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Abstract—The widespread use of low-cost environmental mon-
itoring systems, together with recent developments in the design
of Internet of Things architectures and protocols, has given new
impetus to smart city applications. Such progress should, in
particular, considerably improve the fine characterization of a
wide range of physical quantities within our cities. Indeed, the
cost-effectiveness of these emerging sensors combined with their
reduced size allows for high density deployments resulting in a
higher spatial granularity. In this paper, we briefly present the
3M’Air project that aims to explore the potential of participatory
citizen measures using low-cost sensors in order to improve the
local knowledge of air quality and temperature and then bridge
the gap between individual exposure and regional measurements.
We present then the design, implementation and evaluation of our
low-cost, small-size WSN-based participatory monitoring system.
This system is composed of mobile sensing nodes measuring
temperature, humidity and a number of pollutants (NO2, PM1,
PM2.5 and PM10). The collected data are sent to a server for
analysis and building temperature and air quality maps. To
validate our platform, we have carried out multiple tests to
compare our sensor nodes to reference stations and to each other.
We have also evaluated the energy consumption of our nodes
under different configurations. The results are satisfactory and
show that our nodes can be used in environmental participatory
monitoring.

Index Terms— air quality, urban heat islands, low-cost sensors,
participatory sensing, wireless sensor networks, environmental
monitoring

I. INTRODUCTION

On the one hand, air pollution is one of the main concerns
of many cities around the world. Indeed, millions of people
live in cities where the concentration of pollutants exceeds the
standard health limit several times a year, which constitutes a
serious health problem. According to World Health Organi-
zation (WHO) data, indoor and outdoor air pollution caused
7 million deaths in 2016 [1]. In fact, long-term exposure to
air pollution can result in cancer and damage to the immune,
nervous and respiratory systems. Pollution concentration is
particularly present in urban cities where the density of
population and buildings is higher, augmenting the risks of
air pollution exposure [2]. On the other hand, urban heat
islands (UHI) greatly increase the risk of allergies, respiratory
and cardiovascular problems and can lead to excess mortality
among vulnerable people during heatwaves [3]. Moreover,
several studies show that the heat island effect contributes to
the degradation of air quality by increasing the concentration

of some pollutants (ozone, nitrogen oxides, etc.) [4], [5].
Therefore the need to assess air pollution and UHI in our
cities is extremely required to establish well adapted public
policies.

In order to mitigate the impact of air pollution and UHI,
it is essential to set up an effective monitoring system whose
main objective is to measure temperature and air pollution
concentration and then to produce high resolution maps in
real time. Conventional monitoring stations include various
sensors, which typically measure a large number of envi-
ronmental parameters and pollutants, such as temperature,
humidity, carbon monoxide (CO), nitrogen oxides (NOx),
ozone (O3) and particulate matter (PM) [6]. Despite providing
accurate concentrations, these monitoring stations are too
large and expensive to be deployed anywhere [7]. In addition
to traditional monitoring based on measurements, numerical
simulations of physical models can also be used to generate
maps of air pollution and the UHI. These models simulate the
spread of air pollution as a function of the location of pollution
sources, land use, emission rates and meteorological data.

The limitations of large monitoring stations in terms of
cost, size, flexibility and spatial granularity have led to the
emergence of small and low-cost air quality sensors. These
sensors have lower accuracy than traditional monitoring sta-
tions, but are more flexible and easier to maintain. This would
ultimately help improving the spatial and temporal knowledge
of air quality and urban heat islands. Compared to traditional
air pollution monitoring solutions, the wireless connectivity of
low-cost air quality sensors forms a Wireless Sensor Network
(WSN), which has many advantages. In fact, their cost-
effectiveness enables dense, large-scale deployments, which
increase the spatial resolution. In addition, both size and
cost factors provide greater deployment flexibility. However,
low-cost sensors are less accurate than traditional monitoring
stations and their data quality is questionable [8]. Indeed, elec-
trochemical sensors present high sensitivity to meteorological
changes (temperature, humidity, etc.) and have cross-reactivity
problems with similar molecular types. Also, measurements
of other low-cost sensor categories such as optical particulate
counters may depend on the density, shape of particles or even
their color [8].

Mobile crowdsensing is an emerging paradigm that has
attracted great attention in the recent years, owing the result
of the rapid evolution of Internet of Things (IoT) [9]. This
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paradigm leverages population density to perform large-scale
monitoring. One domain of application of mobile crowdsens-
ing among many others is air quality, in which participants use
embedded sensors on their smart devices (e.g, smartphones,
smartwatches, etc.), or stand-alone sensor nodes to monitor
environmental conditions in their surroundings. Therefore,
this will result in a better involvement of citizens in the
sensing process, measure their individual exposure and giving
them access to collaborative maps. In addition, this will help
the scientific community to collect more data to improve
air quality and UHI knowledge, and the local authorities to
implement appropriate policies.

This paper introduces 3M’Air, a project that aims to ex-
plore the potential of participatory citizen measures using
low-cost sensors in order to improve the local knowledge
of air quality and temperature. As part of this project, we
present the design, implementation and evaluation of a mobile
participatory-based air quality and heat islands monitoring
platform based on a network of small sensor nodes carried by
people. The remainder of this paper is organized as follows.
Section II discusses related research work. Section III presents
the context and objectives of this project along with some
design guidelines that we have adopted throughout this work.
An overview of the proposed system architecture and its
main components is presented in Section IV. Subsequently,
the obtained experimental results are discussed in section V.
Section VI presents briefly some future work and perspectives.
Finally, Section VII concludes this paper.

II. RELATED WORK

The studies of urban air quality and heat islands in urban
areas, in the context of climate change, form today two
complementary issues. In fact, the local air quality is impacted
by the urban heat island, since it influences both the character-
istics of the airflow and the boundary layer of the atmosphere
[10]. Hence, the effectiveness of the actions carried out by
public spatial planning policies to deal with these two issues is
strongly linked to the fine knowledge of temperature gradients
and air quality at local scales. To increase the local knowledge
of air quality and urban heat islands, many low-cost sensor-
based environmental monitoring projects have emerged over
the past decade.

A generic environmental monitoring platform based on
fixed indoor sensors is presented in [11]. It uses open-source
hardware platforms as Arduino and Raspberry Pi, and ZigBee
as a communication protocol. The system is composed of
sensing nodes, a web interface, and between the two a base
station which embeds a gateway node, a database, and a web
server. Sampling is performed each 35 min and measurements
are sent using ZigBee to the base station that gathers and stores
the data for future visualisation on a web browser using the
internet or a local network. The solution has been tested indoor
by deploying a base station and 3 sensor nodes measuring
both temperature and relative humidity. The authors identify
the need of an important number of ZigBee routers for large
scale deployments.

An implementation of a flexible environmental monitoring
system is described in [12]. The solution is based on a set of

small sensor nodes and transceivers communicating in Blue-
tooth Low Energy (BLE) and a cloud-based back-end. The
sensors are equipped with 32-b ARM-M0 micro-controller,
a low-power 2.4-GHz transceiver, a 32.768-kHz Real-Time-
Clock (RTC), a temperature and relative humidity sensor and
a local storage that can store up to 125 000 measurements.
These components are soldered along with a lithium battery
on a small Printed Circuit Board (PCB). Measurements are
logged at intervals of 15 min on the nonvolatile memory and
sent to a Raspberry Pi Zero W board that pushes data to the
cloud. Two possible ways of visualizing data are offered, on
a smartphone by connecting it to the node using BLE or on
a web interface using a web browser. This solution has been
tested indoor in a heritage building in the north of Italy for
more than two months. The results point out the challenge of
environmental conditions variation from a position to another
even at small distances.

Another cloud-based monitoring system is proposed in [13].
The system is composed of a sensor network, a cloud system
and an end-user layer. Sensor nodes incorporate a micro-
controller, up to four gas sensors measuring a set of volatile
organic compounds (VOCs) (benzene, toluene, ethylbenzene,
and xylene), a ZigBee module for communicating with the
Gateway, and a power management controller that can switch
between a battery and a solar panel to power the node. The
"ConnectPort X4" Gateway used in this solution integrates a
ZigBee module that receives measurement data at the end of
each sampling cycle (10 min) and forwards them to the cloud
system where data are stored and processed for delivery to the
end-user repsented by an internet application. The solution has
been tested in laboratory by generating different compounds
at different concentrations using specific tubes containing an
analyte that passes through a tube at a maintained speed
and temperature. The authors also propose pattern recognition
techniques to efficiently detect VOCs and show that they
achieve good results in their quantification.

The Citi-Sense-MOB project [14] aims to support green
growth and sustainable development through a mobile envi-
ronmental monitoring system formed by sensor nodes based
on electrochemical sensors measuring NO2, NO, CO, SO2,
O3, CO2, temperature, and relative humidity. Two sensing
platforms are proposed, one mounted on buses and the other
mounted on electrical bicycles. The first platform performs
measurements by pumping the air inside a chamber in contact
with the sensors and collects position, speed and use of brakes
directly from the bus computer and sends the data to a central
database. The other platform is powered by the bicycle battery
and has no need for a pump as it is in direct contact with the
air. Measurements gathering begins as a person starts riding
the bicycle and turns off a short period after the bicycle stops.
Collected measurements are sent to the same data base as the
first platform. Citizens can visualize nodes’ measurements and
positions gathered from both platforms on a map using a web
interface or a mobile app. Through this work, the authors aim
at increasing the awareness of citizens and involving them in
the adoption of new habits that contribute in the reduction of
air pollution.

The Airsense project [15] provides a portable device for
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personal air quality monitoring. The sensor node is battery-
powered and integrates the Sharp GP 2Y 1010AU 0F dust
sensor that measures particulate matter (PM2.5), an SHT15
temperature and relative humidity sensor, an ADXL345 ac-
celerometer sensor to capture users’ movements and a GPS
module to track users’ location. All sensors are incorporated
along with a micro-controller on a single PCB. No wireless
communication technology is used. Measurements are instead
stored on a SD card that is accessible by the user.

City Scanner [16] is a general-purpose portable sensing
platform that offers multiple configurations in terms of sensing
probes. The solution does not require a specific power supply
and therefore can be mounted on top of any urban vehicle
without impacting its operations. Each deployed node consists
of a group of sensing modules sending their measurements
via a short-range WiFi network to a core unit which ensures
power management, data storage and streaming to the cloud
using open WiFi hotspots. The proposed solution has been
deployed in the city of Cambridge. Environmental probes mea-
suring temperature, humidity and particulate matter have been
mounted on trash trucks along with other sensors like thermal
cameras and WiFi scanners. The main challenges encountered
with the deployment were the data transfer reliability, power
consumption and data fidelity.

The UrPolSens project [17] proposes a low-cost energy-
efficient air quality monitoring platform that uses fixed sensor
nodes powered by solar panels and batteries. The nodes
measure temperature, relative humidity and NO2 and can be
adapted to measure PM or VOC. Measurements are sampled
every second. Every minute an average is recorded on a short-
term EEPROM. The average measurements are then aggre-
gated into 10-minute records. These records are stored on a
local SD card and sent using low-power LoRa communication
technology to a gateway that forwards the packets via cellular
network to a central cloud server for storage, filtering and
processing. A web interface has been developed to visualise
real-time air pollution concentrations and weather conditions.
The solution was deployed and tested for 3 months in Lyon
city in an urban street surrounded by two reference stations.
The results show that the system is energy-efficient while
keeping an acceptable degree of accuracy.

The OpenSense project [18] studies the performance of
low-cost sensing probes by designing and deploying mobile
sensor nodes on trams and buses. The nodes measure several
environmental parameters such as temperature, humidity, O3,
CO, NO2 and PM. In addition, they are equipped with a GPS
and an accelerometer to geolocate the measurements. Each
node incorporates a Linux-based core component which stores
pollution data locally and streams it to the cloud server using
either WiFi or cellular. The platform offers a visualization tool
that displays pollution concentrations on top of the map of the
region. The project was deployed in Zurich and Lausanne in
Switzerland, and mounted on top of 10 trams and 10 buses.
The researchers point out the challenge of low-cost sensors
calibration and propose techniques to reduce the calibration
error.

Table I summarizes the characteristics of the aforemen-
tioned low-cost environmental monitoring platforms: type of

deployment (i.e. fixed or mobile), measured environmental
parameters, sampling frequency, capacity to store data locally,
communication technology, and energy consumption when
available.

Temperature and humidity monitoring is present in most
of the platforms, proving the importance and the impact of
heat islands on other pollutants and air quality in general.
Besides, most of the presented platforms use ZigBee, WiFi or
BLE which are quite adapted for indoor monitoring or fixed-
sensors-based monitoring systems. In the context of crowd-
sensing, BLE is useful to send measurement data to users’
smartphones, while sending the data from the smartphones to
the cloud needs a cellular connection or WiFi. However, this
operation, whether it requires a human intervention or not,
consumes a significant amount of the smartphone’s energy and
mobile data plans. As an alternative, low-power long-range
communication technologies could cover the whole network
of sensors with a small number of gateways.

III. 3M’AIR PROJET

3M’Air ("Mobile Citizen Measurements and Modeling: Air
Quality and Urban Heat Islands") is a three-year multidisci-
plinary project that aims to explore the potential of participa-
tory sensing to improve the local knowledge of air quality and
Urban Heat Islands. It leverages several scientific expertises
going from electrical engineering, computer science and fluid
mechanics to geography, urban climatology and sociology.

A. Context and Objectives

The adverse effect of urban heat islands and air pollu-
tion on human health and the environment has been widely
documented in several studies [19], [20], [21]. Despite that,
pollutant concentrations as well as air temperature continue
to increase, mainly due to urbanization, industrialization and
other factors [22] [23] . For instance, in Lyon city, France, an
increase of 2.2 °C, representing + 0.4 °C/decade, was recorded
in average annual temperatures between 1959 and 2016 [24]
[25]. More precisely, during summer, there is an increase of 2.8
°C between 1959 and 2016 (+ 0.5 °C/decade) [24]. In order to
i) understand the link between microclimates and the potential
impact of UHI and urban pollution, and to ii) bridge the gap
between individual exposure and regional measurements, a
fine characterization of temperature and air quality at local
scales is needed. Our project aims to evaluate the added value
of moderately accurate pollution data generated by a non-
scientific community in the fine-grained characterization of
air quality and urban heat islands. Our project also seeks to
involve citizens in the scientific process of air quality mon-
itoring and to present adapted and optimized approaches for
participatory data analysis to generate fine-grained pollution
maps while taking into account the continuity in space and
time of measurements and the dynamic nature of the studied
phenomena. We believe that the interest of these participatory
data will be stronger by combining them with physical models
and accurate reference monitoring stations. To this end, the
first step of our project is to propose a multi-application
participatory monitoring system with a variety of measured
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Projects Fixed / mobile Measured parameters Sampling frequency Local storage Communication
technology Energy consumption

Ferdoush and Li [11] Fixed Temperature and
relative humidity 35 min No ZigBee /

Lombardo et al. [12] Fixed Temperature and
relative humidity 15 min Yes BLE 20 mA

Arroyo et al. [13] Fixed VOCs 10 min No ZigBee 104 to 270 mA

Castell et al. [14] Mobile
NO2, NO, CO, SO2,
O3, CO2, temperature
and relative humidity

30 sec No Bluetooth /

Airsense [15] Mobile PM2.5, temperature and
relative humidity 3 sec Yes / /

City Scanner [16] Mobile Temperature, humidity
and particulate matter / Yes WiFi /

UrPolSens [17] Fixed Temperature, humidity
and NO2

1 sec Yes LoRa / Cellular 18 mA

OpenSense [18] Mobile
Temperature, humidity,

O3, CO, NO2
and particulate matter

/ Yes WiFi / Cellular Permanently plugged

TABLE I
COMPARISON OF DIFFERENT ENVIRONMENTAL MONITORING PLATFORMS

parameters (gas, particulate matter, temperature and relative
humidity) based on lab-designed modular, autonomous and
optimized sensor nodes whose hardware and software can be
adapted to the needs of our studies.

B. System Design guidelines

Based on the study and survey results, our first aim was
to design a generic network architecture that mainly serves
participatory environmental monitoring applications but can be
easily adapted to other environmental applications. To achieve
this goal a number of recommendations need to be respected.
Our main design guidelines can be summarized as follows:

Required parameters: In order to serve the two identified ap-
plications (i.e. air quality and urban heat islands), the designed
node should measure air temperature, relative humidity, NO2,
PM1, PM2.5 and PM10. Note that an extra calibration is often
needed to extract meaningful data from sensors like conversion
from voltage to pollutant concentration for gases like NO2, or
conversion from particle counts to mass for particulate matter.

Data gathering: The network should allow measuring and
gathering all the identified air and weather parameters at a
remote server in order to allow the remote monitoring via
internet. Moreover, to offer a good data availability, it is
preferable to store the collected data at multiple levels. This
will add robustness against network connection problems.

Autonomy and network lifetime: The sensor nodes are
designed to be carried by people, hence they should deliver
at least 12 hours of operating time. This does not just mean
integrating a bigger battery but also optimizing all the system
components to offer better efficiency.

Sampling frequency: The developed network must be able
to perform measurements at an acceptable sampling rate to
ensure a good spatio-temporal coverage. The system must be
easily configurable to be adapted to the mobility of users (e.g.
bicycles or vehicles,...). However the main priority is the use
on foot, meaning an average speed between and 0.83 and 1.57
m/s [26], [27], [28]. By setting the default sampling frequency
to one every 20 sec, consecutive readings are less than 30m
apart, which gives a good spatio-temporal resolution.

Modular design: Our objective is to design a platform that
will be as flexible and extensible as possible. This can be
achieved by opting for a component-based design where the
whole system is composed of multiple hardware or software
components that can be removed or extended when needed.

Ease of use: Internet of things involves a big number of
smart connected devices in our daily lives. This should not
complicate our life but on the contrary simplify it. For this
reason, the designed nodes need to be light and small. Even
more, they should not require technical or scientific knowledge
to be used. It should be simple and as intuitive as possible to
turn on the node, to use it and to charge it.

Reliable measurements: To guarantee a good data reliability,
the sensor nodes should be adapted to real environmental
conditions. In fact, solar radiations have a big impact on
temperature and humidity measurements but also on other
pollutant measurements. To protect the sensor probes from
the effect of solar radiations, the nodes should be white and
incorporate a solar radiation shield.

IV. SYSTEM ARCHITECTURE

The sensing layer is composed of low-cost, small-size,
battery-powered and portable wireless nodes incorporating
three environmental sensors: a dust sensor (measuring PM1,
PM2.5 and PM10), a NO2 sensor, and a temperature/humidity
sensor. In addition, the nodes include a power manager, a GPS
receiver, a microSD card module (to ensure data availability
in case the node is outside LoRaWAN network coverage), an
analog-to-digital converter (ADC) to enable compatibility with
analog sensors, and a LoRa module. All the peripheral com-
ponents are managed and orchestrated by a micro-controller.

The communication layer relies on the LoRaWAN infras-
tructure provided by "The Things Network" (TTN) [29].
LoRaWAN [30] is a networking protocol defined by the LoRa
Alliance which is an organization of more than 500 companies
collaborating to promote the LoRaWAN open standard. This
standard is designed for sending small data packets over long
distance at a low bit rate and is one of the most promising
Low-Power Wide-Area Network (LPWAN) technologies for
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Fig. 1. System architecture overview

Internet of Things [31] . LoRaWAN relies on LoRa physical
layer which uses Chirp Spread Spectrum (CSS) as modulation
and offers multiple orthogonal Spreading Factors (SF).

LoRaWAN offers the possibility of using eight configura-
tions (Data Rates) on the EU863-870MHz ISM Band with
six possible SF values (SF7 to 12) [32]. The six mandatory
configurations use a 125 kHz bandwidth and offer a bit rate
varying from 250 bps for SF12 to 5.47 Kbps for SF7. Two
more configurations use respectively a 250 kHz bandwidth
with SF7 achieving a bit rate of 11 Kbps, and FSK modulation
offering 50 Kbps [32]. We note that the LoRaWAN maximum
payload size ranges from 51 to 222 bytes depending on the
selected SF value [32].

However, LoRaWAN has restrictions due the used frequency
band. For instance, in Europe, most of the 868 MHz sub-bands
have a duty cycle of 1%, thus, each node must not exceed 1%
of spectrum occupancy per channel and per SF.

In addition to the physical configuration, LoRaWAN also
defines the network architecture as well as the upper network-
ing layers.

In the proposed architecture by LoRaWAN, the gateways
forward the packets sent by sensor nodes to the network server,
which does the filtering of the data and makes sure that only
one copy of the packet is sent to our application server to
avoid data redundancy.

On top of that, LoRaWAN offers two security modes: i)
Over The Air Activation (OTTA) mode where a join procedure
is performed at the beginning in order to generate dynamic
addresses and security keys, and ii) Activation By Personal-
ization (ABP) mode where addresses and security keys are
pre-loaded before the deployment. In both modes, a Message
Integrity Code (MIC) is added to each message to ensure
that data has not been changed and is used by nodes and
the network server to ensure data integrity. Thanks to the
payload encryption, confidentiality is also ensured between
nodes and the application server in both modes. We choose
to use OTTA as it is based on dynamic keys, and handles the
initial nodes authentication in addition to the confidentiality

and data integrity.
TTN is a contributor member of the LoRa Alliance offering

a free-to-use LoRaWAN network. They manage the cloud
infrastructure while the gateways are mainly deployed by vol-
unteers (including our lab) [33]. This layer is responsible for
forwarding measurement data received from the nodes to the
cloud server which represents the third layer. We have selected
this solution for mainly three reasons: 1) the participatory
aspect of our platform that meets the collaborative nature of
TTN; 2) its robustness and security through a large number
of gateways and an end-to-end encryption; 3) its growing
adoption in many fields all over the world with an increasing
number of deployed gateways [34], [35], [36].

The storage and processing layer is implemented on a
multiple functions cloud server. It receives data from the TTN
backend and stores them into a NoSQL database for cleaning
(i.e. correcting or removing inaccurate or redundant data from
the database) and processing. It offers a REST API through
which measurement data can be queried using a web browser,
a mobile application or a third-party service.

The end-user layer offers the users the possibility to vi-
sualise air pollution concentrations and weather parameters
using either a mobile application, a third-party service, or a
web interface that we designed to display maps and statistics.

A. Sensing and transmission

Our aim in this project is to design small and portable nodes
based on low-cost sensors. Given the fact that these nodes are
designed to be mobile and carried by people, it is important
to have a suitable design to 1) ensure the node’s functioning
in mobility, 2) protect the node from solar effects while
guaranteeing air flow, 3) maintain a reliable communication,
and 4) make the nodes the lightest possible for users. We have
designed a casing with an integrated solar radiation shield and
three separated chambers as depicted in Figure 2. We modeled
the casing using Autodesk Fusion 360 software. The casing
was 3D-printed using a Selective Laser Sintering process with
Nylon PA12 plastic. This material provides good strength and
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enough flexibility to withstand a fall without damaging the
node. The 16 `< print resolution allows precise placement
of the components as well as their attachment directly to the
casing.

The first chamber regroups the environmental sensors and
is designed to provide natural ventilation while protecting
the sensing probes from solar radiations. For the sensors, we
employ the AlphaSense series B [37] sensor which measures
#$2 concentrations. This low-cost electrochemical probe pro-
duces a current from the interaction of the target gas with
the electrolyte [38]. The Grove HM3301 low-power laser dust
detection sensor measures three sizes of particulate matters
(PM1, PM2.5 and PM10). This sensor is equipped with a fan
driving airflow inside a detection chamber, and is based on
laser light scattering technology. It has an effective detection
range of 1 to 500 `6/<3 [39]. The last sensor is the DHT-
22, a small low-power sensor based on a polymer capacitor for
measuring temperature and relative humidity with an operating
range of -40 to 80 °C and 0 to 100% respectively [40].

The second chamber holds a printed circuit board (PCB) that
we designed to integrate all necessary components. Our PCB
incorporates an Arduino MKR WAN1300 built on the Atmel
SAMD21 low-power ARM micro-controller [41], the Murata
CMWX1ZZABZ LoRa module 32 KB SRAM [42], 8 digital
pins, and 7 Analog input pins as depicted in Figure 3. An MKR
MEM ASX00008 shield is used to add a microSD card port and
2 MB extra flash memory. For managing analog sensors, a 16-
bits ADS1115 analog digital converter (ADC) [43] has been
added to have a better precision than the embedded MKR
12-bits ADC. Geolocation is achieved by a low-power GPS
receiver based on the MTK3339 chipset. This high-sensitivity
module has 66 channels and can track up to 22 simultaneous
channels [44]. In addition, the GPS module has a small battery
allowing it to save the current date and time without having
to perform a data acquisition from satellites. This is very
helpful in situations where no satellite coverage is available
(e.g. passing into a building or going inside a metro station).
The last component on the PCB is the PowerBoost 1000C, a
small power manager [45] based on a DC/DC boost converter
chip that powers the system and is connected to the 3.7V LiPo
battery placed in the third chamber. It is possible to charge the
node’s battery by plugging the node to an external 2A power
source using an easily accessible micro USB port located at
the bottom of the node. An additional micro USB port is also
available for node programming and debugging purposes.

When the node is turned on, the micro-controller initializes
the different modules and establishes an Over The Air Ac-
tivation connection to our application on the TTN network.
Data are gathered from all environmental sensors and the
GPS at 20 seconds intervals. In order to reduce the energy
consumption of data transmission and storage while respecting
the maximum payload of LoRaWAN packets, each node
accomplishes three measuring cycles before storing the data
on the micro-SD card and sending them to TTN gateways.
The data record contains the ID of the sensor, the timestamp
of the measurement, temperature, relative humidity, NO2 PM1,
PM2.5, PM10 values and GPS coordinates. In case there is no
GPS signal, the GPS coordinates will have the value zero, but

we still can get the exact date and time from the GPS, thanks
to the GPS module’s battery that allows it to save the current
date and time.

We have formatted our packets to contain 51 bytes (3
x 17 bytes) which satisfies the duty cycle constraint using
SF7, SF8 and SF9 with a 20-second sensing period and
one-minute transmission period. We note that the value (3)
is the number of cycles and is also configurable. We also
note that higher values of SF can be used by increasing
the transmissions period and/or reducing the amount of data
to send (e.g. compressing data, reducing the measurement
precision, sending averaged data).

In all our tests we send confirmed packets (i.e. the applica-
tion server has to acknowledge the reception of the packet).
However, we do not implement retransmissions since data are
stored locally on the nodes and the loss rate was very low.
Indeed, thanks to the duty cycle, the collision probability is
low when the number of nodes in a close proximity is not
large [46].

When packets are received by TTN, they are forwarded
to a router/broker service in the TTN infrastructure that will
decode the message. The latter is then published to the right
application handler which is our cloud server. For further
details on how the transmission layer works, please refer to
the TTN documentation [29].

B. Storage and processing cloud server

The large data volume generated by the sensor nodes needs
to be stored in a remote server in addition to the local storage.
Hence, providing a new layer of storage to ensure the avail-
ability of the data and offering the possibility to access data
remotely. In order to catch the data sent by the transmission
layer we developed a Node.js script based on the integration
solution provided by TTN which offers a set of open tools
to facilitate the development of IoT applications. Whenever a
new measurement is received from the gateway, it is parsed
and then stored on a NoSQL database (MongoDB) using
Mongoose which is an object modeling tool that provides
schema-based solution to model application data.

The cloud server is composed of two main components;
the database component and the end-user services component.
The latter is responsible of answering user requests through
a REST API for mobile apps, third-party services, or a web
interface which is accessible via any desktop or mobile web
browser as shown in Figure 1. In addition to that, multiple
data processing techniques can be added such as detection
of outliers and redundant data, measurements calibration,
concentrations prediction, missing data reconstruction, etc.

C. End-user application description

In order to visualize the sensor nodes measurements, we
have developed a web application that offers a simple and
intuitive interface for visualizing pollutant concentrations and
weather parameters. The front-end of the web application is
built using HTML, CSS and Angular which is an open-source
component-based front-end framework for building large-scale
single-page applications. It is built on TypeScript which relies
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Fig. 2. (a) External side view of the designed sensor node; (b) Internal side view (sensor chamber); (c) Internal top view (second and third chambers)

Fig. 3. The node PCB with the different modules embedded

on JavaScript ECMAScript6 and offers a lot of features that
simplify web development such as dependency injection and
component independence. The interface is based on Bootstrap
4 and Angular Material 7 for good looking UI components
that work across the desktop and mobile.

For experimentation purposes, we have designed two front-
end components: Dashboard and pollution maps as depicted in
Fig. 4 and Fig. 5. Through the first component, it is possible to
display useful information such as the list of nodes along with
their IDs, LoRaWAN addresses and last time seen online, etc.
The dashboard also presents statistics about the contribution
of each node to the application as well as the total number
of measurements or a the number of measurements performed
per month. All the information presented in the dashboard is
actively updated in real-time to keep the user informed about

Fig. 4. The web dashboard of the platform

the last changes. The Maps component allows the user to
visualize air quality and meteorological conditions within the
city by choosing the wanted date and parameter to visualize.
All requests generated from the web application are sent to
the web server asynchronously to improve the user experience
with non blocking data loading and waiting times.

V. RESULTS AND DISCUSSION

Following the aforementioned guidelines and architecture,
we have built 16 mobile sensor nodes. Although, before using
them in measurement campaigns, we have tested the proper
functioning of our nodes by: 1) comparing the sensor nodes
to reference stations; 2) comparing the sensor nodes to each
other; 3) evaluating their performance in terms of energy
consumption. For this, we performed multiple tests which we
summarize in what follows.

A. Measurements validity: comparison with reference stations

To assess the accuracy of our nodes’ measurements and the
effect of environmental conditions, we have tested them next
to two reference devices: the first one is the "Météo France"
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Fig. 5. The web interface showing the measurements of the nodes on a map

Fig. 6. Our deployed node next to "Météo-France" temperature and relative
humidity monitoring station

temperature and relative humidity monitoring station in Lyon
city, and the second one is an approved fine dust measurement
device (Fidas 200©).

1) Temperature and relative humidity: In order to validate
the temperature and relative humidity measurements taken
by the DHT22 sensor, a metrological test was carried out
during summer of 2019, from June 27th at 11am to June
28th at 10am (local time). This date was selected for the
high temperatures recorded this day, during the heat wave
of late June in Lyon, with a temperature that reached 38.10
°C at 5pm. The 3M’Air measurement device was placed

on the instrumentation field of "Météo-France" in Lyon, on
a 1 meter high platform (see Figure 6). The measurement
site meets the standards recommended by the World Mete-
orological Organization (WMO) for temperature and relative
humidity measurements. The reference sensors of the station
are the PT100 for temperature and Vaisala HMP110 for
relative humidity. For this test, two samples of measurements
have been prepared to evaluate the capabilities of the device
measurement as a function of direct solar radiation. Thus, the
first sample regroups measurements with direct solar radiation
taken from 11am to 9:30pm (sunset at 9:34pm) and from
6am to 10am (sunrise at 5:53am). The second sample includes
measurements without direct solar radiation performed from
10pm to 5:30am. Measurements from both devices are then
compared next to each other. Since the data do not follow a
normal distribution, the non-parametric Mann-Whitney test is
used here (also called Wilcoxon-Mann-Whitney or Wilcoxon
Rank-Sum test) [47], [48]. The classical linear regression
parameters are also used to compare the performance of the
two sensors (R, RMSE and bias). Temperature and relative
humidity measurements from both sensors are plotted (see
Figure 7).

The test indicates a significant difference (p-value = 0.021)
in daytime temperatures with 3M’Air recorded values (average
temperature of 34.8 °C) higher than the reference sensors
measurements (average of 32.7 °C). Significant differences
are recorded punctually, with for example a difference of
4.30 °C at 11am and 5 °C at 8am.The correlation coefficient
is 0.93, The RMSE is 1.7 °C and the bias is equal to -
1.9 °C. On the other hand, no difference is detected for
nocturnal temperatures (p-value = 0.451, R = 0.99, RMSE
= 0.4, bias = -0.5). No difference was detected in relative
humidity measurements either, neither for the day data (p-
value = 0.720, R = 0.97, RMSE = 4.3, bias = 1.4), nor for the
night data (p-value = 1, R = 0.99, RMSE = 1.4, bias = 0.1).

The differences obtained for the daytime air temperatures
was expected because of the overheating of the shelter with
direct exposure to solar radiation. The correlation coefficient
for the temperature difference between the two sensors and
the global radiation measured at the weather station is equal
to 0.53. Indeed, although our node has an anti-radiation shelter,
it is only open on 180°for design reasons (to keep the node
small, the different chambers of the node were placed one
behind the other as depicted in Figure 2). In addition, the
small size of the sensor node may play a role in this. The
measurements of humidity and night temperature are, for their
part, totally satisfactory. It is worth mentioning that the 3M’Air
sensor nodes were not designed to perform static but mobile
measurements.

To evaluate the node’s performance in mobility, six tests
in four days during the period of July-September have been
performed with the 3M’Air sensor node next to two sensor
nodes incorporating the Log32 sensor [49] inside two types
of anti solar radiation shelters (TFA [50] and DAVIS [51]). In
two tests, all sensors were carried by participants walking on
foot using straps, and in the last ones, the sensors were placed
in a bicycle basket. All tests took place in the "Presqu’île"
peninsula of Lyon city and measurements were taken every
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Fig. 7. 3M’Air node vs reference station (a) temperature; (b) relative humidity

20 seconds. Three non-parametric statistical tests have been
used on the data gathered by the sensors; Mann-Whitney,
Komogorov-Smirnoff [52], Kruskal-Wallis [53].

The results showed divergence between the tests outputs.
Indeed this difference is due to the fact that unlike the 3M’air
anti solar radiation shield, the TFA and DAVIS shelters are
opened on 360 degrees allowing air flow in all directions. In
addition both sensor nodes with the TFA and DAVIS shelters
are much bigger than our sensor node and do not include a
circuit with an important number of components.

We have also calculated the classical linear regression pa-
rameters (R, RMSE, and bias). For temperature measurement,
the highest coefficient of determination we have got is equal to
0.95 and the lowest is equal 0.61 with an average of 0.82. The
root mean square error is between 0.4193 and 0.1631 degrees
Celsius and the measurement bias equals 0.37 °C. For relative
humidity, The RMSE belongs to the interval [0.70 and 1.46]%
while the coefficient of determination varies between 0.58 and
0.94. The measurement biais is around 0.93%. These results
show clearly that we are within the error ranges indicated for
the DHT22 sensor [40] which make the use of 3M’Air nodes
very satisfactory in mobile measurements.

2) Particulate matters: We have evaluated the performance
of the Grove HM3301 PM sensor embedded in our sensor
node by testing it next to an approved fine dust measurement
device called FIDAS 200© which is TUV Rheinland certi-
fied, and recognized by the LCSQA ("Laboratoire Central de
Surveillance de la Qualité de l’Air") for monitoring particulate
matter concentrations. The two sensor nodes were placed
indoor one next to the other from October 4th,2019 to October
9th,2019. The series of measurement are highly correlated
with a low RMSE for PM1 and PM2.5 while performances
degrades for PM10 as reported in Table II. This may indicate
that the composition of the largest PM in our region is
different from that assumed when the sensor was calibrated.
Another interesting fact is that the 3M’Air sensor slightly over-
estimates the measurements in comparison to the reference
device as shown for PM2.5 in Figure 8. Considering the high

Metric PM1 PM2.5 PM10
RMSE 3.86(`6/<3) 5.784(`6/<3) 7.92(`6/<3)

Pearson Correlation

coefficient
0.98 0.92 0.63

TABLE II
RMSE AND CORRELATION COEFFICIENT OF PM1 , PM2.5 AND PM10

MEASUREMENTS TAKEN BY THE DESIGNED NODE NEXT TO A REFERENCE
DEVICE

correlation, the over-estimation can be compensated by an
offline correction on the calibration function.

Sensor calibration is needed to cope with the low accuracy
and signal drifting of low-cost sensors. In fact, calibration tech-
niques for low-cost sensors have been extensively discussed
in the literature. They are generally classified according to
the availability of reference stations (reference-based, blind,
or partially blind calibration), mobility of the sensors (static,
mobile, or hybrid), calibration relationship (univariate or mul-
tivariate), and the used calibration model (e.g ordinary Least
Squares, multiple Least Squares etc.). [54], [55]

As a proof of concept, we have implemented a univariate
linear regression to calibrate our PM sensor’s raw data based
on the concentrations observed by the FIDAS sensor. In this
process, we vary the learning duration and the temporal reso-
lution to evaluate their impact on the calibration performance.
Results show that with 6 hours of training on data with 1-
minute temporal resolution, the RMSE decreases from 5.785
to 0.835 as can be observed on Figure 9. A training duration of
12 hours with the same temporal resolution allows to achieve
a smaller error of 0.734. Moreover, when decreasing the tem-
poral resolution to 1 hour instead of 1 minute, the calibration
achieves better performance with a RMSE decreasing from
5.735 to 0.558 using 6 hours of training and 0.465 with 12
hours of training. These observations show that high temporal
resolution allows to obtain better results. Interested reader
can refer to [54], [55] for more details on low cost sensor
calibration techniques.
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Fig. 8. 3M’Air node vs reference station: PM2.5 concentrations

Fig. 9. calibration of 3M’Air PM sensor based on reference station

B. Inter-comparison

We have also conducted other tests to compare the designed
sensor nodes to each others. For this purpose, six nodes form-
ing three groups (two nodes per group) have been deployed
on the rooftop of a three-story building. Each group of sensors
has been placed differently.

The reason behind this is to evaluate the impact of nodes’
position and orientation. The test has been performed from
January 21st,2020 at 12pm to January 22nd,2020 at 8am (local
time). While aggregating data into one minute averages, we
have calculated the RMSE and the correlation coefficient of
Pearson within each group and also between averaged data of
the three groups. Results are presented in Table III

1) Temperature and relative humidity: We have compared
temperature and relative humidity measurements of every
two sensors of each group. Figure 10 presents temperature
measurements from all six sensors. The first observation that
can be drawn from this figure is that each group measured
different temperature and relative humidity values. This was

expected since the groups were placed in different positions
and orientations, resulting in different sun exposure and wind
direction. In addition, there is a good correlation between the
nodes of the same group especially with temperature mea-
surements. We also notice that the difference in measurements
between the groups still existed despite the absence sunrays.
This confirms that measurements can be impacted not only
by the sun exposure but also by the wind direction. Another
observation that can be noted from Table III is that the RMSE
of temperature and relative humidity values inside the same
group sometimes exceeds the error margins claimed by the
datasheets of the sensor. This is possible as these sensors
are low-cost and may present in some cases larger errors.
However, these values can be corrected and the sensors can
be calibrated regularly. On the other hand, the RMSE between
groups stays high due to the fact that each group had a different
placement and orientation. All these results show that our
nodes perform well and confirm again the impact of wind
direction and angle of sun exposure on the sensors.

Fig. 10. Temperature measurements from our designed nodes

2) Particulate matter: In the case of particulate matter,
Figure 11 presents PM2.5 concentrations from the six nodes.
For readability reasons, measurements have been aggregated
into 30 min averages in this plot. However, all calculations
were based on 1 min averages. We can observe that PM
concentration values from all six nodes present the same trend
and a good correlation during the whole period of the test,
excepting node 6 which recorded lower concentrations than
the others.

Another interesting result presented in Table III is that
unlike temperature and relative humidity, the RMSE and the
coefficient of correlation for PM2.5 and PM10 concentrations
have reasonable values regardless of the sun exposure of the
nodes or their placement. This indicates that the impact of the
sun and wind direction is lower on PM concentrations than
temperature and humidity. It has to be noted that the distance
separating the sensor nodes was just few meters as they were
deployed on the rooftop of the same building.
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Group number Temperature Relative humidity PM 2.5 PM 10

RMSE Pearson’s
coefficient RMSE Pearson’s

coefficient RMSE Pearson’s
coefficient RMSE Pearson’s

coefficient

Intra-group
1 0.30 °C 0.99 10.17 % 0.99 1.28 `6/<3 0.99 1.66 `6/<3 0.99
2 0.87 °C 0.96 5.11 % 0.95 4.11 `6/<3 0.96 5.25 `6/<3 0.96
3 0.71 °C 0.99 13.65 % 0.99 4.73 `6/<3 0.96 5.58 `6/<3 0.96

Inter-group
1 - 2 4.21 °C 0.85 15.13 % 0.92 2.02 `6/<3 0.97 2.53 `6/<3 0.97
1 - 3 2.84 °C 0.93 9.62 % 0.95 3.80 `6/<3 0.98 4.77 `6/<3 0.98
2 - 3 1.75 °C 0.93 9.01 % 0.97 3.59 `6/<3 0.97 4.49 `6/<3 0.97

TABLE III
RMSE AND CORRELATION COEFFICIENT FOR MEASUREMENTS OF TEMPERATURE, RELATIVE HUMIDITY AND PARTICULATE MATTER CONCENTRATIONS

Configuration NO2 Temperature and RH PM sensor Sampling frequency Transmission frequency Average energy consumption
Config 1 X X X 20 sec 1 min 231 mA
Config 2 X X X 1 min 3 min 224 mA
Config 3 X X - 20 sec 1 min 115 mA
Config 4 X X Without fan 20 sec 1 min 154 mA

TABLE IV
COMPARISON OF DIFFERENT OPERATING CONFIGURATIONS

Fig. 11. PM2.5 concentrations measured by our designed nodes

C. Power consumption

Energy consumption is of great importance in low-cost
WSNs. In fact, Energy requirements differ from one appli-
cation to another. For our case, we have conducted multiple
tests with different configurations to evaluate the power con-
sumption and also to determine which configuration or sensor
is power consuming. Results are reported in Table IV. As can
be expected, the higher the sampling frequency, the higher the
energy consumption. The interesting observation is that divid-
ing the sampling frequency by 3, from one sample every 20 sec
(Config 1) to one every minute (Config 2), hardly reduces the
consumption by 8 mA, around 3.5%. It is worth mentioning
that the sensors are not turned off between measuring cycles
because the convergence time of some sensors is larger than
the chosen sampling period. Indeed the convergence time of
the DHT22 is about 2 seconds [40], while the PM sensor
needs at least 30 seconds after power-on to start giving reliable
results [39]. On the other hand, the required convergence
time is more important for the Alphasense NO2 and may
reach around ten minutes (see more details in future work

section). Another interesting result is the energy consumption
of the PM sensor: turning it off (Config 3) reduces the energy
consumption by almost half (from 231 mA to 115 mA). This
is due to its integrated fan used to aspire the airflow. In the
last test (Config 4), the fan of the PM sensor was turned off.
The energy consumption droped to 154 mA, meaning that the
fan consumes 77 mA while the electronics of the Grove PM
sensor uses 39 mA. Nevertheless, in order to obtain reliable
measurement data, it is recommended to use the fan of the
sensor.

Based on these tests we choose the first configuration, i.e.
maintaining the sampling frequency at 20 seconds and sending
data every minute. This will guarantee a good temporal and
spatial resolution with an estimated life time of 22 hours using
a 5100 mAh battery. We believe that this is a good battery life
since our participatory measurement campaigns last about two
hours.

VI. FUTURE WORK

Through this project, we were able to design and develop a
general IoT platform, and to test it on air quality monitoring
application. This could not have been achieved without ad-
dressing multiple challenges related to both IoT and air quality.
Nevertheless, multiple challenges still need to be addressed
in this field. Going in that direction, we are planning to
investigate the following issues.

A. Sensors’ convergence time and sensing duty cycling

WSN are often limited by their resources, especially when
it is about energy. To cope with that, we usually adopt some
solutions such as the sensing and the radio duty cycling.
The sensing duty cycling consists of putting the sensors in
sleep mode unless they are performing measurements. Such
duty cycle behavior is limited by the convergence time of the
sensors embedded in the node. The convergence time is indeed
the duration that a sensor needs in order to reach a steady
state in stationary conditions and then to output valid readings.
Every sensor has its own stabilization time that depends not
only on the type of the probe but may also depend on the
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duration of the sleep phase. Based on the datasheets, the
convergence time of the DHT22 is about 2 seconds [40], while
the PM sensor convergence time is about 30 seconds [39]. We
have conducted first experiments to estimate the convergence
time of Alphasense NO2 sensor in stationary conditions and
we found that this time ranges from around 50 seconds to ten
minutes when the previous sleep phase goes from one minute
to one hour respectively.

We are planning to conduct extensive experiments to assess
the impact of sleeping time on the convergence one for the
different used sensors. This would help us to propose adequate
sensing duty cycling approaches in order to enhance the node
lifetime while keeping valid measured data.

B. Sampling scheduling

In the case of battery-powered WSNs, generally, the nodes
perform measurements at well-defined time intervals in order
to extend the battery life. Though, it is always better to have
small time intervals especially in air quality monitoring to
improve spatio-temporal resolution and data quality. Currently,
our nodes perform their measurements every 20 seconds and
then send data after each 1 minute. We want to evaluate the
loss in terms of mapping quality when considering higher
sensing intervals.

Indeed, we have recently reconsidered and compared some
regression approaches to assimilation ones while taking into
account the intrinsic characteristics of dense deployment of
low-cost WSN for air quality monitoring (high density, numer-
ical model errors and sensing errors) [56]. We have proposed
a general framework that allows the comparison of different
strategies based on numerical simulations and adequate es-
timation of the simulation error covariances as well as the
sensing errors covariances. In addition, we have conducted
extensive simulations based on a widely used numerical model
and the characterization of the simulation errors.

While using the results of this work [56] and realistic data
that we collect in our measurement campaigns, we want to
study the impact of the sampling frequency on the overall
air quality mapping while using different regression and as-
similation approaches. A first simple comparison should be
done between 20-second interval data, 40-second interval data,
60-second interval data, etc. This should assess the trade-off
between sampling frequency and air quality mapping using
mobile low-cost sensors.

In this part, we want also to conduct more analysis in
order to propose adaptive sampling scheduling in function of
the node’s trajectory and speed, the sensing quality, etc. this
may lead to irregular sampling intervals in order to enhance
the node’s lifetime while enhancing the overall air quality
estimation. We also believe that it would be interesting to see
if we can turn off the GPS receiver at some sensing cycles
and then try to predict the position in which a measure was
taken based on the time of the measure and its value. This
would make it possible to extend the battery life of the node
even more.

C. Improve the platform

Our platform is operational and is currently used in several
measurement campaigns in Lyon (around ten campaigns until
now). However, we believe that there is still room for improve-
ment. To this aim, we are planning to improve our platform
by adding the possibility to remotely manage the nodes. This
will give us the ability to change the sampling/transmission
parameters of the nodes and to put a certain sensor/receiver in
sleep mode. Therefore, the web application will not only be
used for data visualization but also for nodes administration.
Regarding the node, we could add BLE support, this will give
us the ability to use, when possible, the GPS of smartphones
instead of the integrated GPS module, which could save us
some energy. Another possible improvement is the support of
downloading sensor data by just connecting the node to a PC
or a smartphone via BLE.

VII. CONCLUSIONS

Today, climate change is a global challenge and repre-
sents a serious concern. As a result, a fine knowledge of
air quality and urban heat islands is strongly recommended
to implement appropriate policies. To tackle this challenge,
low-cost environmental WSNs are increasingly present and
integrated in smart cities solutions. They offer new possibilities
of monitoring air quality and urban heat islands, reduce the
deployment and maintenance cost, and improve the spatio-
temporal resolution.

In this work, we present a mobile participatory-based air
quality and urban heat islands monitoring platform. It takes
advantage of the low-cost and high accessibility of environ-
mental sensors and long range communication technologies
to offer high data availability and spatio-temporal resolution.
We have designed small, mobile and modular sensor nodes
that can be used not only for air quality applications, but
in other environmental applications as well. Furthermore, we
have designed an intuitive web interface to visualize sensor
data, and have made collaboration between our platform and
third party services possible. To validate the platform, we have
carried out multiple tests involving reliable reference stations
and sensors. The results were promising and it was shown that
our nodes can be used in the field and thus contribute to the
improvement of the knowledge of air quality and urban heat
islands.
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