist multiple measurable selec-
tion functions u (see e.g., [36] for a survey on such a no-
tion) such that (R1, R2) satisfies (1), (2) and (3) of Def-
inition 1. This leads to the possible existence of multiple
weak solutions of (10).

3 Main results

We are now in position to state our two main results,
namely: an existence theorem and a robust stabilization
theorem.

Theorem 1 (Existence) Let p ∈ [1,∞] and R0
1, R

0
2 ∈

Lp(0, L). The system (10) admits at least one weak so-
lution (R1, R2). Moreover, if p = ∞ then R1, R2 ∈
L∞((0,∞)× (0, L)).

Remark 5 (Uniqueness) We may prove the unique-
ness of the solution in this case. However, when consider-
ing for instance an adaptive controller, uniqueness fails
to be true. For the sake of generality, we prove the robust
stabilization for any possible weak solutions.
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Theorem 2 ( Stabilization) Let p ∈ [1,∞] and
R0

1, R
0
2 ∈ Lp(0, L) and K − ‖d‖L∞(R+) > 0. There exist

positive constants C, µ such that, for any t ∈ [0,∞),

‖(R1(t, ·), R2(t, ·))T ‖Lp((0,L);R2) 6

Ce−µt‖(R0
1(·), R0

2(·))T ‖Lp((0,L);R2),

for any weak solution (R1, R2) of (10).

Remark 6 We want to emphasize on the fact that our
framework is quite general. We believe that it allows to
use more sophisticated tools from the sliding mode litera-
ture. One may for instance consider adaptive SMC as in
[31] or super-twisting controller as in [23]. However, to
make easier the reading of the paper, we do not want to
enter in such details. In Section 5, we illustrate the effi-
ciency of the algorithm proposed in [31] on the hyperbolic
case.

4 Proof of Theorems 1 and 2

4.1 Existence of weak solutions

We consider the following ODE{
γ̇(t) ∈ −νγ(t)−Ksign(γ(t)) + d(t), t ∈ IR+,

γ(0) = γ0,
(13)

where ν > 0, d ∈ L∞(IR+),K > ‖d‖L∞(R+) and γ0 ∈ IR.
The ODE is understood in the sense of Filippov [19].
A Filippov solution of (13) is an absolutely continuous
map that satisfies (13) for almost all t > 0. In [1, Exam-
ple 2.19], the existence of Filippov solutions for (13) is
proved.

Lemma 1 The ODE (13) admits a Filippov solution.
Moreover, there exists t0 > 0 such that, for any Filippov
solution γ of (13),

γ ∈W 1,∞(IR) and γ(t) = 0, ∀ t > t0.

Remark 7 WhenK > ‖d‖L∞(R+), there exists a unique

Filippov solution and t0 <
|γ(0)|

K−‖d‖L∞(R+)
.

Let γ be a Filippov solution of (13) with initial condition
γ(0) = S(R0

1, R
0
2). We consider the following PDE


∂tY1(t, x) + λ1∂xY1(t, x) = 0,

∂tY2(t, x)− λ2∂xY2(t, x) = 0,

Y1(t, 0) = k1Y2(t, 0) + γ̇(t) + νγ(t),

Y2(t, L) = k2Y1(t, L),

Y1(0, x) = R0
1(x), Y2(0, x) = R0

2(x).

(14)

From Appendix A, the PDE (14) admits a unique weak
solutions (Y1, Y2) constructed using the method of char-
acteristics, see [9, Section 2.1]. In particular, (Y1, Y2) sat-
isfies the points (1) and (2) of Definition 1 with u(t) =
−d(t) + k1Y2(t, 0) + γ̇(t) + νγ(t).

We now prove that the weak solution (Y1, Y2) of (14)
satisfies Definition 1 (3). To that end, we introduce the
function

σ(t) = S(Y1(t, ·), Y2(t, ·)),
where S is defined in (8) and (Y1, Y2) the weak solu-
tion of (14). From Appendix B, for any T > 0, σ is a
Carathéodory solution of{

σ̇(t) = −νσ(t) + γ̇(t) + νγ(t), t ∈ [0, T ],

σ(0) = S(R0
1, R

0
2).

(15)

A Carathéodory solution of (15) is an absolutely contin-
uous map that satisfies (15) for almost every t. Moreover,
from (15) and Lemma 1, σ ∈ W 1,∞(IR). We introduce
g ∈ W 1,1(IR) ∩W 1,∞(IR) defined by g(t) = σ(t)− γ(t).
From (13) and (15) with γ(0) = S(R0

1, R
0
2), g is solution

of {
ġ(t) = −νg(t)

g(0) = 0
(16)

Thus, for any t ∈ IR, g(t) = 0. By definition of g, we
deduce that for any t ∈ IR, σ(t) = γ(t). Therefore, we
have

Y1(t, 0) = k1Y2(t, 0) + γ̇(t) + νγ(t)

∈ k1Y2(t, 0)−Ksign(σ(t)) + d(t)

Thus, (Y1, Y2) satisfies the point (3) of Definition 1. We
conclude that, for any Filippov solution γ of (13) with
initial condition γ(0) = S(R0

1, R
0
2), the associated weak

solution (Y1(·), Y2(·)) of (14) is a weak solution of (10).

Remark 8 If the ODE (13) admits multiple Filippov
solutions, then the PDE (10) has multiple weak solutions
constructed from the coupled PDE-ODE (14)-(13).

4.2 Robust stabilization

Let (R1, R2) a weak solution of (10). From Definition 1,
there exists u ∈ Lp(IR) such thatR1(t, 0) = u(t)+d(t) ∈
k1R2(t, 0)−Ksign(S(t)) + d(t), whence the existence of
v ∈ Lp(IR) such that

u(t) = k1R2(t, 0) + v(t),

with v(t) ∈ −Ksign(S(t)). From Appendix B which
holds replacing (B.1) by f(t) = v(t)+d(t), for any T > 0,
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S defined in (8) is a Carathéodory solution of{
Ṡ(t) = −νS(t) + v(t) + d(t), t ∈ [0, T ],

S(0) = S(R0
1, R

0
2).

(17)

Since v(·) ∈ −Ksign(S(t)), then S is a Filippov solution
of (13) with initial condition S(R0

1, R
0
2). From Lemma

1, S ∈ W 1,∞(IR) and there exists a finite time t0 (inde-
pendent of v) such that

Ṡ(t) + νS(t) = 0 for any t > t0.

Thus, from (17), for any t > t0, v(t) + d(t) = 0.

We conclude that there exists a finite time t0 such that
for any weak solution (R1, R2) of (10), for any t > t0,
(R1, R2) is a weak solution of

∂tR1(t, x) + λ1∂xR1(t, x) = 0,

∂tR2(t, x)− λ2∂xR2(t, x) = 0,

R1(t, 0) = k1R2(t, 0),

R2(t, L) = k2R1(t, L),

(18)

From Appendix C, the system (18) is exponentially sta-
ble in Lp-norm, that is to say there exist C, µ > 0 such
that

‖(R1(t, ·), R2(t, ·))T ‖Lp((0,L);R2)

6 Ce−µ(t−t0)‖(R1(t0, ·), R2(t0, ·))T ‖Lp((0,L),IR2).

(19)
Moreover, according to Theorem 1 and Appendix C,
there exists C > 0 such that ∀t ∈ [0, t0],

‖(R1(t, ·), R2(t, ·))T ‖Lp((0,L),IR2) 6

C‖(R0
1(·), R0

2(·))T ‖Lp((0,L),IR2),

(20)

which concludes the proof of Theorem 2

Remark 9 Since S is a Filippov solution of (13) with
initial condition γ(0) = S(R0

1, R
0
2), a weak solution of

(10) is a weak solution of (14). As a consequence, the set
of weak solutions of (10) is the set

{(Y γ1 , Y γ2 ) | γ Filippov solution of (13)}

where (Y γ1 , Y
γ
2 ) is the unique weak solution of (14) asso-

ciated to γ.

5 Numerical illustration

5.1 Conventional SMC

Numerical scheme: the approximate solution (Rn1 , R
n
2 )

of (10) at time tn = n∆t is constructed using an upwind

scheme as described in [24, Section 10.7]. The ghost-cell
boundary conditions [25, Section 7] are computed as
follows

Rn1 (t, 0) = k1R̄
n
2 (t, 0)−Ksignv(S(R̄n1 (t), R̄n2 (t))) + d(t),

Rn2 (t, L) = k2R̄
n
1 (t, L),

where S is defined in (8), (R̄n1 , R̄
n
2 ) are constructed using

an upwind scheme from (Rn−1
1 , Rn−1

2 ) and signv is the
Yoshida approximation of sign defined as

signv(x) =

{
sign(x) if |x| > v,

x
v if |x| 6 v.

Note that the construction of the sliding mode control
is inspired from [2, Section 5.1], where the sign function
is approximated with the projection of this function on
the interval [−K,K], which corresponds indeed to a sat-
uration. As a consequence, the chattering phenomenon
is reduced, see Figure 1.

Simulations: let L = 3, λ1 = 2, λ2 = −1, k2 = −1,
ν = 0.1, K = 2 and v = 0.02. The time-space step vari-
ation (∆t,∆x) = (0.0037, 0.0150) satisfies the CFL con-
dition max(|λ1|, |λ2|) 6 ∆x/∆t. We consider the follow-
ing disturbance d(t) = sin(t). The associated approxi-
mate solutions (Rn1 (t, ·), Rn2 (t, ·)) of (10) at time t = 0
and at t = 50 are plotted with respect to x ∈ [0, L], see
Figure 1, 2, 3, 4.

Figure 1 shows that the sliding surface is reached in
finite time. In Figures 2 and 3, the robust stabilization
of Rn1 and Rn2 , respectively, is illustrated. Figure 4 shows
the behavior of the controller. After a certain amount of
time, one can note that the controller is almost equal to
the disturbance −d, which is a classical behavior in the
SMC literature. This shows that one can reconstruct the
perturbation from a certain time thanks to the feedback
control law defined in (9).

5.2 Adaptive SMC

If ‖d‖L∞(R+) is an unknown parameter, we use the first
adaptive sliding mode control law in [31]. As a conse-
quence, the sliding mode control u in (9) is replaced by

u(t) = k1R2(t, 0)−K(t)sign(S(t)) (21)

where the adaptive gain K(·) is defined as follows. Let
t > 0 and ∆t the time step variation, if |S(t)| > 4K(t)∆t
then {

K̇(t) = K̄1|S(t)|,
K(0) = K̄0,

6



Time t

Fig. 1. Plotting of the approximate sliding surface
S(Rn1 (t, ·), Rn2 (t, ·)) with respect to the time t where
(Rn1 (t, ·), Rn2 (t, ·)) is an approximate solution of (10) at time
t and d(t) = sin(t)

x

Fig. 2. Plotting of Rn1 (t, ·) at time t = 0 (–) and t = 50 (- -)
with respect to x ∈ [0, L] with d(t) = sin(t). The equilibrium
point 0 is plotted in red straight line.

with K̄0, K̄1 two positive constants and S defined in (8).
If |S(t)| 6 4K(t)∆t then

K(t) = K̄2(t)|η|+ K̄3.

Above, K̄2(·) is a piecewise constant function with dis-
continuous points (ti)i defined by S(ti −∆t) > 4K(ti −
∆t)∆t and S(ti) 6 4K(ti)∆t. For any t ∈ [ti, ti+1),
K̄2(t) = K(ti). Note that ti is on-line updated. The
function η is solution of{

τ η̇(t) + η(t) = sign(S(t)),

η(0) = 0,

with τ > 0 and K̄3 is a positive constant.

x

Fig. 3. Plotting of Rn2 (t, ·) at time t = 0 (–) and t = 50 (- -)
with respect to x ∈ [0, L] with d(t) = sin(t). The equilibrium
point 0 is plotted in red straight line.

t

Fig. 4. Plotting of the sliding mode control u defined in (9)
with respect to the time t.

Numerical scheme: We choose K̄0 = 2, K̄1 = 1,
τ = 0.1, K̄3 = 1 and d(t) = sin(t). The other parameters
are the same as in Section 5.1.

Figure 5 shows that the sliding surface is reached in
finite-time. Figures 6 and 7 show that Rn1 and Rn2 are
stabilized around the equilibrium point (0, 0), meaning
that our method is quite efficient. In Figure 8, the be-
havior of the adaptive gain K is given. One can see that
it behaves almost like the function t 7→ sin(t), which is
the disturbance to be rejected. Finally, in Figure 9, the
behavior of the controller u given in (21) is illustrated.
Note that the amplitude of the adaptive control in Fig-
ure 9 is larger than the one in Figure 4 since the bound
of the disturbance is unknown. From a certain time, it
behaves like in the case where the control is not time-
varying.

7



Time t

Fig. 5. Plotting of the approximate sliding surface
S(Rn1 (t, ·), Rn2 (t, ·)) (- -) and t 7→ 4K(t)∆t (–) with respect
to the time t where (Rn1 (t, ·), Rn2 (t, ·)) is an approximate so-
lution of (1) with u defined in (21) and d(t) = sin(t)

x

Fig. 6. Plotting of Rn1 (t, ·) at time t = 0 (–) and t = 50
(- -) with respect to the time t with u defined in (21) and
d(t) = sin(t). The equilibrium point 0 is plotted in red
straight line.

6 Conclusion

In this paper, we proposed a new approach for the slid-
ing mode control applied to a specific class of PDEs,
namely a system of two transport equations. It is a Lya-
punov approach, since the sliding variable is based on
the gradient of the classical Lyapunov function given in
[9]. We have proved existence of the closed-loop system
and have shown that the robust stabilization holds.

Many further research lines remain to be followed. It is
important to note that our approach is a state-feedback
approach, and one may instead consider an output-
feedback approach, which would require to introduce a
notion of sliding mode observer. It might be also inter-
esting to investigate the case of systems described with

x

Fig. 7. Plotting of Rn2 (t, ·) at time t = 0 (–) and t = 50
(- -) with respect to the time t with u defined in (21) and
d(t) = sin(t). The equilibrium point 0 is plotted in red
straight line.

Time t

Fig. 8. Plotting of the adaptive gain K (–) and the distur-
bance d (- -) with respect to the time t.

operators, as it has been done in [27], in the case of
saturated feedback-laws. Finally, we may also consider
sliding mode of higher order, as it has been done in [23].

A Notion of solutions

Let p ∈ [1,∞], R0
1, R

0
2 ∈ Lp(0, L) and γ be a Filippov

solution of (13) with initial condition γ(0) = S(R0
1, R

0
2).

We consider the linear hyperbolic system (14).

Definition 2 (Y1, Y2) is a weak solution of (14) if the
points (1) and (2) of Definition 1 is satisfied replacing
u(·) by −d(·) + γ̇(·) + νγ(·).

Lemma 2 There exists a unique weak solution (Y1, Y2)
of (14). Moreover, if p =∞ then Y1, Y2 ∈ L∞((0,∞)×
(0, L)).

8



t

Fig. 9. Plotting of the adaptive sliding mode control u defined
in (21) with respect to the time t.

Using the method of characteristics (see [9, Section 2.1]),
we give an explicit weak solution (Y1, Y2) of (14). We
introduce the function f defined by

f(t) = γ̇(t) + νγ(t).

Let m1 ∈ Z such that

m1

(
L

λ1
+
L

λ2

)
6 t− x

λ1
< (m1 + 1)

(
L

λ1
+
L

λ2

)
.

(A.1)
We define Y1 for a.e (t, x) as follows. If m1 < 0 then

Y1(t, x) = R0
1(−λ1t+ x)

We now assume that m1 > 0 and we define

ti := t− i
(
L

λ1
+
L

λ2

)
− x

λ1
, i ∈ IN (A.2)

If m1

(
L
λ1

+ L
λ2

)
6 t− x

λ1
< m1

(
L
λ1

+ L
λ2

)
+ L

λ2
then

Y1(t, x) = (k1k2)m1k1R
0
2 (λ2tm1

)

+

m1∑
i=0

(k1k2)if(ti).
(A.3)

If m1

(
L
λ1

+ L
λ2

)
+ L

λ2
6 t − x

λ1
< (m1 + 1)

(
L
λ1

+ L
λ2

)
then

Y1(t, x) = (k1k2)m1+1R0
1

(
−λ1

(
tm1
− L

λ2

)
+ L

)
+
∑m1

i=0(k1k2)if(ti).

(A.4)
Let m2 ∈ Z such that

m2

(
L

λ1
+
L

λ2

)
6 t− L− x

λ2
< (m2 + 1)

(
L

λ1
+
L

λ2

)
.

We define Y2 for a.e (t, x) as follows. If m2 < 0 then

Y2(t, x) = R0
2(λ2t+ x).

We now assume that m2 > 0 and we define t̄i :=

t− i
(
L
λ1

+ L
λ2

)
− L−x

λ2
.

If m2

(
L
λ1

+ L
λ2

)
6 t − L−x

λ2
< m2

(
L
λ1

+ L
λ2

)
+ L

λ1

then two different cases occur. If m2 = 0, Y2(t, x) =
k2R

0
1 (−λ1t̄0 + L). Otherwise,

Y2(t, x) = (k1k2)m2k2R
0
1 (−λ1t̄m2

+ L)

+

m2−1∑
i=0

(k1k2)ik2f(t̄i −
L

λ1
).

(A.5)

If m2

(
L
λ1

+ L
λ2

)
+ L

λ1
6 t− L−x

λ2
< (m2 + 1)

(
L
λ1

+ L
λ2

)
then

Y2(t, x) = (k1k2)m2+1R0
2

(
λ2

(
t̄m2
− L

λ1

))
+
∑m2

i=0(k1k2)ik2f(t̄i − L
λ1

).
(A.6)

An illustration of the construction of Y1 with m1 = 0

and L
λ2

6 t− x
λ1
<
(
L
λ1

+ L
λ2

)
in Figure A.1.

x

tt

0 L

(t, x)

×

Y1(t, x) = Y1(t0, 0)

Y1(t0, 0) = k1Y2(t0, 0)
+f(t0)

Y2(t0, 0) = Y2(t0 − L
λ2
, L)

Y2(t0 − L
λ2
, L) = k2Y1(t0 − L

λ2
, L)

Y1(t1, L) = R1
0(−λ1(t0 − L

λ2
) + L)

Fig. A.1. Construction of Y1(t, x) using the method of char-
acteristics with m1 = 0 and L

λ2
6 t− x

λ1
.

Let us now prove the uniqueness. Let (Y 1
1 , Y

1
2 ) and

(Y 2
1 , Y

2
2 ) two weak solutions of (14). Then, the couple

(Y1, Y2) defined by Y1 = Y 2
1 −Y 1

1 and Y2 = Y 2
2 −Y 1

2 is a
solution of (14) with (R0

1, R
0
2) = (0, 0) and γ̇ + νγ = 0.

Let 1 6 p < ∞ and (ψT1 , ψ
T
2 ) ∈ W 1,p((0, L); IR2) such

that

k1λ1ψ
T
1 (0)− λ2ψ

T
2 (0) = 0,

λ1ψ
T
1 (L)− k2λ2ψ

T
2 (L) = 0. (A.7)

Using the method of characteristics as in the proof of
Lemma 2, we state the existence of

ψ1, ψ2 ∈ C1([0, T ];Lp(0, L)) ∩ C0([0, T ];W 1,p(0, L)),
(A.8)
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satisfying



∂tψ1(t, x) + λ1∂xψ1(t, x) = 0,

∂tψ2(t, x)− λ2∂xψ2(t, x) = 0,

k1λ1ψ1(t, 0)− λ2ψ2(t, 0) = 0,

λ1ψ1(t, L)− k2λ2ψ2(t, L) = 0,

ψ1(T, x) = ψT1 (x)

ψ2(T, x) = ψT2 (x).

(A.9)

By simple density argument, (12) holds if we replace
(ϕ1, ϕ2) by (ψ1, ψ2) satisfying (A.8) and (A.9). So,
in (12) replacing (R1, R2) by (Y1, Y2) and u(t) by
k1Y2(t, 0)− d(t), we deduce that

∫ L

0

(
ψT1 (x)Y1(T, x) + ψT2 (x)Y2(T, x)

)
= 0. (A.10)

Since the set of (ψT1 , ψ
T
2 ) ∈ W 1,p((0, L); R2) satisfying

(A.7) is dense in Lp((0, L); R2) for any p 6=∞, it follows
from (A.10) that

(Y1(T, x), Y2(T, x)) = (0, 0)

for all T > 0 and for all x ∈ [0, L]. This achieves the proof
of uniqueness of solution when 1 6 p <∞. If p =∞, the
proof is similar as before choosing ψT1 , ψ

T
2 ∈W 1,1(0, L).

B Conservation of mass

Let σ : t→ S(Y1(t, ·), Y2(t, ·)) with S defined in (8) and
(Y1, Y2) a weak solution of (14). We consider γ a Filippov
solution of (13) with initial condition γ(0) = S(R0

1, R
0
2)

and we introduce the function f defined by

f(t) = γ̇(t) + νγ(t) (B.1)

Lemma 3 For any T > 0, σ is a Carathéodry solution
of {

σ̇(t) = −νσ(t) + f(t), t ∈ [0, T ],

σ(0) = S(R0
1, R

0
2).

Proof 1 Using the change of variable

z1(t, x) =
1

λ1
e
−νx
λ1 Y1(t, x), z2(t, x) =

k1

λ2
e
νx
λ2 Y2(t, x),

(B.2)

(z1, z2) is a weak solution of

∂tz1 + λ1∂xz1 + νz1 = 0, (t, x) ∈ [0, T ]× [0, L],

∂tz2 − λ2∂xz2 + νz2 = 0, (t, x) ∈ [0, T ]× [0, L],

z1(t, 0) =
1

λ1
(λ2z2(t, 0) + f(t)) t ∈ [0, T ],

z2(t, L) =
λ1

λ2
z1(t, L) t ∈ [0, T ],

z1(0, x) =
1

λ1
e
−νx
λ1 R0

1(x), x ∈ [0, L],

z2(0, x) =
k1

λ2
e
νx
λ2R0

2(x), x ∈ [0, L],

(B.3)
That is to say, (z1, z2) satisfies the point (1) of Definition
1. Moreover, the point (2) of Definition 1 is replaced by,
for any test function ϕ1, ϕ2 ∈ C1

c (]0, T [×]0, L[), we have

∫∫
(0,T )×(0,L)

z1(ϕ1
t + λ1ϕ

1
x + νϕ1)dxdt

+
∫∫

(0,T )×(0,L)
z2(ϕ2

t − λ2ϕ
2
x + νϕ2)dxdt = 0

(B.4)
Moreover, the boundary conditions of (B.3) are satisfies
almost everywhere. A standard density argument shows
that the equation (B.4) is still admissible if ϕ1, ϕ2 are
just a Lipschitz functions. Let t̄ > 0 and θ > 0, we define

ϕiθ(t, x) := ψiθ(t)φ
i
θ(x),

with i ∈ {1, 2} and

ψiθ(t) =


t
θ if t 6 θ,

1 if θ 6 t 6 t̄− θ,
t̄−t
θ if t̄− θ 6 t 6 t̄,

(B.5)

and

φiθ(x) =


x
θ if x 6 θ,

1 if θ 6 x 6 L− θ,
L−x
θ if L− θ 6 x 6 L,

(B.6)

When θ → 0 in (B.4), we have

∫ L
0
z1(t̄, x)dx−

∫ L
0
z1(0, x)dx+ λ1

∫ t̄
0
z1(t, L)dt

−λ1

∫ t̄
0
z1(t, 0)dt+ ν

∫∫
(0,t̄)×(0,L)

z1(t, x)dxdt

+
∫ L

0
z2(t̄, x)dx−

∫ L
0
z2(0, x)dx− λ2

∫ t̄
0
z2(t, L)dt

+λ2

∫ t̄
0
z2(t, 0)dt+ ν

∫∫
(0,t̄)×(0,L)

z2(t, x)dxdt = 0.

Using (B.2) , (B.3) and (8) we have for any t̄ ∈ (0, T ),

S(t̄) = S(0)− ν
∫ t̄

0

S(u)du+

∫ t̄

0

f(u)du (B.7)

which conclude the proof of Lemma 3.
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C Exponential stability

The proof of exponential stability is divided into two
parts: first we prove the Lyapunov stability of the system
(14) over the time interval [0, t0] and then we prove the
exponential stability of the system (18). Let us start by
proving the first part.

From Appendix A, (14) admits a unique weak solu-
tion constructed using the method of characteristics and
given by (A.3),(A.4), (A.5) and (A.6). Assuming that
when p 6= ∞. From (A.3) and (A.4) and k1k2 < 1, we
deduce that there exists a positive constant C such that
for all t ∈ [0, t0] we have

‖Y1(t, ·)‖pLp((0,L),IR) 6 C‖R0
1(·), R0

2(·)‖p
Lp((0,L),IR2)

+ C

∫ L

0

∣∣∣∣∣∣
m1(t,x)∑
i=0

f(ti(t, x))

∣∣∣∣∣∣
p

dx

(C.1)

where m1(t, x) and ti(t, x) are defined in Appendix A.
For the sake of clarity, the dependence of m1 and ti with
respect to t and x is emphasized in (C.1). From (A.1), for
any t > 0, the map x 7→ m1(t, x) is a decreasing function
and 0 6 m1(t, 0) − m1(t, L) 6 1. Thus, two different
cases occur. In the first case, there exists m0 ∈ IN such
that for every x ∈ [0, L], m1(t, x) = m0 then using the
change of variable s = ti with ti defined in Appendix A
and t 6 t0, there exists C > 0 such that

‖Y1(t, ·)‖pLp((0,L),IR) 6 C‖R0
1(·), R0

2(·)‖p
Lp((0,L),IR2)

+ C‖f‖pLp((0,t0),IR) (C.2)

In the second case, there exist m0 ∈ IN and x0 ∈ [0, L]
such that m1(t, x) = m0 for any 0 6 x 6 x0 and
m1(t, x) = m0 − 1 for any x0 < x 6 L. Then,

∫ L

0

∣∣∣∣∣∣
m1(t,x)∑
i=0

f(ti(t, x))

∣∣∣∣∣∣
p

dx =

∫ x0

0

∣∣∣∣∣
m0∑
i=0

f(ti(t, x))

∣∣∣∣∣
p

dx

+

∫ L

x0

∣∣∣∣∣
m0−1∑
i=0

f(ti(t, x))

∣∣∣∣∣
p

dx

(C.3)

Using the change of variable s = ti with ti defined in
Appendix A for each right-hand term of (C.3) and t 6 t0,
we deduce that there exists C > 0 such that (C.2) holds.

On the other hand, we have

‖f‖pL∞(0,t0) = ‖Ṡ(t) + νS(t)‖pL∞(0,t0) = ‖v + d‖pL∞(0,t0).

(C.4)
This implies that ‖f‖pL∞(0,t0) 6 (2K)p. Now, us-

ing K > ‖d‖L∞(R+) and Remark 7, we know that

t0 <
|S(0)|

K−‖d‖L∞(R+)
. Therefore, there exists C > 0 such

that

‖f‖pLp((0,t0),IR) 6 C|S(0)|p. (C.5)

By continuous injection of Lp((0, L) in L1((0, L), there
exists C > 0 such that

|S(0)| 6 ‖R0
1(·), R0

2(·)‖L1((0,L),IR2)

6 C‖R0
1(·), R0

2(·)‖Lp((0,L),IR2) (C.6)

From (C.2), (C.5) and (C.6), we can conclude that, when
1 6 p <∞, there exists a positive constant C such that
for all t ∈ [0, t0] we have

‖Y1(t, ·)‖Lp((0,L),IR) 6 C‖R0
1(·), R0

2(·)‖Lp((0,L),IR2).
(C.7)

Similarly, we prove that there exists a positive constant
C such that for all t ∈ [0, t0] we have

‖Y2(t, ·)‖Lp((0,L),IR) 6 C‖R0
1(·), R0

2(·)‖Lp((0,L),IR2).
(C.8)

Now, when p = ∞, according to (A.3), (A.4), (A.5),
(A.6), (C.4) and (C.6) we obtain also (C.7) and (C.8),
which conclude the proof of the first part.

Now, we provide a global asymptotic stability result re-
lated to the linear system (18). From Appendix A with
f(·) := γ̇(·) + νγ(·) = 0, (18) admits a unique weak so-
lution constructed using the method of characteristics.
In particular, the weak solution R1, R2 of (18) is writ-
ten as (A.3), (A.5), (A.4) and (A.6) replacing f by 0
and (R0

1, R
0
2) by (R1(t0, ·), R2(t0, ·). Thus, the inequal-

ity (19) follows from k1k2 = e
−ν
(
L
λ1

+ L
λ2

)
< 1 (see also

[9, Theorem 2.1]).

For the sake of completeness, we give the proof when
p ∈ [2,∞) using the following Lyapunov function.

V (t) =

∫ L

0

[
a

λ1
e
−νx
λ1 |R1(t, x)|p +

b

λ2
e
νx
λ |R2(t, x)|p

]
dx

(C.9)
with a > 0 and b > 0. We will consider classical solutions
and deduce the result in the space Lp(0, L) by a standard
density argument.

The time derivative of V along the classical solutions to
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(18) is

V̇ (t) =
ap

λ1

∫ L

0

∂tR1(t, x)e−
νx
λ1R1(t, x)|R1(t, x)|p−2dx

+
bp

λ2

∫ L

0

∂tR2(t, x)e
νx
λ2R2(t, x)|R2(t, x)|p−2dx

=− ap
∫ L

0

∂xR1(t, x)e−
νx
λ1R1(t, x)|R1(t, x)|p−2dx

+ bp

∫ L

0

∂xR2(t, x)e
νx
λ2R2(t, x)|R2(t, x)|p−2dx

=
−ap

2

(
e−

νL
λ1 |R1(t, L)|p − |R1(t, 0)|p

)
− apν

2λ1

∫ L

0

e
−νx
λ1 |R1(t, x)|pdx

+
ap(p− 2)

2

∫ L

0

∂xR1(t, x), e−
νx
λ1R1(t, x)|R1(t, x)|p−2

+
bp

2
(e

νL
λ2 |R2(t, L)|p − |R2(t, 0)|p)

− bpν

2λ2

∫ L

0

e
νx
λ2 |R2(t, x)|pdx

− bp(p− 2)

2

∫ L

0

∂xR2(t, x), e
νx
λ2R2(t, x)|R2(t, x)|p−2

=− νV (t)− a(e−
νL
λ1 |R1(t, L)|p − |R1(t, 0)|p)

+ b(e
νL
λ2 |R2(t, L)|p − |R2(t, 0)|p)

Using the boundary condition of (18) we have, for
all t > t0

V̇ (t) = −νV (t)− a
(
e−

νL
λ1 |R1(t, L)|p − kp1 |R2(t, 0)|p

)
+ b

(
e
νL
λ2 kp2 |R1(t, L)|p − |R2(t, 0)|p

)
= −νV (t)− |R2(t, 0)|p(−akp1 + b)

− |R1(t, L)|p(−be νLλ2 kp2 + ae−
νL
λ1 ) (C.10)

Since p ∈ [2,∞), then

eν( Lλ1
+ L
λ2

)kp1k
p
2 = e(1−p)ν( Lλ1

+ L
λ2

) < 1,

thus, we can select a and b such that

e−ν( Lλ1
+ L
λ2

)kp2 <
a

b
<

1

kp1

which implies that

−be νLλ2 k2 + ae−
νL
λ1 > 0 and − ak1 + b > 0.

Hence, we see that

V̇ (t) 6 −νV (t) ∀t > t0. (C.11)

along the trajectories of the system (18) which are of
class C1. By density, this inequality also holds in the
sense of distribution, i.e. for every solution to (18) in
C0([0,∞);Lp(0, L)).

On the other hand,there exists γ > 0 such that

1

γ
‖(R1(t, ·), R2(t, ·))‖pLp((0,L);R2)

6 V (t) 6γ‖(R1(t, ·), R2(t, ·))‖pLp((0,L);R2). (C.12)

Then, we have

‖(R1(t, ·), R2(t, ·))‖Lp((0,L);R2)

6 γe−ν
t
p ‖(R1(t0, ·), R2(t0, ·))‖Lp((0,L);R2) ∀t > t0.

(C.13)
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