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This paper introduces a new sliding mode methodology for a system of two hyperbolic equations. The main difference with the existing literature is the definition of the sliding variable, given here by the gradient of a Lyapunov functional. We state and prove an existence theorem and a global asymptotic stability result. The efficiency of our feedback-law is illustrated by some numerical simulations relying on implicit schemes.

Introduction

This paper is concerned with the generalization of the sliding mode control (for short SMC) strategy for a class of partial differential equations (for short PDEs) subject to an unknown boundary disturbance. To be more precise, our focus will be on a system of two hyperbolic systems controlled from the boundary (see [START_REF] Bastin | Stability and boundary stabilization of 1-d hyperbolic systems[END_REF] for a review on this class of system).

Stabilization of systems of linear transport equations of one dimension have been considered for many years. This is surely because this kind of systems models many physical phenomena. If [START_REF] Bastin | Stability and boundary stabilization of 1-d hyperbolic systems[END_REF] provides a good overview of the actual research lines concerning this topic of stabilization, it is worth mentioning some important articles in that direction. In [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF], the local stabilization of a 2 × 2 nonlinear hyperbolic system is considered, where some distributed couplings are allowed. The feedback-law is built thanks to the backstepping method (see e.g., [START_REF] Krstic | Boundary control of PDEs: A course on backstepping designs[END_REF] for an overview on this topic). In [START_REF] Bribiesca-Argomedo | Backsteppingforwarding control and observation for hyperbolic PDEs with Fredholm integrals[END_REF], hyperbolic systems with some non-local terms are studied. More precisely, the design method relies on a Fredholm transform instead of a more usual Volterra one. Generalizations to the case of systems of n linear hyperbolic equations have been considered in [START_REF] Di Meglio | Stabilization of a system of n + 1 coupled first-order hyperbolic linear PDEs with a single boundary input[END_REF] or [START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic pdes[END_REF], to cite only few of the numerous papers dealing with such a topic. Let us also mention some recent papers about optimal time of stabilization [START_REF] Auriol | Minimum time control of heterodirectional linear coupled hyperbolic PDEs[END_REF][START_REF] Coron | Finite-time boundary stabilization of general linear hyperbolic balance laws via Fredholm backstepping transformation[END_REF] or about delay-robust stabilization [START_REF] Auriol | Delay-robust control design for two heterodirectional linear coupled hyperbolic PDEs[END_REF][START_REF] Auriol | Robust output feedback stabilization for two heterodirectional linear coupled hyperbolic PDEs[END_REF].

For many years, the SMC strategy has been proved to be efficient for the robust control of nonlinear systems described with ordinary differential equations (for short ODEs). Most of the classical techniques for ODEs are exposed in [START_REF] Shtessel | Sliding mode control and observation[END_REF][START_REF] Utkin | Sliding modes in control and optimization[END_REF]. Roughly speaking, this technique is decomposed into two steps: firstly, one selects a sliding variable such that the trajectories reach a sliding surface, where the global asymptotic stability is ensured; secondly, one designs a state feedback-law so that the sliding variable reaches the surface in finite-time on which the disturbance is rejected.

To the best of our knowledge, robust control for PDEs has been investigated for only few years. Most of the existing papers (see e.g., [START_REF] Terrand-Jeanne | Adding integral action for open-loop exponentially stable semigroups and application to boundary control of pde systems[END_REF] or [START_REF] Lhachemi | Pi regulation of a reaction-diffusion equation with delayed boundary control[END_REF]) use PI controllers. In contrast with the sliding mode strategy, this imposes to consider disturbances which do not depend on time. In [START_REF] Deutscher | Finite-time output regulation for linear 2× 2 hyperbolic systems using backstepping[END_REF][START_REF] Deutscher | Output regulation for general linear heterodirectional hyperbolic systems with spatially-varying coefficients[END_REF], a feedback-law constructed using the backstepping method is proposed to reject periodic disturbances. This design, based on the internal model approach, allows to reject disturbances which might not match with the control, at the price of firstly assuming the disturbances to be periodic, and of secondly knowing the related frequencies. It is in contrast with the sliding mode approach, which only requires to know the bounds of the perturbations. However, the sliding mode approach needs the disturbances to match with the control.

The generalization of the SMC procedure to the PDE case is not new. However, many questions remain open. We believe that the main challenge is the choice of the sliding variable. Indeed, since one faces with an infinitedimensional system, there exist many ways to select it. In [START_REF] Guo | Sliding mode and active disturbance rejection control to stabilization of one-dimensional antistable wave equations subject to disturbance in boundary input[END_REF], [START_REF] Tang | Sliding mode control to the stabilization of a linear 2× 2 hyperbolic system with boundary input disturbance[END_REF] [START_REF] Pisano | Combined backstepping/second-order sliding-mode boundary stabilization of an unstable reaction-diffusion process[END_REF], a backstepping strategy is used in order to design a sliding mode controller. Note that an active disturbance rejection control 1 (ADRC for short) strategy is also followed in [START_REF] Guo | Sliding mode and active disturbance rejection control to stabilization of one-dimensional antistable wave equations subject to disturbance in boundary input[END_REF] and [START_REF] Feng | A new active disturbance rejection control to output feedback stabilization for a onedimensional anti-stable wave equation with disturbance[END_REF], which is a different approach from the SMC one. In [START_REF] Tang | Sliding mode control to the stabilization of a linear 2× 2 hyperbolic system with boundary input disturbance[END_REF], the use of the backstepping method imposes to measure the full-state, and therefore the boundaries, where are located the control and the disturbance. Let us also mention [START_REF] Baccoli | Boundary control of coupled reaction-diffusion processes with constant parameters[END_REF][START_REF] Barbu | Sliding mode control for a nonlinear phase-field system[END_REF][START_REF] Orlov | Exponential stabilization of the uncertain wave equation via distributed dynamic input extension[END_REF], where a distributed SMC is considered. In the latter case, the sliding variable is the full state itself.

In this paper, a different strategy is followed. The sliding variable is derived from the gradient of some well-known Lyapunov functional in the hyperbolic context [9, Section 2.1.2]. We thus assume that we measure this quantity, which does not imply the knowledge of the boundaries where are located the control and the disturbance. Moreover, in contrast with the usual backstepping strategy, the bound on the derivative of the disturbance does not need to be known. Furthermore, the global asymptotic analysis is provided in some L p space, which is not common in the literature. Indeed, most of the existing works give their stability results in the Hilbertian space L 2 . Let us mention however some recent works in that direction: [START_REF] Chitour | L p -asymptotic stability analysis of a 1d wave equation with a nonlinear damping[END_REF], [START_REF] Amadori | Decay of approximate solutions for the damped semilinear wave equation on a bounded 1d domain[END_REF] or [START_REF] Chitour | One-dimensional wave equation with set-valued boundary damping: well-posedness, asymptotic stability, and decay rates[END_REF]. We also emphasize on the fact that our approach is adjustable to more general SMC methods such as adaptive approaches. Adaptive techniques [START_REF] Plestan | New methodologies for adaptive sliding mode control[END_REF][START_REF] Zhang | Adaptive robust control of floating offshore wind turbine based on sliding mode[END_REF] are interesting, due to the fact that reduced knowledge of the model is required (bounds of perturbations are not required). To that end, we illustrate numerically the efficiency of the adaptive SMC taken from [START_REF] Plestan | New methodologies for adaptive sliding mode control[END_REF] in our context.

It is also important to note that our approach could be extended to more general systems. Indeed, as soon as one has a Lyapunov function, the sliding variable and its related sliding control can be derived from it in a systematic way. As a consequence, one may consider the case of n × n linear hyperbolic equations with space varying velocities [9, Section 2.3] or distributed coupling terms as in [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF]. In the latter ones, the length of the domain has to be sufficiently small as explained in [START_REF] Bastin | Stability and boundary stabilization of 1-d hyperbolic systems[END_REF]Section 5.6]. Systems of nonlinear hyperbolic equations may be also considered, but the results would become local. However, in 1 ADRC method proposes to build an observer allowing the estimation of the disturbance. This estimation is then added in the feedback-law and allows to reject the perturbation. An interesting aspect of this strategy relies on the fact that the disturbance does not need to be matched with the control, i.e. it does not need to be located at the same place than the control.

order to avoid any further technicalities, and in order to ease the reading of our paper, we chose to focus on the case of a system of 2 × 2 linear hyperbolic equations. This paper is organized as follows. Section 2 presents the system of linear hyperbolic equations, the sliding mode method and introduces the notion of solutions that will be used all along the paper. Section 3 gathers the main results of the paper, namely an existence theorem and a global asymptotic result. Section 4 is devoted to the proof of the main theorems. Section 5 illustrates via numerical simulations the efficiency of our sliding mode control. Finally, Section 6 collects some remarks and introduces some future research lines to be followed.

Notation. The set of non-negative real numbers is denoted in this paper by R + . When a function f only depends on the time variable t (resp. on the space variable x), its derivative is denoted by ḟ (resp. f ). Given any subset of R denoted by Ω (R + or an interval, for instance), L p (Ω; R n ) denotes the set of (Lebesgue) measurable functions f 1 , . . ., f n such that, for i = {1, . . . , n}, Ω |f i (x)| p dx < +∞ when p = +∞ and such that sup ess x∈Ω |f i (x)| < +∞ when p = +∞. The associated norms are, for

p = +∞, (f 1 , . . . , f n ) p L p (Ω;R n ) := Ω |f 1 (x)| p dx + . . . + Ω |f n (x)| p dx and, for p = +∞, f 1 , . . . f n L ∞ (Ω;R n ) := sup ess x∈[0,L] |f 1 (x)| + . . . + |f n (x)|. For any p ∈ [1, ∞], the Sobolev space W 1,p (Ω; R n ) is defined by the set {(f 1 , . . . , f n ) ∈ L p (Ω; R n ) | (f 1 , . . . , f n ) ∈ L p (Ω; R n )}.
When n = 1, we simplify the notation and use L p (Ω) or W 1,p (Ω). Given an interval Ω of R, the set C ∞ c (Ω) denotes the set of infinitely differentiable functions with compact support. All along the paper, we will say a.e. to denote properties satisfied almost everywhere, i.e. properties satisfied everywhere except in a set of Lebesgue measure equal to 0.
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Problem statement

Boundary linear Hyperbolic System

Let λ 1 > 0, λ 2 > 0 and k 2 ∈ IR. We consider the following linear hyperbolic system

           ∂ t R 1 (t, x) + λ 1 ∂ x R 1 (t, x) = 0, ∂ t R 2 (t, x) -λ 2 ∂ x R 2 (t, x) = 0, R 1 (t, 0) = u(t) + d(t), R 2 (t, L) = k 2 R 1 (t, L), R 1 (0, x) = R 0 1 (x), R 2 (0, x) = R 0 2 (x), (1) 
where d(•) ∈ L ∞ (IR) is an unknown disturbance and u is a control function. When the system (1) is undisturbed (d = 0), it is nowadays well-known that the control function u(t) := k 1 R 2 (t, 0), allows to stabilize the system when |k 1 k 2 | < 1, see [START_REF] Bastin | Stability and boundary stabilization of 1-d hyperbolic systems[END_REF]Theorem 2.4.]. The proof, for the L 2 -topology, relies on the Lyapunov functional

V 2 (t) = L 0 p 1 λ 1 R 2 1 (t, x)e -νx λ 1 + p 2 λ 2 R 2 2 (t, x)e νx λ 2
dx.

(2) As classical in the SMC literature, our goal is to find a state feedback control u which allows to reject the disturbance and to globally asymptotically stabilize the system around the equilibrium point (0, 0) in the functional space L p (0, L; R 2 ). As mentioned in the introduction, one seeks a sliding surface (i.e., a subspace of the state space) where some desired global asymptotic stability properties are satisfied.

In our case, our aim is to find a sliding surface on which (1) becomes

       ∂ t R 1 (t, x) + λ 1 ∂ x R 1 (t, x) = 0, ∂ t R 2 (t, x) -λ 2 ∂ x R 2 (t, x) = 0, R 1 (t, 0) = k 1 R 2 (t, 0), R 2 (t, L) = k 2 R 1 (t, L), (3) 
in finite time t 0 > 0 with k 1 chosen such that |k 1 k 2 | < 1. We know from [9, Theorem 2.1 and 2.2] that (0, 0) is exponentially stable for (3). The next section will provide a definition of this sliding surface (and its related sliding variable) together with the sliding mode controller.

Remark 1 (Generalization to n × n systems) Our approach could be extended to systems in the form

∂ t R(t, x) + Λ∂ x R(t, x) = 0, (t, x) ∈ R + × [0, L], (4) 
where R(t, x) ∈ R n and Λ is a diagonal matrix defined by Λ := diag(λ 1 , . . . , λ m , -λ m+1 , . . . , -λ n ) with λ i > 0 for any i ∈ {1, . . . , n}. Associated to these velocities, one defines

R + (t, x) :=      R 1 (t, x) . . . R m (t, x)      , R -(t, x) :=      R m+1 (t, x) . . . R n (t, x)      (5) 
In this case, one may consider

R + (t, 0) = B(u(t)+d(t)), R -(t, L) = K 2 R + (t, L) (6)
with u and d scalar valued functions, and B ∈ R m×1 and K 2 ∈ R (n-m)×m . As in (1), u denotes the control and d the disturbance.

On the sliding surface that one aims at reaching, the system becomes

         ∂ t R(t, x) + Λ∂ x R(t, x) = 0, (t, x) ∈ R + × [0, L], R + (t, 0) = BK 1 R -(t, 0), t ∈ R + , R -(t, L) = K 2 R + (t, L), t ∈ R + , R(0, x) = R 0 (x), (7) 
with K 1 ∈ IR 1×(n-m) such that the pair (BK 1 , K 2 ) satisfies the condition given in [START_REF] Bastin | Stability and boundary stabilization of 1-d hyperbolic systems[END_REF]Theorem 3.2.]. This imposes to assume some stabilizability condition on the pair (K 1 , B).

Sliding surface

Let p ∈ [1, ∞].
We introduce the following sliding surface Σ defined as follows. For any t > 0

Σ := (R 1 (t, •), R 2 (t, •)) ∈ L p (0, L) 2 | S(t) = 0 , with S : IR + → IR defined by S(t) := L 0 p 1 λ 1 R 1 (t, x)e -νx λ 1 + p 2 λ 2 R 2 (t, x)e νx λ 2
dx.

(8) We will sometimes write S(t) by S(R 1 (t, •), R 2 (t, •)) to lighten the statements. This function represents the sliding variable mentioned earlier. As explained in [START_REF] Orlov | Robust control of infinite-dimensional systems via sliding modes[END_REF], this sliding variable represents the gradient of the Lyapunov function [START_REF] Acary | Implicit Euler numerical scheme and chattering-free implementation of sliding mode systems[END_REF]. We consider the set-valued sliding mode controller u defined by, for a.e t 0,

u(t) = k 1 R 2 (t, 0) -Ksign(S(t)), (9) 
where k 1 is defined later, S is introduced in (8), the gain K > d L ∞ (R+) and the set-valued function sign is defined by

sign(z) =        -1 if z < 0, [-1, 1] if z = 0, 1 if z > 0.
From (9), the system (1) is rewritten as

           ∂ t R 1 (t, x) + λ 1 ∂ x R 1 (t, x) = 0, ∂ t R 2 (t, x) -λ 2 ∂ x R 2 (t, x) = 0, R 1 (t, 0) = k 1 R 2 (t, 0) -Ksign(S(t)) + d(t), R 2 (t, L) = k 2 R 1 (t, L), R 1 (0, x) = R 0 1 (x), R 2 (0, x) = R 0 2 (x). ( 10 
)
For a.e t 0, we can deduce, after some formal integration by parts, that

Ṡ(t) = -νS(t) -[p 1 e -νL λ 1 -p 2 k 2 e νL λ 2 ]R 1 (t, L). +[p 1 k 1 -p 2 ]R 2 (t, 0) -Kp 1 sign(S(t)) + p 1 d(t). One picks p 2 = k 1 = e -ν L λ 1 + L λ 2 k2
and p 1 = 1. Then, we deduce that

Ṡ(t) = -νS(t) -Ksign(S(t)) + d(t).
Hence, since K > d L ∞ (R+) , for all t sufficiently large, the solution (R 1 , R 2 ) belongs to the sliding surface Σ and S(t) = Ṡ(t) = 0. This implies that the latter equation reduces to be Ksign(S(t))

+ d(t) = 0. Going back to R 1 (t, 0) in (1), one therefore obtains that R 1 (t, 0) = u(t) + d(t) = k 1 R 2 (t, 0)
. This shows (formally) that, on the sliding surface Σ, ( 1) is equal to (3).

Remark 2 (Space-varying velocities) When the velocities λ 1 and λ 2 are space-varying, we may consider the following sliding variable defined by

S(t) := L 0 (q 1 (x)R 1 (t, x) + q 2 (x)R 2 (t, x)) dx, with q 1 (x) = p 1 λ 1 (x) e - x 0 µ λ 1 (y) dy , q 2 (x) = p 2 λ 2 (x) e x 0 µ λ 2 (y) dy .
The positive constants p 1 and p 2 are chosen in an appropriate way.

Remark 3 (SMC for n × n systems (4)) At the light of Remark 1, the sliding variable would become for the system (4):

S(t) := m i=1 p i λ i L 0 e -µ λ i x R i (t, x)dx + n i=m+1 p i λ i L 0 e µ λ i R i (t, x)dx,
with the positive constants p i and µ chosen in an appropriate way.

Weak solution to the Cauchy problem

This subsection is devoted to the introduction of some notions of solutions. As usual in the PDE context, one needs to consider a weak notion of solutions, i.e. solutions admitting discontinuities in their domain. One can expect such phenomena since the initial data and the control under consideration in this paper are naturally discontinuous.

Definition 1 Let p ∈ [1, ∞] and R 0 1 , R 0 2 ∈ L p (0, L). We say that a map (R 1 , R 2 ) : [0, ∞) × (0, L) → R 2 is a solution of the Cauchy problem (10) if there exists u ∈ L p (IR) such that (1) If p = ∞, (R 1 , R 2 ) ∈ C 0 ([0, ∞); L p ((0, L); R 2 )). If p = ∞, (R 1 , R 2 ) ∈ C 0 ([0, ∞); L 1 ((0, L); R 2 )). (2) For every T > 0, for every test functions (ϕ 1 , ϕ 2 ) ∈ C 1 ([0, T ] × [0, L]; R 2 ) λ 1 ϕ 1 (t, L) -k 2 λ 2 ϕ 2 (t, L) = 0, (11) 
we have

L 0 (ϕ 1 (T, x)R 1 (T, x) + ϕ 2 (T, x)R 2 (T, x)) dx - L 0 ϕ 1 (0, x)R 0 1 (x) + ϕ 2 (0, x)R 0 2 (x) dx - T 0 λ 1 ϕ 1 (t, 0)(u(t) + d(t)) -λ 2 ϕ 2 (t, 0)R 2 (t, 0)dt - L 0 T 0 (∂ t ϕ 1 (t, x) + λ 1 ∂ x ϕ 1 (t, x))R 1 (t, x) +(∂ t ϕ 2 (t, x) -λ 2 ∂ x ϕ 2 (t, x))R 2 (t, x) dtdx = 0. (12) (3) For a.e t 0, R 1 (t, 0) ∈ k 1 R 2 (t, 0) -Ksign(S(t)) + d(t),
with S given in [START_REF] Barbu | Sliding mode control for a nonlinear phase-field system[END_REF].

Remark 4 They may exist multiple measurable selection functions u (see e.g., [START_REF] Wagner | Survey of measurable selection theorems[END_REF] for a survey on such a notion) such that (R 1 , R 2 ) satisfies (1), ( 2) and (3) of Definition 1. This leads to the possible existence of multiple weak solutions of (10).

Main results

We are now in position to state our two main results, namely: an existence theorem and a robust stabilization theorem.

Theorem 1 (Existence) Let p ∈ [1, ∞] and R 0 1 , R 0 2 ∈ L p (0, L). The system (10) admits at least one weak so- lution (R 1 , R 2 ). Moreover, if p = ∞ then R 1 , R 2 ∈ L ∞ ((0, ∞) × (0, L)).
Remark 5 (Uniqueness) We may prove the uniqueness of the solution in this case. However, when considering for instance an adaptive controller, uniqueness fails to be true. For the sake of generality, we prove the robust stabilization for any possible weak solutions.

Theorem 2 ( Stabilization) Let p ∈ [1, ∞] and R 0 1 , R 0 2 ∈ L p (0, L) and K -d L ∞ (R+) > 0. There exist positive constants C, µ such that, for any t ∈ [0, ∞), (R 1 (t, •), R 2 (t, •)) T L p ((0,L);R 2 ) Ce -µt (R 0 1 (•), R 0 2 (•)) T L p ((0,L);R 2 ) ,
for any weak solution (R 1 , R 2 ) of (10).

Remark 6

We want to emphasize on the fact that our framework is quite general. We believe that it allows to use more sophisticated tools from the sliding mode literature. One may for instance consider adaptive SMC as in [START_REF] Plestan | New methodologies for adaptive sliding mode control[END_REF] or super-twisting controller as in [START_REF] Laghrouche | A Lyapunov approach to barrier-function based time-varying gains higher order sliding mode controllers[END_REF]. However, to make easier the reading of the paper, we do not want to enter in such details. In Section 5, we illustrate the efficiency of the algorithm proposed in [START_REF] Plestan | New methodologies for adaptive sliding mode control[END_REF] on the hyperbolic case.

4 Proof of Theorems 1 and 2

Existence of weak solutions

We consider the following ODE

γ(t) ∈ -νγ(t) -Ksign(γ(t)) + d(t), t ∈ IR + , γ(0) = γ 0 , (13) 
where

ν > 0, d ∈ L ∞ (IR + ), K > d L ∞ (R+) and γ 0 ∈ IR.
The ODE is understood in the sense of Filippov [START_REF] Filippov | Differential equations with discontinuous righthand sides: control systems[END_REF]. A Filippov solution of ( 13) is an absolutely continuous map that satisfies [START_REF] Coron | Finite-time boundary stabilization of general linear hyperbolic balance laws via Fredholm backstepping transformation[END_REF] for almost all t 0. In [1, Example 2.19], the existence of Filippov solutions for (13) is proved.

Lemma 1 The ODE (13) admits a Filippov solution. Moreover, there exists t 0 > 0 such that, for any Filippov solution γ of (13),

γ ∈ W 1,∞ (IR) and γ(t) = 0, ∀ t t 0 . Remark 7 When K > d L ∞ (R+)
, there exists a unique Filippov solution and t 0 <

|γ(0)| K-d L ∞ (R + ) .
Let γ be a Filippov solution of ( 13) with initial condition γ(0) = S(R 0 1 , R 0 2 ). We consider the following PDE

           ∂ t Y 1 (t, x) + λ 1 ∂ x Y 1 (t, x) = 0, ∂ t Y 2 (t, x) -λ 2 ∂ x Y 2 (t, x) = 0, Y 1 (t, 0) = k 1 Y 2 (t, 0) + γ(t) + νγ(t), Y 2 (t, L) = k 2 Y 1 (t, L), Y 1 (0, x) = R 0 1 (x), Y 2 (0, x) = R 0 2 (x). ( 14 
)
From Appendix A, the PDE ( 14) admits a unique weak solutions (Y 1 , Y 2 ) constructed using the method of characteristics, see [ We now prove that the weak solution (Y 1 , Y 2 ) of ( 14) satisfies Definition 1 (3). To that end, we introduce the function

σ(t) = S(Y 1 (t, •), Y 2 (t, •)),
where S is defined in ( 8) and (Y 1 , Y 2 ) the weak solution of [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF]. From Appendix B, for any T > 0, σ is a Carathéodory solution of

σ(t) = -νσ(t) + γ(t) + νγ(t), t ∈ [0, T ], σ(0) = S(R 0 1 , R 0 2 ). (15) 
A Carathéodory solution of ( 15) is an absolutely continuous map that satisfies [START_REF] Deutscher | Finite-time output regulation for linear 2× 2 hyperbolic systems using backstepping[END_REF] for almost every t. Moreover, from [START_REF] Deutscher | Finite-time output regulation for linear 2× 2 hyperbolic systems using backstepping[END_REF] and Lemma 1, σ ∈ W 1,∞ (IR). We introduce

g ∈ W 1,1 (IR) ∩ W 1,∞ (IR) defined by g(t) = σ(t) -γ(t).
From ( 13) and ( 15) with γ(0

) = S(R 0 1 , R 0 2 ), g is solution of ġ(t) = -νg(t) g(0) = 0 (16) 
Thus, for any t ∈ IR, g(t) = 0. By definition of g, we deduce that for any t ∈ IR, σ(t) = γ(t). Therefore, we have

Y 1 (t, 0) = k 1 Y 2 (t, 0) + γ(t) + νγ(t) ∈ k 1 Y 2 (t, 0) -Ksign(σ(t)) + d(t)
Thus, (Y 1 , Y 2 ) satisfies the point (3) of Definition 1. We conclude that, for any Filippov solution γ of (13) with initial condition γ(0) = S(R 0 1 , R 0 2 ), the associated weak solution (Y 1 (•), Y 2 (•)) of ( 14) is a weak solution of [START_REF] Bribiesca-Argomedo | Backsteppingforwarding control and observation for hyperbolic PDEs with Fredholm integrals[END_REF].

Remark 8 If the ODE (13) admits multiple Filippov solutions, then the PDE (10) has multiple weak solutions constructed from the coupled PDE-ODE (14)-(13).

Robust stabilization

Let (R 1 , R 2 ) a weak solution of [START_REF] Bribiesca-Argomedo | Backsteppingforwarding control and observation for hyperbolic PDEs with Fredholm integrals[END_REF]. From Definition 1, there exists u

∈ L p (IR) such that R 1 (t, 0) = u(t)+d(t) ∈ k 1 R 2 (t, 0) -Ksign(S(t)) + d(t), whence the existence of v ∈ L p (IR) such that u(t) = k 1 R 2 (t, 0) + v(t),
with v(t) ∈ -Ksign(S(t)). From Appendix B which holds replacing (B.1) by f (t) = v(t)+d(t), for any T > 0, S defined in ( 8) is a Carathéodory solution of

Ṡ(t) = -νS(t) + v(t) + d(t), t ∈ [0, T ], S(0) = S(R 0 1 , R 0 2 ). (17) 
Since v(•) ∈ -Ksign(S(t)), then S is a Filippov solution of ( 13) with initial condition S(R 0 1 , R 0 2 ). From Lemma 1, S ∈ W 1,∞ (IR) and there exists a finite time t 0 (independent of v) such that Ṡ(t) + νS(t) = 0 for any t > t 0 .

Thus, from [START_REF] Di Meglio | Stabilization of a system of n + 1 coupled first-order hyperbolic linear PDEs with a single boundary input[END_REF], for any t > t 0 , v(t) + d(t) = 0.

We conclude that there exists a finite time t 0 such that for any weak solution (R 1 , R 2 ) of ( 10), for any t > t 0 , (R 1 , R 2 ) is a weak solution of

       ∂ t R 1 (t, x) + λ 1 ∂ x R 1 (t, x) = 0, ∂ t R 2 (t, x) -λ 2 ∂ x R 2 (t, x) = 0, R 1 (t, 0) = k 1 R 2 (t, 0), R 2 (t, L) = k 2 R 1 (t, L), (18) 
From Appendix C, the system ( 18) is exponentially stable in L p -norm, that is to say there exist C, µ > 0 such that

(R 1 (t, •), R 2 (t, •)) T L p ((0,L);R 2 ) Ce -µ(t-t0) (R 1 (t 0 , •), R 2 (t 0 , •)) T L p ((0,L),IR 2 ) . (19) 
Moreover, according to Theorem 1 and Appendix C, there exists C > 0 such that ∀t ∈ [0,

t 0 ], (R 1 (t, •), R 2 (t, •)) T L p ((0,L),I R 2 ) C (R 0 1 (•), R 0 2 (•)) T L p ((0,L),IR 2 ) , (20) 
which concludes the proof of Theorem 2

Remark 9 Since S is a Filippov solution of (13) with initial condition γ(0) = S(R 0 1 , R 0 2 ), a weak solution of (10) is a weak solution of [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF]. As a consequence, the set of weak solutions of (10) is the set

{(Y γ 1 , Y γ 2 ) | γ Filippov solution of (13)} where (Y γ 1 , Y γ 2 )
is the unique weak solution of (14) associated to γ.

Numerical illustration

Conventional SMC

Numerical scheme: the approximate solution (R n 1 , R n 2 ) of ( 10) at time t n = n∆t is constructed using an upwind scheme as described in [START_REF] Leveque | Numerical methods for conservation laws[END_REF]Section 10.7]. The ghost-cell boundary conditions [START_REF] Leveque | Finite volume methods for hyperbolic problems[END_REF]Section 7] are computed as follows

R n 1 (t, 0) = k 1 Rn 2 (t, 0) -Ksign v (S( Rn 1 (t), Rn 2 (t))) + d(t), R n 2 (t, L) = k 2 Rn 1 (t, L),
where S is defined in ( 8), ( Rn 1 , Rn 2 ) are constructed using an upwind scheme from (R n-1

1 , R n-1 2
) and sign v is the Yoshida approximation of sign defined as

sign v (x) = sign(x) if |x| > v, x v if |x| v.
Note that the construction of the sliding mode control is inspired from [2, Section 5.1], where the sign function is approximated with the projection of this function on the interval [-K, K], which corresponds indeed to a saturation. As a consequence, the chattering phenomenon is reduced, see Figure 1. 10) at time t = 0 and at t = 50 are plotted with respect to x ∈ [0, L], see Figure 1, 2, 3, 4.

Simulations: let L = 3, λ 1 = 2, λ 2 = -1, k 2 = -1, ν = 0.1, K = 2 and v = 0.
(t, •), R n 2 (t, •)) of (
Figure 1 shows that the sliding surface is reached in finite time. In Figures 2 and3, the robust stabilization of R n 1 and R n 2 , respectively, is illustrated. Figure 4 shows the behavior of the controller. After a certain amount of time, one can note that the controller is almost equal to the disturbance -d, which is a classical behavior in the SMC literature. This shows that one can reconstruct the perturbation from a certain time thanks to the feedback control law defined in (9).

Adaptive SMC

If d L ∞ (R+) is an unknown parameter, we use the first adaptive sliding mode control law in [START_REF] Plestan | New methodologies for adaptive sliding mode control[END_REF]. As a consequence, the sliding mode control u in ( 9) is replaced by

u(t) = k 1 R 2 (t, 0) -K(t)sign(S(t)) (21) 
where the adaptive gain K(•) is defined as follows. Let t 0 and ∆t the time step variation, if with K0 , K1 two positive constants and S defined in [START_REF] Barbu | Sliding mode control for a nonlinear phase-field system[END_REF]. If |S(t)| 4K(t)∆t then

|S(t)| > 4K(t)∆t then K(t) = K1 |S(t)|, K(0) = K0 ,
K(t) = K2 (t)|η| + K3 . Above, K2 (•) is a piecewise constant function with dis- continuous points (t i ) i defined by S(t i -∆t) > 4K(t i - ∆t)∆t and S(t i ) 4K(t i )∆t. For any t ∈ [t i , t i+1 ), K2 (t) = K(t i ). Note that t i is on-line updated. The function η is solution of τ η(t) + η(t) = sign(S(t)), η(0) = 0,
with τ > 0 and K3 is a positive constant. Figure 5 shows that the sliding surface is reached in finite-time. Figures 6 and7 show that R n 1 and R n 2 are stabilized around the equilibrium point (0, 0), meaning that our method is quite efficient. In Figure 8, the behavior of the adaptive gain K is given. One can see that it behaves almost like the function t → sin(t), which is the disturbance to be rejected. Finally, in Figure 9, the behavior of the controller u given in ( 21) is illustrated. Note that the amplitude of the adaptive control in Figure 9 is larger than the one in Figure 4 since the bound of the disturbance is unknown. From a certain time, it behaves like in the case where the control is not timevarying. 

Conclusion

In this paper, we proposed a new approach for the sliding mode control applied to a specific class of PDEs, namely a system of two transport equations. It is a Lyapunov approach, since the sliding variable is based on the gradient of the classical Lyapunov function given in [START_REF] Bastin | Stability and boundary stabilization of 1-d hyperbolic systems[END_REF]. We have proved existence of the closed-loop system and have shown that the robust stabilization holds.

Many further research lines remain to be followed. It is important to note that our approach is a state-feedback approach, and one may instead consider an outputfeedback approach, which would require to introduce a notion of sliding mode observer. It might be also interesting to investigate the case of systems described with operators, as it has been done in [START_REF] Marx | Stability analysis of dissipative systems subject to nonlinear damping via Lyapunov techniques[END_REF], in the case of saturated feedback-laws. Finally, we may also consider sliding mode of higher order, as it has been done in [START_REF] Laghrouche | A Lyapunov approach to barrier-function based time-varying gains higher order sliding mode controllers[END_REF].

A Notion of solutions

Let p ∈ [1, ∞], R 0 1 , R 0 2 ∈ L p (0, L)
and γ be a Filippov solution of ( 13) with initial condition γ(0) = S(R 0 1 , R 0 2 ). We consider the linear hyperbolic system [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF].

Definition 2 (Y 1 , Y 2 ) is a weak solution of (14) if the points (1) and (2) of Definition 1 is satisfied replacing u(•) by -d(•) + γ(•) + νγ(•).
Lemma 2 There exists a unique weak solution Using the method of characteristics (see [9, Section 2.1]), we give an explicit weak solution (Y 1 , Y 2 ) of ( 14). We introduce the function f defined by

(Y 1 , Y 2 ) of (14). Moreover, if p = ∞ then Y 1 , Y 2 ∈ L ∞ ((0, ∞) × (0, L)).
f (t) = γ(t) + νγ(t). Let m 1 ∈ Z such that m 1 L λ 1 + L λ 2 t - x λ 1 < (m 1 + 1) L λ 1 + L λ 2 . (A.1) We define Y 1 for a.e (t, x) as follows. If m 1 < 0 then Y 1 (t, x) = R 0 1 (-λ 1 t + x)
We now assume that m 1 0 and we define

t i := t -i L λ 1 + L λ 2 - x λ 1 , i ∈ IN (A.2) If m 1 L λ1 + L λ2 t -x λ1 < m 1 L λ1 + L λ2 + L λ2 then Y 1 (t, x) = (k 1 k 2 ) m1 k 1 R 0 2 (λ 2 t m1 ) + m1 i=0 (k 1 k 2 ) i f (t i ). (A.3) If m 1 L λ1 + L λ2 + L λ2 t -x λ1 < (m 1 + 1) L λ1 + L λ2 then Y 1 (t, x) = (k 1 k 2 ) m1+1 R 0 1 -λ 1 t m1 -L λ2 + L + m1 i=0 (k 1 k 2 ) i f (t i ). (A.4) Let m 2 ∈ Z such that m 2 L λ 1 + L λ 2 t - L -x λ 2 < (m 2 + 1) L λ 1 + L λ 2 .
We define Y 2 for a.e (t, x) as follows. If m 2 < 0 then

Y 2 (t, x) = R 0 2 (λ 2 t + x).
We now assume that m 2 0 and we define ti :=

t -i L λ1 + L λ2 -L-x λ2 . If m 2 L λ1 + L λ2 t -L-x λ2 < m 2 L λ1 + L λ2 + L λ1 then two different cases occur. If m 2 = 0, Y 2 (t, x) = k 2 R 0 1 (-λ 1 t0 + L). Otherwise, Y 2 (t, x) = (k 1 k 2 ) m2 k 2 R 0 1 (-λ 1 tm2 + L) + m2-1 i=0 (k 1 k 2 ) i k 2 f ( ti - L λ 1 ). (A.5) If m 2 L λ1 + L λ2 + L λ1 t -L-x λ2 < (m 2 + 1) L λ1 + L λ2 then Y 2 (t, x) = (k 1 k 2 ) m2+1 R 0 2 λ 2 tm2 -L λ1 + m2 i=0 (k 1 k 2 ) i k 2 f ( ti -L λ1 ). (A.6)
An illustration of the construction of Y 1 with m 1 = 0 and Let us now prove the uniqueness.

L λ2 t -x λ1 < L λ1 + L λ2 in Figure A.1. x t t 0 L (t, x) × Y1(t, x) = Y1(t0, 0) Y1(t0, 0) = k1Y2(t0, 0) +f (t0) Y2(t0, 0) = Y2(t0 -L λ2 , L) Y2(t0 -L λ2 , L) = k2Y1(t0 -L λ2 , L) Y1(t1, L) = R 1 0 (-λ1(t0 -L λ2 ) + L)
Let (Y 1 1 , Y 1 2 ) and (Y 2 1 , Y 2 
2 ) two weak solutions of [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF]. Then, the couple

(Y 1 , Y 2 ) defined by Y 1 = Y 2 1 -Y 1 1 and Y 2 = Y 2 2 -Y 1 2 is a solution of (14) with (R 0 1 , R 0 2 ) = (0, 0) and γ + νγ = 0. Let 1 p < ∞ and (ψ T 1 , ψ T 2 ) ∈ W 1,p ((0, L); IR 2 ) such that k 1 λ 1 ψ T 1 (0) -λ 2 ψ T 2 (0) = 0, λ 1 ψ T 1 (L) -k 2 λ 2 ψ T 2 (L) = 0. (A.7)
Using the method of characteristics as in the proof of Lemma 2, we state the existence of 

ψ 1 , ψ 2 ∈ C 1 ([0, T ]; L p (0, L)) ∩ C 0 ([0, T ]; W 1,p (0, L)), (A.8) satisfying                  ∂ t ψ 1 (t, x) + λ 1 ∂ x ψ 1 (t, x) = 0, ∂ t ψ 2 (t, x) -λ 2 ∂ x ψ 2 (t, x) = 0, k 1 λ 1 ψ 1 (t, 0) -λ 2 ψ 2 (t, 0) = 0, λ 1 ψ 1 (t, L) -k 2 λ 2 ψ 2 (t, L) = 0, ψ 1 (T, x) = ψ T 1 (x) ψ 2 (T, x) = ψ T 2 (x
L 0 ψ T 1 (x)Y 1 (T, x) + ψ T 2 (x)Y 2 (T, x) = 0. (A.10)
Since the set of (ψ T 1 , ψ T 2 ) ∈ W 1,p ((0, L); R 2 ) satisfying (A.7) is dense in L p ((0, L); R 2 ) for any p = ∞, it follows from (A.10) that (Y 1 (T, x), Y 2 (T, x)) = (0, 0) for all T > 0 and for all x ∈ [0, L]. This achieves the proof of uniqueness of solution when 1 p < ∞. If p = ∞, the proof is similar as before choosing ψ T 1 , ψ T 2 ∈ W 1,1 (0, L).

B Conservation of mass

Let σ : t → S(Y 1 (t, •), Y 2 (t, •)) with S defined in ( 8) and (Y 1 , Y 2 ) a weak solution of [START_REF] Coron | Local exponential H 2 stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF]. We consider γ a Filippov solution of ( 13) with initial condition γ(0) = S(R 0 1 , R 0 2 ) and we introduce the function f defined by

f (t) = γ(t) + νγ(t) (B.1) Lemma 3 For any T > 0, σ is a Carathéodry solution of σ(t) = -νσ(t) + f (t), t ∈ [0, T ], σ(0) = S(R 0 1 , R 0 2 ).
Proof 1 Using the change of variable

z 1 (t, x) = 1 λ 1 e -νx λ 1 Y 1 (t, x), z 2 (t, x) = k 1 λ 2 e νx λ 2 Y 2 (t, x), (B.2) (z 1 , z 2 ) is a weak solution of                                ∂ t z 1 + λ 1 ∂ x z 1 + νz 1 = 0, (t, x) ∈ [0, T ] × [0, L], ∂ t z 2 -λ 2 ∂ x z 2 + νz 2 = 0, (t, x) ∈ [0, T ] × [0, L], z 1 (t, 0) = 1 λ 1 (λ 2 z 2 (t, 0) + f (t)) t ∈ [0, T ], z 2 (t, L) = λ 1 λ 2 z 1 (t, L) t ∈ [0, T ], z 1 (0, x) = 1 λ 1 e -νx λ 1 R 0 1 (x), x ∈ [0, L], z 2 (0, x) = k 1 λ 2 e νx λ 2 R 0 2 (x), x ∈ [0, L],
(B.3) That is to say, (z 1 , z 2 ) satisfies the point (1) of Definition 1. Moreover, the point (2) of Definition 1 is replaced by, for any test function

ϕ 1 , ϕ 2 ∈ C 1 c (]0, T [×]0, L[), we have (0,T )×(0,L) z 1 (ϕ 1 t + λ 1 ϕ 1 x + νϕ 1 )dxdt + (0,T )×(0,L) z 2 (ϕ 2 t -λ 2 ϕ 2
x + νϕ 2 )dxdt = 0 (B.4) Moreover, the boundary conditions of (B.3) are satisfies almost everywhere. A standard density argument shows that the equation (B.4) is still admissible if ϕ 1 , ϕ 2 are just a Lipschitz functions. Let t > 0 and θ > 0, we define

ϕ i θ (t, x) := ψ i θ (t)φ i θ (x), with i ∈ {1, 2} and 
ψ i θ (t) =        t θ if t θ, 1 if θ t t -θ, t-t θ if t -θ t t, (B.5)
and

φ i θ (x) =        x θ if x θ, 1 if θ x L -θ, L-x θ if L -θ x L, (B.6) When θ → 0 in (B.4), we have L 0 z 1 ( t, x)dx - L 0 z 1 (0, x)dx + λ 1 t 0 z 1 (t, L)dt -λ 1 t 0 z 1 (t, 0)dt + ν (0, t)×(0,L) z 1 (t, x)dxdt + L 0 z 2 ( t, x)dx - L 0 z 2 (0, x)dx -λ 2 t 0 z 2 (t, L)dt +λ 2 t 0 z 2 (t, 0)dt + ν (0, t)×(0,L) z 2 (t, x)dxdt = 0.
Using (B.2) , (B.3) and (8) we have for any t ∈ (0, T ),

S( t) = S(0) -ν t 0 S(u)du + t 0 f (u)du (B.7)
which conclude the proof of Lemma 3.

C Exponential stability

The proof of exponential stability is divided into two parts: first we prove the Lyapunov stability of the system (14) over the time interval [0, t 0 ] and then we prove the exponential stability of the system [START_REF] Feng | A new active disturbance rejection control to output feedback stabilization for a onedimensional anti-stable wave equation with disturbance[END_REF]. Let us start by proving the first part.

From Appendix A, ( 14) admits a unique weak solution constructed using the method of characteristics and given by (A.3),(A.4), (A.5) and (A.6). Assuming that when p = ∞. From (A.3) and (A.4) and k 1 k 2 < 1, we deduce that there exists a positive constant C such that for all t ∈ [0, t 0 ] we have

Y 1 (t, •) p L p ((0,L),I R) C R 0 1 (•), R 0 2 (•) p L p ((0,L),I R 2 ) + C L 0 m1(t,x) i=0 f (t i (t, x)) p dx (C.1)
where m 1 (t, x) and t i (t, x) are defined in Appendix A.

For the sake of clarity, the dependence of m 1 and t i with respect to t and x is emphasized in (C.1). From (A.1), for any t 0, the map x → m 1 (t, x) is a decreasing function and 0 m 1 (t, 0)m 1 (t, L) 1. Thus, two different cases occur. In the first case, there exists m 0 ∈ IN such that for every x ∈ [0, L], m 1 (t, x) = m 0 then using the change of variable s = t i with t i defined in Appendix A and t t 0 , there exists C > 0 such that

Y 1 (t, •) p L p ((0,L),I R) C R 0 1 (•), R 0 2 (•) p L p ((0,L),I R 2 ) + C f p L p ((0,t0),I R) (C.2)
In the second case, there exist m 0 ∈ IN and x 0 ∈ [0, L] such that m 1 (t, x) = m 0 for any 0 x x 0 and m 1 (t, x) = m 0 -1 for any x 0 < x L. Then,

L 0 m1(t,x) i=0 f (t i (t, x)) p dx = x0 0 m0 i=0 f (t i (t, x)) p dx + L x0 m0-1 i=0 f (t i (t, x)) p dx (C.3)
Using the change of variable s = t i with t i defined in Appendix A for each right-hand term of (C.3) and t t 0 , we deduce that there exists C > 0 such that (C.2) holds.

On the other hand, we have

f p L ∞ (0,t0) = Ṡ(t) + νS(t) p L ∞ (0,t0) = v + d p L ∞ (0,t0) . (C.4) This implies that f p L ∞ (0,t0) (2K) p . Now, us- ing K > d L ∞ (R+) and Remark 7, we know that t 0 < |S(0)| K-d L ∞ (R + ) . Therefore, there exists C > 0 such that f p L p ((0,t0),IR) C|S(0)| p . (C.5)
By continuous injection of L p ((0, L) in L 1 ((0, L), there exists C > 0 such that

|S(0)| R 0 1 (•), R 0 2 (•) L 1 ((0,L),IR 2 ) C R 0 1 (•), R 0 2 (•) L p ((0,L),IR 2 ) (C.6)
From (C.2), (C.5) and (C.6), we can conclude that, when 1 p < ∞, there exists a positive constant C such that for all t ∈ [0, t 0 ] we have Y 1 (t, •) L p ((0,L),IR) C R 0 1 (•), R 0 2 (•) L p ((0,L),IR 2 ) .

(C.7) Similarly, we prove that there exists a positive constant C such that for all t ∈ [0, t 0 ] we have Now, we provide a global asymptotic stability result related to the linear system [START_REF] Feng | A new active disturbance rejection control to output feedback stabilization for a onedimensional anti-stable wave equation with disturbance[END_REF]. From Appendix A with f (•) := γ(•) + νγ(•) = 0, (18) admits a unique weak solution constructed using the method of characteristics. In particular, the weak solution R 1 , R 2 of ( 18) is written as (A.3), (A.5), (A.4) and (A.6) replacing f by 0 and (R 0 1 , R 0 2 ) by (R 1 (t 0 , •), R 2 (t 0 , •). Thus, the inequality [START_REF] Filippov | Differential equations with discontinuous righthand sides: control systems[END_REF] 

follows from k 1 k 2 = e -ν L λ 1 + L λ 2
< 1 (see also [START_REF] Bastin | Stability and boundary stabilization of 1-d hyperbolic systems[END_REF]Theorem 2.1]).

For the sake of completeness, we give the proof when p ∈ [2, ∞) using the following Lyapunov function. (C.9) with a > 0 and b > 0. We will consider classical solutions and deduce the result in the space L p (0, L) by a standard density argument.

V (t) = L 0 a λ 1 e -νx
The time derivative of V along the classical solutions to [START_REF] Feng | A new active disturbance rejection control to output feedback stabilization for a onedimensional anti-stable wave equation with disturbance[END_REF] along the trajectories of the system (18) which are of class C 1 . By density, this inequality also holds in the sense of distribution, i.e. for every solution to [START_REF] Feng | A new active disturbance rejection control to output feedback stabilization for a onedimensional anti-stable wave equation with disturbance[END_REF] in C 0 ([0, ∞); L p (0, L)).

On the other hand,there exists γ > 0 such that 
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 12 Fig. 1. Plotting of the approximate sliding surfaceS(R n 1 (t, •), R n 2 (t, •)) with respect to the time t where (R n 1 (t, •), R n 2 (t, •)) is an approximate solution of (10) at time t and d(t) = sin(t)

xFig. 3 .Fig. 4 .

 34 Fig. 3. Plotting of R n 2 (t, •) at time t = 0 (-) and t = 50 (--) with respect to x ∈ [0, L] with d(t) = sin(t). The equilibrium point 0 is plotted in red straight line.
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 56 Fig. 5. Plotting of the approximate sliding surface S(R n 1 (t, •), R n 2 (t, •)) (--) and t → 4K(t)∆t (-) with respect to the time t where (R n 1(t, •), R n 2 (t, •)) is an approximate solution of (1) with u defined in[START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic pdes[END_REF] and d(t) = sin(t)
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 78 Fig. 7. Plotting of R n 2 (t, •) at time t = 0 (-) and t = 50 (--) with respect to the time t with u defined in (21) and d(t) = sin(t). The equilibrium point 0 is plotted in red straight line.
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 9 Fig. 9. Plotting of the adaptive sliding mode control u defined in (21) with respect to the time t.

Fig. A. 1 . 2 t -x λ 1 .

 121 Fig. A.1. Construction of Y1(t, x) using the method of characteristics with m1 = 0 and L λ 2 t -x λ 1 .

Y 2

 2 (t, •) L p ((0,L),IR) C R 0 1 (•), R 0 2 (•) L p ((0,L),IR 2 ) .(C.8) Now, when p = ∞, according to (A.3), (A.4), (A.5), (A.6), (C.4) and (C.6) we obtain also (C.7) and (C.8), which conclude the proof of the first part.

λ 1

 1 |R 1 (t, x)| p + b λ 2 e νx λ |R 2 (t, x)| p dx

+ b e νL λ 2 k p 2 1 + L λ 2 ) k p 1 k p 2 = 1 + L λ 2 ) < 1 ,k 2 +

 21221212 |R 1 (t, L)| p -|R 2 (t, 0)| p = -νV (t) -|R 2 (t, 0)| p (-ak p 1 + b) -|R 1 (t, L)| p (-be νL λ 2 k p 2 + ae -νL λ 1 ) (C.10) Since p ∈ [2, ∞), then e ν( L λ e (1-p)ν( L λthus, we can select a and b such that e -ν( ae -νL λ 1 > 0 andak 1 + b > 0.Hence, we see that V (t) -νV (t) ∀t t 0 .(C.11)

  9, Section 2.1]. In particular, (Y 1 , Y 2 ) satisfies the points (1) and (2) of Definition 1 with u(t) = -d(t) + k 1 Y 2 (t, 0) + γ(t) + νγ(t).

  ∂ t R 1 (t, x)e -νx λ 1 R 1 (t, x)|R 1 (t, x)| p-2 dx R 2 (t, x)|R 2 (t, x)| p-2 dx ∂ x R 1 (t, x)e -νx λ 1 R 1 (t, x)|R 1 (t, x)| p-2 dx |R 1 (t, L)| p -|R 1 (t, 0)| p ∂ x R 1 (t, x), e -νx λ 1 R 1 (t, x)|R 1 (t, x)| p-2 |R 2 (t, L)| p -|R 2 (t, 0)| p )

	is			
	V (t) =	ap λ 1	0	L
	+ λ 2 = -ap bp λ 2 L 0 νx ∂ t R 2 (t, x)e L 0
		+ bp	L	∂ x R 2 (t, x)e	νx λ 2 R 2 (t, x)|R 2 (t, x)| p-2 dx
	=	0 e -νL λ 1 --ap 2 apν 2λ 1 L 0	e	-νx λ 1 |R 1 (t, x)| p dx
		+	ap(p -2) 2	0	L
		+ λ 2 -bp 2 νL (e bpν 2λ 2 L 0	e	νx λ 2 |R 2 (t, x)| p dx
		-	bp(p -2) 2

L 0 ∂ x R 2 (t, x), e νx λ 2 R 2 (t, x)|R 2 (t, x)| p-2 = -νV (t)a(e -νL λ 1 |R 1 (t, L)| p -|R 1 (t, 0)| p ) + b(e νL λ 2 |R 2 (t, L)| p -|R 2 (t, 0)| p )

Using the boundary condition of (

18

) we have, for all t t 0

V (t) = -νV (t)a e -νL λ 1 |R 1 (t, L)| pk p 1 |R 2 (t, 0)| p

  (t, •), R 2 (t, •)) L p ((0,L);R 2 ) γe -ν t p (R 1 (t 0 , •), R 2 (t 0 , •)) L p ((0,L);R 2 ) ∀t t 0 . (C.13)

	1 γ V (t) γ (R 1 (t, •), R 2 (t, •)) p L p ((0,L);R 2 ) (R 1 (t, •), R 2 (t, •)) p L p ((0,L);R 2 ) .	(C.12)
	Then, we have	
	(R 1	
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