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Abstract: In this paper we propose a port Hamiltonian formulation of the two—phase Stefan
problem. This problem describes the evolution of a pure material which is at two different states
of matter: liquid and solid. This is a parabolic distributed parameter system which possesses
a sharp moving interface. The two—phase Stefan problem results from the interconnection of
two heat conduction equations at the interface position. The interface dynamics is governed by
an ordinary differential equation. The port Hamiltonian formulation relies on the introduction
of color functions which identify the liquid and the solid states. The contribution of this paper
concerns the formulation of the two—phase Stefan problem as a sharp interface port Hamiltonian
system. A thermodynamic—based modeling approach is considered to provide a physical insight

on the proposed model.

Keywords: Boundary control systems, Stefan problem, Port Hamiltonian systems, Moving

interface systems

1. INTRODUCTION

The two—phase Stefan problem describes the dynamical
behaviour of two phases in a pure medium (Visintin, 1996).
This can be used to model melting/solidification or vapor-
ization/condensation processes for example. The interface
refers to the narrow region which spatially separates the
two sub-domains. The two—phase Stefan model proposes
an explicit tracking of the interface. Indeed, its dynamics
are governed by an ordinary differential equation, resulting
from thermodynamic assumptions. The two sub—domains
divided by the moving interface are governed by parabolic
equations (heat conduction equations), which are partial
differential equations. The two sub—domains dynamics are
interconnected at the interface through boundary condi-
tions and constitutive relations. A review and a study of
the problem can be found in (Visintin, 1996), for example.

The one—phase Stefan problem recently gains attention, in
the control community, with its application on the selective
laser sintering process (Koga et al., 2019; de Andrade
et al., 2019), where the boundary backstepping control was
investigated. The estimation of the Arctic ice thickness and
temperature profile is proposed, with an observer, based on
a Stefan—like model (Koga and Krstic, 2020a). The energy

1 This work is supported by the project ANR-16-CE92-0028,
entitled Interconnected Infinite-Dimensional Systems for Hetero-
geneous Media, INFIDHEM, financed by the French National
Research Agency (ANR). Further information is available at
https://websites.isae-supaero.fr/infidhem/the-project/

shaping boundary control problem of the two—phase Stefan
problem was also proposed in (Koga and Krstic, 2020Db).

In this paper we are considering a structured modeling
approach for the two—phase Stefan problem. The boundary
control port Hamiltonian formulation (Duindam et al.,
2009) is a natural framework for interconnected systems
as boundary port variables are defined with respect to
the Hamiltonian storage function (van der Schaft and
Maschke, 2002). For example to model systems governed
by conservation laws (van der Schaft and Maschke, 2002)
such as Timoshenko beams (Macchelli and Melchiorri,
2004), vibro acoustic tubes (Trenchant et al., 2015), shal-
low water equations (Hamroun et al., 2010), plasmas in
Tokamaks (Vu et al., 2016), adsorption columns (Baaiu
et al., 2008), etc. The port Hamiltonian formulation of
sharp moving boundary in 1D, described by a system
of two conservation laws was addressed by (Diagne and
Maschke, 2013). Our contribution extends this result to
the case of dissipative port Hamiltonian systems, illus-
trated with the interconnection of heat conduction equa-
tions.

The paper is structured as follows. In Section 2 we
present the two—phase Stefan problem with a thermody-
namic based modeling approach. This justifies the inter-
face model. In Section 3 we are presenting the necessary
background for the port Hamiltonian representation. The
main contribution is given in Section 4, following the ap-
proach proposed in (Diagne and Maschke, 2013), where the
port Hamiltonian representation of the two—phase Stefan
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Fig. 1. Schematic of the two—phase 1D Stefan problem
(top), and the typical shape of color functions (bot-
tom)

problem is given and discussed. Section 5 concludes the
paper.

2. THE TWO-PHASE STEFAN PROBLEM

The two—phase Stefan model governs the dynamics of
phase changes, i.e. of melting (from solid to liquid state)
or conversely of solidification, in a pure medium. Consider
the 1D two—phase Stefan problem, depicted at Figure 1,
defined in the fixed domain Q = [0,L] C R. The liquid
and solid states are defined in the time-varying spatial
(complementary on ) sub-domains €, and €, respec-
tively. The interface position, labelled I(¢) €]0, L], is point
in Q, and represents the sharp (with a null thickness)
transition between the liquid and the solid state of matter.
This interface possesses its own dynamics and is governed
by an ordinary differential equation. Consider the sub-
script ¢ € {l,s} to denote either the liquid or solid states
of matter. The two—phase Stefan model considered here
is subject to the following three assumptions (Visintin,
1996).

Assumption 1. The liquid density and the solid density are
constants and equals. Therefore a phase density p;(¢,2) =
pi € R is taken as a constant parameter.

Assumption 2. We assume that there exists only one in-
terface in the system such that only liquid is present in
the liquid phase {2, and conversely for the solid phase €.
Thus the following relations hold:

T(t,2) > T, Vz € Q,Vt > 0, (1)
and

T.(t,z) > T, Vz € Qg Vt >0, (2)
where T}, € L?(2;,R) and T,, > 0 denote the temperature
profile in the sub—domain €2, and the pure material melting
temperature, respectively.
Assumption 3. The interface is assumed at the thermo-
dynamic equilibrium. Therefore, at the interface posi-
tion I(t) €]0, L[ the temperature is equal to the melting
temperature T :

Ti(t,U(t)) = T,(t, (1) = T, 3)
for all t > 0.

We have privileged a thermodynamic presentation of the
two—phase Stefan problem to facilitate the structured port
Hamiltonian derivation of the model. Furthermore, this

will help in the physical interpretation of the interface
dynamics.

2.1 Balance equations

Within each sub-domain €, the internal energy balance
equations are defined as:
Op;u; 0
glt 1 2) + 5 (Jya(h2) =0, Ve e Qv >0, (4)
where w;(t,z) € L*(Q;,R) and J_;(t,z) € H'(,R) are
the internal energy density profile and the heat flux density
in the sub-domains §2;, respectively. The fundamental law

of thermodynamics applies (de Groot and Mazur, 1984),
and Gibb’s law reads:

5ui = ﬂésia (5)

from which one derives the entropy balance equations as:
ap; s; 0

B (E2) + 5 (Lt =) =ai(tz) (6)

z € &, Vt > 0, where the entropy flux J,; € H'(%;,R)
and the source of irreversible entropy production o,; €
L2(,R) are given by:

Js,i(t7z) = Ti(t7z)‘]q,i(tvz)7 (7)
and 5
0uilts2) = Joilt,2) 2 (1,2) 2 0, 8)

Vz € ), Vt > 0, respectively.
2.2 Closure equations

The heat flux in €, is defined by Fourier’s law, as:

or,
Jgi(t2) = =X\ (8, z)@(t, z), Yz € Q, (9)

where \(t,2) € L*(Q,R), for all z € Q, denotes the
positive heat conduction coefficient. If one uses the entropy
as a thermodynamic potential, the thermodynamic driving
force F/ is given by:

0 [ ds; or;
F/(t = — L) = (¢
(0= 5 (G ) = Ghiea),
where 7; denotes the inverse of the temperature 7;. Then

the Fourier’s law is equivalent to:
Jq,i = Ai(ta Z)ﬂQ(L Z)F‘i/(t Z)a

VzeQ, (10)

Yz € Q. (11)

2.8 Boundary conditions

Following the two—phase Stefan problem illustrated at
Figure 1, we have mixed boundary conditions. Consider
Neumann boundary condition at position z = 0:

Jg1(£,0) = qo (1), (12)
and Dirichlet boundary condition at position z = L, such
that:

T(t, L) = Tp(t). (13)
Both the heat flux ¢y(¢) and the temperature T (t) are
considered as boundary input variables.

Remark 1. The boundary heat flux gy(¢) must be posi-
tive to respect Assumption 2. Furthermore, the boundary
temperature T} (t) must be lower than the melting tem-
perature T, to guaranty the presence of only solid state
of matter in the solid phase €, (Koga and Krstic, 2020Db).
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2.4 Interface dynamics

The interface is governed by the following ordinary differ-
ential equation:

ﬂ( ) _ Jq,S(ta l<t)) — Jq,l(t’ l(t>)

i T o (610) — pn (6 10)°
where the liquid and the solid heat fluxes are taken as the
right and left limits at position z = I(¢), respectively.

(14)

Remark 2. The model employed here is similar to the
model proposed in (Visintin, 1996) since the denominator
of equation (14) denotes the variation interface internal
energy variation. For constant pressure and volume, this
is equivalent to the local enthalpy variation, that is the
latent heat.

Remark 3. The total internal energy, over a fixed domain
containing the moving interface [a,b] € Q, such that 0 <
a < l(t) <b< L, is given by the integral:

1(t) b
U= [ punlt2)dz+ [ puftz)a
a 1(t)

Thus, the total internal energy balance equation is given
by:

(15)

dUtot

T(t) =— [T, Z)]fz(t) = [Tyt Z)]?(t)
dl

+ O [t U1) = pous (8, U1, (A7)

where we have applied Leibniz integral theorem, and
injected the internal energy balance equations (4). The
interface dynamics (14) is obtained by cancelling the
terms associated to the interface in equation (16). Then,
one obtains the following total internal energy balance
equation:

(16)

du,

ﬁ(t) = Jq,l(ta a’) - Jq,s(tv b) (18)
Remark 4. Similarly, the total entropy balance equation
of a sub—domain [a, b] which includes the interface () can
be computed to identify the entropic contribution of the
interface. Applying the same derivation rules and using
the entropy balance equation 6, the total entropy defined
as:

1(t) b
&mz/)fwﬁﬂﬂﬂ+/ pesa(t.2)dz,  (19)
a 1(t)

provides the following total entropy balance equation:

JS 1) b
——tot Js1(ta)—Jg (8, D) +/Jl(t, z)dz Jr/os(t, z)dz

dt a l(t) (20)
+ [Jq,s(t7 l(t)) - Jq,l(t7 l(t))] (Tm - Oé) .
The term « in equation (20) is identified as:
_ asltl0) = ps(010) _ Gpsled()

- - = Tm>
psug(t,1(t)) — prug(8,1(2))  Spult, I(t))
where we have used Gibb’s relation (5). Then the total
entropy balance equation (20) reduces to:

dStot 1(t) b
—= =J (t,a)—J, 4(t, D) —1/01(1?, z)dz —l:/as(t, z)dz. (22)
dt ’ ’ a I(t)

The interface dynamics does not contribute to the genera-
tion of entropy through an irreversible entropy source term
in equation (22). This is consistent with Assumption 3
since the interface is at equilibrium.

To summarize, the two—phase Stefan problem is then
governed by the internal energy balance equations (4)
(or alternatively by the entropy balance equations (6)),
coupled to an ordinary differential equation governing the
interface dynamics (14). The system is completed by the
boundary conditions (12), (3) and (13). Finally, consider
the initialization data T} 0(z) = T1(0, z), Ts0(2) = T5(0, 2)
and [, = [(0), respecting the boundary conditions and
Assumptions 2-3.

Remark 5. The steady state solutions of the proposed
problem was studied for the case of only Neumann bound-
ary conditions in (Cannon and Primicerio, 1971a) and only
Dirichelet boundary conditions in (Cannon and Primice-
rio, 1971b).

3. BACKGROUND AND PROBLEM STATEMENTS

Let us recall in this section the port Hamiltonian formula-
tion of distributed parameter systems (van der Schaft and
Maschke, 2002; Duindam et al., 2009).

3.1 Stokes—Dirac structures

Definition 1. (Courant (1990)). Consider two real vector
spaces, F the space of flow variables and £ the space of
effort variables, together with a pairing, that is, a bilinear
product F x &€ :— R, (f,e) — (e, f) which introduces the
symmetric bilinear form ({, )) on the bond space B = F x &
of conjugated power variables (e, f) € B as:

((frre1), (f1,e2))) = (e1, fo) + (eg, f1), (23)
where (f;,e;) € B, i € {1,2}. A Dirac structure is a
linear subspace D C B which is isotropic and co—isotropic
that is satisfied D = D+, with L denoting the orthogonal
complement with respect to the bilinear form.
Proposition 1 (van der Schaft and Maschke (2002))
The linear subspace of the bond space B = £ x F, product
of the space of flow variables F and effort variables &
where F = & = L?((a,b),R?) x R? defined by:

<<§;><2)> EFxEs.t. (:1>€H1((a,b),]11§2)27
A ° 1 01) (e
(3) = () ma (2)-(28) ()]

is a Dirac structure, called a Stokes—Dirac structure, with
respect to the pairing

f e b
<<f;>a<e;>> = / (frey + fae1) dz + €53, (25)
fa/ \eg @

with 3 = diag(—1,1).

D= . (24)

The Stokes—Dirac structure is suited for the class of
systems defined by two conservation laws (van der Schaft
and Maschke, 2002). As highlighted in (Duindam et al.,
2009), this class of Stokes—Dirac structure is adapted also
to the class of parabolic systems, for example the heat
conduction equation (4).

3.2 Dissipative port Hamiltonian systems

To illustrates the concept of dissipative port Hamiltonian
systems we consider the example of heat conduction in
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the sub—domain ;. Following (Duindam et al., 2009) we
have the following port Hamiltonian representation of the
internal energy balance equation (4) coupled with the
thermodynamic force (10):

Ip;u; 0 —2 ds;
(5‘%): o 0| law). zea @0
—F -—— 0 g
0z @
with the boundary port variables:
ds;
(fa,i> = ((1) (1)> du, , (27)
0,1/ o, J .
i i/ lag,

where 0f); denotes the boundary of the interval €;, and
the closure relation (11).

3.8 Problem statement

The contribution of this paper is to propose a port Hamil-
tonian formulation of of the 1D Stefan problem which
includes both the sub-systems (liquid and solid) with the
interface dynamics. This work follows the previous devel-
opment proposed in (Diagne and Maschke, 2013) where
we extend the result with an parabolic system that is heat
conduction. Firstly, we will extend the variables of the
sub-domains €2, in the complete domain 2 with the help
of color functions. They are Heaviside functions indicating
the locations of the liquid and solid states. Color functions
are distributed parameter governed by transport partial
differential equations. Secondly, we will prove that the
augmented system defines a Stokes—Dirac structure and
can be expressed as a port Hamiltonian system. In the
sequel of the paper, and to introduce more generality on
the methodology we assume that the interface is subject
to the following balance equation:

T U(1) + T, 5(8, 1) +ep =0, (28)
and the continuity equation
Tt (1) = 7,(t,1(1) = fr = T (29)

where the pair of variables (e;, f;) represents a source/sink
of power associated to the interface dynamics.

4. PORT HAMILTONIAN SYSTEMS WITH MOVING
INTERFACE

In this section we present the port Hamiltonian formula-
tion of a dissipative system by following the formulation of
moving interface systems derived in (Diagne and Maschke,
2013). The extension to this class of system is the main
contribution of the paper. We formulates the Stokes—Dirac
structure on an arbitrary interval [a,b] containing the
moving interface: 0 < a < I(t) < b < L, as depicted at
Figure 1.

4.1 Color functions

Consider the color functions (Diagne and Maschke, 2013))
(t,z) — c(t, z) defined as:

c(t,z):{l’ 0<z<It),

0, (t) <z < L, (30)

and its complementary functional (¢, z) +— ¢(t, z), defined

as:
_ 0, 0<z<I(t),
oft, z) = { 1,1(t) <z < L. (31)
Color functions are depicted at Figure 1 for the Stefan
problem. These color functions are governed by the fol-
lowing partial differential equations, convection transport

equations:

Oc ;o\ Oc

5 (t:2) =~ (t.2), (32)
and

oe PN

() = —l(H7-(t.2). (33)

Considering the color functions (30) and (31), one has to
define the extended states and flux to reformulate the
governing balance equations (4) and (6). Note that in

equations (32) and (33), the interface velocity I(t) is an
input source term.

4.2 New state equation and thermodynamic forces

Consider pu(t, z) to be the internal energy variable defined
on the total spatial domain [0, L] 3 z, for any ¢ > 0. When
this internal energy profile is pre-multiplied by the color
functions ¢ or ¢, one recovers the internal energy in one or
the other sub-domain:

c(t, 2)pu(t, z) = puy(t, 2), Vz € [0,1(t)], (34)

and

c(t, 2)pu(t, z) = pug(t, 2), vz €]i(t), L], (35)
respectively. Similarly, we define the heat flux on the
complete spatial domain, such that Jq(t,z), for all z €
[0, L] and ¢ > 0, which is solution on the sub—domains to:

c(t, z)Jq(t, z) = Jya(t, z), Vz € [0,1(t)], (36)
and

c(t,2)J,(t,2) = J,4(t,2), Yz €]i(t), L]. (37)
In a fixed frame [a,b], which includes the interface I(t),

ie. 0 <a<l(t) <b< L, for all t > 0, the total internal
energy balance equation is given by:

b
dUtOt _ i/pu(t,z)dz,

dt  dt
1(t) b

d
= apu(t, z)dz —|—% l,(otl)t(t, 2)dz,

l(t)a b o
=[Gttt ]Sttt .2

HU(8) [e(t 1)) pran (8, 1(8)) — (2, 1)) pyug (8, 1(E))]
b
:/ (dCJq(u7c, ¢) —ej)dz

FU(E) [e(t, 1) prun (E, 1()) — (¢, 1(E)) pus (2, 1(E))]
where d, is the following nonlinear differential operator:
dc  Oc
d.=—|— "+—|.
© {82 +8z ]
In the internal energy balance equation the interface input

source term e; results from the local conservation law (28).
Thus the local version of the internal energy balance

(38)
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equation, in a fixed domain which include the moving
interface is:

00U ()= A, () — ey +i(0)| e 12 (39)

—(t,2)= u,c,C)—e cu——+cu—| .

ot 7’ erarT I 0z 0z
Following the same approach carried out with the internal
energy balance equation, one defines the thermodynamic
driving force F’(u,c,¢) such that:

c(t,2)F'(t,z) = F/(t, 2), Vz e Q,Vt >0,

o¢

(40)
and

c(t,2)F'(t,2z) = F.(t, 2), Vz € Qg Vt > 0. (41)
Consider the following definition of the dual operator of d..
Proposition 2 (Diagne and Maschke (2013))
The dual operator of d,,, labelled d, is equal to:

ar=—d | L2+ Lz

0z 0z (42)

Thus the thermodynamic force F’ can be expressed in
terms of the dual operator d} such that:

—F' = —di7(t,z), (43)
where the inverse temperature 7(t,2) defined in the do-
main 2 is defined with the color functions, as for the other
variables F'(t,z), J,(t,z) and pu(t,z). This enables the
port Hamiltonian representation of the two—phase systems.

4.8 Port Hamiltonian formulation

In a domain [a,b] which includes the interface, i.e. 0 <
a < I(t) < b < L, the systems is described by the internal
energy balance equation (39), the thermodynamic driving
force (43), and the color functions dynamics (32) and (33).

Consider the vector of flux f € F = L2 (Q,R)* as:
Fe (O ﬁ)
ot "ot ot)
and the vector of effort € € £ = H'(Q,R)* defined as:

(44)

é=(r, Jy cu, Eu)T (45)
Then one identifies the following state equation:
f=Jé+1Ie; +i(H)G(u,c,0), (46)
where the interconnection operator is:
0 d, 0
J. = <—dz 0 2) . (47)
0; 0y

The input map I = R* associated to the interface input
term e; is defined as:

I=(-1,0,00)". (48)
Finally, the input operator associated to the interface
velocity [(t) is:

cu cu
_ 0 0 0
G(u,c,c) = . e (z) . (49)
0 -1

The output e;, conjugated to the interface velocity l.(t)7 is
defined as:

b
e, = / ¢'G(u,c,¢)dz, (50)
which can be reformulated as the pairing;:
e, = <gT(u,c,E)\,é>. (51)

Proposition 8

Consider the bond space B = F x £ with F = & =
L?((a,b),R)® x R x R, the flow variables (44), the effort
variables (45), the differential operator (47), the moving
interface of velocity I(t), and its conjugated variable (51),
the continuity relation (29), the balance equation (28)
and the input matrix (48). The following linear sub-
space Dy, ; C B:

f é

It Cr

o | i) e F x &Es.t.
_ fo €o G( )

D, = f J. I G(z,c,c é (52
MI )= s 0 0 e )
—€ u <gT(x7 c, E)| 0 0 l(t)

0 1 e
o) — 1
and es)  \(c+7e) 0 62>(a7b)

endowed with the pairing:

f ¢ b b
< J; at l'?é) >= / ¢"fdz+ / el frdz el S foel(t) (53)
fo €o
with ¥ = diag(—1, 1), defines a Dirac structure.
Proof 1. The proof follows the development of Diagne and
Maschke (2013), where classical arguments are used. The

differences are in the definitions of the input vector I and
in the input operator G.

With the definition of this Stokes-Dirac structure D,
one defines the port Hamiltonian system of a parabolic
moving interface system as follows.

Proposition 4

The augmented Hamiltonian system with the conjugated
interface flow variable and conjugated variable to the
the interface velocity may be defined as a boundary
port Hamiltonian system with respect to the Dirac struc-
ture D,,; by:

P\ /e
Il i | ] €D (54)
fo €y

where the pair of port variables (f;,e;) are associated to

the interface inputs, the pair of port variables (I,e;) are
associated with the velocity of the interface and the pair
of port variables (f,, e;) are associated with the boundary
of the spatial domain [0, L].

5. CONCLUSION

We have proposed a structured representation of the two—
phase Stefan problem. This representation is based on the
coupling of two parabolic systems by a moving interface.
Firstly, we have presented the two—phase Stefan prob-
lem with a thermodynamic point of view which enables
us to derive the interface dynamics. Secondly, we have
augmented the system with color functions. Finally we
have presented the port Hamiltonian representation of the
two—phase Stefan problem whose interface’s dynamics are
included within the structure. The development of the port
Hamiltonian model follows the same approach considered

Manuscript 371 submitted to 24th International Symposium on Mathematical
Theory of Networks and Systems. Received February 3, 2020.



CONFIDENTIAL. Limited circulation. For review only.

in (Diagne and Maschke, 2013), where we have extended
the result to the interconnection of parabolic systems at
the moving interface. At the interface, the temperature
profile is continuous and the heat flux follows a balance
equation.

Outgoing work concerns the development of a boundary
controller for the presented sharp moving interface port
Hamiltonian system. The control problem being at stabi-
lizing in closed loop the interface position I(t) at a desired
position [; when ¢t — +400. An energy shaping control
or a passivity based control methods are privileged. A
second perspective aims at representing the two—phase
Stefan problem as a phase field boundary control system,
following the work (Fabrizio, 2008), The port Hamiltonian
representation should be investigated toward the compar-
ison of the two modeling approaches with a boundary
control perspective.
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