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NONLINEAR CAUCHY PROBLEM AND IDENTIFICATION IN CONTACT

MECHANICS : A SOLVING METHOD BASED ON BREGMAN-GAP
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Abstract. This paper proposes a solution method for identification problems in the context of
contact mechanics when overabundant data are available on a part Γm of the domain boundary
while data are missing from another part of this boundary. The first step is then to find a
solution to a Cauchy problem. The method used by the authors for solving Cauchy problems
consists of expanding the displacement field known on Γm towards the inside of the solid via the
minimization of a function that measures the gap between solutions of two well-posed problems,
each one exploiting only one of the superabundant data. The key question is then to build an
appropriate gap functional in strongly nonlinear contexts. The proposed approach exploits a
generalization of the Bregman divergence, using the thermodynamic potentials as generating
functions within the framework of Generalized Standard Materials, but also Implicit Generalized
Standard Materials in order to address Coulomb friction. The robustness and efficiency of the
proposed method are demonstrated by a numerical bi-dimensional application dealing with a
cracked elastic solid with unilateral contact and friction effects on the crack’s lips.

Keywords. Cauchy problem, Bregman divergence, full-field displacements, Contact Mechanics,
identification, Inverse problems, bi-potentials.
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1. Introduction

Contact mechanics deals with the special situation where quasi-static loaded deformable bod-
ies are in mutual contact. Because of non-penetration and possibly friction conditions, these
problems turn out to be very nonlinear. Nevertheless, the nature of the nonlinearity is very
different as no dissipation of energy occurs in the first case, whereas the dissipative feature of
the second one requires treating it as an evolution problem [1, 2]. Furthermore the Tresca fric-
tion law (constant slip bound) can be recast into the convex formalism of Standard Generalized
Materials [3], but this is no more the case for the Amontons-Coulomb’s friction law or derived
laws where slip threshold depends on the normal traction [4, 5]. Adhesion phenomena can be
also present and can be modeled for example by using an extra variable like in the formulation
of [6, 7], but although being straightforward to include in the approach proposed in the present
paper, adhesion is not addressed here.

Contact mechanics is involved in numerous inverse or identification problems, some of them
being specific such as the identification of contact zone or friction parameters. We are here
interested in problems where the available data consist in full mechanical fields (Um,Fm) ,
i.e. displacement and stress vector fields, known on some parts of the boundary of the solid
bodies (not including the possible contact areas). Practical situations include in particular
displacement measurements obtained by digital image correlation (DIC) techniques on a stress-
free part Γm of the external boundary of the solids [8, 9]. In this paper, advantage is taken from
this large amount of data and exploitation is made of the superabundant mechanical boundary
conditions given by the pair (Um,Fm = 0) by solving a Cauchy problem [10] delivering the whole
mechanical fields inside the solids. Then identification procedures are designed or identification
results arise directly from the knowledge of the mechanical field itself.

One of the key-points of this approach is of course the solution method for the Cauchy
problem for the operators encountered in contact mechanics, that is usually the Lamé system if
linear elasticity is used for description of the behavior of the bulk material within the bodies,
and the Signorini’s unilateral boundary condition [11] combined with the friction law on the
contact areas. Both of the last conditions are nonlinear. Solving the Cauchy problem attracted
the attention of numerous researchers with a wide range of methods, a large amount of them
address nevertheless only linear elliptic operators and 2D situations [12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 14]. Very few papers can be found for nonlinear elliptic Cauchy problems [13, 23, 24].

The authors developed in a series of papers solution algorithms for the resolution of the Cauchy
problem in linear and nonlinear mechanics [25, 26, 27, 28, 29, 30, 31, 32], including nonlinear
elasticity and elastoplasticity, stationary and heat equation [33, 34, 35, 36, 37, 38, 39, 40, 41].
The method relies on a gap functional which is minimized in the proposed approach, provided
it is positive, and zero when the gap vanishes. These properties of the gap functional can be
automatically fulfilled if this functional is a Bregman divergence. The reason lies in the convexity
of the function generating the Bregman divergence, and in thermomechanics the thermodynamic
potentials and dissipation functions are generally convex functions so they are natural candidates
for generating Bregman divergences well suited to the problem in consideration. However, this
has to be adapted in the case with friction because it cannot generally be described by a convex
dissipation function. We turn then to the implicit Generalized Standard Material framework
which enables to recover convexity. Equipped with the adapted solution method for Cauchy
problems in contact mechanics, some inverse or identification problems are tackled with.

The paper is organized as follows. Firstly, the Cauchy problem in the context of linear
elasticity and contact condition is recalled, the general variational method proposed for solving
Cauchy problem is described. It involves the definition of a gap between the solutions of two
forward problems. The adaptation of the method for contact mechanics is described in part 3
where specific gap functions are derived; it is suggested to ground the building of the function
on the concept of Bregman divergence by introducing the Bregman Gap. A distinction has
to be made for unilateral contact conditions with (or without) Tresca like slip threshold, and
unilateral contact with Coulomb’s friction condition. The part 5 is devoted to various inverse
or identification applications. Then a brief final section offers some concluding observations.
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Figure 1. Notation and geometry of the contacting solids.

2. Cauchy problems in linear elasticity with contact

2.1. Formulation of direct problems in contact mechanics. Consider two three-dimensional
elastic solids bodies Ωα, α = 1, 2 the boundaries of which are separated in three non-overlapping
parts :

(1) ∂Ωα = Γ̄α
D ∪ Γ̄α

N ∪ Γ̄α
C , Γα

D ∩ Γα
N = Γα

N ∩ Γα
C = Γα

D ∩ Γα
C = ∅

where the subscripts D, N , C stand respectively the for Dirichlet boundary, the Neumann
boundary and the contact boundary. In the context of small deformation, the common zone of
possible contact is denoted by ΓC (= Γ1

C = Γ2
C), and the unit normal n on ΓC is chosen such

that: n = n1 = −n2 where nα is the external unit normal to the domain Ωα.
The relative displacement between the two solids on ΓC is defined by [u] = u2−u1, where uα

is the displacement field in the domain Ωα. The relative displacement is split into the normal
(scalar) and tangential part as follows:

(2) [u] = uNn+ uT where uN = u · n
so that the non-interpenetration condition reads: uN ≥ 0. If the solid occupying the domain Ω2

is rigid (u2 = 0), then the usual Signorini condition uN ≤ 0 is recovered. Similarly, the normal
stress vector σ · n = σ1 · n = σ2 · n is decomposed into the normal force density RN and the
vector tangential force density RT .

(3) σ · n = RNn+RT with RN = σ · n · n
Equipped with these definitions, it is possible to set the boundary conditions on the contact
surface, namely:

(1) Signorini’s condition or unilateral contact without friction

(4) uN ≥ 0, RN ≤ 0, uNRN = 0, RT = 0

(2) Unilateral contact with dry friction

(5)







uN ≥ 0, RN ≤ 0, uNRN = 0

‖RT ‖ ≤ g(RN ), u̇T = λRT , with

∣
∣
∣
∣

λ = 0 if ‖RT ‖ < g(RN )
λ > 0 if ‖RT ‖ = g(RN )

with the slip threshold g(RN ) = τ for Tresca’s friction law, and g(RN ) = ρ0|RN | for Coulomb’s
law. The dissipation has the following expression:

D = RN u̇N +RT · u̇T ≡ RT · u̇T
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The direct simulation of friction and unilateral contact mechanics necessitates a time discretiza-
tion. For preserving convexity and achieving accuracy on the geometry of the contact, sliding
and adhesion zones, the backward Euler method (or implicit Euler method) should be used.
The equation system is then the Lamé system completed with the boundary conditions on the
contact zone ΓC given either by (4) or (5) with their implicit incremental form:

(6)







div (σα +∆σα) = 0 in Ωα

σα +∆σα = Aα : ǫ(uα +∆uα) in Ωα

ε(uα +∆uα) = ∇s(uα +∆uα) in Ωα

uα +∆uα = Uα +∆Uα on Γα
D

(σα +∆σα) · n = Fα +∆Fα on Γα
N

A variational formulation of this equation system has been established [7, 42] and reads:






for given u = (u1,u2),
find ∆u = (∆u1,∆u2) with u+∆u ∈ K such that :
a (u+∆u,v−u−∆u)+J (u+∆u,v−u)−J (u+∆u,∆u) ≥ (F+∆F,v−u−∆u)
∀ v ∈ K

with the following definition of the space of admissible displacement fields V , and the convex
cone K of displacement fields fulfilling additionally the non-interpenetration condition:

(7)
V =

{(
u1,u2

)
∈
[
H1(Ω1)

]3 ×
[
H1(Ω2)

]3
, uα = Uα on Γα

D, α = 1, 2
}

K =
{(

u1,u2
)
∈ V, uN ≥ 0, on ΓC

}

and the following definition of the bi-linear form a(•, •) and the convex function J :

a(u,v) =
∑

α=1,2

∫

Ωα
Aα : ǫ (uα) : ǫ (vα) dΩ(8)

J(u) =
∫

ΓC
g
(
RN P(u1)

)
‖RT P(u1)‖dΓ

Here P is the projection on the space U1
s of elastic statically admissible fields in the domain Ω1:

U1
s =

{

v ∈
[
H1(Ω1)

]n
,

∫

Ω1

A1 :ǫ(v) :ǫ(w)dΩ=
∫

Γ1

N
F 1 ·wdΓ,(9)

∀ w ∈
[
H1(Ω1)

]n
,w = 0 on Γ1

D ∪ Γ1
C

}

With the usual properties of the Hooke tensors A (continuity and coerciveness), the variational
problem (7) admits a unique solution, provided the friction coefficient ρ0 is small enough as a
supplementary condition in the case of Coulomb’s friction law [42].

2.2. Formulation of Cauchy or data completion problems. In order to establish the
Cauchy or data completion problem, which exploits superabundant boundary data on a part on
the boundary of the contacting solids, another partition of the boundaries ∂Ωi has to be defined,
namely by introducing :

• a part denoted Γm where the superabundant data pair (Um,Fm) is available ;
• a part denoted by Γu where the data pair (Uu,Fu) is unknown ;
• a last part denoted by Γb where usual combination of Dirichlet and/or Neumann con-
ditions are prescribed (this part can possibly include contact and friction boundary
conditions).

Some applications necessitate to redefine the contacting bodies and to use interior surfaces as
parts of the boundary Γu. The Cauchy problem and the data completion problem can be defined
as follows:

Cauchy problem. To find the displacement field u satisfying the equilibrium condition and
the constitutive equation within Ω1 ∪ Ω2, the boundary condition on Γu and Γb and meeting the
superabundant data on Γm : u = Um , σ(u) · n = Fm

Data completion problem. To find the displacement field Uu on Γu such that there exists
a displacement field u satisfying the equilibrium condition and the constitutive equation within
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Figure 2. Notation and geometry of the contacting solids in the case of the Cauchy problem.

Ω1 ∪ Ω2, the boundary condition on Γu and Γb and meeting the superabundant data on Γm:
u = Um , σ(u) · n = Fm

The Cauchy problem and the data completion problem are very similar; they differ only by the
unknowns of the problem. In the sequel, we shall use the missing boundary Dirichlet data Uu as
an auxiliary variable in order to determine the full displacement field u (and other mechanical
quantities) in the solids, via the solution of the elastic equilibrium problem. The two problems
will be then solved equivalently and the terms Cauchy problem or Data completion problem will
be used as well.

In the case of quasi-static evolution problems, the Euler implicit scheme is used so the incre-
mental Cauchy or Data completion problems have to be addressed. Nevertheless, the adaptation
of the above definition is straightforward.

3. A general variational method for the solution of Cauchy problems

As mentioned in the introduction, various methods have been proposed to solve the Cauchy or
data completion problem. We describe here a method belonging to the variational approaches,
that is based on the minimization of an ad hoc functional, the arguments of which are the
missing data on the boundary Γu. For that purpose, two auxiliary well-posed direct problems
(P1,P2), based on the equations (6), (4) or (5), and parametrized by the Dirichlet data ∆η on
Γu, are defined as follows:

(10) Pα :







div(σαi +∆σαi ) = 0 in Ωα

σαi +∆σαi = Aα : ε(uα
i +∆uα

i ) in Ωα

ǫ(uα
i +∆uα

i ) = ∇s(uα
i +∆uα

i ) in Ωα

(uα
i +∆uα

i )n ≥ 0, (Rα
i +∆Rα

i )n ≤ 0, on Γc

(uα
i +∆uα

i )n (R
α
i +∆Rα

i )n = 0 on Γc

(∆Rα
i )T = 0 on Γc

∆uα
i = ∆η on Γu

α = 1, 2 i = 1, 2

(11) with

{
∆σ11 · n = ∆Fm on Γm for P1

∆u1
2 = ∆Um on Γm for P2

The boundary part Γb is free of load and only Signorini’s condition is used. Each problem uses
only one of the superabundant data (∆Um,∆Fm) on the boundary Γm. Now it is clear that
if ∆η is such that the two solution fields of problems (P1,P2) are equal, ∆u1 = ∆u2 = ∆u,
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Figure 3. Geometrical interpretation of the Bregman divergence for n = 2.

hence the Cauchy problem is solved with solution ∆u. If a gap functional E(v,w) can be built
between the fields ∆u1 and ∆u2 with properties:

(1) E(v,w) ≥ 0 ∀ v,w
(2) E(v,w) = 0 ⇔ v = w

then the variational method for solving the Data Completion Problem is simply:

(12) ∆Uu = Arg min
∆η

fobj(∆η) ≡ E(∆u1(∆η), ∆u2(∆η))

and ∆u = ∆u2(∆Uu) is the solution of the Cauchy problem.

4. The symmetrized Bregman Gap and gap functionals

As just seen, the solution of the Cauchy problem in the proposed approach relies on the design
of appropriate gaps between field solutions of equations systems. In the convex realm, advantage
can be taken of existence of convex thermodynamic or dissipation potentials. For that purpose,
a Bregman Gap, inspired by the notion of Bregman divergence is derived.

Definition (Bregman Divergence, [43, 44]). Let J be a proper convex differentiable function,
J (e) : Rn −→ R , the Bregman divergence, generated by J , between two points belonging to
dom(J ) is the non-negative scalar :

(13) DJ (e1, e2) = J (e1)− J (e2)− 〈∇J (e2) , e1 − e2〉
Bregman divergences are generally not distances as they are neither symmetric nor satisfying

the triangle inequality. Nevertheless, interesting properties have been proved [45] and have
been extended to the infinite dimensional context [46], particularly in the context of learning
applications, although the Bregman divergence appeared first in optimization algorithms design
[43, 44]. Among these properties, the one of additivity is of particular interest in applications
because it allows combining two or more generating functions. The geometric interpretation of
the Bregman divergence is illustrated on the figure 3 for n = 2.

Property. Additive property.
DλJ+µF (e1, e2) = λDJ (e1, e2) + µDF (e1, e2), for J ,F convex and (λ, µ ) positive.

Nevertheless, the original notion of Bregman divergence cannot be used for building a gap
functional between the solutions of the two auxiliary problems, mainly because of two limitations.
The first one is the necessary differentiability of the generating function J in the definition,
which is disqualifying for using non differentiable dissipation potentials as generating functions.
The second one is that the Bregman divergence addresses distance between points in vector
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spaces whereas it is of interest to deal rather with couples of dual quantities for application in
mechanics. Actually the pertinent fields involved in the auxiliary problems are pairs such as
(σ, ǫ) and (A, α), where A is a thermodynamic force and α an internal variable, each element
of the couple being related to the other by a relation involving a potential and incorporating
derivatives or subdifferentials, for example:

(14) σ =
∂ϕ

∂ǫ
(ǫ, α) α̇ ∈ ∂ψ(A)

ϕ and ψ are free energy and potential of dissipation, respectively. We then define the Bregman
Gap as follows:

Definition (Bregman Gap (BG)). Let J be a proper convex function, J (e) : Rn 7→ R, the
Bregman Gap, generated by J , between a point e1 and the couple (e2,p2), is the non-negative
scalar:

(15) BGJ (e1, [e2,p2]) = J (e1)− J (e2)− 〈p2, e1 − e2〉
where p2 is a sub-gradient of J at point e2, and ∂J (e) is the subdifferential of J at point e:

∂J (e) = {p,J (d) ≥ J (e) + 〈p,d− e〉 ∀ d ∈ dom(J )} .
Because of the lack of symmetry of the Bregman Gap, it is preferable to symmetrize it in

order to build a gap between two pair (ei,pi) and to get a similar role of the two solutions
within the functional E.

Definition (Symmetrized Bregman Gap). Let J be a proper convex function, J (e) : IRn 7→ R

, the symmetrized Bregman gap, generated by J , between two couples (e1,p1) and (e2,p2), with
p1 ∈ ∂J (e1) and p2 ∈ ∂J (e2) is :

(16) BGs
J ([e1,p1], [e2,p2]) = BGJ (e1, [e2,p2]) +BGJ (e2, [e1,p1])

It is worth noticing that if the generating function J is differentiable, then the symmetrized
Bregman divergence and the symmetrized Bregman gap will coincide,

(17) J differentiable ⇒ BGs
J ([e1,p1], [e2,p2]) = DJ (e1, e2) +DJ (e2, e1)

Furthermore for twice differentiable generating functions, the Bregman Gap takes the form:

Ds
J (e1, e2) = (e1 − e2)

t∇2J (e) (e1 − e2) , e ∈ [e1, e2]

More important for application to the Cauchy problem are the following properties.

• BGs
J ([e1,p1], [e2,p2]) = 〈p1 − p2, e1 − e2〉

• If J is a quadratic function then: BGs
J ([e1,p1], [e2,p2]) = 2J (e1 − e2)

Then provided a generating function J can be identified as a function of the state variables
associated to the solution fields u1 and u2 of the two auxiliary problems, we can generally define
the gap functional as:

E(u1,u2) =
∫

ΩBG
s
J ([e(u1),p(u1)], [e(u2),p(u2)]) dΩ(18)

=
∫

Ω〈p(u1)− p(u2), e(u1)− e(u2)〉dΩ
or equivalently in the case of quadratic function J :

(19) E(u1,u2) =

∫

Ω
J (e(u1)− e(u2)) dΩ

Note that the generating function J does not appear anymore in eq. (18), but its existence
is mandatory in order ensure that the gap 〈p1 − p2, e1 − e2〉 is always positive. In contact
mechanics, natural generating functions can be found with thermodynamics potentials: namely
the free (Helmholtz) energy associated with the linear elastic behavior of the solids, and the
pseudo-dissipation potential associated with the dissipative contact conditions. The Generalized
Standard Material (GSM ) formulation [3] can be used to identify the state variables and the
corresponding potentials. Nevertheless, as the Coulomb law of friction cannot be recast into the
GSM formulation, this case is addressed separately in the sequel.
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5. Two solution algorithms for the Cauchy problem

The Cauchy problem can now be solved by defining the two auxiliary problems (P1,P2)
parametrized by the Dirichlet data η on Γu, and by minimizing the gap obtained, thanks to a
suitable symmetrized Bregman gap between the solutions of these two problems, as a function
of η:

(20) min
η
fobj(η), fobj(η) = E (u1(η),u2(η))

As described before [25, 26], a way to minimize fobj is to use trust region method with conjugate
gradient process and a computation of the gradient by an adjoint method. Then each iteration of
this algorithm necessitates the computation of the two solutions u1 and u2 and the computation
of two adjoint problems with solutions u∗

1 and u∗
2. This algorithm has been used previously with

some efficiency in various 2D and 3D Cauchy problems and this general approach compares
very favorably with existing method as the KMF algorithm [12], by demanding a number of
iterations to convergence of several orders of magnitude lesser. The KMF algorithm, initially
presented as a fixed point algorithm, has been reinterpreted in the framework of the present
method as an alternating descent algorithm, which explains its poor performance [33, 40].

Nevertheless, to address more nonlinear problems and also problems where singularities can
appear in the unknown data η, as it is the case where the boundary Γu contains cracks, a new
formulation has been designed. For the sake of clarity, it will be described below on the model
problem of elasticity. The two auxiliary problems read then:

Problem P1






div(σ1) = 0 in Ω
σ1 = A : ǫ(u1) in Ω
ǫ(u1) = ∇s(u1) in Ω
σ1 · n = Fm on Γm

u1 = η on Γu

Ω

Γm Fm

Γu η

Problem P2






div(σ2) = 0 in Ω
σ2 = A : ǫ(u2) in Ω
ǫ(u2) = ∇s(u2) in Ω
u2 = Um on Γm

u2 = η on Γu

Ω

Γm Um

Γu η

The gap function associated with the symmetrized Bregman Gap generated by the function
J (∇u) = 1

2 (σ(u) : ǫ(u)) is :

(21) fobj(η) = E (u1(η),u2(η)) =

∫

Ω
(σ1(η)− σ2(η)) : (ǫ1(η) − ǫ2(η)) dV

and the solution of the Cauchy problem is obtained by minimizing fobj. To derive an alternative
formulation, the following auxiliary problem P3 is defined, depending on the solution u1 of
problem P1 :

Problem P3







div(σ3) = 0 in Ω
σ3 = A : ǫ(u3) in Ω
ǫ(u3) = ∇s(u3) in Ω
u3 = Um on Γm

σ3 · n = σ1 · n on Γu

Ω

Γm Um

Γu σ1 · n

where the Dirichlet condition on Γu in problem P2 is replaced with a Neumann condition in-
volving the solution of the problem P1 which depends on η, so that u3 is a function of η as well.
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A new functional of the Dirichlet data η on Γu can be defined as:

(22) gobj(η) = E (u1(η),u3(η)) =

∫

Ω
(σ1(η) − σ3(η)) : (ǫ1(η)− ǫ3(η)) dV

Some interesting properties can be derived making the minimization of gobj an equivalent solution
method of the Cauchy problem. Firstly, the field u3 solution of P3 can be characterized as a
minimum of the function E on Vm:

(23) Vm =
{
v ∈ H1 (Ω) , v = Um on Γm

}

To prove this assertion, the stationary point w of the convex function E (u1(η),v) is studied on
Vm :

(24) DvE (u1(η),w) · δv = 0 ∀ δv ∈ V0 =
{
v ∈ H1 (Ω) , v = 0 on Γm

}

this leads to : ∫

Ω
(σ(u1)− σ(w)) · ǫ(δv)dV = 0 ∀ δv ∈ V0

Notice that σ(w) = A : ǫ(w), σ(u1) = A : ǫ(u1) and σ(δv) = A : ǫ(δv) and using the fact that
div(σ1) = 0 in P1 one obtains:

∫

Ω
div(σ(w) δv dV −

∫

Γu

(σ(w)− σ(u1)) · n δv dS = 0 ∀ δv ∈ V0

hence it can be deduced that div(σ(w)) = 0 and σ(w) · n = σ(u1) · n on Γu. These two last
equalities and the condition w ∈ Vm just as u3 show that w = u3. We have then :

(25) u3 = arg min
v∈Vm

E (u1(η),v)

Thence, it is now straightforward to show following relations:

i. gobj(η) ≤ fobj(η) ∀η
ii.

∂gobj
∂η

(η) · δη = Du1
E (u1(η),u3(η)) · (Dηu1(η) · δη)

the inequality (i.) can be deduced from the minimum property of the field u3, see (24). Indeed,
as u2 ∈ Vm :

gobj(η) = E (u1(η),u3(η)) ≤ E (u1(η),u2(η)) = fobj(η)

The relation (ii.) is derived by:

∂gobj
∂η

(η) · δη = Du1
E (u1(η),u3(η)) · (Dηu1(η) · δη)

+Du3
E (u1(η),u3(η)) · (Dηu3(η) · δη)

︸ ︷︷ ︸

δη ∈ V0

,

Remark that the second term vanishes because of the stationarity definition of E (u1(η),v(η))
for v = u3 as shown in (24). Then, the term (Dηu3(η) · δη) vanishes on Γm for all δη, hence
(Dηu3(η) · δη) ∈ V0 .

Consequently, as gobj(η
opt) = 0 = fobj(η

opt), one can use the function gobj instead of fobj in
order to solve the Cauchy problem by minimization. Secondly the second property (ii.) makes
less expensive the computational cost of gradient of gobj . In fact, only the adjoin problem
associated to the field problem P1 has to be computed.

6. Bregman Gaps in contact mechanics

6.1. Linear elasticity with unilateral contact and Tresca friction law. When the solids
under scrutiny are linearly elastic (in the context of small transformations) and when the friction
law can be cast into the formalism of Standard Generalized Materials (GSM ), then the bulk
Helmholtz free energy and the surface pseudo-potential of dissipation can naturally be used
as generating functions of the Bregman Gap appearing in the general form (16) of the gap
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functional E(u1,u2). As an example, the Tresca friction law is associated with the following
pseudo-potential of dissipation:

(26) D(u̇T ) = τ ‖u̇T ‖
the dual variable of u̇T being RT and the friction constitutive equation reads: RT ∈ ∂D(u̇T ).
In the incremental formulation, a linear combination of the Helmholtz free energy, reduced here
to the elastic energy density, ϕ (ǫ(∆u)) and of the pseudo-potential of dissipation D(∆uT ) leads
to the gap functional:

E(∆u1,∆u2) = χ
∫

Ω (∆σ1 −∆σ2) : (ǫ(∆u1)− ǫ(∆u2)) dΩ(27)

+(1− χ)
∫

Γc
(RT1 −RT2) · (∆uT1 −∆uT2) dΓ

with 0 < χ ≤ 1 , the zero value of χ has to be excluded because of the non-strict convexity of
D. The first (bulk) part of the functional E can be transformed into a surface integral, leading
then to the final expression:

fobj(η) = E(∆u1,∆u2) = χ
∫

Γm
(∆Fm −∆σ2 · n) · (∆u1 −∆Um) dΓ(28)

+
∫

Γc
(RT1 −RT2) · (∆uT1 −∆uT2) dΓ

where ∆u1 and ∆u2 depend on η via the two problems (P1,P2).

6.2. Linear elasticity with unilateral contact and Coulomb friction. As the Coulomb
friction criterion does not fall into the framework of Generalized Standard Materials, a gener-
alization of the Bregman Gap definition is necessary. An extension of the theory of GSM has
been proposed by De Saxcé [47], encompassing internal variables evolution laws which do not en-
joy the normality condition like Armstrong-Frederick hardening plasticity, Drücker-Prager non
associated plasticity, Clam-Clay soil constitutive relations, as well as the Coulomb friction law
[5]. The notion of Implicit Standard Generalized Materials is introduced using what is named
bi-potentials. More precisely [48, 49], if x and y are two elements of real vectors spaces X
and Y respectively, the duality product between them denoted by 〈•, •〉 having an energetic
interpretation, a real function b on X × Y is called a bi-potential if and only if :

i. b is separately convex and lower semi-continuous for x and y;
ii. inf

y∈Y
b(x,y) ∈ R+ ∪ {+∞}∀x ∈ X, inf

x∈X
b(x,y) ∈ R+ ∪ {+∞}∀y ∈ Y,

iii. the function b fulfills the generalized Legendre-Fenchel property:
a. b(x,y) ≥ 〈x,y〉 ∀(x,y) ∈ X × Y
b. b(x,y) = 〈x,y〉 ⇔ x ∈ ∂by(x,y) ⇔ y ∈ ∂bx(x,y)

Obviously, the GSM framework is recovered as soon as the bi-potential is a separated variables
function. The generalized Bregman Gap and its symmetrized counterpart can now be defined
as:

Definition. The generalized Bregman Gap generated by the bi-potential b(x,y), between a point
e1 and the couple (e2,p2) with p2 ∈ ∂J (e2), is the non-negative scalar:

BGJ (e1, [e2,p2]) = b(e1,p2)− b(e2,p2)− 〈p2, e1 − e2〉
≡ b(e1,p2)− 〈p2, e1〉 p2 ∈ ∂yb(e2,p2)

The last expression shows that, thanks to the definition of the bi-potentials, the generalize
Bregman Gap is always positive. The symmetrized generalized Bregman Gap is:

BGs
J ([e1,p1], [e2,p2]) = BGJ (e1, [e2,p2]) +BGJ (e2, [e1,p1])(29)

≡ b(e1,p2) + b(e2,p1)− 〈p2, e1〉 − 〈p1, e2〉
but this expression cannot be reduced, as it is the case for SGM, to the cross-product 〈p1 − p2, e1 − e2〉,
because the positivity of this cross-product is equivalent to the normality rule, which is precisely
violated for non-Standard Generalized Materials.

BGs
J ([e1,p1], [e2,p2]) = 〈p1 − p2, e1 − e2〉+ b(e1,p2) + b(e2,p1)(30)

−〈p1, e1〉 − 〈p2, e2〉
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It can be shown that the Coulomb friction law can be defined using the following bi-potential
[48, 49], the dissipation being given by RT u̇T = λ ‖RT ‖2 when friction occurs:

(31) b(RN ,RT ; u̇N , u̇T ) = I+{uN} + I+{−RN} + I+{−ρRN−‖RT ‖} + ρ0RN ‖u̇T ‖

where I+ is the indicator function of the set [0,+∞[. For the incremental formulation, the
bi-potential reads:

b(∆RN ,∆RT ;∆uN ,∆uT ) = I+{∆uN} + I+{−RN−∆RN}(32)

+I+{−ρ(RN+∆RN )−‖RT+∆RT ‖} + ρ0(RN +∆RN ) ‖∆uT ‖
Because the two solutions of the auxiliary problems satisfy the contact condition and the
Coulomb’s friction yield function, the gap functional in elastostatics with unilateral contact
and Coulomb’s friction is simply:

E(∆u1,∆u2) = χ
∫

Ω (∆σ1 −∆σ2) : (ǫ(∆u1)− ǫ(∆u2)) dΩ(33)

−(1−χ)
∫

Γc
ρRN · (‖∆uT1‖+ ‖∆uT2‖) dΓ

−(1−χ)
∫

Γc
[∆RN1 (ρ ‖∆uT2‖+∆uT1)+∆RN2 (ρ ‖∆uT1‖+∆uT2)] dΓ

with 0 < χ ≤ 1, the zero value of χ has to be excluded because of the non-strict convexity of
b. The first (bulk) part of the functional E can be transformed into a surface integral, leading
then to the final expression:

fobj(η) = χ
∫

Γm
(∆Fm −∆σ2 · n) · (∆u1 −∆Um) dΓ(34)

−(1−χ)
∫

Γc
ρRN · (‖∆uT1‖+ ‖∆uT2‖) dΓ

−(1−χ)
∫

Γc
[∆RN1 (ρ ‖∆uT2‖+∆uT1) + ∆RN2 (ρ ‖∆uT1‖+∆uT2)] dΓ

where ∆u1 and ∆u2 depend on η via the two problems (P1,P2).

7. Application to some identification problems in contact mechanics

As can be seen, the functional E in both cases is not differentiable at points where the
tangential displacement increment vanishes, because the norm of the increment appears in its
expression. However, thanks to the convexity of E, the subdifferential at these points is well
defined although not reduced to a singleton. Because the set of these points, corresponding to
the limit of the sliding zone, is a set of zero measure, we can pick arbitrarily an element in the
subdifferential (namely 0) in the process of derivation of the gradient of E without degrading
significantly the overall quality of it.

7.1. Identification of missing boundary conditions. In order to show the efficiency and
robustness of the presented method, we consider the example of two-dimensional cracked elastic
solid submitted to bending load, as shown on figure 4. The crack buried into the solid brings
additional difficulties because of the singularity of the solution in its vicinity for linear elastic
materials, but also presents special feature when contact and friction are taken into account
such as canceling some of the singularities. This makes this illustration a non-trivial one. The
domain is rectangular (10m× 20m) with the assumption of plane strains. The material has an
elastic behavior with Young modulus E = 106 Pa and Poisson coefficient ν = 0.3. The crack is
at the middle of the domain [−a, a] on the x axis with a = 2.5m. The solid is submitted to a
two kind of boundary conditions :

(a) Distributed linear loading fy = 1000xPa and fx = 0 on the top boundary Γtop and
fy = −1000xPa and fx = 0 on the bottom boundary Γbottom. To ensure the symmetry
of the response conditions (uy = 0) and ux = 0 are assumed on the point B, then uy = 0
on the point A. This loading exerts a compression on the right half of domain, a traction
on other half. Thanks to this loading, it results: the closing of the crack, in the vicinity
crack tip (a, 0), contained in half of the domain in compression; the opening of the crack,
in the vicinity crack tip (−a, 0), contained in half of the tensile domain. This case is
built in order to simulate a crack in an infinite domain, for which a closed form solution
exists.
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(a) First case.
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Crack interface Γ

(b) Second case.

Figure 4. Geometry of cracked solid and boundary conditions of forward problems.

(b) Distributed linear loading fy = 1000xPa and fx = 100(1−x2/25)Pa on the top boundary
Γtop and conditions (ux = 0, uy = 0) on the boundary Γbottom. This loading exerts a
compression on the right half of domain, a traction on other half associated to shearing
effect. Thanks to this loading, it results: the closing of the crack, in the vicinity crack
tip (a, 0), contained in half of the domain in compression with stick-slip in this part of
the crack; the opening of the crack, in the vicinity crack tip (−a, 0), contained in half of
the tensile domain.

The software used to compute forward and inverse problems is CODE-ASTER© [50] which is
an open source distribution. CODE-ASTER is coupled with the numerical optimization toolbox
of SciPy [51] and the Optimization Toolbox of Matlab [52].

The above forward problems are used to generate synthetic data (Um,Fm), that will be used
for the superabundant boundary conditions to solve inverse problems. Hereafter, we consider
two inverse problems :

(A) the first one involving friction-less contact and linear forward problems defined on the
sub-domain shown on figure 6a. The Cauchy data (Fm,Um) are extracted from the
forward problem defined in figure 4a.

(B) the second one involving contact with Coulomb friction µ = 0.3 and nonlinear forward
problems defined on whole domain shown on figure 6b. The Cauchy data (Fm,Um) are
extracted from the forward problem defined in figure 4b.

In order to avoid the ”Inverse Problem Crime” as defined in [53], two different meshes are
used for producing the reference solution and computing the inverse problems and fracture
parameters. The difference between the two interpolations of the ”data” in the two meshes,
introduce also a form of small noise into the problem.

Figure 5a shows the distribution of Von-Mises stress around the crack resulting from the
forward problem (a). Figure 5b shows the distribution of Von-Mises stress around the crack
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Figure 5. Von-Mises stress distribution obtained for the two forward problems.
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(b) Geometry of cracked
solid and boundary condi-
tions used in the second
example (B).

Figure 6. Geometry and boundaries used in inverse problems.

resulting from the forward problem (b), and where we can easily observe the sliding phenomenon
on the crack.

7.1.1. First example: linear inverse problem (A). In this inverse problem we consider only the
top half of the domain as shown on figure 6a. Using definitions given in section 2.2, we denote
by Γu = Γ ∪ Γtop the boundary where data are missing; by Γm = Γr ∪ Γl the boundary where
data are overspecified. Thus, we assumed that:
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• the interface Γ where the crack is located is known, whereas the crack’s position and its
length on this interface are unknown and have to be identified.

• boundary conditions on Γu are missing and have to be recovered.
• on Γm overspecified data are given: displacement components are given or measured
u = Um, and as this boundary is free of loading Neumann boundary condition is also
known: Fm = σ(u) · n = 0.

The components of Um are extracted from the forward problems described in the item (a) of
section 7.2. Recall that in these cases the Neumann condition Fm = 0 is exactly known because
Γm is free of load. While the Dirichlet condition Um extracted on the nodes of forward problem
mesh is noisy. The noise rate depends on the differences between the mesh used in the direct
problem and the one used in the inverse problem. Figures 8 show the identified data compared
to reference ones. These results can be exploited as follows :

i. One can observe that displacement and surface traction components on the top boundary
are both close to the reference values, see figures 8a and 8b.

ii. On the bottom boundary, we observe that the identified data present important errors
in the vicinity of the crack tips. However the opened part of the crack can be easily
identified by the displacement gap of U Id

y as shown on figure 8c. It is straightforward to
estimate that a tip crack is located in the vicinity of x = 2.5m.

iii. Using these identified data and above information, one can compute the stress intensity
factor KI for Mode-I loading by means of contour integral for energy release rate G
(J-Integral). Notice that this computation can be hold without knowing precisely the
location of the crack tip. It is only necessary to know the area where it is located.
Following, J-Integral formula takes into account the symmetry of this case.

(35) G =
K2

I (1− ν2)

E
= 2

∫

C
Wnx −Ti

∂Ui

∂x
, T = σ · n.

As J-Integral is known to be path-independent, C can be any boundary defining region
surrounding the supposed crack tip, n is the outward normal at the contour C and
Ti is surface traction component (i = x, y) on C. Nevertheless, because of the use
of approximated reconstruction of the field, the choice of C location was made in a
manner to avoid the noisy area surrounding the crack tip. Indeed, even if the path-
independent property remains true, the stability property is lost due to the noise affecting
the identified field.
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Figure 7. Distribution of Von Mises stress obtained from identified data of the linear
inverse problem : case A.

In this case, C has rectangular shape, it begins at x = −1.1m and finishes at x = −4m
with height of 3.9 m as shown on figure 7 with white line. The reference value of the
stress intensity factor is KI ≃ 3967Pa

√
m, it arises from a closed form solution in a semi-

infinite medium, see [54] for more details. The identified value is KId
I ≃ 3960 Pa

√
m,

the relative error is then less than 1%.
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(d) Stress vector components on Γbottom.

Figure 8. Identified data of Linear inverse problem : case A. Exponents ”R” and ”Id”
denote reference and identified values.

7.1.2. Second example: nonlinear inverse problem (B). In this inverse problem, the whole do-
main is considered, as shown on figure 6b. Using definitions given in section 2.2, we denote
by Γu = Γtop the boundary where data are missing, by Γm = Γr the boundary where data are
overspecified and by Γb = Γl ∪ Γbottom the boundary where Neumann and Dirichlet conditions
are prescribed. Thus, we assumed that:

• the crack’s position and the Coulomb coefficient are known.
• boundary conditions on Γu are missing and have to be recovered.
• on Γm overspecified data are given: displacement components are given or measured
u = Um, and as this boundary is free of loading Neumann boundary condition is also
known: Fm = σ(u) · n = 0.

• on Γb the left boundary is free of load and on the bottom boundary Dirichlet condition
are prescribed as shown on figure 6b.

The components of Um are extracted from the forward problems described in the item (b) of
section 7.2. Recall that in these cases the Neumann condition Fm = 0 is exactly known because
Γm is free of load. While the Dirichlet condition Um extracted on the nodes of the forward
problem mesh is noisy. The noise rate depends on the differences between the mesh used in the
direct problem and the one used in the inverse problem. Figures 9 and 10 show the identified
data compared to the reference ones. These results can be exploited as follows:

i. The reader can observe that on figure 9a identified and reference values of displacement
components on Γu are quite close. However U Id

x is little bit more noisy than U Id
y .
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ii. Figure 9b shows identified and reference values of stress vector components on Γu. No-
tice here that both identified components are noisy. However tangential component σIdnt
is much more noisy than the normal component σIdnn.
In order to improve these data it is possible to use post-regularization using Total Varia-
tion denoising method [55], which was carried out by minimizing the following functions.

JTV =
1

2

∫

Γtop

[

(X−Y)2 +
α

2

√

(∇X)2 + ε2
]

where α is regularization parameter, ε is a small parameters to avoid derivative singu-
larity, X is the denoised field and Y is the noisy one. Figures 9c and 9d show reference
and regularized-identified displacement and stress vector components. We observe that
post-regularized data are in good agreement the reference ones.
However, the reader can notice that the noise in the identified stress vector components
is huger than that in the displacements components because it is not only due to the
noise present in the superabundant data but also to the stress computation process.
Indeed, stress field is computed by derivative operation of the Finite Element Mehod
(FEM). This is done on the boundary where displacement components are identified
and are noisy. Consequently, the noise is amplified by the derivative procedure in the

post-treatment step. In order to avoid this effect, one can use a fictive boundary Γf
top

inside the domain and parallel to Γu, where data are less noisy. So, instead of computing

the missing data on Γu they were computed on the fictive boundary Γf
top as shown on

figures 9e and 9f. In this case Γf
top is chosen at y = 9m enough close to Γu, we observe

that identified data are in good agreement with reference ones and present better pre-
cision than regularized ones. This trick can be used to minimize the sensitivity to the
perturbation on Γu.

iii. Figures 10a to 10d show the reference and identified data on the top lip of the crack.
Figure 10a shows the displacement component, figure 10b shows Coulomb criterion and
contact indicator, figure 10c shows gap and slip values and figure 10c shows stress vector
components and Coulomb criterion. The major remark here is that identified and ref-
erence values are identical due to the fact that this boundary is far from the one where
data were missing and have to been identified. Consequently they are much less sensitive
to noise on Γu.

From above observations, it can be concluded that by defining problem P1 and P3 using a

fictitious boundary Γf
u instead of Γu, one can significantly improve the quality and precision of

the identified data on Γu. The choice of the fictitious boundary must be made judiciously in the
vicinity of the real boundary Γu taking into account the physical phenomena of the problem.

In order to show the influence of noise on the identification results, we introduced a mixed
Gaussian-impulse noise in the Dirichlet condition Um as follows :

Uδ
m = Um +Um(aG+ b I)

where: a = 0.05 is a percentage of the amplitude of white Gaussian noise vector represented
by G; b = 0.05 is a percentage of amplitude of random-valued impulse noise represented by the
vector I. The impulse noise is computed by assuming that 5% of data are corrupted, which are
randomly chosen. The Neumann Condition Fm = 0 remains exactly know because the surface
is free of load. A stopping rule based on the estimate derived in [34] was employed in order to
avoid numerical explosion during the optimization process.

Figure 11 shows the exact and identified data with noisy Cauchy data. We notice that within
5% of noise the identified components of displacement field and loading are in good agreement
with the exact ones as shown in figures 11a and 11b. TV post-regularization was also carried
out on these identified data. It improves the quality of the identified components as shown on
figures 11c and 11d. However, on figures 11e and 11f we observe that identified parameters on
the crack interface are slightly perturbed, they remain insensitive to the effect of this noise level.

7.2. Identification of the friction coefficient. This section is dedicated to the identification
of the friction coefficient of the Coulomb’s law, provided Cauchy data are given on the part Γm
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Figure 9. Identified data of nonlinear inverse problem on Γu : case B. Exponents ”R”
and ”Id” denote reference and identified values.

of the boundary of the solid and data are missing on the boundary Γu where contact occurs. As
indicated before, the identification is performed once the Cauchy problem has been solved and
when the mechanical fields on Γc have been determined. The contact surface Γc decomposes
into three non-overlapping parts:

• Γnc the non-contact or separation part: RN (x) = RT (x) = 0,
• Γs the sliding part: ρ0 |RN (x)| = ‖RT (x)‖, RN (x) < 0,
• Γa the (friction) adhesion part ρ0 |RN (x)| > ‖RT (x)‖, RN (x) < 0,

ρ0 being the actual (unknown) Coulomb’s friction coefficient. A necessary condition for the
identification problem to be solvable is of course that friction actually occurs on the contact
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Figure 10. Identified data of nonlinear inverse problem on ΓCrack : case B. Exponents
”R” and ”Id” denote reference and identified values.

surface, that is measΓs
∆
= |Γs| > 0. Let us remark first that ρ0 is the smallest scalar such that

the Coulomb criterion is satisfied over the whole contact surface Γc:

ρ0 = Inf {ρ, ρ |RN (x)| − ‖RT (x)‖ ≥ 0 ∀x ∈ Γc}

For any positive scalar ρ, one has, on the partition of the contact surface Γc:

• on Γnc (non-contact or separation part) ρ |RN (x)| − ‖RT (x)‖ = 0 ∀ρ

• on Γs (sliding part)







ρ |RN (x)| − ‖RT (x)‖ < 0 if ρ < ρ0
ρ |RN (x)| − ‖RT (x)‖ = 0 if ρ = ρ0
ρ |RN (x)| − ‖RT (x)‖ > 0 if ρ > ρ0

• on Γa (adhesion part) ρ |RN (x)| − ‖RT (x)‖ > 0∀ρ ≥ ρ0

We define then J(ρ) as the function :

J(ρ) =

∫

Γc

H (ρ |RN (x)| − ‖RT (x)‖) dΓ,

where H is the Heaviside function : H(x) = 1 if x > 0, and H(x) = 0 if x ≤ 0. It is straightfor-
ward to show the following properties for J .
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(e) Gap and slip on ΓCrack
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Figure 11. Identified data of nonlinear inverse problem on Γu : case B with noisy
Cauchy data (5%). Exponents ”R” and ”Id” denote reference and identified values.

(1) J is a positive monotonic function,
and J(0) = 0

(2) For ρ > ρ0, J is constant equal to
|Γs|+ |Γa|

(3) J is discontinuous at ρ = ρ0 and
[[J(ρ0)]] = |Γs|

ρ
ρ0

Γa

Γa + Γs

J

Finding ρ0 is then simply looking for the largest scalar such that J is strictly lesser than |Γs|+|Γa|.
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For that purpose a dichotomy algorithm can be used starting with a segment [0, ρmax], where
J(ρmax) = |Γs| + |Γa|. With such algorithm it is possible to define an a priori precision or
equivalently a number of iterations, as function of the estimated noise on the data σ · n :

pres =
∆ρ

ρmax
or Nmax = − log(pres)

log(2)
with the estimation : ∆ρ ≃ ρgnσ + nτ

|RN |max

where ρg is a first guess of the friction coefficient and (nσ, nτ ) the noises on |RN (x)| and ‖RT (x)‖
respectively.
Remark.

(1) Any measure dΓ can be used, for example if the data is available at M points xi on Γc:

∫

Γc

f(x)dΓ =

M∑

i=1

f(xi) then J(ρ) =

M∑

i=1

H (ρ |RN (xi)| − ‖RT (xi)‖)

(2) Once ρ has been determined, the three zones in Γc are also identified by using the value of
the friction coefficient criterion or the simultaneous zero (or negligible) values of |RN (xi)|
and ‖RT (xi)‖.

(3) Being global, this approach should be less sensitive to the noise in the data than a direct
estimation based on local computations of the ratio ‖RT (x)‖� |RN (x)|

(4) An alternative way for determining the friction coefficient, especially if the expected
noise levels on the fields |RN (xi)| and ‖RT (xi)‖ are high, is to use the total variation
of the function J between two succeeding points i∆ρ and (i + 1)∆ρ and to select the
friction coefficient by:

ρopt =
2iopt + 1

2
∆ρ iopt = ArgMax |J [(i+ 1)∆ρ]− J [i∆ρ]|

Illustration. In an axisymmetric situation, consider the following expressions of σ = −Rn(x) =
−σzz and τ = ‖RT (x)‖ = |σrz| on the disc with radius R and normal ez representing the surface
of contact Γ:

(36)

{
σ(r) = (1− r2)χ[0,εR]

τ(r) = βρ0rχ[0,α(β)R] + ρ0(1− r2)χ[α(β)R,εR] with α(β) =
−β+

√
β2+4

2R

which correspond to : Γa = [0, αR] , Γs = [αR, εR] , Γnc = [εR,R] , ΓC = [0, R]. χγ is the
characteristic function of the set γ.

Consider noise-free stress components σ and τ as displayed on figure 12a. The function
J(ρ) and its variation dJ(ρ) are displayed on the figure 12b, and exhibit as expected, a jump
of amplitude (ε − α)R = 0.5858 at the point ρ = 0.5. This jump is well highlighted by the
variation of J(ρ) denoted dJ(ρ). If some noise is added to stress components as shown on figure
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Figure 12. Exact and noisy stress components and function J for the case where R = 2,
β = 2, ρ0 = 0.5, α = 0.2071, ε = 0.5, with 10% of uniform white noise.
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12a, the noisy function Jδ(ρ) is by far more irregular and no more strictly monotonic. Consider
for example, a partition of the segment [0, R] consisting of m = 41 points regularly spaced, the
function Jδ(ρ) is plotted on figure 12b for p = 101 points regularly spaced on the segment [0, 1].
Notice that the jump remains well highlighted by the variation of Jδ(ρ) denoted dJδ(ρ). The
value of the friction coefficient identified by the jump of Jδ(ρ) is ρId = 0.51.
Application. In this section we consider the linear inverse problem (A) with loading defined in
(b) section . This case of loading generates traction-compression associated to shearing effect.
The crack is then closed in the vicinity of the crack tip (a, 0), a compression with stick-slip acting
in this part of the crack while in the vicinity of the second crack tip (−a, 0) the crack is open.
The identified stress vector components are extracted on Γ as shown on figure 6a where the
crack is located. Figure 13a shows the normal and tangential stress components. The reference
value are of course plotted only on the crack boundary Γcrack however the identified components
are plotted on Γ. Figure 13b shows the reference function J(ρ)R computed on Γcrack which is
compared to the function J(ρ)Id computed by using identified stress component on Γ. One can
notice that the jump of J(ρ) is located in the vicinity of the exact value of friction coefficient
µ = 0.3 which was used in the computational procedure of the forward problem. The identified
value of the friction coefficient is ρId ∈ [0.29, 0.31].
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Figure 13. Identified stress vector components and friction corfficient on Γ : case A
load (b). Exponents ”R” and ”Id” denote reference and identified values.

8. Conclusion

Cauchy problems in the context of contact and friction mechanics have been addressed in this
paper. The approach used here is an extension of previous work in convex nonlinear mechanics
where the minimization of an energy-like gap between the solutions of two auxiliary well-posed
forward problems is the driving force behind the method. The extension to contact and friction
necessitated to introduce a new concept of gap, namely the Bregman gap, derived from the Breg-
man divergence. Also, in order to deal with Coulomb friction, a further extension of the Bregman
gap concept including implicit standard generalized material potentials generating functions has
been proposed. Furthermore an improvement of the minimization algorithm has been described.
Illustrations of the performance of the approach are provided in the case of cracked solids with
unilateral contact and friction. Since Cauchy problem is severely (exponentially [56]) ill-posed,
the greatest attention must be paid to the noise inevitably present in the data. In our problem,
the most important source of noise comes from images correlation which provides the surface
displacement fields that are used as Cauchy data. In order to avoid as much as possible that
this type of noise is exponentially reflected in the results, pre-processing is mandatory. Another
source of noise comes, when using synthetic data, from the interpolation between the mesh that
produced the data and the one used to solve the Cauchy problem. Since this noise is directly
reflected in the results, post-TV regularization is used on the results themselves. For the same
reason, a technique of immersed boundary has also been used. Very good identification results
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are then obtained for recovering missing boundary conditions and identifying parameters such
as stress intensity factors. A new algorithm for the identification of the coulomb coefficient using
the stress vector field on the contact area was also given.
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[46] Béla A. Frigyik, Santosh Srivastava, and Maya R. Gupta. Functional bregman diver-

gence and bayesian estimation of distributions. Information Theory, IEEE Transactions
on, 54(11):5130–5139, November 2008.

[47] G. De Saxce and Z. Q. Feng. New inequality and functional for contact with friction: The
implicit standard material approach. Mechanics of Structures and Machines, 19(3):301–325,
1991.

[48] P. Laborde and Y. Renard. Fixed point strategies for elastostatic frictional contact prob-
lems. Mathematical Methods in the Applied Sciences, 31(4):415–441, 2007.

[49] H. Boumediène Khenous, J. Pommier, and Y. Renard. Hybrid discretization of the sig-
norini problem with coulomb friction. theoretical aspects and comparison of some numerical
solvers. Applied Numerical Mathematics, 56(2):163 – 192, 2006.
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