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In this paper, we consider a quantum dot connected to four superconducting terminals biased at opposite
voltages on the quartet line. The grounded superconductor contains a loop threaded by the magnetic flux �. We
provide Keldysh microscopic calculations and physical pictures for the voltage-V dependence of the quartet
current. Superconductivity is expected to be stronger at �/�0 = 0 than at �/�0 = 1

2 . However, inversion
Iq,c(V, 0) < Iq,c(V, 1

2 ) is obtained in the critical current Iq,c(V,�/�0) on the quartet line in the voltage-V ranges
which match avoided crossings in the Floquet spectrum at (V,�/�0 = 0) but not at (V, 1

2 ). A reduction in Iq,c

appears in the vicinity of those avoided crossings, where Landau-Zener tunneling produces dynamical quantum
mechanical superpositions of the Andreev bound states. In addition, π -0 and 0-π crossovers emerge in the
current-phase relations as V is further increased. The voltage-induced π shift is interpreted as originating from
the nonequilibrium Floquet populations produced by voltage biasing. The numerical calculations reveal that
the inversion is robust against strong Landau-Zener tunneling and many levels in the quantum dot. Our theory
provides a simple “Floquet level and population” mechanism for inversion tuned by the bias voltage V , which
paves the way towards more realistic models for the recent Harvard group experiment where the inversion is
observed.

DOI: 10.1103/PhysRevB.102.245436

I. INTRODUCTION

Quantum optics and cold-atom experiments revealed en-
tanglement among two [1–3], three [4,5] or four [6] particles.
The progress in nanofabrication technology made it possible
to consider solid-state analogs since the early 2000s. How-
ever, 20 years after the first theoretical and experimental
efforts (see, for instance, Refs. [7–19] for the theory, and
Refs. [20–27] for the experiments), no proof of entangle-
ment between pairs of electrons has been reported so far
in solid-state superconducting nanoscale electronic devices.
Instead, solid-state experiments [20–27] provided evidence
for correlations among pairs of electrons in three-terminal
ferromagnet-superconductor-ferromagnet (FaSFb) or normal-
metal–superconductor–normal-metal (NaSNb) devices. For
instance, measurements of the nonlocal conductance Ga,b =
∂Ia/∂Vb demonstrated [20–27] how the current Ia through
lead Fa or Na depends on the voltage Vb on lead Fb or Nb,
the superconductor S being grounded. In addition, the zero-
frequency positive current-current cross correlations Sa,b in
three-terminal NaSNb beam splitters demonstrated [26,27] the
theoretically predicted [28–39] quantum fluctuations of the
current operators Îa and Îb.

The nonstandard quantum mechanical exchange of “the
quartets” [40,41] is operational in (Sa, Sb, Sc) three-terminal
Josephson junctions, which realize all-superconducting
analogs of the above-mentioned NaSNb and FaSFb three-
terminal Cooper pair beam splitters. These quartets involve

transient correlations among four fermions: they take two “in-
coming” pairs from Sa and Sb biased at ±V , and transmit the
“outgoing” ones into the grounded Sc after exchanging part-
ners. As shown in Refs. [40,41], energy conservation implies
that the quartets can be revealed as dc-Josephson anomaly on
the so-called “quartet line” Va + Vb = 0 in the (Va,Vb) voltage
plane, with Vc = 0 for the grounded Sc. Further developments
including Floquet theory and zero- and finite-frequency noise
calculations are provided in Refs. [42–47].

Experimental evidence for the quartet Josephson
anomaly was published by two groups: (i) The Grenoble
group [48] reported the quartet anomaly in three-terminal
aluminum/copper Josephson junctions [48], where the
experimental data for elements of the dc-nonlocal resistance
matrix are color plotted in the (Va,Vb) voltage plane. (ii) The
Weizmann Institute group [49] confirmed the Josephson-type
quartet anomaly with three-terminal Josephson junctions
connecting a semiconducting nanowire. In addition,
Ref. [49] presents measurements of the current-current
cross correlations, interpreted as the quantum fluctuations in
the quartet current originating from Landau-Zener tunneling
between the branches of Andreev bound states (ABS).
The dynamics of the phases is set by the Josephson
relation ϕa(t ) = 2eV t/h̄ + ϕa, ϕb(t ) = 2eV t/h̄ + ϕb, and
ϕc(t ) = ϕc for (Sa, Sb, Sc) biased at (V,−V, 0), respectively.
Regarding the quartets in three-terminal Josephson junctions,
the predicted [44] and the measured [49] positive cross
correlations Sa,b > 0 turn out to be in a qualitative agreement
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FIG. 1. The considered four-terminal device: Four superconduct-
ing contacts Sa, Sb, Sc,1, and Sc,2 are connected to a quantum dot. The
leads Sa and Sb are biased at ±V , and Sc,1, Sc,2 belong to the same
grounded terminal Sc to which is connected a loop pierced by the
flux �. The quantum dot has a single level at zero energy, except in
Sec. VI dealing with a multilevel quantum dot.

with each other. The cross correlations Sa,b > 0 are indeed
expected to be generically positive, as for any splitting
process such as Cooper pair splitting [35,36,38].

A third experiment realized recently in the Harvard group
[50] deals with a four-terminal (Sa, Sb, Sc,1, Sc,2) Josephson
junction containing a loop pierced by the flux � and biased
at (Va,Vb,Vc,1,Vc,2) = (V,−V, 0, 0). Namely, the grounded
loop is terminated by the contact points Sc,1 and Sc,2 and the
superconducting leads Sa and Sb which do not contain loops
are biased at Va,b = ±V , respectively (see Fig. 1). The recent
Harvard group experiment [50] features the additional control
parameter of the reduced flux �/�0, which was not there in
the previous Grenoble [48] and Weizmann Institute [49] group
experiments.

The Harvard group [50] reports dc-Josephson anomaly
along the “quartet line” Va + Vb = 0 (with Vc = 0 for the
grounded Sc), which confirms the preceding Grenoble [48]
and Weizmann Institute [49] group experiments. In addi-
tion, the Harvard group data show that the quartet critical
current Iq,c(V,�/�0) nontrivially depends on both values
of the voltage V and the reduced flux �/�0, i.e., inver-
sion Iq,c(V, 1/2) > Iq,c(V, 0) is observed in a given voltage
window, even if, at first glance, superconductivity should
be stronger at �/�0 = 0 than at �/�0 = 1

2 . The Harvard
group experiment [50] challenges the theory of the quartets
[40,41] with respect to mechanisms for the inversion between
�/�0 = 0 and �/�0 = 1

2 .
It was shown in the preceding [51] Paper I that inver-

sion in Iq,c(�/�0) between �/�0 = 0 and �/�0 = 1
2 , i.e.,

Iq,c(0) < Iq,c( 1
2 ), can result from interference between the

three-terminal quartets and the four-terminal split quartets if
a two-dimensional (2D) metal connects the four supercon-
ductors. Namely, perturbation theory in the tunnel amplitudes
combined to the V = 0+ adiabatic limit yields π -shifted
three-terminal and 0-shifted four-terminal quartets, which
automatically implies “inversion between �/�0 = 0 and
�/�0 = 1

2 .”
A major difference appears between the preceding Paper

I and this Paper II: 2D metal is connected to four supercon-
ducting leads in Paper I [51], whereas this Paper II considers
zero-dimensional (0D) quantum dot which is not directly re-
alized in the Harvard group [50], given the large dimension of
the graphene sheet in this experiment [50]. Nevertheless, sim-
ple models are often useful and this Paper II provides useful
theoretical input on how inversion can result from changing
the bias voltage V . Paper III will discuss whether the physical
picture of this Paper II can extrapolate to the 2D metal of
Paper I [51].

The paper is organized as follows. Section II presents a
summary of the main results of the paper. The model and the
Hamiltonians are provided in Sec. III. The rate of Landau-
Zener tunneling is evaluated in Sec. IV, in connection with
the Keldysh numerical calculations of Sec. V. Section VI
presents robustness of the inversion against changing the cou-
pling parameters for a single-level quantum dot, and against
multichannel effects. Concluding remarks are presented in
Sec. VII.

II. SUMMARY OF THE MAIN RESULTS

This section presents a connection to the known physics
of multiple Andreev reflections (MAR) (see Sec. II A) and a
summary of the main results of this Paper II (see Sec. II B).

A. Connection with multiple Andreev reflections (MAR)

Dissipationless dc-Josephson current [52] carried by the
ABS [53] flows across a two-terminal weak link [54] connect-
ing the superconductors S1 and S2 in the presence of phase
biasing at ϕ2T = ϕ2 − ϕ1 �= 0 and vanishingly small voltage
drop V2T = V2 − V1 = 0. The Josephson effect has applica-
tions to superconducting quantum interference devices used,
e.g., for quantum information processing [55–58]. A number
of experiments provided direct evidence for the ABS (see, for
instance, Refs. [59–63]).

Biasing a superconducting weak link at voltage V2T =
V2 − V1 �= 0 produces dc current of MAR at subgap volt-
age eV2T < 2�. Break-junction experiments [64] observed
the predicted [65,66] dc-current-voltage characteristics of the
MAR. In addition, excellent agreement was obtained between
the voltage dependence of the zero-frequency quantum noise
[67] and the calculated Fano factor [68].

Regarding the MAR, the following situations turn out to be
drastically different: (i) First, the superconducting weak link
bridging S1 and S2 is described by a single hopping amplitude
in Refs. [65,66]. (ii) Second, a quantum dot with single level
at zero energy is considered in the following paper.

Concerning the above item (i), the equilibrium ABS plotted
as a function of the phase difference �ϕ = ϕ2 − ϕ1 necessar-
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ily touches the continua at the energies ±� if �ϕ = 0. At
finite bias voltage V , the phase difference ϕ2T (t ) = 2eV t/h̄ +
ϕ2T (0) is linear in time, and �ϕ(t ) = 2πn is realized peri-
odically, with n an integer. This produces strong coupling
of the ABS to the quasiparticle continua, resulting in the
smooth energy dependence of the spectral currents reported
in Ref. [66].

Now, if a quantum dot connects two superconductors S1

and S2 according to the above item (ii), then the ABS do not
touch the superconducting gap edge singularities at any value
of ϕ2T . Instead, at zero phase difference, the ABS have typical
energy set by the normal-state linewidth broadening �. In the
following calculations, the values of the �’s are taken as being
smaller than the superconducting gap �, thus the ABS touch
±� neither at ϕ2T = 0 nor at arbitrary ϕ2T .

Considering now biasing at finite voltage V for the quan-
tum dot in the above item (ii), the energy gap between the
maximal ABS energy and the gap edge singularity at �

implies protection with respect to relaxation due to direct
coupling to the continua. Then, the spectral currents feature
a sequence of narrow resonances within the energy window
of the gap [see Figs. 5(a2)–5(d2)]. The energy and frequency
dependence of the spectral current on Figs. 5(a2)–5(d2) for
the quantum dot in the above item (ii) differ drastically from
the smooth variations of the spectral current relevant to the
item (i) (see Ref. [66]). Given these observations, the quantum
dot connecting two superconductors according to the above
item (ii) can legitimately be considered as being relevant to
“Floquet theory,” and the terms “Floquet levels” and “Floquet
populations” can be used.

In a three-terminal device, the so-called quartets refer to
the microscopic quantum process of two Cooper pairs from Sa

and Sb biased at ±V , which exchange partners and transmit
the outgoing pairs into the grounded Sc. The terms “quartet
phase,” “quartet line,” and “quartet critical currents” are used
beyond perturbation theory in the tunneling amplitudes as a
convenient wording.

Finally, we note that our model is strictly speaking 0D, i.e.,
the quantum dot consists of a single tight-binding site. But
this “0D quantum dot” holds more generally for experimen-
tal devices fabricated with “quasi-0D” quantum dots having
energy-level spacing δdot � � which is much larger than the
superconducting gap �, but δdot � W is small compared to
the bandwidth W . Said differently, our calculations capture
“quasi-0D” quantum dots with linear dimension which is large
compared to the Fermi wavelength but small compared to the
BCS coherence length.

B. Summary of the main results

Now, we summarize the main results of this Paper II,
starting in Sec. II B 1 with the simple limits of weak Landau-
Zener tunneling and quantum dot with a single level at zero
energy. Section II B 2 introduces our numerical results for
strong Landau-Zener tunneling and multilevel quantum dots,
i.e., beyond the single-level 0D quantum dot in the limit of
weak Landau-Zener tunneling.

1. A simple mechanism for the inversion at weak
Landau-Zener tunneling

We start with discussing weak Landau-Zener tunneling
for a single-level quantum dot having a level at zero energy.
Specifically, we introduce a connection between two sides of
the problem: (a) Inversion in Iq,c(V,�/�0) between �/�0 =
0 and �/�0 = 1

2 , i.e., Iq,c(V, 0) < Iq,c(V, 1
2 ). (b) The presence

and absence of avoided crossings in the Floquet spectra at
�/�0 = 0 and �/�0 = 1

2 , respectively.
Generally speaking, in absence of bias voltage, any equi-

librium quantum mechanical Hamiltonian can be decomposed
into independent blocks once the symmetries have been taken
into account. Within each block, the energy levels plotted as a
function of parameters show avoided crossings and repulsion.
We note that avoided crossings in Floquet spectra appeared
previously in the literature (see, for instance, Refs. [69–72]).

The dc-Josephson effect is classical in the V = 0 or 0+
equilibrium or adiabatic limits. The classical approximation
to the finite-V Floquet spectrum is the following [46]:

E+,p = 〈EABS〉k + 2peV, (1)

E−,q = −〈EABS〉k + 2qeV, (2)

where p and q are two integers, and the average 〈EABS〉k of
the (positive) ABS energy EABS is taken over the fast phase
variable parametrized by the variable k:

ϕa(k) = ϕa + k, (3)

ϕb(k) = ϕb − k, (4)

ϕc,1(k) = ϕc,1, (5)

ϕc,2(k) = ϕc,2, (6)

where (ϕa, ϕb, ϕc,1, ϕc,2) are the phases of (Sa, Sb, Sc,1, Sc,2),
respectively. The variable k in Eqs. (3)–(6) stands for

k = 2eV t

h̄
. (7)

Equations (1) and (2) are demonstrated from Bohr-
Sommerfeld quantization in Ref. [46]. They receive the simple
interpretation that, classically, the Floquet spectra correspond
to adding or subtracting multiples of the voltage energy 2eV to
the adiabatic-limit ABS energies 〈EABS〉k , where ±2eV is the
energy for transferring a Cooper pair between the grounded
Sc,1, Sc,2 and Sa,b biased at ±V .

The classical approximation to the Floquet spectrum given
by Eqs. (1) and (2) yields

E+,p

eV
= 〈EABS〉k

eV
+ 2p, (8)

E−,q

eV
= −〈EABS〉k

eV
+ 2q. (9)

Figure 2(a) shows schematically E+,p/eV and E−,q/eV as a
function of the inverse voltage 1/eV , according to Eqs. (8) and
(9). This (1/eV, E±,p/eV ) scaling [69] yields regular pattern
of the Floquet levels.

Equations (1), (2), (8), and (9) imply the sequence of volt-
ages {Vcross,n} of the nonavoided crossings on Fig. 2(a). The
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FIG. 2. Schematics of the Floquet spectra: (a) Shows the Floquet
spectrum in the classical limit, using the (1/eV, E+,−/eV ) scaling
plots [see Eqs. (8) and (9)]. The 1/eV dependence of E+,−/eV is
shown on (a) by the blue upward and red downward solid lines,
respectively. (b) Shows the Floquet spectra in the presence of weak
Landau-Zener tunneling, which produces avoided crossings. The
Floquet spectra are shown by the black lines on (b).

values of {Vcross,n} are such that eVcross,n = 〈EABS〉k/n, with
n = q − p corresponding to E+,p(Vcross,n) = E−,q(Vcross,n)
[see Fig. 2(a)].

Landau-Zener tunneling between the ABS introduces
quantum mechanical effects, as if the Planck constant was
proportional to the bias voltage. This results in opening gaps
in the Floquet spectra [see the schematic Fig. 2(b) where the
scaling variables given by Eqs. (8) and (9) are used].

At this point, we further comment on the connection
to MAR in two-terminal Josephson junctions. References
[65,66] demonstrate that the adiabatic limit is solely realized
at very low voltage V if a hopping amplitude connects two
superconductors. But, if the weak link consists of a quantum
dot, then adiabaticity is obtained in windows of the bias volt-
age V which is “in-between” consecutive avoided crossings in
the Floquet spectrum plotted as a function of V . This implies
adiabaticity at much higher voltage if a quantum dot is used
instead of the hopping amplitude relevant to break-junction
experiments.

Considering now the wave function, the Floquet–
Bogoliubov–de Gennes wave function is a quantum superpo-
sition between the negative- and the positive-energy ABS if
the voltage V and the reduced flux �/�0 are tuned at avoided
crossings in the Floquet spectrum. The two ABS carry oppo-
site currents at equilibrium and, thus, “quantum superposition
between the ABS” reduces the quartet current.

Thus, weak Landau-Zener tunneling implies the items (a)
and (b) at the beginning of this Sec. II B, i.e., avoided cross-
ings in the Floquet spectrum are accompanied by dips in the
quartet critical current [see Figs. 3(a) and 3(b)]. We note that
the Floquet spectra appearing in Figs. 6(a) and 6(c) are shown
schematically in a restricted energy interval on the y axis, in
comparison with Fig. 2 showing a larger energy interval for
the reduced Floquet energies En/eV .

Going one step further, we argue now that inversion can
be produced between �/�0 = 0 and �/�0 = 1

2 in the quar-
tet critical current Iq,c(V,�/�0), i.e., Iq,c(V, 0) < Iq,c(V, 1

2 ).
Namely, we envision that plotting the Floquet spectra as a
function of the voltage V produces the sequence {V ∗

p (�/�0)}
of the V values at the avoided crossings [see Fig. 3(c)].
“Avoided crossings in the Floquet spectrum at �/�0 = 0”
for V � V ∗

p0
(0) are in general not accompanied by “avoided

crossing at �/�0 = 1
2 ” at the same V � V ∗

p0
(0) [see Fig. 3(c)].

Then, the quartet current can be significantly reduced at
�/�0 = 0 but not at �/�0 = 1

2 [see Figs. 3(c) and 3(d)]. This
shows that “hybridization between the ABS” can produce in-
version in Iq,c(V,�/�0) between �/�0 = 0 and �/�0 = 1

2
in the simple limit of single-level quantum dot with weak
Landau-Zener tunneling. This “scenario” is put to the test of
numerical calculations in the forthcoming Sec. V.

2. Beyond weak Landau-Zener tunneling and single-level
quantum dot

The paper presents in Sec. VI the following additional
results:

(i) The connection between the extrema in the Floquet
spectrum and the minima in the quartet critical current holds
more generally for strong Landau-Zener tunneling (see Figs. 3
and 4 in the Supplemental Material [73]).

(ii) The inversion appears generically for a multilevel
quantum dot (see Fig. 9 in the paper).

(iii) We provide evidence for 0-shifted quartet current-
quartet phase relations in narrow voltage windows, which
are interpreted in terms of the nontrivial Floquet populations
produced at moderately large bias voltage (see Sec. V D 2).

III. MODEL AND HAMILTONIANS

In this section, we present the model and the Hamiltonians.
Specifically, the single-level quantum dot device Hamiltonian
is presented in Sec. III A. The infinite gap limit and the gauge-
invariant quartet phase variable are presented in Sec. III B.
The expression of the quartet current is provided in Sec. III C.
The parameters used in the numerical calculation are given
in Sec. III D. The multilevel quantum dot is presented in
Sec. III E and inversion in the V = 0+ adiabatic limit is dis-
cussed in Sec. III F.
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FIG. 3. The mechanism leading to the inversion: At fixed reduced flux �/�0, the avoided crossing between two Floquet levels plotted as a
function of the voltage V on x axis (a) is accompanied by a “dip” in the quartet critical current Iq,c (b). Panels (c) and (d) compare the Floquet
spectra to Iq,c between �/�0 = 0 and �/�0 = 1

2 . Panels (c) and (d) show schematically how “inversion” can be produced in Iq,c(V,�/�0 ),
i.e., Iq,c(V, 0) < Iq,c(V, 1

2 ) in the voltage window shown on the figure.

A. Single-level quantum dot

In this section, we provide the Hamiltonian of the four-
terminal device in Fig. 1, in the limit where the quantum dot
supports a single level at zero energy.

The Hamiltonian is the sum of the BCS Hamiltonian of the
superconducting leads and the tunneling term between the dot
and the leads. In absence of voltage biasing, the Hamiltonian
of each superconducting lead takes the form

HBCS = −W
∑
〈i, j〉

∑
σ=↑,↓

(c+
i,σ c j,σ + c+

j,σ ci,σ ) (10)

−|�|
∑

i

(eiϕi c+
i,↑c+

i,↓ + e−iϕi ci,↓ci,↑), (11)

where the summations run over all pairs 〈i, j〉 of neighboring
tight-binding sites in the kinetic energy given by Eq. (10),
and over all the tight-binding sites labeled by i in the pairing
term given by Eq. (11). The superconducting phase variable
is denoted by ϕi in Eq. (11) and the gap is denoted by |�|.
We assume that no magnetic field penetrates in leads Sa, Sb,
therefore, ϕi is constant in each of them, with ϕi = ϕa in Sa

and ϕi = ϕb in Sb. We also assume that no magnetic flux pene-
trates in Sc, but we choose to encode the Aharonov-Bohm flux
� around the loop made by Sc through a pure gauge vector
potential. As a result, ϕi varies inside Sc, and it takes values
ϕc,1 and ϕc,2 at the two extremities of Sc, which are closest
to the dot. Minimizing the condensate energy in the presence
of the Aharonov-Bohm vector potential in Sc implies that
ϕc,2 − ϕc,1 = �. Throughout this paper, we use the notation
ϕc,1 = ϕc and ϕc,2 = ϕc + �.

The coupling between the dot x and each superconductor
Sp takes the form of a usual tunneling Hamiltonian with hop-
ping amplitude Jp:

HJp = Jp

∑
σ

∫
d3k

(2π )3
e−ispω0t c+

σ,p(k)dσ + H.c. (12)

Here, c+
σ,p(k) and cσ,p(k) are creation and annihilation opera-

tors for an electron on reservoir p with momentum k and spin
σ along the quantization axis. The corresponding operators
on the dot are denoted by d+

σ and dσ . We use the notation
ω0 = eV/h̄.

The paper is focused on voltage biasing on the quartet
line, according to the experimental result of the Harvard
group [50]. This is why we use Vj = s jV for the bias volt-
ages. Specifically, the following values sa = 1, sb = −1, sc1 =
sc2 = 0 are assigned to the parameters s j , corresponding to
voltage biasing at (Va,Vb,Vc,1,Vc,2) = (V,−V, 0, 0).

We neglect quasiparticle tunneling through the loop from
Sc,1 to Sc,2, i.e., we assume that Sc,1 and Sc,2 are solely coupled
by the condensate of the grounded Sc. Since most of the cur-
rent is carried by Floquet resonances which are within the gap
of Sc, neglecting subgap quasiparticle processes through the
loop implies that the perimeter of the loop is large compared
to the BCS coherence length.

B. Infinite gap limit and gauge-invariant quartet phase

This section presents the infinite gap limit and the gauge-
invariant phase variable. Taking the limit of infinite gap was
considered by many authors (see, for instance, Refs. [74–76]
to cite but a few). In our calculations, the Dyson equations
produce a self-energy for the 2 × 2 equilibrium quantum dot
Green’s functions, from which the following Hamiltonian is
deduced in the Nambu representation:

H∞ =
(

0 z
z 0

)
. (13)

Equation (13) implies two ABS at opposite energies ±EABS,
with EABS = |z|.

The expression of z is the following for a (Sa, Sb, Sc) device
which is biased at the phases (ϕa, ϕb, ϕc):

z3T = �a exp (iϕa) + �b exp (iϕb) + �c exp (iϕc). (14)
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The Josephson relations for three terminals (Sa, Sb, Sc) biased
at (V,−V, 0) are given by Eqs. (3)–(7).

The corresponding expression of z4T is the following with
four superconducting terminals (Sa, Sb, Sc,1, Sc,2) which are
phase biased at (ϕa, ϕb, ϕc,1, ϕc,2):

z4T = �a exp (iϕa) + �b exp (iϕb)

+�c,1 exp (iϕc,1) + �c,2 exp (iϕc,1), (15)

and we used Eqs. (3)–(7) for the superconducting phases in
the presence of voltage biasing. We note that the (Sc,1, Sc,2)
contacts can be gathered into a single Sc,eff coupled by �c,eff

to the dot, and with the phase ϕc,eff :

�c,eff exp(iϕc,eff ) = �c,1 exp (iϕc,1) + �c,2 exp (iϕc,2), (16)

with ϕc,eff = ϕc + α(�), where α(�) depends only on �, i.e.,
it is independent on ϕc. Then, all of the currents (which are
gauge invariant) depend on the gauge-invariant quartet phase
ϕ̃q which is expressed as the following combination of the
phase variables ϕa, ϕb, and ϕc:

ϕ̃q = ϕq + α(�), (17)

where the quartet phase is given by ϕq = ϕa + ϕb − 2ϕc.

C. Quartet critical current

The expression of the quartet current is presented in this
section. The two-terminal dc-Josephson current is odd in the
phase difference [52]. In perturbation theory in the tunnel
amplitudes, the lowest-order quartet current is also odd in
the superconducting phases, and it is even in voltage. Gen-
eralizing to arbitrary values of the contact transparencies,
the quartet current Iq(eV/�, ϕ̃q/2π,�/�0) is defined as the
component of

ISc (eV/�, ϕ̃q/2π,�/�0) = ISc,1 (eV/�, ϕ̃q/2π,�/�0)

+ ISc2
(eV/�, ϕ̃q/2π,�/�0)

(18)

which is odd in ϕ̃q and in �:

Iq(eV/�, ϕ̃q/2π,�/�0) = ISc (eV/�, ϕ̃q/2π,�/�0)

− ISc (eV/�,−ϕ̃q/2π,−�/�0).

(19)

Equivalently, Iq(eV/�, ϕ̃q/2π,�/�0) is the component of
Eq. (18) which is even in voltage:

Iq(eV/�, ϕ̃q/2π,�/�0) = ISc (eV/�, ϕ̃q/2π,�/�0)

+ ISc (−eV/�, ϕ̃q/2π,�/�0).

(20)

Equation (20) is used in the following numerical calculations.
The Harvard group experiment measures the critical cur-

rent on the quartet line for the device in Fig. 1, which we call
in short as “the critical current”:

Ĩ∗
q,c(eV/�,�/�0) = Maxϕ̃q Iq(eV/�, ϕ̃q/2π,�/�0), (21)

where the quartet current Iq(V, ϕ̃q) is given by the above
Eqs. (19) and (20). Given Eq. (17), taking the Max over ϕ̃q

is equivalent to taking the Max over ϕq. This implies that

Ĩ∗
q,c(eV/�) is independent on α(�). Thus, it is only through
�c,eff (�) that Ĩ∗

q,c(eV/�,�) depends on �.

D. Parameters used in the numerical calculation

In this section, we present the parameters which are used
in the forthcoming numerical calculations. Considering first a
(Sa, Sb, Sc) three-terminal Josephson junction, the gap closes
if the following condition on (�a, �b, �c) is fulfilled [47]:

�c,eff exp(iϕc,eff ) =
∣∣�2

a − �2
b

∣∣√
�2

a + �2
b − 2�a�b cos ϕq

. (22)

Specializing to ϕq = 0 leads to

�c,eff = �a + �b, (23)

ϕc,eff = 0. (24)

In the following numerical calculations, the four-
dimensional (�a, �b, �c,1, �c,2) space of the coupling con-
stants between the dot and the superconducting leads is
scanned according to the following 1D subspace:

�a

�
= 0.4, (25)

�b

�
= 0.2, (26)

�c,1

�
= 1

2

(
0.3 + γ

�

)
, (27)

�c,2

�
= 1

2

(
0.9 + γ

�

)
. (28)

Equations (25)–(28) imply

�c,1 + �c,2 − �a − �b = γ , (29)

and the ABS gap closes at ϕq = 0 if γ /� = 0.

E. Multilevel quantum dot

Now, we mention the multilevel quantum dot model
containing M energy levels, used in Sec. VI, in order to
demonstrate robustness of the inversion against multichannel
effects. This multilevel quantum dot described in Sec. I of
the Supplemental Material [73] is mapped onto an effective
single-level quantum dot if a specific condition of factoriza-
tion is fulfilled.

F. Inversion in the V = 0+ adiabatic limit

In this section, we mention Sec. II of the Supplemental
Material [73] which provides a mechanism for the inversion
in the V = 0+ adiabatic limit (still with biasing on the quar-
tet line). It turns out that inversion between �/�0 = 0 and
�/�0 = 1

2 appears in the range of the � parameters which
fulfills the conditions for convergence of perturbation theory
in �a and �b with respect to �c,1 and �c,2, assumed to take
much larger values. This predicted inversion requires asym-
metric couplings �c,1 and �c,2.

However, this assumption on the couplings is not directly
relevant to the situation where the values of �c,1 and �c,2

are more symmetric. Now, we select the parameters given
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by Eqs. (25)–(28) which produce “absence of inversion in
the V = 0+ adiabatic limit” and investigate a mechanism for
emergence of inversion at finite bias voltage V .

IV. LANDAU-ZENER TUNNELING RATE

This section provides the calculations of the Landau-Zener
tunneling rate R. Evaluating of R is used as a “calibration”
to select a few values of the device parameters representative
of “weak” and “strong” Landau-Zener tunneling. Next, the
selected values of the �’s [see Eqs. (25)–(28)] and �/�0 will
be implemented to obtain the Floquet spectra and the quartet
critical current in Secs. V and VI.

Section IV A presents the analytical calculations of R.
Section IV B shows a numerical illustration with the param-
eters of the forthcoming Secs. V and VI.

A. Analytical results

In this section, we present an analytical theory of an indi-
cator for the strength of quantum fluctuations in the quartet
current: the rate R of Landau-Zener tunneling between the
two ABS manifolds. It was shown in Sec. III that the four-
terminal device on Fig. 1 can be mapped onto three terminals
with suitable coupling �c,eff between the dot and the grounded
lead Sc,eff [see Eq. (16)]. Thus, the Landau-Zener tunneling
rate R is now evaluated for a three-terminal device, without
loss of generality with respect to four terminals. We use the
notation k for the fast combination of the superconducting
phases [see Eqs. (3)–(6)]. Equation (14) leads to the following
expression for the ABS energies:

EABS,3T = |�3T | = ∣∣�a,3T ei(ϕa+k) + �b,3T ei(ϕb−k) + �c,3T eiϕc
∣∣.

(30)
We first evaluate the value k∗ of k which minimizes EABS,3T

in Eq. (30). The corresponding energy at the minimum is
denoted by δmin:

δmin = Infk[EABS,3T (k)], (31)

which depends on all junction parameters. Equation (31) can
be called as “the Andreev gap” if the ABS spectrum is plotted
as a function of the fast variable k. We have shown previously
[47] that a single or two local minima can occur in the vari-
ations of EABS with k, depending on the values of the device
parameters. As a simplifying assumption, the Landau-Zener
processes are considered to be dominated by the global min-
imum in the presence of two local minima. In a second step,
EABS given by Eq. (30) is expanded to second order in the
vicinity of k∗:

E2
ABS = δ2

min + �̃2
0 (k − k∗)2 + O[(k − k∗)3], (32)

where the coefficient �̃0 is the following:

�̃2
0 = −4�a,3T �b,3T cos (2k∗ − ϕa + ϕb)

−�a,3T �c,3T cos (k∗ − ϕa) − �b,3T �c,3T cos (k∗ + ϕb).

(33)

The rate R of Landau-Zener tunneling can be approximated
as the following:

R = exp

(
− πδ2

min

4eV �̃0

)
. (34)

Equation (34) appeared previously in the literature [see,
for instance, Eq. (20) in a review article on Landau-Zener-
Stückelberg interferometry [77]].

B. Numerical results

In this section, we present Fig. 4 showing numeri-
cal illustration for the rate R of Landau-Zener tunnel-
ing [see Eq. (34)]. Figures 4(a1), 4(b1), and 4(c1) show
color plots of R in the plane of the reduced parameters
[ϕ̃q/2π, log10(eV/�)]. The following parameters are used:
γ /� = 0.3, �/�0 = 0 [Fig. 4(a1)], γ /� = 0.3, �/�0 =
1/2 [Fig. 4(b1)], and γ /� = −0.25, �/�0 = 0 [Fig. 4(c1)].
The yellow color code on Figs. 4(a1), 4(b1), and 4(c1) cor-
responds to strong Landau-Zener tunneling with R � 1. The
black color code corresponds to the adiabatic limit with neg-
ligibly small Landau-Zener tunneling R � 0.

Figures 4(a2), 4(b2), and 4(c2) represent the “Andreev
gap” δmin as a function of the gauge-invariant quartet phase
ϕ̃q for the same parameters as Figs. 4(a1), 4(b1), and 4(c1)
(see above). In addition, Figs. 4(a2), 4(b2), and 4(c2) show
the variations of R with ϕ̃q/2π , for the following val-
ues of voltage: eV/� = 0.01, 0.02, 0.03, 0.04, 0.05. These
reduced voltage values eV/� are close to those of the forth-
coming Secs. V and VI.

Considering now interpretation of Fig. 4, the rate R of
Landau-Zener tunneling given by Eq. (34) has exponential
variations with all of the following parameters: the reduced
voltage eV/�, the reduced flux �/�0, the gauge-invariant
quartet phase ϕ̃q, and the parameter γ /� used to parametrize
the coupling between the dot and the superconducting leads
[see Eqs. (25)–(28)]. The exponential dependence is com-
patible with the narrow crossover along the y-voltage axis
on Fig. 4, between the low-voltage adiabatic and the higher-
voltage antiadiabatic regimes of the black and yellow color
codes, respectively.

Figures 4(a1), 4(b1), and 4(c1) correlate with the gauge-
invariant quartet phase ϕ̃q/2π sensitivity of the Andreev gap
δmin on Figs. 4(a2), 4(b2), and 4(c2), respectively. Namely,
closing the Andreev gap δmin at ϕ̃q/2π around ϕ̃q/2π �
0.2, 0.8 [magenta line on Figs. 4(b2) and 4(c2)] results in
strong nonadiabaticity. The Andreev gap δmin does not close
at any value of ϕ̃q/2π for weak Landau-Zener [see the ma-
genta line on Fig. 4(a1)]. Figure 4(a1) shows R � 0 in most
of the considered voltage range −8 � log10(eV/�) � −1
while yellow-colored regions with R � 1 clearly develop on
Figs. 4(b1) and 4(c1).

To summarize, we calculated the variations of the Landau-
Zener tunneling rate R for the three sets of parameters which
will be used in Secs. V and VI. One of those is representative
of “weak Landau-Zener tunneling” characterized by a finite
Andreev gap in the entire ϕ̃q/2π -parameter range, i.e., γ /� =
0.3 and �/�0 = 0 on Figs. 4(a1) and 4(a2). The two others
correspond to “strong Landau-Zener tunneling” characterized
by closing the “Andreev gap” at specific values of ϕ̃q/2π ,
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FIG. 4. The Landau-Zener tunneling rates: The figure shows the rate R of Landau-Zener tunneling for γ /� = 0.3 and �/�0 = 0 [(a1)
and (a2)], γ /� = 0.3 and �/�0 = 1/2 [(b1) and (b2)], and γ /� = −0.25 and �/�0 = 0 [(c1) and (c2)]. (a1), (b1), (c1) Show color plots
of R as a function of ϕ̃q/2π (on x axis) and log10(eV/�) (on y axis). (a2), (b2), (c2) Show δmin/� (magenta lines) as a function of ϕ̃q/2π and
R(ϕ̃q/2π ) evaluated for eV/� = 0.01, 0.02, 0.03, 0.04, 0.05.

i.e., γ /� = 0.3 and �/�0 = 1
2 on Figs. 4(b1) and 4(b2) and

γ /� = −0.25 and �/�0 = 0 on Figs. 4(c1) and 4(c2).

V. INVERSION AT FINITE BIAS VOLTAGE V �= 0

Now, we present the main results and discuss how Landau-
Zener tunneling can produce inversion between �/�0 = 0
and �/�0 = 1

2 , i.e., Iq,c(eV/�, 0) < Iq,c(eV/�, 1
2 ).

The algorithms are mentioned in Sec. V A. The quar-
tet critical current is defined in Sec. V B. Section V C
presents the numerical data which are next discussed

physically in Sec. V D. A summary is presented in
Sec. V E.

A. Algorithms

The code is based on Ref. [66], and it was developed
over the last years to address Floquet theory in multiterminal
quantum dot Josephson junctions, in connection with the dc-
quartet current, zero- and finite-frequency noise [44–47,49].
The principle of the code is summarized in the Appendix of
Ref. [44].
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FIG. 5. The spectral current: (a1)–(d1) Show the quartet crit-
ical current Iq,c as a function of the log of the reduced voltage
log10(eV/�). The vertical bars on (a1)–(d1) indicate the values of
the voltages which are selected on (a2)–(d2). The latter show the
spectral current at these eV/� values as a function of reduced energy
ω/�. The figure corresponds to �/�0 = 0 and γ /� = 0.3, i.e., to
weak Landau-Zener tunneling.

In short, the dc current ISc = ISc,1 + ISc,2 entering the
grounded Sc is evaluated from integral over the energy ω of
the spectral current ISc (ω):

ISc =
∫

ISc (ω)dω. (35)

The spectral quartet current ISc (ω) = ISc,1 (ω) + ISc,2 (ω)
transmitted into Sc,1 and Sc,2 is calculated from the Keldysh
Green’s function. The adaptative algorithm is used to integrate
over ω, and matrix products are optimized with sparse matrix
algorithms.

The spectral current shows sharp peaks at the energies
ω = En of the Floquet levels [45–47,78]. Figures 5(a2)–5(d2)
show how the peaks in the quartet spectral current Iq(ω)
deduced from ISc (ω) evolve as the reduced voltage eV/�

indicated on Figs. 5(a1)–5(d1) is scanned through a dip in
Iq,c(eV/�,�/�0). Further comments about this figure are
presented in Sec. V D 2, in connection with populations of the
Floquet states.

B. Definition of the quartet critical current
as a function of voltage

Now, we define a central quantity: the quartet critical
current as a function of reduced voltage eV/�. The value of
the gauge-invariant quartet phase ϕ̃q is calculated in such a
way as to maximize the current ISc = ISc,1 + ISc,2 transmitted
into the grounded loop Sc at the contact points Sc,1 and Sc,2, as
a function of the gauge-invariant quartet phase ϕ̃q. The value
of ϕ̃q which maximizes the current is denoted by ϕ̃∗

q . In the
spirit of Eq. (21), the value of the current at the maximum is
denoted by

Ĩ∗
q,c(eV/�,�/�0)

= ĨSc (eV/�, ϕ̃∗
q/2π,�/�0)

= ISc,1 (eV/�, ϕ̃∗
q/2π,�/�0) + ISc,2 (eV/�, ϕ̃∗

q/2π,�/�0)

= Maxϕ̃q [ISc,1 (eV/�, ϕ̃q/2π,�/�0)

+ ISc,2 (eV/�, ϕ̃q/2π,�/�0)]. (36)

The quantity Ĩ∗
q,c(eV/�,�/�0) is called in short as “the

critical current.”
Now, we present the currents Ĩ∗

q,c,1(eV/�,�/�0) and
Ĩ∗
q,c,2(eV/�,�/�0) carried by each Floquet state. Specif-

ically, the spectral current Ĩ (ω) is “folded” into the first
Brillouin zone [0, 2eV ]

Ĩfolded(ω̃) =
∑

n

Ĩ (ω̃ + 2neV ), (37)

where 0 < ω̃ < 2eV in Eq. (37). The currents Ĩ1 and Ĩ2 carried
by each Floquet state are the contributions of the 0 < ω̃ < eV
and the eV < ω̃ < 2eV spectral windows:

Ĩ1 =
∫ eV

0
Ĩfolded(ω̃)dω̃, (38)

Ĩ2 =
∫ 2eV

eV
Ĩfolded(ω̃)dω̃. (39)

The values of Ĩ1 and Ĩ2 at ϕ̃q = ϕ̃∗
q are denoted by Ĩ∗

q,c,1 and
Ĩ∗
q,c,2, respectively. The contributions Ĩ∗

q,c,1 and Ĩ∗
q,c,2 of the Flo-

quet states 1 and 2 are calculated solely from maximizing the
total current Ĩ = Ĩ1 + Ĩ2 with respect to ϕ̃q, not from separately
maximizing Ĩ1 and Ĩ2.

Concerning the choice of the parameters, this section dis-
cusses solely “weak Landau-Zener tunneling” for γ /� = 0.3
and �/�0 = 0 [corresponding to Figs. 4(a1) and 5(a2) in the
preceding Sec. IV]. The discussion of strong Landau-Zener
tunneling (such as for γ /� = 0.3 and �/�0 = 1

2 ) is post-
poned for Sec. VI.

C. Presentation of the numerical results

Now, we show our numerical data in themselves, and we
postpone the physical discussion to Sec. V D in the continua-
tion of the previous Sec. II. The Floquet spectra are presented
in Sec. V C 1. The critical current is presented in Sec. V C 2.
The connection between the Floquet spectra and the critical
current is presented in Sec. V C 3.

1. Numerical results for the Floquet spectra

The Floquet spectra were introduced in Sec. II, starting
with the quantum Landau-Zener tunneling on top of the clas-
sical V = 0+ adiabatic limit. Now, we present the actual
numerical data, focusing on evidence for avoided crossings.

Figure 6 shows comparison between (i) the Floquet en-
ergies En as a function of log10(eV/�), and (ii) the critical
current Iq,c. The values �/�0 = 0 and �/�0 = 1

2 of the
reduced flux are used on Figs. 6(a), 6(b), 6(c), and 6(d), re-
spectively, and the contact transparencies are such that γ /� =
0.3 in Eqs. (25)–(28), i.e., they are relevant to weak Landau-
Zener tunneling according to Sec. II.

Figure 6(a) shows the normalized Floquet energies En/eV
as a function of the reduced voltage eV/�. The dynamics is
periodic in time with period h̄/2eV and the Floquet spectrum
is periodic in energy with period 2eV . The shaded green
region on Figs. 6(a) and 6(c) show the “first Brillouin zone”
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FIG. 6. Correspondence between the Floquet spectra and the quartet critical current: The figure shows the Floquet spectra [(a) and (c)]
and the critical quartet current Iq,c [(b) and (d)] as a function of log10(eV/�) on x axis, for γ /� = 0.3 and �/�0 = 0 [(a) and (b), being
representative of “weak Landau-Zener”] and for γ /� = 0.3 and �/�0 = 1

2 [(c) and (d), being representative of “strong Landau-Zener”].
Panels (b) and (d) also show the currents Iq,c,1 and Iq,c,2 carried by each Floquet state [see Eqs. (38) and (39)]. The vertical bars show the
extrema in the Floquet spectra [on (a) and (b)] and the minima in Iq,c [on (b) and (d)], with the following color code: (i) “black vertical bars”
are used for coincidence between the extrema in the Floquet spectra and the minima in Iq,c, (ii) “orange vertical bars” on (a) and (c) are used
for the extrema in the Floquet spectra which have no counterpart as a minimum in Iq,c, (iii) “green vertical bars” on (b) and (d) are used for the
minima in Iq,c which have no counterpart as an extremum in the Floquet spectrum.

−1 < En/eV < 1. The other Floquet levels are obtained by
translation along the y axis of energy according to {E−1 +
2peV, E1 + 2qeV } with p and q two integers, where −eV <

E−1 < 0 and 0 < E1 < eV .
Following the previous Sec. II, we note that, as on Fig. 2(b),

the quantum mechanical Landau-Zener tunneling opens gaps
in the Floquet spectrum in Fig. 6(a), instead of the classically
nonavoided level crossings at {eVcross,n} on Fig. 2(a).

2. Numerical results for the critical current

Now, we comment on the critical current
Ĩ∗
q,c(eV/�,�/�0) defined by Eq. (36) in the previous

Sec. V B. The variations of Ĩ∗
q,c(eV/�,�/�0) with

log10(eV/�) are shown by the blue lines in Fig. 6(b).
Figure 6(b) reveals a regular sequence of “dips” in the
reduced voltage eV/� dependence of Ĩ∗

q,c(eV/�,�/�0),
which is in a qualitative agreement with the mechanism
discussed in the preceding Sec. II [see Figs. 3(a) and 3(b)].
The discussion of the contributions Ĩ∗

q,c,1(eV/�,�/�0) and
Ĩ∗
q,c,2(eV/�,�/�0) of each Floquet state [green and orange

lines on Fig. 6(b)] is postponed to Sec. V D below.

3. Numerical evidence for a connection between the Floquet
spectra and the current

Now, we present a connection between the Floquet spectra
and the quartet current according to Figs. 3(a) and 3(b) in the

preceding Sec. II, i.e., we discuss the vertical bars in Figs. 6(a)
and 6(b):

(i) The extrema in the Floquet spectra are shown by the
vertical bars on Fig. 6(a). They are such that ∂En(VFl,λ)/∂V =
0 (where the integer λ labels the extrema).

(ii) The minima in Ĩ∗
q,c,μ(V ) are shown by the vertical

bars on Fig. 6(b). They are such that ∂ Ĩ∗
q,c(Vq,c,μ)/∂V = 0

and ∂2 Ĩ∗
q,c(Vq,c,μ)/∂V 2 > 0 (where the integer μ labels the

minima).
The following color code is used for these vertical bars:
(i) The black vertical bars on Figs. 6(a) and 6(b) show

the voltage-V values such that VFl,λ � Vq,c,μ are coinciding
within a small tolerance.

(ii) The thinner vertical orange bars on Fig. 6(a) show
the values of VFl,λ which are noncoinciding with any of the
{Vq,c,μ}.

(iii) The thinner vertical magenta bars on Fig. 6(b) show
the values of Vq,c,μ which are noncoinciding with any of the
{VFl,λ}.

D. Physical picture

Section V C presents the numerical data for γ /� = 0.3,
i.e., with small Landau-Zener tunneling rate. Now, we discuss
physically the data shown in the preceding Sec. V C 3, in
connection with the above Sec. II.

245436-10



INVERSION IN A FOUR-TERMINAL SUPERCONDUCTING … PHYSICAL REVIEW B 102, 245436 (2020)

In short, three regimes are obtained upon increasing volt-
age V from the V = 0+ adiabatic limit, i.e., upon increasing
the strength of Landau-Zener tunneling:

(i) At low voltage, Landau-Zener tunneling implies hy-
bridization between the Floquet states at the avoided crossings
in the Floquet spectrum (see Sec. V D 1).

(ii) Increasing voltage has the effect of enhancing Landau-
Zener tunneling and populating both Floquet states.

(iii) At higher voltage, the nontrivial populations of the
Floquet states produce 0-shifted current-phase relations (see
Sec. V D 2).

1. Hybridization between the two Floquet states
at very low voltage

Connection between the Floquet spectra and the quartet
current. We discuss now the coincidence VFl,λ = Vq,c,μ re-
ported in the preceding Sec. V C 3. The notation VFl,λ is used
for the values of the voltage corresponding to the extrema
in the Floquet spectrum (i.e., the voltages of the avoided
crossings), and Vq,c,μ denote the voltage values of the minima
in the quartet critical current Iq,c(V ). The correspondence
between the voltage-V dependence of the Floquet spectrum
and the quartet critical current Iq,c(V ) is interpreted as a com-
mon physical mechanism of Landau-Zener tunneling (see the
above Sec. II): (i) Landau-Zener tunneling produces quantum
mechanical coupling between the two Floquet states. The two
ABS at opposite energies contribute for opposite values to
the currents ISc,1 (eV/�, ϕ̃q,�/�0) and ISc,2 (eV/�, ϕ̃q,�/�0)
at the Sc,1 and Sc,2 contacts. Thus, Landau-Zener tunneling
reduces the critical current Iq,c by quantum mechanically
coupling the dynamics of the two ABS branches. (ii) Weak
Landau-Zener tunneling produces avoided crossings in the
Floquet spectra, as it is the case for any generic quantum
mechanical perturbation.

As a consequence of the above items (i) and (ii), the dips in
the voltage dependence of Iq,c(eV/�,�/�0) and the avoided
crossings in the Floquet spectrum appear simultaneously at
the same voltage values because they have a common origin,
i.e., quantum superposition of the positive- and negative-
energy ABS manifolds, as a result of Landau-Zener tunneling
between them (see Fig. 3 in Sec. II).

Current carried by each Floquet state. Now, we discuss the
voltage-V dependence of the currents Ĩ1 and Ĩ2 carried by each
Floquet state [see Eqs. (38) and (39) in Sec. V B].

The reduced voltage-eV/� dependence of
Ĩ∗
q,c,1(eV/�,�/�0) and Ĩ∗

q,c,2(eV/�,�/�0) is shown in
Fig. 6(b).

At low voltage, the current is almost entirely carried by
a single Floquet state, if the voltage value is in-between two
avoided crossings. The “+” and the “−” Floquet states defined
by Eqs. (1) and (2) anticross at the {Vcross,n} above, yielding
alternation between “current carried mostly by the Floquet
state 1,” followed by “current carried mostly by the Floquet
state 2,” ... as the voltage is increased [see Fig. 6(b)]. It is seen
on Figs. 6(a) and 6(b) that the “switching voltages” between
Ĩ∗
q,c,1 � 0 and Ĩ∗

q,c,2 � 0 match perfectly with the anticrossings
in the Floquet spectra, which also coincide with the deepest
minima in Ĩq,c(eV/�) (see the discussion above).

Generalization to the full current-phase relations. Our
previous discussion was based on taking the maximum
of the current with respect to the gauge-invariant quar-
tet phase. Now, we focus on the Floquet spectrum
En(eV/�, ϕ̃q/2π,�/�0) and on the full current-phase rela-
tions ISc (eV/�, ϕ̃q/2π,�/�0) as a function of the gauge-
invariant quartet phase variable ϕ̃q/2π . Figures 7(a1)–7(d1)
show the critical current Ĩ∗

q,c(eV/�,�/�0) as a function of
the reduced voltage eV/�, the gauge-invariant quartet phase
ϕ̃q taking the value ϕ̃q ≡ ϕ̃∗

q [see Eq. (36)]. The ϕ̃q/2π sen-
sitivity of the Floquet spectra and the current-phase relations
are shown on Figs. 7(a2)–7(d2) and 7(a3)–7(d3), respectively,
at the values of the reduced voltage eV/� which are selected
on Figs. 7(a1)–7(d1). Going from Fig. 7(a1) to 7(d1), we scan
voltage through one of the dips appearing at low voltage in
Iq,c(eV/�,�/�0).

Figures 7(a2)–7(d2) reveal that the dips in
Iq,c(eV/�,�/�0) plotted as a function of eV/� correspond to
collisions between the Floquet levels plotted as a function of
ϕ̃q/2π . Avoided crossings appear in En(eV/�, ϕ̃q/2π,�/�0)
plotted as a function of ϕ̃q/2π . Part of Fig. 7 is already
presented in the Supplementary Information of the
Harvard group paper [50]. But here, Figs. 7(a3)–7(d3)
show in addition the ϕ̃q/2π dependence of the currents
I1(eV/�, ϕ̃q/2π,�/�0) and I2(eV/�, ϕ̃q/2π,�/�0)
carried by each Floquet state [see Eqs. (38) and (39)
above].

The following is deduced from Fig. 7:
(i) The current ISc (eV/�, ϕ̃q/2π,�/�0) is carried by a

single Floquet state for most of the values of ϕ̃q/2π , except
in the immediate neighborhood of an avoided crossing where
both Ĩ1(eV/�, ϕ̃q/2π,�/�0) and Ĩ2(eV/�, ϕ̃q/2π,�/�0)
have a small contribution to ĨSc (eV/�, ϕ̃q/2π,�/�0).

(ii) We find ISc (eV/�, ϕ̃q/2π,�/�0) � 0 if the reduced
gauge-invariant quartet phase ϕ̃q/2π is tuned at an avoided
crossing according to the spectra on Figs. 7(a2)–7(d2).

It is concluded that the ϕ̃q dependence of the quartet current
confirms the link between “repulsion in the Floquet spectrum”
plotted as a function of the voltage V or the gauge-invariant
phase variable ϕ̃q, and the “minima in the quartet critical
current.”

Now that we addressed hybridization between the two Flo-
quet states, we consider higher values of the bias voltage on
the Floquet populations (see Sec. II B 2).

2. Populating both Floquet states and the π shift

In this section, we discuss that a 0-shifted current-phase
relation emerges, and how it can be interpreted as the re-
sult of nonequilibrium Floquet populations. Coming back to
Fig. 5, the evolution from Fig. 5(a2) to 5(d2) across a dip
in I∗

q,c(eV/�,�/�0) as a function of eV/� involves spectral
current carried by both Floquet states if the voltage is tuned at
a minimum in I∗

q,c(eV/�,�/�0) [see Fig. 5(c2)].
Populating both Floquet states can be realized by increas-

ing voltage for the considered weak Landau-Zener tunneling
(i.e., γ /� = 0.3 and �/�0 = 0). On Fig. 8, we scan the
reduced voltage eV/� through a dip in Ĩ∗

q,c(eV/�,�/�0), but
now at higher eV/� values than on Fig. 7. The current-phase
relations are shown on Figs. 8(a2)–8(f2). A crossover from
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FIG. 7. The quartet phase sensitivity of the Floquet spectra and quartet current: The figure shows the evolution of the reduced Floquet level
energies En/eV [see (a2)–(d2)] and the current Iq [see (a3)–(d3)] as a function of the reduced quartet phase ϕ̃q/2π . (a1)–(d1) Show the voltage
values which are selected while scanning through a dip in I∗

q,c(eV/�) plotted as a function of eV/�.

π -shifted current-phase relation [see Fig. 8(a2)] to 0 shift [see
Fig. 8(d2)] and back to π shift [see Fig. 8(f2)] is obtained as
eV/� is increased.

The low-bias quartet current is π shifted, in agreement with
qualitative arguments on exchanging partners of two Cooper
pairs [42] (see also Sec. V A in Ref. [51]).
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FIG. 8. The contribution of both Floquet states to the quartet current: The figure shows a scan through a dip in the quartet critical current
Iq,c [see (a1)–(f1)]. The quartet current Iq and the contributions Iq,1 and Iq,2 of both Floquet states are shown on (a2)–(f2) as a function of the
reduced gauge-invariant quartet phase ϕ̃q/2π .
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FIG. 9. Inversion for a multilevel quantum dot: The figure shows Ĩ∗
q,c as a function of reduced voltage eV/� for the multilevel quantum dot

model with �/�0 = 0 (black lines) and �/�0 = 1
2 (magenta lines). The magenta shaded region corresponds to the inversion. The parameter

δ0/� = 0 is used on ( a1)–(i1), with δ/� ranging from 1.8 (a1) to 0.2 (i1). The parameter δ0/� = 0.6 is used on (a2)–(i2), and δ/� is from
1.8 (a2) to 0.2 (i2).

The proposed interpretation of the π -0 and 0-π crossovers
appearing at eV/� � 0.2 on Fig. 8 is the following: π -
shifted Josephson relation was obtained in a superconductor–
normal-metal–superconductor (SNS) Josephson weak link,
originating from injection of nonequilibrium quasiparticle
populations from two attached normal leads [79]. This π -
shifted current-phase relation can be interpreted by noting
that the two ABS at opposite energies carry opposite currents.
A change of sign in the current-phase relation is obtained if
the positive-energy ABS is mostly populated. This is why we
relate the π -0 and the 0-π shifts of Iq,c to the nonequilibrium
Floquet populations produced for these relatively large values
of the reduced voltage eV/�.

The ∼− sin(2ϕq) current-phase relation appearing at the
π -0 crossover on Fig. 8(c2) meets physical expectations
regarding emergence of a second-order harmonics of the
current-phase relation once the first-order harmonics changes
sign.

E. Conclusion on this section

To summarize, the inversion in Iq,c(V,�/�0) be-
tween �/�0 = 0 and �/�0 = 1

2 , i.e., Iq,c(V, 0) < Iq,c(V, 1
2 ),

emerges in our quantum dot model calculations. The mecha-
nism was anticipated in the above Sec. II and our numerical
calculations for the voltage V and the quartet phase ϕ̃q

sensitivity of the quartet current confirmed the proposed
mechanism. Namely, in the limit of weak Landau-Zener tun-
neling and with a single-level quantum dot, the inversion was
interpreted as reduction in the quartet current in the vicinity
of the avoided crossings in the Floquet spectrum.

In addition, we obtained evidence for 0 shift in the quartet
current-phase relation in a narrow window of the reduced
voltage eV/�. This numerical result was interpreted as being
a consequence of nontrivial Floquet populations.

VI. ROBUSTNESS OF THE INVERSION

Now, we investigate robustness of the inversion against
strong Landau-Zener tunneling and many levels in the quan-
tum dot. In Sec. III A of the Supplemental Material [73], we
show that the connection between the extrema in the Floquet
spectrum and the minima in the quartet critical current (both
being plotted as a function of reduced voltage eV/�) holds
also for strong Landau-Zener tunneling with γ /� = −0.25
(see Sec. IV). Next, Sec. III B of the Supplemental Material
[73] presents a scan from γ /� = −0.25 to 0.3, and provides
evidence for inversion in this range of γ /�.

Now, we show that inversion Iq,c(eV/�, 0) <

Iq,c(eV/�, 1
2 ) appears generically for the multilevel quantum

dot presented in Sec. V, specialized to the equally spaced
energy levels:

εn = nδ + δ0, (40)

with n an integer. An estimate for the number of energy levels
within the gap window is 2�/δ.

Figures 9(a1)–9(i1) and 9(a2)–9(i2) correspond to δ0/� =
0 and δ0/� = 0.6, respectively, with δ/� ranging from
δ/� = 1.8 [Figs. 9(a1) and 9(a2)] to δ/� = 0.2 [Figs. 9(i1)
and 9(i2)]. Figures 9(i1) and 9(i2) coincide with each other be-
cause (δ0/�, δ/�) = (0, 0.2) and (δ0/�, δ/�) = (0.6, 0.2)
produce the same spectrum of the quantum dot energy levels.
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It is concluded from Figs. 9(a1)–9(i1) and 9(a2)–9(i2) that
crossing over from δ/� = 1.8 larger than unity on Figs. 9(a1)
and 9(a2) (typically with zero of a single energy level in the
gap window) to δ/� = 0.2 on Figs. 9(i1) and 9(i2) (with
∼10 energy levels in the gap window) generically implies
emergence of inversion. Thus, the inversion is favored upon
increasing the number of levels on the quantum dot, in com-
parison with a single-level quantum dot.

VII. CONCLUSIONS

This paper addressed a four-terminal (Sa, Sb, Sc,1, Sc,2)
quantum dot Josephson junction biased at (V,−V, 0, 0) on
the quartet line (see the device on Fig. 1). The quartet critical
current Iq,c(eV/�,�/�0) is parametrized by both the reduced
voltage eV/� and the reduced flux �/�0 piercing through the
loop. It turns out that the recent Harvard group experiment
[50] observes “inversion” between �/�0 = 0 and �/�0 =
1
2 , namely, Iq,c(eV/�,�/�0) can be larger at �/�0 = 1

2
than at �/�0 = 0. This experimental result is against the
naive expectation that destructive interference should reduce
the quartet critical current at �/�0 = 1

2 with respect to
�/�0 = 0.

We addressed in this Paper II how inversion can be pro-
duced at finite bias voltage V in a simple 0D quantum dot
device. The “Floquet mechanism” for the inversion tuned by
the voltage V is simple in the limit of weak Landau-Zener
tunneling. First, in the absence of Landau-Zener tunneling
between the two ABS manifolds, the classical Floquet spec-
trum shows nonavoided crossings as a function of the reduced
voltage eV/�. Second, the rate of Landau-Zener tunneling
increases from zero as eV/� is increased. This yields opening
of gaps in the Floquet spectrum, which makes the crossings
between the Floquet levels become avoided. The quantum
mechanical effects of weak Landau-Zener tunneling are im-
portant only if the bias voltage is close to avoided crossings

in the Floquet spectra. Landau-Zener tunneling produces hy-
bridization between the two Floquet states and a reduction of
the quartet critical current Iq,c(eV/�,�/�0), due to the time-
dependent dynamical quantum superpositions of the two ABS
which carry opposite currents. In certain voltage windows,
the reduction in Iq,c(eV/�,�/�0) at �/�0 = 0 is such as
to produce inversion with �/�0 = 1

2 . In addition, we demon-
strated that nontrivial populations of the two Floquet states are
produced at larger voltage, which yields change of sign in the
relation between the quartet current and the gauge-invariant
phase variable.

Finally, our results suggest that the inversion is generic
since it holds also for strong Landau-Zener tunneling and for
a multilevel quantum dot, which is encouraging with respect
to providing mechanisms for the recent Harvard group exper-
iment [50]. In the forthcoming Paper III of the series, we will
evaluate the voltage-V sensitivity for the more realistic “2D
metal beam splitter” proposed in the previous Paper I [51]
(instead of the 0D quantum dot of this Paper II).
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