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Abstract. The Stern-Gerlach experiment is notoriously counter-intuitive. The official theory is that the spin of a

fermion remains always aligned with the magnetic field. Its directions are thus quantized: It can only be spin-up

or spin-down. But that theory is based on mathematical errors in the way it (mis)treats spinors and group theory.

We present here a mathematically rigorous theory for a fermion in a magnetic field, which is no longer counter-

intuitive. It is based on an understanding of spinors in SU(2) which is only Euclidean geometry. Contrary to what

Pauli has been reading into the Stern-Gerlach experiment, the spin directions are not quantized. The new corrected

paradigm, which solves all conceptual problems, is that the fermions precess around the magnetic-field just like

Einstein and Ehrenfest had conjectured. Surprizingly this leads to only two energy states, which should be qualified

as precession-up and precession-down rather than spin-up and spin down. Indeed, despite the presence of the

many different possible angles θ between the spin axis s and the magnetic field B, the fermions can only have two

possible energies m0c2±µB . The values ±µB do thus not correspond to the continuum of values −µ·B Einstein and

Ehrenfest had conjectured. The energy term V =−µ·B is a macroscopic quantity. It is a statistical average over a large

ensemble of fermions distributed over the two microscopic energy states ±µB , and as such not valid for individual

fermions. The two fermion states ±µB are not potential-energy states. We also explain the mathematically rigorous

meaning of the up and down spinors. They represent left-handed and right-handed reference frames, such that now

everything is intuitively clear and understandable in simple geometrical terms. The paradigm shift does not affect

the Pauli principle.

PACS. 02.20.-a, 03.65.Ta, 03.65.Ca Group theory, Quantum Mechanics

1 Preliminaries: Understanding spinors and a new approach to quantum mechanics

1.1 Clifford algebra

The present paper is based on previous work of the author [1]. For the convenience of the reader we provide in this Prelimi-
naries Section a minimum of information about that work, which is a formulation of a new approach to quantum mechanics
(QM) based on the geometrical meaning of spinors in group representation theory. This geometrical meaning of spinors is
explained in [2]. I cannot insist enough that the reader should really consider that reference [2] contains information he is not
aware of, such that he should read at least pp. 3-16 of it, if he wants to make sense of the present paper and the short intro-
duction presented in this Section 1. The basic underlying idea is that we generate the rotation group and the homogeneous
Lorentz group from reflections. That was also Hamilton’s idea when he developed the quaternions.

From the reflections in R
n , n ∈N, n ≥ 3, we generate a group that does not only contain the rotations of Rn , but also re-

versals and reflections. By a reversal, we understand an operation obtained from an odd number of reflections. The rotations
are obtained from an even number of reflections and form a subgroup of the group generated by the reflections. An analo-
gous statement applies for the homogeneous Lorentz group, where we also call a reversal an operation obtained from an odd
number of reflections. The operations obtained from an even number of reflections constitute the homogeneous Lorentz
group which contains the group of rotations of R3 as a subgroup. How the quest to find the representation matrices of the re-
flections leads to the definition of the Pauli matrices and the Dirac matrices is explained in Subsection 2.2 of [2]. Note that the
development is algebraically equivalent to the way Dirac defined the Dirac matrices for the homogeneous Lorentz group. It
is however conceptually completely different. Rather then trying to find some jaw-dropping square root of the Klein-Gordon
equation, the true and geometrically clear issue is to define the reflection operators which can be used to generate the group.
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This gives a entirely different, geometrical meaning to the algebra, which is absent from Dirac’s approach and renders this al-
gebra much more clear and intuitive. The group is mathematically defined prior to any use of it in physics, and as we will see
its representation theory contains only group elements. It does not contain vectors, four-vectors, four-gradients. or knock-
out square roots of d’Alembert operators. The development should be devoid of physical quantities like ħ, the electron rest
mass m0 and energy-momentum four-vectors, which do not have their place in a purely mathematical development of the
group representation theory. For reasons of enhanced clarity and readability, we are using in our approach [1] consistently a
different choice for the 4×4 Dirac matrices than Dirac and which was introduced by Cartan in his monograph on spinors [3]:

γx =

[
σx

−σx

]

, γy =

[
σy

−σy

]

, γz =

[
σz

−σz

]

, γt =

[
1

1

]

. (1)

This choice has the convenience that we can immediately spot if the group element is obtained from an odd or an even
number of reflections. The true Lorentz transformations have a block structure along the main diagonal, while the reversals
have a block structure along the secondary diagonal. It will also allow us to spot immediately when we use a superposition
state of a true Lorentz transformation and a reversal (see below), because then all four 2×2 blocks will be non-zero. In Dirac’s
choice making such distinctions is thwarted by the fact that not all four gamma matrices have their block structure along the
same diagonal. We can use this alternative choice because it has been shown that all valid choices for the gamma matrices
are equivalent. Note that the information content of a column of a Lorentz transformation matrix corresponds to only four
real parameters, while the definition of a general element of the Lorentz group requires six real parameters. In Chapter 4, p.96
of [1] we discuss two 2×2 matrix representations SL(2,C) of the Lorentz group which are based on the blocks and contain
all six real parameters. In Subsection 2.2 of [2] we explain starting from its Fig. 1 how the product of two reflections in the
rotation group defines a rotation and how this leads to the Rodrigues equation for a rotation matrix R(s,ϕ) in SU(2):

R(s,ϕ) = cos(ϕ/2)1− ı sin(ϕ/2)[s·σ ]. (2)

Here s is a unit vector along the axis of the rotation and ϕ the rotation angle, 1 is the 2×2 unit matrix and σ= (σx ,σy ,σz ) a
shorthand for the three Pauli matrices. The construction of the representation theory for the rotation groups inR

n , with n ∈N,
n > 3 and the homogeneous Lorentz group is obtained by simply generalizing this idea, but in the present paper we will only
focus our attention on the group of the rotations in R

3 and on the homogeneous Lorentz group. As the reflections are defined
by unit vectors a which are orthogonal to their reflection planes, we can use both a and −a to characterize the reflection,
which is thus represented by both matrices ±[a·σ ]. The result is that each group element is algebraically represented by two
representation matrices. Hence R(s,ϕ) and −R(s,ϕ) are representing the same rotation: SU(2) is a double covering of SO(3).
This is also true for the constructions in the Lorentz group. Here the reflections are defined with respect to three-dimensional
hyperplanes. They are the P and T transformations. Using the same geometrical derivation within the Dirac representation
as used in SU(2) it is easy to see that the rotation which corresponds to the SU(2) matrices ±R(s,ϕ) is now represented by the
two 4×4 matrices with the 2×2 block structure:

±

[
R(s,ϕ)

R(s,ϕ)

]

. (3)

When we will want to describe a spinning object at rest within the Dirac representation, it will therefore suffice to present
the calculations in SU(2) because in the Dirac representation it would only imply writing the same SU(2) matrix twice on the
diagonal. (It is therefore a misconception to claim that the electron spin can only be correctly described within the relativistic
framework of the Dirac representation). As already mentioned, this way all the matrices we have defined represent group
elements.

As explained in Subsection 2.4 of [2] , we can now also introduce a second algebra. This is a parallel formalism for vec-
tors and multivectors. This formalism exploits the fact that we have used the unit vector a to define the reflection operator.
The matrices [a·σ ] are occuring then in both algebras, such that the same algebraic quantity is representing then two ge-
ometrically completely different things: reflection operators in the first, pristine algebra of group elements, and vectors in
the second algebra. The formalism of the second algebra is then easily extended to vectors which are not of unit length, and
it is within this second algebra that Dirac’s approach is defined, as finding an algebra that linearizes the square root of a
quadratic form. This is missing a crucial point because this second algebra does not refer to the group elements of the first
algebra, like rotations, which, as we will see below, are essential for understanding the real meaning of the equation, which is
that it expresses spinning motion. The consequence of this is that within this second algebra one obtains the Dirac equation
without knowing what it means. It is mystifying us by hiding what is really going on behind the scenes in the first algebra.
Most of the time the fact that there are two different formalisms such that a same algebraic expression can represent two
different geometric objects is not clearly pointed out. In the first, pristine algebra of group elements, the reflection operators
are defined up to a sign, while in the second algebra the vectors are represented unambiguoulsy.

By multiplying the matrices representing vectors we obtain new quantities in the second algebra, which contain mul-
tivectors of the type a1 ∧a2 ∧ ·· · ∧am . The second algebra is thus an algebra of multivectors. The expressions we obtain in
carrying out the matrix products can contain sums with terms of different types of multivectors, such that one has the im-
pression that this is an algebra wherein we sum objects that we are not supposed to sum. It looks like summing kiwis and



G. Coddens: Exact theory of the Stern-Gerlach experiment 3

bananas. The definition of these awkward sums is in general the starting point of most texts about Clifford algebra. The stun-
ning definition is introduced without any justification or discussion which raises the question if this is reallly legitimate and
makes one wonder what this might mean. It just descends from heaven. Our approach to the group representation theory
permits to understand where this all comes from. The strange definition relies on the algebraic feasibility to carry out these
operations within a same general matrix formalism. E.g. the Rodrigues equation seems to be sum of a scalar and an axial
vector, which looks a priori absurd. In reality we express the algebraic representations of geometrical objects of the first type
(the group elements) in terms of algebraic representations of geometrical objects of the second type (the multivectors). It is
all the consequence of the initial fact that reflections and vectors are represented by a same algebraic expression. The same
is true mutatis mutandis in the Lorentz group.

Note that the notation [a·σ ], which is used in the algebra, is misleading. It is a shorthand for axσx +ayσy +azσz , which
represents the vector ax ex +ay ey +az ez = a while the analogy with the notation for a scalar product it thrives on might make
you think that it is a scalar, viz. the scalar product of a vector a with some “vector” σ. But the shorthand σ = (σx ,σy ,σz ) is

not a vector of R3, it represents the tri-vector (ex ,ey ,ez ) ∈R
9 of the three basis vectors of R3. As already stated [a·σ ] stands for

(ax , ay , az ) · (ex ,ey ,ez ) = a. Similar remarks apply mutatis mutandis in the Lorentz group, e.g. B·γ does not represent a scalar
but the vector B. This will become very important in Subsection 2.2.

In SU(2), the 2×2 rotation matrix can be represented by it’s first column without any loss of information, as explained
in Eq. 4 of [2]. This 2×1 column matrix is a spinor. In SU(2) a spinor represents thus a rotation. A spinor is a rotation. The
second column of the SU(2) rotation matrix is called the conjugated spinor, and as we will see it corresponds to a reversal (see
Appendix 1). That a spinor in SU(2) is just a rotation is much easier to understand than the textbook narrative that a spinor
would be the square root of a vector. That relation is nevertheless also explained in Subsection 2.5 of [2]. We explain there
that this idea cannot be fully generalized to R

n . The fact that in the Dirac equation we will use superpositions of states (see
below) will have as a consequence that the column vectors still represent the complete information about the six parameters
which define a general group element as discussed on pp. 163-166 of [1]. For this reason these column matrices are called
bi-spinors.

We can take advantage of this remark about superpositions of states to address an important issue. Group theory is based
on products of group elements. Sums of group elements are in general not defined. Spinors are not elements of a vector space
but of a curved manifold. For this reason summing spinors is not a defined operation. However in QM we are making linear
combinations of spinors all the time. We must thus justify this use, because QM leads to meaningful results. It is explained
in Subsection 2.3 of [2] that we can give such sums a meaning in terms of sets of group elements. In QM, these sets will become
statistical ensembles of physical states. This leads us naturally to a statistical interpretation of QM like proposed by Ballentine
[4]. The strong point of our approach is that it underpins Ballentine’s interpretation because his rules are now mathematically
derived from the group theory (and the construction of the Dirac equation from scratch in [1] sketched briefly in Subsection
1.2). Another strong point will be that we will be able to read within the geometry that corresponds to the algebra of the
equations what is happening in the physics. Spinors offer us a key to understanding QM. In fact, we will see that the free-
space Dirac equation just describes a statistical ensemble of spinning electrons in uniform motion. This is an insight the
traditional approach just emphatically denies us (because it is based on the second algebra). The discussion in terms of sets
can also be used to derive a Born rule (See [5] pp. 1-2, [6], p. 25). It is based on associating each electron with a spinor that
describes its state. The spinors χ of SU(2) satisfy the identity χ†χ= 1. If we have to count electrons in some formalism based
on SU(2) we should thus use χ†χ.

1.2 Use of the Clifford algebra to derive the Dirac equation from scratch

We can use SU(2) and its spinors to represent spinning motion. Throughout the paper we will use the notation F (A,B) for
the set of functions whose definition domain is the set A and which take values in the set B . Just like we use vector functions
r ∈ F (R,R3): t → r(t) to describe orbits in classical mechanics we can describe the spinning motion of a spinning object like a
top or a particle in its rest frame by a spinor function ψ ∈ F (R,C2): τ→ψ(τ), where τ is the proper time. In classical mechanics

we use m d 2r
d t 2 = F to make the link between the geometrical parameters and the physical parameters. In relativity we rather

use
dp
d t = F. In QM we need to describe spinning motion. The mathematical tool to do this is the spinor. Now we will use an

equation for
dψ
dτ to make the link between the geometrical and the physical parameters. This link will be provided completely

at the end by introducing the minimal substitution in order to make the step from the free-space Dirac equation to the Dirac
equation for an electron that moves in an electro-magnetic field. The minimal substitution is not entirely rigorous because
it only addresses the boost part of the spinor, but we cannot discuss this here.

As explained above with Eq. 3, for a spinning object at rest we can derive things in SU(2) first. When we have obtained
a feeling for the formalism in SU(2) we can then first lift it to the Dirac representation and then generalize it for a moving
electron by covariance. The last step consists in introducing and attempting to justify the minimal substitution. Note that in
our derivation of the Dirac equation from scratch we do not explain why the electron spins. Perhaps in the future somebody
will be able to explain why the electron spins on the basis of a dynamical model for the electron. But we do not know anything
about this issue and traditional QM even does not even know that the issue exists. We are in a position of total ignorance
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similar to that of Newton who introduced the expression for the gravitational force ex nihilo and could only lament that
he did not understand how this force could act at a distance. Similarly we introduce ex nihilo the Ansatz that the electron
spins and show then that one can derive the Dirac equation just starting from this basic assumption, which we laconically
introduce without any further justification. The starting Ansatz fulfils thus the same rôle in our approach as an axiom in
mathematics. Historically the intuition that the electron may spin has been around from the beginning but this has been
firmly denied by the standard dogma. Our approach, which contradicts thus the standard dogma, cannot be criticized from
the standpoint of the traditional approach to QM, because it is a competing theory whose algebraic results are identical to
those of the traditional approach.

The following derivation of the free-space Dirac equation from scratch has been discussed in [1], with additions scattered
over various papers (the Appendix of [5], pp.1-2 of [6]). For this reason we provide here a synopsis that can serve as a guide
for further study. This synopsis can only be presented under the form of a mere sketch. It is impossible to present the full
argument in the present paper because it would require incorporating a large part of the monograph [1]. Nobody would like
to read such a very long and technical paper. Moreover, the scope of the paper is not deriving the Dirac equation. In what
follows, there will thus be some gaps that can be filled by reading [1].

We start from the Rodrigues equation Eq. 2 and replace ϕ = ω0τ. This describes now the spinning motion of an object,
e.g. a particle or a top. The time derivative of R(s,ω0τ) yields:

dR

dτ
=−ı(ω0/2)[s·σ ]R, and:

dχ

dτ
=−ı(ω0/2)[s·σ ]χ, (4)

where the 2×1 spinor χ is the first column of R(s,ω0τ). Note that in order to derive Eq. 4 from Eq. 2 we must assume that
ds
dτ = 0, else the equation will contain extra terms and the equation will become considerably more complicated. In other
words, we have introduced the underlying assumption that the orientation of the spin axis remains fixed. We must thus
remember in the further derivation of the Dirac equation which will follow that it is only valid for a spinning electron with
a fixed orientation of the axis of its spinning motion. The case where the spin axis precesses is a priori not covered by this
derivation. We can thus not use the Dirac equation to study precession, a limitation one cannot become aware of if one just
follows Dirac’s derivation of his equation.

Eqs. 5-8 present how one could dream about the whole process of deriving the equation. This dream will fall apart in the
face of mathematical rigor. Nevertheless the intuition is right and we will show how we can repair for the mistakes in order
to obtain a rigorous mathematical proof. For s = ez we have [s·σ ]χ= χ. We obtain then:

dχ

dτ
=−ı(ω0/2)χ. (5)

In general [s·σ ]R 6= R, because a reversal (obtained by an odd number of reflections) can never be equal to a rotation (ob-
tained by an even number of reflections). In general we have also [s·σ ]χ 6= χ, such that Eq. 5 is simply wrong in general. It is a
one-time punctual coincidence we will have to discuss more in detail in the Appendix 1. But let us dream that we can obtain
an equation [s·σ ]χ = χ that is generally true in SU(2) anyway, such that then also Eq. 5 becomes true in general. If we now
postulate ħω0/2 = m0c2 we obtain then:

−
ħ

ı

dχ

dτ
= m0c2χ. (6)

We can now lift this result to the Dirac representation. Now:

1

c2

d2

dτ2
=

1

c2

∂2

∂t 2
−

∂2

∂x2
−

∂2

∂y2
−

∂2

∂z2
. (7)

Hence the meaning of the “square root” of the d’Alembert operator is:

1

c

d

dτ
γt =

1

c

∂

∂t
γt −∇·γ. (8)

The right-hand side of this equation corresponds thus to the partial derivative with respect to the proper time expressed in
a frame wherein the electron is no longer at rest. We see that combining this with Eq. 6 may lead to a derivation of the Dirac
equation from scratch, where all we have assumed is that the electron spins around a fixed axis with a frequency ω0 and that
ħω0/2 = m0c2. The free-space Dirac equation could be obtained this way by covariance from the equation of the electron in
its rest frame.

This eyes great but we will see that it contains a hidden error. Let us first repair for the fact that in general [s·σ ]χ 6= χ. We

see that the cheat of taking s = ez combined with the use of the spinor χ has produced the miracle that we can use −ħ
ı

d
dτ and

more generally −ħ
ı

∂
∂t as an energy operator. We could not have defined this energy operator if we had kept working with R

even for the case s = ez . That all this lacks generality is also obvious from the fact that in general both exponentials e ıω0τ/2 and
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e−ıω0τ/2 will occur in the first column of the rotation matrix, as can be seen e.g. in the example of Eq. 13 below. Nevertheless
we can still satisfy Eq. 6 if we replace the pure state χ by a superposition state ψ defined by:

ψ= χ+ [s·σ ]χ ⇒ [s·σ ]ψ=ψ ⇒
dψ

dτ
=−ı(ω0/2)ψ. (9)

As explained above this superposition transforms immediately the theory into a statistical theory, where ψ represents a sta-
tistical ensemble wherein half of the electrons are in the state χ (which is a rotation), and half of them in the state [s·σ ]χ
(which is a reversal). We will call the mixed state ψ in an abus de langage also a spinor function. The ensemble is defined
by its energy and its rotation axis, whereby the state can be a rotation or a reversal. And on the new states ψ the operator

−ħ
ı

∂
∂t

can function again as an energy operator. All this can also be developed in the Dirac representation and be generalized
by covariance. We have done this in [1]. As already mentioned above towards the end of Subsection 1.1 where we discussed
bi-spinors, it also requires introducing a superposition state as explained on pp. 162-166 of [1].

The hidden error we mentioned is much more surreptitious a problem. Its treatment is also tedious due to its technicality.
We therefore relegate it to Appendix 2. But it leads further to the insight that the Dirac equation describes a superposition
state that must be interpreted statistically as proposed by Ballentine [4]. Eq. 48 in the Appendix 2 can be combined with
lifting the steps in going from Eqs. 4 to Eq. 6 to the Dirac representation such as to yield the Dirac equation for an electron
at rest. This in turn can then be transformed into the general free-space Dirac equation by covariance, as fully described in
[1]. It is only after publishing [1] that we have explicited the rigorous steps that are needed to extend the definition domain
of the differential equation in Eq. 9 from S (x0 ,y0,z0) ×R to R

4 (as described in Appendix 2 and discussed in reference [6]). In
[1] the analogue within the Dirac representation of the superposition defined in Eq. 9 is also discussed. Our derivation shows
this way clearly that the free-space Dirac equation describes a statistical ensemble of spinning electrons in uniform motion.
The minimal substitution required to study electrons in an electromagnetic field is also discussed in [1].

Let us now think of tops that are spinning clockwise or counterclockwise around an axis. They obviously have the same
energy. We can see from this that the energy must be E = |ħω0/2| rather than E = ħω0/2, which settles the riddle of the
negative frequencies. And as we can extrapolate the equations from SU(2) to the Dirac representation, we see that this must
also be true within the context of the Dirac equation. The net energy needed to make the transition between the two states
with algebraic energies E = ±ħω0/2 is not 2m0c2. First the state must loose its energy m0c2 to grind its spinning motion to
a halt. Then we can start to make it spin in the opposite sense. And it must then regain the same energy m0c2 to recover the
spinning motion with the opposite algebraic angular frequency. The net change of energy required is thus zero. On the other
hand when a positron and electron annihilate, we do not obtain a zero energy but two gamma rays of 511 keV each, which
shows that the identification of negative energies with anti-particles is not justified.

We may observe further that SU(2) does not contain anti-particles. Our whole derivation was based on SU(2) and what
does not go into a mathematical formalism cannot come out of it by magic. Similarly, the gauge symmetry used to justify the
identification with antiparticles is not used in the derivation. Hence once again, what does not come in cannot come out by
magic. In our approach we do not introduce the notion that negative frequencies correspond to anti-particles. Also Dirac did
originally not introduce that notion. We could of course introduce antiparticles and associate them with negative frequencies
a posteriori. But a negative frequency would then correspond to two different physical states. We all but need such ambiguity
and can therefore forget about the whole idea of negative energies. In our approach everything becomes more logical and
clear.

1.3 Consequences

Even if we cannot give all the details about it in the present paper, we have derived in [1,6] the Dirac equation meticu-
lously from scratch with the absolute rigour of a mathematical proof. The Schrödinger equation can be derived from the
Dirac equation. Hence the spinor approach contains the basis for a lot of QM. The derivation of the Schrödinger equation
introduces approximations that break the symmetry of the Dirac equation, rendering QM actually more difficult to under-
stand. It is somewhat analogous to replacing ex e y = ex+y by anouncing the less accurate identity (1+x+x2/2)(1+ y + y2/2) ≈
1+ (x + y)+ (x + y)2/2, with the effect that some people would no longer make the connection with the foundational idea
with its perfect symmetry. Therefore it was important to base our approach on the derivation of the Dirac equation such as
to make the all-important rôle of the symmetry completely shine through in all its dazzling beauty. Rather than on some
incredible, arcane “intuition” our derivation sketched above is based on very simple ideas. Instead of deriving the energy and

momentum operators from substitutions E →−ħ
ı

∂
∂t

, p → ħ
ı
∇ which extrapolate a result obtained by educated guessing from

the de Broglie ansatz for a scalar wave function, which itself was also guessed, we obtain it here by a very different, much
more logical derivation. There is no guessing in our derivation, it just rolls out from the combination of Eqs. 6 and 8. In fact,

1
m0c2 (E ,cp) are the parameters (γ,γv/c) which define a boost. Any four-vector can this way be used to define a boost, which

explains why there exists a special relation in QM between the energy-momentum four-vector and the four-gradient.

There have been many attempts to make sense of QM, e.g. the many-worlds interpretation [7], Bohm’s approach [8]
and Cramer’s transactional interpretation [9] just to name a few of them. Such attempts often introduce some new physical
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idea with certain weird traits, which according to one’s personal taste one will consider as acceptable or otherwise. When
this physical idea is hard to verify, in the end one is still left wondering if it is true or otherwise. We are walking on eggs. The
approach described here tries to avoid at all price introducing physical ideas whose truth is hard to decide upon. The starting
point is figuring out the geometrical meaning of spinors. This is pure mathematics and not open to discussion. It can only
be right or wrong, and the reader can figure this out for himself by reading at least pp. 3-16 of [2] which gives all the details.
He will see that it gives a very clear intuition for what spinors are. Once he has picked this up, the meaning of QM will just
unfold itself. This is because the geometrical meaning of the algebra used in QM, which is Clifford algebra, is already given
by the mathematics of the group theory itself prior to any application of the algebraic part of it to physics. Understanding
the geometrical meaning of the algebra boils down to understanding the group theory and spinors. The reader can acquire
this understanding by reading [2]. This will provide him with the key to make sense of the algebra of QM. There is thus no
need for introducing weird additional physical assumptions in order to unravel the mysteries of QM. All we need is already
contained in the mathematics. Understanding spinors permits even to spot and correct flaws in the traditional theory.

What we have gained in our new approach is that we know exactly which ingredients we have used to derive the equation.
In Dirac’s approach one is left free to imagine that some very special quantum axioms may be needed to derive it, because
one just does not know what the underlying axioms are and the experimental results it describes are baffling us. This leaves
of course the door open for introducing the weird speculative ideas we mentioned above. In Dirac’s approach we also remain
in the dark as to the geometrical meaning of the equation. The reader may be stunned by the fact that the derivation of this
eminently quantum mechanical equation is purely classical. It may leave him incredulous. Where does the quantum magic
then come from? This is discussed in great detail in [1] and [6]. The way we were able to derive the Dirac equation calls for
caution. If the equation can be derived from such simple assumptions, a number of deductions drawn from the traditional
approach may be overinterpretations that are just not granted.

It turns out that if one masters the group theory, one can derive many results of QM by just classical reasoning. The
quantum mysteries disappear and the theory becomes intuitive and intelligible. We have therefore undertaken the quest to
spot a phenomenon where we become obliged to introduce some quantum magic anyway. Some salient examples of our
results are the derivation of this Dirac equation from scratch (with full details in [1] and an addition in [6]), the solution of the
particle-wave duality in [6,10], the solution of the paradox of Schrödinger’s cat in Subsection 2.3.2 of [2] and in [5], and an
explanation for the double-slit experiment in [6,10] (which can be further enriched by using the Appendix of [5] to deal with
incoherent sources), but there are many more. I have never addressed tunneling because the work of Hansen and Ravndal
[11] already explains it perfectly. These successes are obtained without the weird physical assumptions that are introduced
in some other approaches. The latter assumptions are thus introducing mystery and magic without a valid reason and are
therefore misleading. In general there will much less magic than we are used to think and that is what makes our approach
so interesting. The present paper shows how our approach also permits to make sense of the Stern-Gerlach experiment.

Traditional QM has been discovered with rather stunning serendipity. Dirac just guessed his equation and many other
rules were introduced ad hoc. Despite the shifting grounds of these shaky foundations, QM has proved extremely successful.
However, I must insist on warning the over-sceptical reader that he cannot attack my work by using the traditional textbook
wisdom as the ultimate touchstone for the truth, e.g. when my work flies in the face of accepted notions or if it draws him out
of his comfort zone.That is because my approach, which is a reconstruction of QM from scratch based on the geometrical
meaning of spinors, should be considered as a competing theory which leads to the same algebraic results. Competing theo-
ries cannot be compared by considering one of them as the absolute truth. The comparison must be based on other merits.
Here these merrits are not the agreement of the algebra with the experimental results, because the algebra remains the same.
The merit of my approach is that it is based on an already pre-existing clear geometrical meaning of that algebra, provided
by the group theory, whereby the results are mathematically derived and proved. It must therefore a priori be considered as
superior to the traditional approach, as a viewpoint that is developed from guesses and rather uses the algebra as a black
box (under the motto “Shut up and calculate!”) cannot seriously pretend to prevail with authority over an approach based on
mathemathical derivations and proofs.

In the paper I will have to continue pointing out errors in the traditional theory like I already have done in the preceding
Subsections. The fact that I insist on pointing out errors may upset some readers. It may look like a rant based on sheer
arrogance or a lack of respect for Dirac. However, the true issue can only be that my work is an alternative approach to QM,
which makes a lot of things that looked mysterious intelligible. It is absolutely crucial to delineate what is wrong and what
is right in this approach when it contradicts accepted notions of the traditional approach. Else this will lead to confusion.
Solving paradoxes requires pinpointing and neutralizing subliminal logical errors with surgical precision. Nobody is served
with keeping such errors concealed, especially since QM is fraught with paradoxes. I cannot lie for reasons of respect. If
people want to understand QM they will have to accept that it may take correcting for mistakes. You cannot ask for a better
understanding of QM and postulate at the same time that everything that is different from what you have learned must be
wrong. What you have learned is not sacred and responsible for the conceptual impasse we are in. Pointing out errors and
the differences between the new approach and the traditional approach is a necessary part of comparing them, especially in
situations where we encounter conceptual difficulties in the traditional interpretation, that can be solved in the new one. Yes,
the new approach is non-canonical and it is easy to pooh-pooh it for that reason, although the development in this paper will
show that it is in reality its strength. But is it not madness to still think after hundred years that one will be able to break away
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from the conceptual difficulties we have in making sense of QM by just sticking to the traditional canonical approach? As
identical causes ought to produce identical effects, the breakthrough may just have to come from a non-canonical approach.

1.4 Breakdown of the standard Dirac formalism in the case of precession

As we noted above we have made all the derivations above assuming that the orientation of the spin axis remains fixed.
Hence, a priori the Dirac equation cannot be used to describe more complicated motions like precession. This is something
one cannot become aware of in Dirac’s approach. On pp. 313-316 of [1] we have expressed such a precessing motion in SU(2).
We have taken the expression for a spinning motion with an angular frequency ω0 around a general spin axis defined by the
unit vector s with spherical coordinates (θ,φ). Note that we are using φ and ϕ (defined in Eq. 2 ) as two different symbols in
this article. Then we have considered what we get by rotating this spinning object bodily around the z-axis with a frequency
Ω. At the moment τ, a non-precessing spinning top will be represented by the rotation matrix R(s,ω0τ). As what we get with
precession has during the time τ bodily been rotated around the z-axis with a frequency Ω we obtain for the precessing
spinning top:

S(ez ,Ωτ,s,ω0τ) = R(ez ,Ωτ)R(s,ω0τ), where: R(ez ,Ωτ) =

[
e−ıΩτ/2

e ıΩτ/2

]

. (10)

The matrix R(ez ,Ωτ) describes the rotational motion around the z-axis. The detailed expression for R(s,ω0τ) is given by Eq.
13 in Section 3. If the reader has doubts about the correctness of Eq. 10, he should think about two identical spinning tops,
one that stays at a fixed position in space with respect to the centre of the Earth, and one that co-rotates with the Earth. Now
we can derive Eq. 10 with respect to τ. We have made this calculation on pp. 313-316 of [1] and it yields:

dS

dτ
=−ı[ (Ω+ω0(τ))/2]S, (11)

where Ω=Ωez and ω0(τ) =ω0s(τ). A first observation is here that we no longer obtain a scalar in front of S (or its spinor χ)

by using −ħ
ı

∂
∂τ but a vector, while the energy definitely should be a scalar. There is thus definitely something wrong with the

traditional energy operator in the new context which goes beyond the domain of applicability of the formalism of the Dirac

equation and can therefore only be treated by a non-canonical approach. The prescription −ħ
ı

∂
∂τ for the energy operator

ceases to be a valid in the extended setting.

We have been confronted with an analogous situation before in Eq. 4 with its wave function χ. We were able to recover
the energy operator by replacing χ by ψ as defined in Eq. 9. It is crucial to acknowledge that Eq. 4 is also a correct equation. It
just does not yield the Dirac equation of QM, while our aim was validating our approach to the meaning of QM by deriving
the Dirac equation. It is only to achieve this goal that we introduced ψ by Eq. 9.

We cannot apply the traditional energy operator on the wave function χ of Eq. 4 because it does not yield the nice result

ħω0/2 but (ħω0/2)[s·σ ]. The correct energy operator to be used with Eq. 4 would be −ħ
ı

[s·σ ] ∂
∂τ . This is feasible because

[s·σ ] is constant anyway. But there is no necessity to obtain −ħ
ı

∂
∂τ as the energy operator for a wave equation apart from

the desire to stay within the formalism of the Dirac equation. When we want to describe precession we will be beyond the
scope of the Dirac equation and there will be no longer a gimmick that could help us to preserve the definition of the energy

operator under the form−ħ
ı

∂
∂τ , and drag the equation back into the field of applications of the Dirac equation. This is because

there are now in any case angular frequencies with two different absolute values |ω0 +Ω| or |ω0 −Ω| occuring within a single
column of S (see Section 3), such that the energy operator can no longer project out a scalar energy eigenvalue in front of S
or its spinor χ.This is all fair enough. There is nothing wrong with it. It just signals that we are outside the scope of the Dirac
equation, just like Eq. 4 was outside the scope of the Dirac equation. However, we are not outside the broader scope of the
group theory, which is our conceptual basis to formulate QM. The matrix S describes now a superposition state that contains
in total four different algebraic angular frequencies.

Since in our non-canonical approach outlined in Section 1 we have gained a complete geometrical understanding of the
ingredients that are needed to derive the Dirac equation, we can now derive a completely novel formalism within the same
framework of group representation theory to deal with this new situation. Our hands are not tied to the canonical formalism
of QM and its energy operator because our framework has a larger domain of applications than the Dirac equation for a fixed
spin axis. Our framework is the group representation theory and its geometrical meaning, which we have already validated
as a basis for a new and more intelligible approach to QM by showing that it can be used to derive the Dirac equation.
The non-canonical approach will outrun now the canonical approach in its power to deal with novel situations, because
we will show that we can deal with precession. In our approach we will have to split the four-frequency superposition state
into its two different energy components |ħ(ω0 +Ω)/2| and |ħ(ω0 −Ω)/2|, because it does not make sense to make a brute-
force calculation of the energy of a superposition state that involves pure states of different energies. It is this brute-force
calculation which gives rise to the unphysical feature of a varying energy in the QM treatment of precession which will be
discussed in Subsection 2.3. We must first calculate the energies of the pure states, and if we want to do so, we can calculate
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the average energy by making statistical averages afterwards. We have now all the prerequisites to understand how we can
tackle the Stern-Gerlach in our new approach.

2 The Stern-Gerlach experiment: Confusion reigns

2.1 Preamble

In a Stern-Gerlach experiment neutral spin-1/2 particles are used, e.g. Ag atoms. In our description we will all the time focus
our attention on electrons, even if a Stern-Gerlach experiment on electrons might be extremely difficult to perform. The real
problem we want to discuss is the case of an electron with spin 1/2 in a magnetic field (the anomalous Zeeman effect), for
which we have been taught that the electron spin can be only up or down, and never tilted as we will assume in the attempt
to describe precession, reported in Section 2.3.

In this section we want to pin down the total lack of intuition and the total lack of theory which prevail in the traditional
presentation of the Stern-Gerlach experiment [12]. This experiment is a choice example of what happens all the time in QM.
The algebra of the theory agrees perfectly with the experimental data but we cannot possibly make sense of what this algebra
means. I often use the analogy of the correspondence between algebra and geometry in algebraic geometry to explain that the
calculus of QM, its algebra, is exact but that we do not know what its correct intuitive interpretation, its “geometry” should be.
In this respect Villani uses the qualifiers “analytic” for what we call algebraic and “synthetic” for what we call “geometric” [13].
Perhaps this terminology is more accurate than ours. The purpose of making this difference between algebra and “geometry”
is to make very clear right from the start that in general I am not questioning the algebra because it is correct, as it is always
perfectly in agreement with the observed experimental data. All I want to do (and all I still can do) is to find an intelligible
corresponding “geometry”, as I described in Section 1.

In view of all what we said, when you know the algebraic part of the spinor formalism and you know that the correspond-
ing synthetic part must be the group theory of the rotation and Lorentz groups, then you might expect that explaining the
Stern-Gerlach experiment synthetically should not be too difficult. But lo and behold, this is here certainly not the case. One
reason for this is that, for this specific exceptional case, I will have to attack the textbook algebra because it is egregiously
wrong.

2.2 Total absence of theory

Indeed, as we have pointed out above in Subsection 1.1 and many times before, especially in [1,2,14], the shorthand notation

B·σ or B·γ that occurs in the equations is not the scalar product of the magnetic field B with some “vector” σ or γ, where ħ
2
σ

or ħ
2
γ would be the “spin vector”. As a matter of fact B·σ or B·γ just express the magnetic field B.

Furthermore, the (non-relativistic) unit vector s which is parallel to the spin axis is not represented by σ or γ but by s·σ or
s·γ, which often remains hidden inside the notation for the spinor ψ. When s·σ or s·γ do not explicitly occur in the equations,
there cannot be any form of algebraic chemistry, e.g. in the form of a multiplication, between s·σ and B·σ in those equations.
Similar remarks apply for s·γ and B·γ in the Dirac formalism, but from now on we will only formulate things in the SU(2)
formalism.

The textbook theory exploits the mathematical errors mentioned to claim that the “spin vector” ħ
2
σ, after multiplication

by
q

m0
defines the “magnetic dipole” µ=

ħq
2m0

σ. This slight of hand transforms the axial vector
ħq

2m0
B·σ by magic into a scalar

B·µ, where µ is now considered to be a magnetic dipole, and V = −B·µ becomes a “potential energy”. The expression for
this “potential energy” corresponds conveniently to our classical intuition, which might convince you to “wisely ignore”
the mathematical errors I am pointing out here. But it is absolutely essential that the reader gets the point that he cannot
override or talk a way out of this mathematical verdict by belittling it as inconsequential, which is a frequent attitude of
physicists when they are confronted with critcism of a formalism they strongly believe to work. Because they find agreement
with experiment they reckon the theory must be right. But the fact that the bottom line of a kid’s homework is right, does not
imply that it is entirely flawless. A mathematical error must always be taken seriously because it can be a warning sign that
someting is wrong such that it cannot always be overruled based on intuition. The development of the paper will further
confirm that imperviously ignoring the errors leads here to wrong intuition and to a conceptual impasse. Note that the

expression of the trivector µ =
ħq

2m0
σ which is interpreted as a vector µ even does not contain the spin vector ħ

2
s. That in

the Clifford algebra a matrix a·σ represents the vector a can also be checked in [2], p.12 and [3], p.43.
Even if we persisted in ignoring the error, it would remain still very difficult to understand within this picture why the

spin should select two orientations in order to align with B, rather than just one, viz. the one that would minimize its energy
within the picture of a potential. Can the spin then also maximize its potential energy?

Despite its appeal, also the ansatz V = −µ·B is truly problematic. There is no dipole in the mathematics. The idea of a
dipole is based on the picture of a current loop. But as Lorentz has pointed out, if all the charge of an electron were put on
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its equator, even at a velocity c it would not be large enough to account for the hypothetical dipole moment. The algebraic
expressions for the normal and the anomalous Zeeman effect have completely different symmetries in the Clifford algebra. It
is therefore wrong to think about the anomalous Zeeman effect in terms of a dipole moment. Furthermore, we are pretending
to talk here about the hypothetical potential energy of a charged spinning point particle in a field B, but this field B is not a
force like the gravitational force mg exerted on a spinning top. Any analogy with the potential energy of a spinning top in a
gravitational field is a priori potentially misleading and conceptually wanting, as a magnetic field just cannot do any work on
a charge. It can exert a force F = q(v∧B), but this force is always perpendicular to the displacement dr = vd t and therefore
the work−F·dr = 0. The situation of an electron in a magnetic field is fundamentally different from that of a spinning top. The
energy of the spinning top consists of a potential energy in the gravitational field and two kinetic energy terms, corresponding
to the spinning motion and to the precession. The energy of the spinning electron in a magnetic field consists just of the two
kinetic-energy terms, whereby the one related to the precession must be treated algebraically. There is no potential-energy
contribution.

2.3 Total absence of intuition

For an idealized top which is precessing without friction in a gravitational field, the energy of the top remains constant. But
if you describe a precessing top within the spinor formalism of QM, then the formalism says that the energy is not constant
and oscillates between two extreme values (see e.g. [1], p.307; [15]). We are referring here of course to the description of an
electron in a magnetic field. That the energy could oscillate is really incomprehensible. We could imagine that the electron
looses energy by e.g. radiation, but not how it could regain the energy lost, and what is more, exactly by the same amount. In
our approach the culprit for this contradiction is easily found: We have pointed out in Subsection 1.4 that the derivation of the
Dirac equation in [1] relies on the assumption that the spin axis remains fixed and that beyond the scope of that assumption

the energy operator will no longer be given by −ħ
ı

∂
∂t . Therefore the motion of a precessing top can a priori not be studied

with the traditional Dirac equation and the calculations that lead to the varying energies are wrong.
If we dare to be heretic by capitalizing on this remark and assuming that the energy is constant like for a spinning top

anyway, we may get a constant-energy term that has not the correct value, because it will contain an extra factor cosθ,
where θ is the tilt of the spin axis with respect to the magnetic field, at least if you follow the common-sense arguments you
have been taught (e.g. by considering a current loop). None of these speculations leads to a calculation that agrees with the
startling experimental result, which seems to indicate that the spin of a fermion can only point up or down.

The traditional way out of these puzzling contradictions is the textbook dogma that directions of space would be quan-
tized, and that this would be a quantum mystery. Whereas I fully agree that I do not understand the first word of it, such
that calling this a mystery could be appropriate, I nevertheless think that this is logically and mathematically completely
ramshackle. First of all we should refuse dogmatic mysteries. But there is something far worse at work than just a weird para-
dox. In fact, there is a fierce contradiction hidden within that statement. The contradiction at stake here is that the formalism
is completely based on the use of SU(2), wherein the allowed axes of rotation explore all directions of R3 while it claims that
the directions would be quantized in the sense that QM would only allow for two directions, spin-up and spin-down! Such a
claim is not compatible with the geometry of SU(2).

The wrong images create even more puzzles in the light of the way we could derive the Dirac equation from the as-
sumption that the electron spins in [1]. In developping the Dirac equation by expressing the rotational motion of a spinning
electron with the aid of spinors, at a certain stage we must put m0c2 = ħω0/2 as we did in Eq. 6 in order to obtain the Dirac
equation. Here the electron spins with angular frequency ω0 around the spin axis s, and m0 is its rest mass. This means that
the complete rest energy of the electron is rotational energy. Consider now the statement that in a magnetic field the spin
axis aligns with the magnetic field, because the spin can only be up or down. We could e.g. imagine that the spin axis s is
pointing in a given direction and that we turn on the magnetic field in a completely different direction.1 There must then

exist a really fast mechanism for the spin to align. This is puzzling, because the magnetic energy
ħqB
2m0

is dwarfed by the energy

m0c2. How could this small magnetic energy possibly succeed in imposing alignment on the much larger energy m0c2? It
does not comply with our daily-life experience and the conservation of angular momentum. Also the transition from spin-up
to spin-down becomes problematic. Do we really have to turn the whole state with its energy close to m0c2 bodily upside
down to literally “flip the spin”? Perhaps it requires only changing the rotational frequency, but how does this work when
the spin is not aligned? We also do not understand how in general the alignment process is supposed to work. Is there some
radiation emitted, and if so should this have been observed? Einstein and Ehrenfest, who had anticipated that the spin would
precess around the magnetic field (Larmor precession), have even calculated that the realignment would take more than a
hundred years [16].

A final stark example illustrating the ambient confusion and ambivalence is the following. In the Dirac theory, the electron
spin is always taken as perpendicular to the plane of motion. When there is a magnetic field, then it is always choosen to

1 Note that this implies also the temporary presence of an electric field. An interesting idea would be to consider that the spin of the

electron is coupled to the magnetic field becoming part of it such that it automatically turns with the magnetic field as a part of the field

when we switch it, but this idea cannot work for the Stern-Gerlach experiment, where the magnetic fields are not being switched.
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be parallel to the z-axis such that the spin can only have the values up or down along the z-axis, in conformity with the
theoretical interpretation of the Stern-Gerlach experiment. But in the explanation of the neutron spin echo technique in
solid-state physics [17], you will be told that the natural state of affairs is that the neutron spin is always initially aligned with
its direction of motion. In order to make this spin perpendicular to its direction of motion, one has to apply a magnetic field at
an angle of 45 degrees with respect to this direction of motion. After a Larmor precession over an angle of 180 degrees around
this applied field the neutron spin will then have become perpendicular to its direction of motion. The rest of the explanation
of the method is also entirely based on further Larmor precession of the neutron spin around a guide field. But as pointed out
by Einstein and Ehrenfest, this precession scenario is in contradiction with the results of the Stern-Gerlach experiment. And
at the very end of the spin echo protocol the polarization of the spin is measured, and then it is assumed again that the spin
can be only up or down. To make the puzzle complete, neutron spin echo has been tried and proved. It works! This reveals
how the literature is rife with mutually contradictory scenarios about the way spin behaves. These contradictions are tacitly
swept under the rug. Sometimes one assumes that the spin just aligns and one invokes then often the paradigm of a torque
exerted on a current loop to explain how this can happen, sometimes one assumes that the spin must precess and then
one often wonders about the mechanism that might eventually align it. Enjoy the paradox: the two mental representations
are mutually exclusive. They cannot possibly be both right at the same time. How can we possibly sort this out? We do not
understand the behaviour of the spin.

3 Tabula rasa approach based on spinors

In view of all this confusion, typical of a wobbly theory, we must rebuild a theory from scratch and try to solve the paradox
within the framework of our new approach. It will therefore be mathematically rigorous and based on a good understanding
of spinors [2]. Despite the fact that the author understands spinors quite well, the many contradicting images that are living
on in the intuitive folk lore about the spin in a magnetic field amount to a formidable conceptual obstacle. They are a smoke
screen that kept me in the dark for a very long time and rendered it extremely difficult to find the correct solution. I am
confident that I am not the only one who has been running in circles for years in trying to make sense of this spin-up/spin-
down doctrine. As we will see it is focusing the attention on the supposed aligning of the spin axis with the magnetic field
B that sends us irrevokably down the rabbit hole. It is the unshakable belief that the experiment unmistakeably tells us that
the spin must be aligned which keeps us in the total impossibility of breaking away from the conceptual death trap of space
quantization. The fact that this enigma has remained unsolved for almost a century illustrates how difficult it was.

We must thus repeat our warning to the reader that he is in for a rough ride whereby a lot of what he has become used to
take for granted will be ripped apart. Such a statement may cause irritation as already discussed at the end of Subsection 1.3,
but I think that if you pick up the basics about spinors from [2] and then read the present paper, you will feel rewarded for
your efforts. Just as in our derivation of the Dirac equation from scratch in [1] and in Subsection 1.2 we start from the well-
known Rodrigues formula Eq. 2 in SU(2) for a rotation over an angle ϕ around the axis s and put ϕ=ω0τ, where τ is the proper
time. The resulting equation models then an object that spins at the frequency ω0 around the axis s. For an electron at rest, it
suffices to make the calculations in SU(2) as we explained above with the aid of Eq. 3. From the viewpoint of the traditional
approach to QM (based on guessed equations), this starting point may look as an extraneous development that is completely
out of context and has nothing to do with the formalism of QM, but as we explained in Section 1, the whole formalism of
QM is in our approach derived from this Rodrigues formula with the substitution ϕ = ω0τ, such that the development fits
completely into the context of our approach.

As easily checked and also derived in [1] (see e.g. [1], p.142), one can write the spinning motion in SU(2) in terms of a sum
of two frequency components:

R(τ) =
1

2

[

[1+s·σ ]e−ıω0τ/2 + [1−s·σ ]e+ıω0τ/2
]

. (12)

This is a simultaneous description of the mixed state ψ defined in Eq. 9 and another mixed state ξ we define in Eq. 45 of
Appendix 1. We have worked all of this out in full detail in the Appendix 1. Both mixed states are characterized by the fact that
they have a well-defined energy. Within the framework of QM we can consider the two components of the matrix in Eq. 12 as
two (mixed) beams. In fact, using Ehrenfest’s interpretation of superposition states (see [2], p.10, complemented by [5], p.2,
for a group-theoretical justification), the presence of the two frequencies in Eq. 12 means that we are describing two mixed
states simultaneously. Writing the two mixed states that occur in R(τ) simultaneously, can be considered as just another way
of writing a superposition state. We are not forced to consider such a (doubly) mixed beam but the geometrical equation Eq.
12 offers us the possibility to do so. Let us now write down Eq. 12 for a rotation with an axis s that is different from the z-axis:

R(τ) =

[
cos2(θ/2) e−ıφ sin(θ/2)cos(θ/2)

e ıφ sin(θ/2)cos(θ/2) sin2(θ/2)

]

e−ıω0τ/2

+

[
sin2(θ/2) −e−ıφ sin(θ/2)cos(θ/2)

−e ıφ sin(θ/2)cos(θ/2) cos2(θ/2)

]

e ıω0τ/2. (13)
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Here (θ,φ) are the spherical coordinates of the spin axis s. As already pointed out in Subsection 1.4 we are using φ and ϕ as
two different symbols in this article. Let us now inspect the two components. The e−ıω0τ/2 component is:

[
cos2(θ/2) e−ıφ sin(θ/2)cos(θ/2)

e ıφ sin(θ/2)cos(θ/2) sin2(θ/2)

]

=

[
cos(θ/2)e−ıφ/2

sin(θ/2)e+ıφ/2

]

⊗
[

cos(θ/2)e ıφ/2 sin(θ/2)e−ıφ/2
]

. (14)

We recover here the result 1+s·σ= 2ψ1 ⊗ψ†
1 from [1] (See Eqs. 3.28, 5.25), where ψ1 is the spinor that corresponds to R. The

algebraic expression that occurs in Eq. 14 is in reality not ψ1 ⊗ψ†
1, but rather its value ψs1 ⊗ψ†

s1 at the starting time τ = 0,

whereby ψs1 is defined by ψ1 = e−ıω0τ/2ψs1. The e+ıω0τ/2 component is:

[
sin2(θ/2) −e−ıφ sin(θ/2)cos(θ/2)

−e ıφ sin(θ/2)cos(θ/2) cos2(θ/2)

]

=

[
sin(θ/2)e−ıφ/2

−cos(θ/2)e+ıφ/2

]

⊗
[

sin(θ/2)e ıφ/2 −cos(θ/2)e−ıφ/2
]

. (15)

This corresponds to 1−s·σ= 2ψ2 ⊗ψ†
2, where ψ2 is the conjugated spinor corrresponding to R, i.e. the second column of R.

Again, the quantity that occurs in Eq. 15 is rather ψs2 ⊗ψ†
s2. Note that ψ1 and ψ2 are orthogonal.

Up to now, all calculations have been pure geometry. To introduce the physics we will rely on just one single idea (we
first introduced in [14]), viz. that a magnetic field would make the spin vector precess, based on the following heuristics. For
different radii of the circular motion within a magnetic field the cyclotron frequency remains the same in the non-relativistic
limit. Every local co-traveling frame will spin at the same frequency, just like your horse on a merry-go-round does not only
move along a circle but also spins around its own axis with repect to the frame of the observers on the ground. If you shrink
the circular orbit in the magnetic field to a point the spinning motion with the cyclotron frequency around the axis will
remain. Therefore a pointlike charged particle at rest in a magnetic field will be spinning even if it were initially spinless.
But if it initially already spins and its spin axis is tilted, then this axis will be precessing, which corresponds to the intuitive
narrative based on the analogy with a spinning top. We encounter this merry-go-round scenario also in Purcell’s explanation
of the Thomas precession [18]. It provides us with some classical intuition for the anomalous Zeeman effect. But in the Bohr-
Sommerfeld imagery of QM these heuristics are thwarted by the fact that the orbits are quantized. For matters of rigor we
must therefore consider all these ideas as mere heuristics and we have absolutely no cogent a priori knowledge that would
help us in deciding if these heuristics are correct or otherwise. We can only acknowledge that spin precession is a popular
intuitive scenario. The final test of this merry-go-round scenario will be whether it reproduces the experimental results. For
a magnetic field B aligned with the z-axis, we obtain then an electron whose spin axis is precessing according to Eq. 10. Here

Ω =
qB
m0

is now the cyclotron frequency. Let us write the effect of this precession on both components of R(τ). For the first
component:

[
e−ıΩτ/2

e+ıΩτ/2

][
sin2(θ/2) −e−ıφ sin(θ/2)cos(θ/2)

−e ıφ sin(θ/2)cos(θ/2) cos2(θ/2)

]

e+ıω0τ/2
=

[

sin2(θ/2) −e−ıφ sin(θ/2)cos(θ/2)
0 0

]

e ı(ω0−Ω)τ/2 +

[
0 0

−e ıφ sin(θ/2)cos(θ/2) cos2(θ/2)

]

e ı(ω0+Ω)τ/2. (16)

The matrices are here again tensor products. But they are now of a novel type χ⊗ψ†, which no longer provides a familiar

link with some rotation axis as in the equation 1+ s·σ = 2ψ1 ⊗ψ†
1. This is quite normal because a precession has no fixed

rotation axis. We are working all the time with matrices that can be written as tensor products because they have determinant
zero. That a matrix with zero determinant can be written as a tensor product is a specificity of 2×2 matrices. The result of
multiplying such a matrix with determinant zero with another matrix will lead to a new matrix that still has determinant zero,
such that it can be written again as a tensor product, but it will no longer have the structure ψ⊗ψ†.

We can actually trace back how such hybrid terms come about. Let us call the spinor of the rotation around the z-axis χ1

and its conjugated spinor χ2. The first term in Eq. 16, the one that goes with e ı(ω0−Ω)τ/2, is obtained from multiplying:

[
1
0

]

⊗
[

1 0
]
[

sin(θ/2)e−ıφ/2

−cos(θ/2)e+ıφ/2

]

︸ ︷︷ ︸

⊗
[

sin(θ/2)e ıφ/2 −cos(θ/2)e−ıφ/2
]

.

sin(θ/2)e−ıφ/2

. (17)
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It corresponds thus to [χs1 ⊗χ†
s1 ] [ψs2 ⊗ψ†

s2 ]. We can multiply the underbraced matrices in the middle, which can be shown

to be a correct procedure. We obtain then the scalar sin(θ/2)e−ıφ/2 and χs1⊗ψ†
s2. And this way we obtain again the first term

of Eq. 16. We see that it is obtained by combining χ1 and ψ2, which is why Ω occurs with a minus sign and ω0 with a plus
sign. The other component yields:

[
e−ıΩτ/2

e+ıΩτ/2

][
cos2(θ/2) e−ıφ sin(θ/2)cos(θ/2)

e ıφ sin(θ/2)cos(θ/2) sin2(θ/2)

]

e−ıω0τ/2 =

[

cos2(θ/2) e−ıφ sin(θ/2)cos(θ/2)
0 0

]

e−ı(ω0+Ω)τ/2
+

[
0 0 ,

e ıφ sin(θ/2)cos(θ/2) sin2(θ/2)

]

e−ı(ω0−Ω)τ/2. (18)

As justified in Subsection 1.2 and as also discussed in [1], we can consider that the two signs of the frequency ±ω correspond

both to the same energy E = |ħω2 |. We can then rearrange the terms according to their energies:

[

cos2(θ/2) e−ıφ sin(θ/2)cos(θ/2)
0 0

]

e−ı(ω0+Ω)τ/2
+

[
0 0

−e ıφ sin(θ/2)cos(θ/2) cos2(θ/2)

]

e+ı(ω0+Ω)τ/2, (19)

where we can factorize out the probability amplitude cos(θ/2), and:

[
0 0

e ıφ sin(θ/2)cos(θ/2) sin2(θ/2)

]

e−ı(ω0−Ω)τ/2
+

[

sin2(θ/2) −e−ıφ sin(θ/2)cos(θ/2)
0 0

]

e+ı(ω0−Ω)τ/2, (20)

where we can factorize out the probability amplitude sin(θ/2). Eqs. 19-20 describe the energy states if we send a mixed
electron beam into a Stern-Gerlach filter. When the beam is not mixed, each energy state will only have one component.

It transpires from the calculations that there are two possible energies for the electron within the magnetic field, according

to the criterion E = |ħω/2| outlined above. Here ω takes the values ω0±Ω. We have avoided this way to use −ħ
ı

∂
∂τ as an energy

operator in a context where it is no longer valid as discussed in Subsection 1.4. Now we have found an analysis that yields the
correct observed energies. It also explains the whole Stern-Gerlach experiment, provided we can still explain how these two
energies lead to different trajectories (see below). Let us note that we have presented the effect of the magnetic field on the
charge by Eq. 10. This is not something we find in textbooks, but is based on our heuristics (first developed in [14] in terms
of vorticity). The algebra does not contain a current loop or a magnetic dipole. It just contains a rotating point charge. The
intuition about a magnetic dipole is a wrong intuition. And the fact that the magnetism produced by the spin does not need
to be of the dipole type is shown by the exchange mechanism proposed by Heisenberg and Majorana, which is based on the
Coulomb interaction and the exclusion principle.

The whole puzzle why the magnetic moment would have to align with the field has now disappeared. We find the right
energy without having to invoke alignments of axes with the magnetic field. Such alignments are just no longer part of the

story. Furthermore, there is simply no longer a well-defined single fixed axis as transpires from the weird terms χ j ⊗ψ†
k

in

the formalism. Eq. 19 describes a motion with energy ħ(ω0+Ω)/2 = m0c2+
ħqB
2m0

and which occurs with probability cos2(θ/2),

while Eq. 20 describes a motion with energy ħ(ω0−Ω)/2 = m0c2 −
ħqB
2m0

and which occurs with probability sin2(θ/2), in agree-

ment with the experimental results. These are both complex motions that we cannot describe in simple terms like a rotation
around some axis. We can safely assume that these two components just describe precession (see Section 4). The Stern-
Gerlach filter separates these two energies into two different beams. It is one of those two rearranged combinations that in
general will be fed into a next Stern-Gerlach apparatus if we perform an experiment with a sequence of Stern-Gerlach filters.
The precession just adapts all the time to the magnetic field present and it stops when there is no magnetic field. There are
never quantum jumps in the motion of the spin vector, while in the traditional paradigm such jumps look inevitable. Note
that the average energy is ħ(ω0 +Ωcosθ)/2, such that V = −µ·B is a macroscopic energy term, which is not applicable to
individual fermions. It is not a potential energy. This average energy is no longer varying with time as in the brute-force QM
calculation discussed in Subsection 2.3.

The fact that we made our calculation on a mixed beam may raise the question if this is justified. We may interpret it in
terms of clockwise and counterclockwise motion, but must be aware of the fact that we are talking about two mixed states.
We have performed the calculations on these two states simultaneously to be as general as possible. But we can see that we
could have excluded one state e.g. by only considering the e−ıω0τ/2 component of Eq. 12. Both components lead to the same
energies, the results only differ in the algebraic signs.

Most textbooks calculate the force exerted on the fermion starting from an equation for a “potential energy” V = −µ·B
and then using F =−∇V . But the physical existence of such a potential energy is doubtful, because a magnetic field cannot
do any work. The equation V =−µ·B suggests that all directions of space are allowed which is actually what, according to the
traditional theory, the experiment would prove to be conceptually wrong. This traditional calculation for the trajectories is
classical because the aim is to show that our classical notions are wrong. In principle, from the traditional point of view one
must then still make a quantum mechanical calculation to render the theoretical approach correct. To avoid talking about
chimerical potential energies it is better to base the analysis on the expression F = −∇E . The force F = −∇E , is the force
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responsible for the motion of the center of mass of the fermion through the Stern-Gerlach apparatus when the fermion is
no longer at rest. One can imagine that it enters the device in uniform motion and then starts to feel a force. For an electron
this would be the Lorentz force, but for the Ag atoms, which are neutral, this will be this gradient force, just as in the original
calculation of Stern and Gerlach. Instead of the expression −B·µ which is wrong, we must use here E =ħ(ω0±Ω)/2 = m0c2 ±

µB which is correct. Using F =−∇E =±µ(∇B) will lead then to the same result as in the textbook analysis of the trajectories,
after postulating that µ is quantized. In being build on group theory our calculation is entirely classical, and this will suffice
to explain the experimental results entirely correctly.

We may finally remark that the mathematical difficulties related to the errors described in Subsection 2.2 are solved by the
introduction of ψ defined in Eq. 9 and ξ defined in Eq. 45 of Appendix 1. From these definitions it follows that for the special
case s = ez , which corresponds to s ∥ B = Bez , we have [B·σ ]ψ= B[ez ·σ ]ψ= Bψ and [B·σ ]ξ= B[ez ·σ ]ξ=−Bξ. This special
case is the only case which can be treated by the Dirac equation because it does not give rise to precession. In Subsection
2.2 which treats this special case, we encounter the riddle what we can do with the vector term [B·σ ] in an equation that is
supposed to define an energy. Without knowing that the spinors in the Dirac equation describe superposition states of the
type ψ or ξ solving the puzzle how we can replace the vector term [B·σ ] in the equation by a scalar ±B and obtain a true
energy term ±Bµ is just impossible, because for a pure state χ we have [B·σ ]χ 6= Bχ. Dirac “solved” the problem by brute
force using the error described in Subsection 2.2. It can be hoped that this will convince the reader that this error cannot be
hushed up or ignored. The mathematical truth must prevail and carrying out correctly the admittedly intricate algebra helps
us in figuring out the physical truth.

4 More traditional formulation in terms of a differential equation

In this Section, we will reformulate everything again in the more familiar differential calculus of standard textbook QM. In

the calculations we have encountered tensor products of the type χs j ⊗ψ†
sk

. We know that they correspond to precession

by construction. The tensor product χ1 ⊗ψ†
2 can be understood as a simultaneous description of the motions e−ıΩτ/2χ1 and

e+ıω0τ/2ψ2 and in this sense describe the precession, but it does not contain the correct time dependence χs1⊗ψ†
s2e ı(ω0−Ω)τ/2

because χ1 ⊗ψ†
2 = χs1 ⊗ψ†

s2e−ı(ω0+Ω)τ/2. If we accept the rule that we must replace χ1 ⊗ψ†
2 by χ1 ⊗ψ2 or χ1 ⊗ψ⊤

2 we obtain

a correct simultaneous description of e−ıΩτ/2χs1 and e+ıω0τ/2ψs2. There are two such terms in Eq. 19, and they are coming
from the two beams we considered in Eq. 12. The motion described by Eq. 19 can be condensed into the form:

P(τ)=

[
cos(θ/2)e−ı(ω0+Ω)τ/2 e−ıφ sin(θ/2)e−ı(ω0+Ω)τ/2

−e ıφ sin(θ/2)e+ı(ω0+Ω)τ/2 cos(θ/2)e+ı(ω0+Ω)τ/2

]

, with det(P(τ))= 1. (21)

This equation will describe a mixture of two states that will occur when we are using a mixed beam. This energy state is thus
a set that contains both mixed states. As easily seen, (∀τ ∈R)(P(τ)∈ SU(2)), such that this set is in some way interpretable as
a rotation. We can compare this with the situation in projective geometry, where we can define a straight line as a set of all
points which are incident with the line, but we can also define a point as a set of all lines which are incident with the point.
A rotation can thus also be seen as a set. Other geometrical objects as well. E.g. the quantities 1+ s·σ and 1− s·σ are the
eigenvectors of the reflection operator s·σ and correspond to the sets {1,s·σ} and {1,−s·σ} respectively. We can consider the
algebra in Eq. 21 thus as the construction of a mixed state (a set of states) with a constant energy that can be interpreted as
a rotation. With the rotation in Eq. 21 we are now again on more familiar geometrical grounds. We know to analyze such a
matrix and we apply the spinor formalism on it. Derivation with respect to τ yields:

d

dτ
P(τ)=−ı((ω0 +Ω)/2)

[
cos(θ/2)e−ı(ω0+Ω)τ/2 e−ıφ sin(θ/2)e−ı(ω0+Ω)τ/2

+e ıφ sin(θ/2)e+ı(ω0+Ω)τ/2 −cos(θ/2)e+ı(ω0+Ω)τ/2

]

. (22)

The inverse matrix of P(τ) is:

[P(τ) ]−1 =

[
cos(θ/2)e+ı(ω0+Ω)τ/2 −e−ıφ sin(θ/2)e−ı(ω0+Ω)τ/2

e ıφ sin(θ/2)e+ı(ω0+Ω)τ/2 cos(θ/2)e−ı(ω0+Ω)τ/2

]

. (23)

Hence [ d
dτP(τ) ] [P(τ) ]−1 is given by −ı((ω0 +Ω)/2)V(τ) where V(τ) is given by :

[
cos(θ/2)e−ı(ω0+Ω)τ/2 e−ıφ sin(θ/2)e−ı(ω0+Ω)τ/2

+e ıφ sin(θ/2)e+ı(ω0+Ω)τ/2 −cos(θ/2)e+ı(ω0+Ω)τ/2

]

×

[
cos(θ/2)e+ı(ω0+Ω)τ/2 −e−ıφ sin(θ/2)e−ı(ω0+Ω)τ/2

e ıφ sin(θ/2)e+ı(ω0+Ω)τ/2 cos(θ/2)e−ı(ω0+Ω)τ/2

]

=

[
1 0
0 −1

]

= [ez ·σ ]. (24)

We have thus:
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d

dτ
P(τ)= [

d

dτ
P(τ) ] [P(τ) ]−1 [P(τ) ]=−ı [ (ω0 +Ω)/2]V(τ)P(τ) =−ı [ (ω0 +Ω)/2][ez ·σ ]P(τ). (25)

We could treat this geometrical object with a single energy within the scope of the Dirac equation if we introduced again a
mixed state (like ψ instead of χ in Eq. 9 within Subsection 1.2). This mixed state will then indeed yield again a fixed energy

ħ(ω0+Ω)/2, i.e. we will obtain d
dτψ=−ı((ω0+Ω)/2)ψwhen we use the traditional energy operator on it. A legitimate question

is then if nature will provide the additional components that must enter the mixture. However, it is not at all our purpose here
to bring the calculations back into the scope of the Dirac equation and its energy operator. There is no reason why this energy
operator should be valid within the context of precession. What interests us here is not calculating the energy which we know
already. It is the fact that the set P(τ) can be interpreted as a rotation around the z-axis when the original beam is mixed.

The result is rather amazing, because we have obtained in Eq. 25 the same type of differential equation as d
dτR(τ) =

−ı(ω0/2)[ez ·σ ]R(τ) for the Rodrigues formula expressing a simple spinning motion around the z-axis, although the form of
P(τ) is different from the form of R(τ) because it is not a diagonal matrix, whereas the matrix R(τ) that describes a spinning

motion around the z-axis is diagonal. With hindsight we can see that we could have anticipated all this. The equations d
dτχ=

−ı(ω/2)[ez ·σ ]χ or d
dτR = −ı(ω/2)[ez ·σ ]R describe any type of object that rotates with an angular frequency ω around the

z-axis. In the usual approach, the object is a spinless electron that we rotate with a frequency ω=ω0 around the z-axis to give
the electron its spin. In the new situation the object is an electron which is already spinning with a frequency ω0 around an
axis s, and we rotate this object bodily with a frequency ω=Ω around the z-axis, to describe the precession of the spinning
electron within a magnetic field. That the new object is different from the initial one can be seen from the expression of
the intervening matrix which is different from the diagonal form we had before. This result shows that whatever the level of
complication in some hierarchy of precessions, we will always be able to treat a fixed-energy component this way. We could
have reached these conclusions also by observing that:

P(τ) =

[
e−ı(ω0+Ω)τ/2

e+ı(ω0+Ω)τ/2

][
cos(θ/2) e−ıφ sin(θ/2)

−e ıφ sin(θ/2) cos(θ/2)

]

. (26)

A surprizing fact is that the whole energy is attributed to a rotation around the precession axis. But this illustrates what we
noted, viz. that the energy is not a vector. We have an object that bodily rotates around the precession axis and its energy is
ħ(ω0 +Ω)τ/2. The development for the equation of motion in Eq.20 is analogous. It can be condensed in the form:

M(τ) =

[
sin(θ/2)e+ı(ω0−Ω)τ/2 −e−ıφ cos(θ/2)e+ı(ω0−Ω)τ/2

e ıφ cos(θ/2)e−ı(ω0−Ω)τ/2 sin(θ/2)e−ı(ω0−Ω)τ/2

]

, det(M(τ)) = 1. (27)

Derivation yields:

d

dτ
M(τ) =−ı((ω0−Ω)/2)

[
−sin(θ/2)e+ı(ω0−Ω)τ/2 e−ıφ cos(θ/2)e+ı(ω0−Ω)τ/2

e ıφ cos(θ/2)e−ı(ω0−Ω)τ/2 sin(θ/2)e−ı(ω0−Ω)τ/2

]

. (28)

The inverse matrix of M(τ) is:

M−1(τ) =

[
sin(θ/2)e−ı(ω0−Ω)τ/2 e−ıφ cos(θ/2)e+ı(ω0−Ω)τ/2

−e ıφ cos(θ/2)e−ı(ω0−Ω)τ/2 sin(θ/2)e+ı(ω0−Ω)τ/2

]

. (29)

We can again construct a matrix W(τ) = [ d
dτM(τ) ] [M−1(τ) ], which is now given by:

[
−sin(θ/2)e+ı(ω0−Ω)τ/2 e−ıφ cos(θ/2)e+ı(ω0−Ω)τ/2

e ıφ cos(θ/2)e−ı(ω0−Ω)τ/2 sin(θ/2)e−ı(ω0−Ω)τ/2

]

×

[
sin(θ/2)e−ı(ω0−Ω)τ/2 e−ıφ cos(θ/2)e+ı(ω0−Ω)τ/2

−e ıφ cos(θ/2)e−ı(ω0−Ω)τ/2 sin(θ/2)e+ı(ω0−Ω)τ/2

]

=

[
−1 0

0 +1

]

. (30)

We have thus:

d

dτ
M(τ) =−ı [ (ω0 −Ω)/2][−ez ·σ ]M(τ). (31)

This is now the equation for a down state. The situation in the Eqs. 25 and 31 corresponds thus actually exactly to a physical
picture of up and down states, but these states are different from what we have been told. It is no longer the same type of
object, viz. the spin, that has its rotation axis aligned up or down. In the old context we started from a spinless electron
and made it spin around an axis, in the new context we start from an already spinning electron whose axis is not aligned
and we make the whole thing bodily spin around a precession axis. It is this precession axis which can now be up or down,
not the spin axis. We should therefore have qualified the states as precession-up and precession-down rather than as spin-up
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and spin-down. Pauli [19] just introduced pragmatically the experimental result of the Stern-Gerlach experiment into the
theory under the form of an ad hoc postulate, without any true justification. He replaced explaining by describing. The spin-
up/spin-down narrative was so highly counter-intuitive that it could only provoke intense bewilderment, as described in
Section 2. After almost a century, we have now the theoretical justification for Pauli’s ad hoc postulate, and we can appreciate
that the directions in space are absolutely not “quantized”.

This solution of a real conceptual difficulty perfectly illustrates the philosophy of our alternative approach to QM. We
must obtain the same correct algebraic results, but we can change the corresponding geometrical explanation which must be
clear, devoid of mysteries and contradictions and in agreement with the meaning of the spinors. This result further validates
our alternative approach. The reason for the confusion within the traditional approach is that the geometrical meaning of
the spinors was not understood. It remained hidden due to the fact that Dirac’s derivation has been based on the second
algebra rather than the first one. Meanwhile, it often remains very hard to find an explanation for the algebraic results. It
requires a lot of mathematical creativity and the mental pictures inherited from the traditional interpretation, which are
deeply engraved in our minds, can really make it difficult to break away from them. They can also trigger fierce resistance to
the new approach. We wanted a perfect mathematical system, made of a geometry, an algebra and a dictionary that translates
one into the other. The interplay between the algebra and the geometry turns such a system into a very powerful method that
allows to gain deep insight if we carry out the mathematics meticulously, as pointed out at the end of Subsection 3. Analytical
Newtonian mechanics reaches this ideal to the point that it almost looks like a purely mathematical theory. With our spinor
approach to the few sample cases we have selected, we seem to come close to this ideal as well.

5 The Pauli exclusion principle remains valid

Feynman [20] has given an intuitive explanation for the Pauli principle. However, he did not write down his idea under
algebraic form, such that a detailed proof is lacking. And in the French translation of [20] there is a footnote by Lévy-Leblond,
which shows that the argument can lead to some confusion. Intuitively, when you exchange two electrons, each of them
makes a turn over an angle of π. You may think that this will multiply their spinors by ı and therefore the tensor product of
the two spinors by −1. But the moves involved in the exchange are, at least in appearance, taking place in space rather than
inside the electron. They are of the position type such that they and the angle ζ which characterizes them (see below) should
in principle not intervene in the argument, because the position coordinates do not belong to the set of parameters that
define a spin state. The real exchange is thus not the swap of the positions but that of the spin states. However, these moves
are accompanied by the rotation of the co-moving Fresnel frame, which is also characterized by ζ. This is a merry-go-round
type of scenario. And this rotational motion is of the spin type. In our development below, the phase ζ which intervenes is
obtained by Lorentz tranformation of the spin variable ω0τ, and therefore really of the spin type.

Due to its historical context, one may suspect that the Pauli principle relies on the assumption that the spins can only be
up and down, i.e. on parallelism. Now that we have discovered that the energy states must rather be characterized in terms of
precession-up and precession-down one may formulate some concerns if the Pauli principle remains valid. As the spins are
no longer parallel we might just have destroyed the Pauli principle. Certainly, there are still only two possible states for the
energy, but there are now many more possible states of motion. The motion is no longer characterized by Ω but by (Ω,θ). In
fact the spins no longer need to be parallel in order to ressort to the same energy state. Could the change of paradigm cause
the meltdown of the Pauli principle?

We will show that the Pauli principle is not under fire, but let us first try to write Feynman’s argument algebraically (in the
non-relativistic limit), rendering our proof open to a detailed scrutiny of the effects of the change. Let us take for the spin-up
and spin-down functions, the wave functions for non-relativistic electrons moving on a circle:

ψ↑ =

[
1
0

]

e−ı[(ω0 t−kℓ)/2] =

[
1
0

]

e−ı[(ω0 t−ζ)/2], ψ↓ =

[
0
1

]

e+ı[(ω0 t−kℓ)/2] =

[
0
1

]

e+ı[(ω0 t−ζ)/2]. (32)

The expressions in the exponentials come from integrating
∫

ω0d t −k·dr =
∫

ω0d t − kdℓ along the circle, The expression
ω0d t −k·dr is the Lorentz invariant ωd t −k·dr = ω0dτ whereby we have dropped the factor γ ≈ 1 in ω = γω0 in the non-
relativistic limit. Here ℓ is the curvilinear distance travelled along the circle, and k = 1/r . In fact, by noting w = c2/v for the
superluminal phase velocity w and putting w =ω0r we obtain ω0v dℓ/c2 =ω0 dℓ/w = dℓ/r , which must be k dℓ. Therefore
k = 1/r . The tangent vector k permits to follow the Thomas precession of the Fresnel basis on the merry-go-round which
embodies the true rigid-body rotation of the whole two-electron configuration. We also note ϕ = ω0t for the spin angle, in
contrast with φ which is the precession angle (and which does not intervene here). In fact, the electron does not have to
move. When we freeze the time, we can still move around the circle geometrically. We have introduced the angle ζ in order
to specify the position of the electron on the circle. We have ℓ = ζr , such that kℓ = ζ. The angle ζ is related to k and we can
understand the value of ζ also as the rotation angle of the co-moving Fresnel basis. Consider now two spin-up electrons at
diametrically opposed positions on a circle of radius r . We can consider then two spin-up electrons positioned in r1 = r,
r2 =−r, ζ1 = 0, ζ2 =π. The phase difference ζ2 = ζ1 +π just translates the different position on the circle.

We have then:
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ψ1 ⊗ψ2 =

[
1
0

]

e−ı[(ω0 t−ζ1)/2] ⊗

[
1
0

]

e−ı[(ω0 t−ζ2)/2] =

[
1
0

]

e−ı[ω0 t/2] ⊗

[
1
0

]

e−ı[(ω0 t−π)/2]. (33)

The expressions are pure spin functions. We consider Eq. 33 as the canonical situation. We will treat other situations later on.
An exchange of the two electrons can be obtained by a rotation over an angle of π around the centre of the circle. Under such
a rotation R over π we obtain, r1 → r2, r2 → r1, ζ j → ζ j +π.

R(ψ1 ⊗ψ2) =

[
1
0

]

e−ı[(ω0 t−π)/2]
⊗

[
1
0

]

e−ı((ω0 t−2π)/2)
=

[
1
0

]

e−ı[(ω0 t−π)/2]
⊗ (−1)

[
1
0

]

e−ı[ω0t/2]. (34)

Hence the rotation induces the substitutions ψ1 → ψ2, ψ2 →−ψ1, and ψ1 ⊗ψ2 →−ψ2 ⊗ψ1. We can see that the cause for
the minus sign is the fact that position angles ζ occur under the form ζ/2 in the spinor calculus. After this rotation R, the
physical situation is indistinguishable from the situation before, because R transforms the electron 1 into the electron 2 and
vice versa. This means that the wave function must be invariant under the rotation. This implies that ψ1 ⊗ψ2 can not be the
wave function Ψ. In fact, R(Ψ) would lead to R(Ψ) = R(ψ1 ⊗ψ2) =ψ2 ⊗ψ1, where we express the exchange ψ1 ↔ψ2. But we
have also calculated in Eq. 34 that R(Ψ) = −ψ2 ⊗ψ1. This leads to R(Ψ) = −R(Ψ), such that R(Ψ) = 0 and Ψ= 0. Similarly, if
we take:

Ψ = ψ1 ⊗ψ2
︸ ︷︷ ︸

+ ψ2 ⊗ψ1
︸ ︷︷ ︸

,

p1 p2

(35)

then we obtain also R(Ψ) =−Ψ because R transforms p1 into −p2 and p2 into −p1, while we have also R(Ψ) =Ψ because R is
an exchange. It follows then again that Ψ= 0. But if we rather take:

Ψ = ψ1 ⊗ψ2
︸ ︷︷ ︸

− ψ2 ⊗ψ1
︸ ︷︷ ︸

,

p1 p2

(36)

we obtain R(Ψ) =Ψ because now R transforms p1 into p2 and p2 into p1. This is now consistent with the fact that R is an
exchange. Hence Ψ in Eq. 36 is a wave function that takes into account the exchange correctly. The wave function has to
be antisymmetric. The configuration of two electrons with parallel spins in the same place, can be obtained by considering
the special case r = 0. When the spins are parallel, we have then ψ1 = −ψ2 and Ψ= 0. We are thus obliged to take the spins
antiparallel if we want to succeed to have them in the same place. This is the Pauli exclusion principle for spin-up and spin-
down states.

Let us now investigate what this becomes with the new paradigm of precession-up and precession-down states. We can
consider this as the non-canonical counterpart of the canonical state described above. We start from ∃(R1,R2) :

χ1 =

[
ξ0

ξ1

]

e−ı[(ω0 t−ζ1)/2] = R1

[
1
0

]

e−ı[(ω0 t−ζ1)/2],

χ2 =

[
η0

η1

]

e−ı((ω0 t−ζ2)/2) = R2

[
1
0

]

e−ı((ω0 t−ζ2)/2). (37)

We are thus considering the rotations R1 and R2 that relate the wave functions χ j = R j (ψ j ) to the wave functions ψ j of the
canonical configuration. We have again ζ2 = ζ1 +π, where we can take ζ1 = 0. Then:

ψ1 = R−1
1 χ1, ψ2 = R−1

2 χ2. (38)

The two exponentials still exhibit a phase difference π leading to a factor −1 such that:

ψ1 →ψ2, ψ2 →−ψ1, and therefore: R−1
1 χ1 → R−1

2 χ2, R−1
2 χ2 →−R−1

1 χ1, (39)

or:

χ1 → R1R−1
2 χ2, R1R−1

2 χ2 →−χ1. (40)

In other words: ∃R = R2R−1
1 ∥ χ2 = Rχ1 & χ1 =−R−1χ2. Combining these two identities leads to χ1 =−χ1. Therefore the wave

function must still be antisymmetrical. Hence Pauli’s principle remains even valid when the two spins are not parallel.
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Appendix1. The missing link: the geometrical meaning of the spin-up and spin-down states

Let us note the up and down spinors as:

χ↑ =

[
1
0

]

, χ↓ =

[
0
1

]

. (41)

The tensor products χ↑⊗χ†
↑
, χ↓⊗χ†

↑
, χ↑⊗χ†

↓
, and χ↓⊗χ†

↓
, are a basis for the vector space M(2,C) of complex 2×2 matrices.

These four basis vectors are 2 × 2 matrices which have each only one non-zero entry which is equal to 1. The manifold
A(G,G) ⊂ F (G,G) of group automorphisms of the rotation group G, which is isomorphic to the rotation group G, is embedded
in M(2,C). The vector space of linear mappings M(2,C) contains thus the representation of the group G by automorphisms.
And when we extend G to a larger group, such as to contain also reflections and reversals, it will be also be embedded in
M(2,C). But M(2,C) can also account for more complicated motions such as precession, nutation, etc... The four basis vectors

of M(2,C), χα⊗χ†
β

, with (α,β) ∈ {↑,↓}2, transform β into α. The matrices 1
2

(1± ez ·σ) are then the basis vectors χ↑⊗χ†
↑

and

χ↓⊗χ†
↓
. In fact, 1

2 (1+ez ·σ) = χ↑⊗χ†
↑

transforms then χ↑ into χ↑, while 1
2 (1−ez ·σ) = χ↓⊗χ†

↓
transforms then χ↓ into χ↓. The

spinning motion:

[
e−ıω0τ/2

e ıω0τ/2

]

, (42)

has two components in this basis because it transforms simultaneously χ↑ into e−ıω0τ/2χ↑ and χ↓ into e+ıω0τ/2χ↓. The reflec-
tion operator [ex ·σ ] transforms simultaneously χ↑ into χ↓ and χ↓ into χ↑.

Using the fact that a spinor is the first column of a rotation matrix, χ↑ can be considered as representing 1 and thus the
identity element. Following the same logic χ↓ could be considered as representing the reflection σx . The spinor χ↑ would
then correspond to a right-handed reference frame with triad (ex ,ey ,ez ). The spinor χ↓ would correspond to a left-handed
reference frame with triad (−ex ,ey ,ez ). Operating the spinning motion around the z-axis with the representation matrix

given by Eq. 42, to χ↑ and χ↓ will then yield the spinor χ↑e−ıω0τ/2 and the conjugated spinor χ↓e ıω0τ/2. The conjugated spinors
correspond thus to reversals.

For a 2×2 matrix M operating on the vector space R
2 with basis vectors e1 and e2, the first column of M corresponds to

M(e1), and the second column to M(e2). The spinors of SU(2) do not constitute a vector space but a curved manifold, such
that what we have written for the matrix M cannot literally apply. We see now that the first column of a rotation matrix R of
SU(2) corresponds to R(χ↑), where χ↑ represents 1 or the canonical right-handed reference frame, while the second column
corresponds to R(χ↓), where χ↓ represents σx or the canonical left-handed reference frame.

To justify this further we will show that χ↓ cannot be identified with the first column of a simple rotation matrix, such that
the set of spinors R(χ↑) and the set of conjugated spinors R(χ↓) are disjoint. The general expression for a rotation by an angle
ϕ=ω0τ around the axis s with spherical coordinates (θ,φ) is according to the Rodrigues formula:

[
cos(ϕ/2)− ı cosθ sin(ϕ/2) −ı sin(θ)e−ıφ sin(ϕ/2)

−ı sin(θ)e ıφ sin(ϕ/2) cos(ϕ/2)+ ı cosθ sin(ϕ/2)

]

. (43)

Therefore obtaining χ↓ as the first column of this rotation matrix would require cos(ϕ/2) = 0, implying sin(ϕ/2) = 1. This
would then further require cosθ = 0, such that sinθ = 1. All these conditions are necessary just to make sure that the first
entry of the spinor is zero. This leaves us with:

[
0 −ıe−ıφ

−ıe ıφ 0

]

. (44)

Because ϕ/2 must have the fixed value π/2 we cannot have dynamical spinning motion associated with χ↓. Let us now check
what follows from the condition that the second entry of the spinor must be 1. We must then have −ıe ıφ = 1, such that
φ=π/2. We have thus (θ,φ) = (π/2,π/2) and ϕ/2=ω0τ/2 = π/2. An illicit out-of-the-box solution would be φ=ωτ+π/2. We
would obtain then the “spinor” e ıωτχ↓. This pseudo-solution would then represent the rotation of a non-spinning electron
whose rotation axis would be in the Ox y plane and precessing around the z-axis with an angular frequency ω. The net result
would be like an electron spinning around the z-axis. But this is a cheat because it transgresses the domain of the original
definitions, and we can represent such a motion already by means of χ↑. Hence the two sets of “spinors” generated by the
rotation group by operating on χ↑e−ıω0τ/2 and χ↓e ıω0τ/2 are physically disjoint. The quantity χ↓e ıω0τ/2 is not a spinor that
corresponds to a spinning motion.

We can therefore adopt without ambiguity the convention that χ↓e ıω0τ/2 are reversals, which are rotations of left-handed
frames. Note that in a left-handed frame a∧b is now defined according to the left-hand rule, such that ω|−ω if we stick to
the right-hand rule.

We must now discuss a possible confusion. Let us compare Eq. 42 with Eq. 12. We see that the part 1
2

[1+s·σ ]e−ıω0τ/2 in
Eq. 12 is up to normalization just equal to [1+ s·σ]R. One could thus argue that it corresponds to the superposition state ψ
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defined in Eq. 9 which permits to write [s·σ ]ψ =ψ. The other part 1
2

[1− s·σ ]e ıω0τ/2 in Eq. 12 is then up to normalization
equal to [1−s·σ ]R. It corresponds then to a superposition state ξ defined as:

ξ=χ− [s·σ ]χ ⇒ [s·σ ]ξ=−ξ ⇒
dξ

dτ
=+ı(ω0/2)ξ. (45)

For the special case of spinning motion around the z-axis in Eq. 42, the first column of the matrix in Eq. 42 corresponds thus
also to 1

2
(1+ ez ·σ )e−ıω0τ/2 such that it seems as though χ↑ must correspond to 1

2
(1+ ez ·σ ). Similarly, it seems as though

χ↓ must correspond to 1
2 (1− ez ·σ ). This is a different interpretation scenario for the spin-up and spin-down spinors we

established above. Which one of the two interpretations is right?

This confusion is related to a number of coincidences that occur when s = ez . These are the same coincidences which
permitted us to write [s·σ ]χ= χ in the main text just before Eq. 5. In fact, both the unit matrix and [ez ·σ ] are in the special
case s = ez algebraically equal to χ↑. But this is a coincidence and not general, such that we cannot attribute geometrical
meaning to it. It is so to say frame-dependent. We can decide very quickly which one of the two interpretations is right by
remembering that 1+ s·σ= 2χ⊗χ†. It transforms thus as a vector under rotations R, i.e. 1+ s·σ= 2χ⊗χ† → R(1+ s·σ)R† =

R(2χ⊗χ†)R†, while the spinors transform as group elements χ→ Rχ. The quantity 1
2

(1+ez ·σ) is thus the 2×2 matrix χ↑⊗χ†
↑

and we cannot identify it with the 2×1 matrix χ↑. Other differences are also immediately visible. A general spinor Rχ↑ can
contain the two frequencies ±ω0 and remains always a 2×1 single-column matrix. On the other hand, (1+ s·σ)e−ıω0/2 will
under transformation continue to contain the single frequency −ω0, and its non-zero entries will in general be spread over
two columns.

Les us now call Q the rotation around the axis parallel to ez ∧s that rotates ez to s (This is actually the second matrix in Eq.
26). Under this rotation vectors are transformed “quadratically” according to: [s·σ ] = Q [ez ·σ ]Q†. This transforms 1

2
(1−ez ·σ)

into 1
2

(1−s·σ) and 1
2

(1+ez ·σ) into 1
2

(1+s·σ). The operators 1
2

(1±s·σ) play thus locally the same rôle for rotations around s

as 1
2

(1±ez ·σ) for rotations around ez .

The mixed states ψ and ξ can also be encountered in Pauli’s theory for the spin, but it has never been realized that
they were mixed states. In fact, the matrices [s·σ ] are reflection matrices. This is something one may not expect based on
physical intuition in the definition for the concept of spin. Their non-normalized eigenvectors are [1+ sz , sx + ı sy ]⊤ for the

eigenvalue λ= 1 and [1− sz ,−sx − ı sy ]⊤for the eigenvalue λ=−1, clearly revealing their relation with the mixed states 1
2 (1+

s·σ ) and 1
2

(1− s·σ ). It can be seen even more clearly by constructing the eigenvectors as sets: [s·σ ] {1,s·σ } = {1,s·σ } and
[s·σ ] {1,−s·σ } =−{1,−s·σ }. This shows that it is not correct to interpret the up and down spinors as eigenvectors of the Pauli
matrices. We can only operate with Pauli matrices on the up and down states, with the effect to transform a rotation into a
reversal and vice versa. This is of course a rather subtle issue. Again the confusion is due to the coincidence which occurs
when s = ez discussed above.

We may note finally that the basis vectors χα⊗χ†
β

, with (α,β) ∈ {↑,↓}2 of M(2,C) acquire a second meaning within the

multivector formalism of the Clifford algebra discussed in [2], i.e. what we have called the second algebra in the present arti-
cle. Here two of the basis vectors are isotropic vectors, which can be considered as representing oriented planes and defining
complete triads. These interpretations are of no use here because our spinors χ↑ and χ↓ must represent states of spinning
motion, such that we need the interpretation of the vector space M(2,C) in terms of rotations, reflections and reversals rather
than multivectors.

Appendix 2. The Dirac equation does not describe a single electron but a superposition
state that must be interpreted as corresponding to a statistical ensemble

We can imagine that the electron in Eq. 5 is at rest at position (x0, y0, z0) ∈ R
3. Up to now we have defined a spinor function

ψ ∈ F (R,C2) where ψ(τ) looks like a wave. We will from now on consider this as a function ψ(x0 ,y0 ,z0) ∈ F (S(x0,y0 ,z0)×R,C2) with
space-time definition domain S(x0 ,y0 ,z0) ×R, where the space part S(x0 ,y0 ,z0) is the one-element set S(x0 ,y0,z0) = {(x0, y0, z0)}

and the Cartesian product with R adds the time parameter τ. The partial derivatives ∂
∂x

, ∂
∂y

and ∂
∂z

of this function ψ(x0 ,y0 ,z0)

are not defined, such that the identity in Eq. 8 cannot be applied to ψ(x0 ,y0,z0).

It does not take a brilliant quantum mechanic to repair for the situation. Very obviously we must generalize our equation
for the mixed state ψ(x0 ,y0 ,z0) to an equation for a spinor wave function Ψ ∈ F (R4,C4). This will be a wave function for a statis-
tical ensemble of electrons in a yet broader sense than the mixed state ψ(x0 ,y0 ,z0). The ensemble will not only account for var-

ious rotational states, but also for all possible positions (x0, y0, z0) ∈ R
3 of the electron. We discussed this in [6], but we think

the following explanation is more tidy. If we want to describe the spinning motion of an electron at rest also at another point
(x1, y1, z1) ∈R

3, we can consider the functionψ(x1 ,y1,z1) ∈ F (S(x1 ,y1,z1)×R,C2). Describing the two posible electron positions si-
multaneously will require introducing a superposition state. This superposition state will correspond to the statistical ensem-
ble of the electrons whose positions can with equal probability be one of the two members of the set {(x0, y0, z0), (x1, y1, z1)}.
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As the wave function we use in QM is a plane wave defined at all (x, y, z) ∈R
3 we must thus define a superposition state that in-

corporates the uncountable number of electrons at all (x, y, z) ∈R
3. But with the definitions adopted ψ(x0 ,y0 ,z0) and ψ(x1 ,y1 ,z1)

cannot be added because they have different definition domains. To render the summing of the wave functions possible, we
may introduce extensions φ(x0 ,y0 ,z0) ∈ F (R4,C2) which we could define by φ(x0 ,y0,z0)(τ, x, y, z) =ψ(τ)δ(x−x0)δ(y − y0)δ(z−z0).
Here the function δ is not Dirac’s “delta function” because Dirac “delta functions” are mathematical nonsense and do not
exist. The function δ is here rather defined by: (δ(0) = 1)&(∀x 6= 0)(δ(x) = 0). Hence the weight we put in x = 0 is 1. Further-
more

∫

R
δ(x)d x = 0 rather than

∫

R
δ(x)d x = 1 as in Dirac’s delta which he wrongly thought he could satisfy by stipulating

δ(0) =∞. By defining δ(0) = 1, we avoid the use of singular Dirac measures (with “infinite weight”), which is important for
what we are going to do afterwards. This definition permits to add up φ(x0 ,y0 ,z0) and φ(x1 ,y1,z1) such as to define the mixed

state. By dropping the deltas we obtain a true function Ψ defined by Ψ(τ, x, y, z) =ψ(τ), ∀(τ, x, y, z) ∈ R
4, which is the wave

function we use for an electron at rest. We talk about it in terms of a wave function for a single electron at rest but it involves
considering an infinite statistical ensemble of electrons at rest, whereby the electrons can now be anywhere in R

3 with equal
probability. We can consider this function intuitively as a symbolic sum of spinors:

Ψ=
∑

(x0 ,y0 ,z0)∈R3

φ(x0,y0 ,z0) or: Ψ(τ, x, y, z) =
∑

(x0 ,y0 ,z0)∈R3

ψ(τ)δ(x − x0)δ(y − y0)δ(z − z0). (46)

which confirms the idea that Ψ is a superposition state and therefore corresponds to a statistical ensemble. In reality, such
sums over a non-countable set are a priori not defined, although a physicist might consider this remark as esoterical math-
ematical faultfinding because it seems obvious what it means in this special case. We can formulate the idea completely
rigorously by falling back again onto sets, because the sums were introduced in order to represent sets in the first place. We
can define the function Ψ and its definition domain S according to:

Ψ=
⋃

(x0 ,y0,z0)∈R3

ψ(x0 ,y0,z0), S =
⋃

(x0 ,y0 ,z0)∈R3

S(x0 ,y0 ,z0) ×R=R
4, (47)

which confirms the status of Ψ ∈ F (R4,C2) as a superposition state equally well. This may look very arcane and intimidating
but it is just based on the idea that a function f ∈ F (A,B) is nothing else than a set of couples (x, f (x)) ∈ A × B . This is
much more rigorous than the tentative approach by the pseudo-equation Eq. 46. We see that by twice using superposition
states we have transformed the deterministic equation for a spinning electron in SU(2) to a probabilistic wave equation over
R

4 that can be lifted to the Dirac representation of the homogeneous Lorentz group. The two interventions we needed to
keep on track correspond both to introductions of superposition states. This highlights that the wave function must really
be interpreted statistically as proposed by Ballentine. The final superposition state has been obtained by considering a non-
countable infinity of electrons. These are all the electrons we would need to measure one by one in order to obtain the
perfect experimental statistics described by the wave function Ψ. By Eq. 47 Ψ is now well-defined as a superposition state,
even if it still has a normalization problem, because the integral

∫

R3 Ψ
†
Ψdr diverges. If we had used Dirac measures, the

mathematical normalization problems would have become far worse. The resulting superposition state corresponds to all
possible meaningful histories for single electrons at rest in Ballentine’s interpretation of QM. One can ask here the question
why we give all these electrons the same phase. This question is never asked in the traditional approach but answered in the

Appendix of [5]. For the state Ψ, the partial derivatives ∂
∂x

, ∂
∂y

and ∂
∂z

are now well-defined operations. Working on Ψ they

yield 0, which was not true for φ(x0 ,y0 ,z0) or ψ(x0 ,y0,z0). Hence in the electron’s rest frame one can after lifting Ψ to the Dirac
representation apply the identity Eq. 8 to the state Ψ to obtain the rigorous identity:

1

c

d

dτ
γtΨ≡ [

1

c

∂

∂τ
γt −∇·γ ]Ψ. (48)
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