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Inversion in a four-terminal superconducting device on the quartet line. I.
Two-dimensional metal and the quartet beam splitter

Régis Mélin
Université Grenoble-Alpes, CNRS, Grenoble INP, Institut NEEL, 38000 Grenoble, France

(Received 5 August 2020; revised 3 November 2020; accepted 30 November 2020; published 31 December 2020)

In connection with the recent Harvard group experiment on graphene-based four-terminal Josephson junctions
containing a grounded loop, we consider voltage biasing at opposite voltages on the quartet line and establish
lowest-order perturbation theory in the tunnel amplitudes between a two-dimensional (2D) metal and four
superconducting leads in the dirty limit. We present in addition general nonperturbative and nonadiabatic results.
The critical current on the quartet line Ic(�/�0 ) depends on the reduced flux �/�0 via interference between the
three-terminal quartets (3TQs) and the nonstandard four-terminal split quartets (4TSQs). The 4TSQs result from
synchronizing two Josephson junctions by exchange of two quasiparticles “surfing” on the 2D quantum wake,
and this mechanism is already operational at equilibrium. Perturbation theory in the tunnel amplitudes shows that
the 3TQs are π -shifted but the 4TSQs are 0-shifted if the contacts have linear dimension which is large compared
to the elastic mean free path. We establish the gate voltage dependence of the quartet critical current oscillations
Ic(�/�0 ). It is argued that “observation of Ic(0) �= Ic(1/2)” implies “evidence for the four-terminal 4TSQ” for
finite bias voltage on the quartet line and arbitrary interface transparencies. This statement relies on physically
motivated approximations leading to the Ambegaokar-Baratoff-type formula for the quartet critical current-flux
relation. It is concluded that the recent experiment mentioned above finds evidence for the four-terminal 4TSQ.

DOI: 10.1103/PhysRevB.102.245435

I. INTRODUCTION

A superconductor such as aluminum is characterized by a
macroscopic phase variable ϕ and a gap � separating the col-
lective BCS ground state from the first quasiparticles. A BCS
superconductor supports dissipationless supercurrent flow in
response to phase gradients.

BCS theory assigns given numerical values to the phase ϕ

of a single superconductor, even if ϕ is a non-gauge-invariant
quantity that cannot be observed under any experimental
condition. BCS theory also yields an absence of the Meiss-
ner effect, i.e., BCS superconductors do not repel magnetic
field. These paradoxes were resolved [1,2] by the so-called
Higgs mechanism, i.e., a theory of superconductivity that
takes Coulomb interactions into account and describes the dy-
namics of the collective modes in the so-called “Mexican-hat”
potential.

Following the seminal works [1,2] on gauge invariance
mentioned above, Josephson calculated [3] the supercurrent
through a tunnel junction connecting two superconductors
S1 and S2 with phases ϕ1 and ϕ2. The phase ϕ of a single
superconductor is not gauge-invariant, thus it is not observ-
able. The difference ϕ1 − ϕ2 between the phases of S1 and S2

is gauge-invariant. The latter is observable as the following
dissipationless current through a superconductor-insulator-
superconductor S1IS2 Josephson junction:

I = I (2T )
c sin(ϕ1 − ϕ2), (1)

which has its maximal value set by the two-terminal critical
current I (2T )

c .

Equation (1) describes the tunneling of single Cooper pairs
between the superconductors S1 and S2. Composite objects
made of two or more Cooper pairs tunnel in the same quantum
event at larger interface transparency. The possibility of two-
Cooper-pair tunneling yields the sin [2(ϕ1 − ϕ2)] term in the
following equation:

I = [
I (1),1
c + I (2),1

c + · · · ] sin(ϕ1 − ϕ2) (2)

+ [
I (2),2
c + · · · ] sin [2(ϕ1 − ϕ2)] (3)

+ · · · . (4)

Due to their internal structure, both Cooper pairs are coupled
to each other by the Fermi exclusion principle since they are
located within the same coherence volume ∼ξ 3 in the same
time window τ� = h̄/�, where the zero-energy coherence
length is ξ = ξball(0) in the ballistic limit:

ξball(0) = h̄vF

�
, (5)

with vF the Fermi velocity.
The expansion given by Eqs. (2)–(4) shows fast conver-

gence under usual experimental conditions: Eqs. (2)–(4) are
usually dominated by I (1),1

c , such that |I (1),1
c | � |I (2),1

c | and
|I (1),1

c | � |I (2),2
c |.

The present paper is the first of a series of three papers I,
II, III, and it will be followed by paper II [23] and paper III
[24]. These papers demonstrate that multiterminal Josephson
junctions offer a playground for investigating the physics of
two-Cooper-pair tunneling in connection with an interpreta-
tion of a recent experiment realized in the Harvard group [4].
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Namely, the terms similar to I (1),1
c + I (2),1

c + · · · in Eq. (2)
become ac in the multiterminal Josephson effect (typically in
the range of a GHz or 10 GHz), thus not contributing to the dc-
current response. This offers an experimental signal controlled
solely by higher-order dc-contributions similar to I (2),2

c + · · ·
in Eq. (3), without the terms similar to I (1),1

c + I (2),1
c + · · · in

the dc-current; see Eq. (2).
Concerning multiterminal Josephson junctions, it was

shown in Refs. [5,6] that nonstandard effects appear in “super-
current splitting” if three superconducting leads are connected
at a distance shorter than ∼ξ . The three-terminal quartets
(3TQs) and higher-order resonances such as the three-terminal
sextets and octets were predicted to be revealed upon voltage
biasing (Sa, Sb, Sc) at (Va,Vb,Vc); see Refs. [5,6]. This four-
fermion quartet resonance can be viewed as being “glued” by
the interfaces in the absence of preexisting quartets in the bulk
of BCS superconductors. Namely, energy conservation puts a
constraint on the bias voltages Va and Vb, which have to be “on
the quartet line” Va + Vb = 0 in the (Va,Vb) voltage plane (Sc

being grounded at Vc = 0). The predicted [5–12] Josephson
anomaly on the quartet line Va + Vb = 0 originates from quan-
tum mechanically synchronizing the three superconductors
(Sa, Sb, Sc), via the following gauge-invariant static combina-
tion of their respective macroscopic phase variables:

ϕq, 3T = ϕa + ϕb − 2ϕc. (6)

The Josephson relations imply that the phase combination
ϕa(t ) + ϕb(t ) − 2ϕc(t ) is time t-independent, with ϕa(t ) =
2eV t/h̄ + ϕa, ϕb(t ) = −2eV t/h̄ + ϕb, and ϕc(t ) = ϕc. The
previous difference ϕ1 − ϕ2 between the phases ϕ1 and ϕ2

of S1 and S2 enters the two-terminal dc-Josephson current-
phase relation given by Eq. (1). Conversely, in a three-terminal
Josephson junction, the nonstandard combination given by
Eq. (6) implies that the 3TQ current Iq is given by

Iq = Ic, q sin ϕq, 3T (7)

in the limit of tunnel contacts. Equation (7) depends on the
phases of the three superconductors through the 3TQ phase
ϕq, 3T in Eq. (6), not only on the two-body ϕ1 − ϕ2 entering
Eq. (1) for the two-terminal dc-Josephson effect.

The prediction of the 3TQ was confirmed experimentally
by the Grenoble group [13] (with a metallic structure) and
by the Weizmann Institute group [14] (with a semiconducting
nanowire double quantum dot). The recent Harvard group
experiment [4] provides evidence for unanticipated features
of the quartets in the graphene-based four-terminal device
schematically shown in Fig. 1, in connection with the addi-
tional parameter provided by the flux � in the loop.

The four-terminal Josephson junction in Fig. 1 is an op-
portunity to investigate interference in the quartet current, in
the spirit of a superconducting quantum interference device
(SQUID) [15]. Several experiments on multiterminal devices
containing loops have been proposed recently [8,16,17] in the
absence of voltage biasing, i.e., at equilibrium, where all parts
of the circuit are grounded.

The device in Fig. 1 was proposed recently [18,19] to
probe Weyl points and nontrivial topology. The voltage bias-
ing conditions are different in Refs. [18,19] for topology and
Refs. [5,6] for the quartets: the voltages are incommensurate

FIG. 1. The four-terminal superconducting device: The super-
conducting leads Sa, Sb, and Sc are voltage-biased at (Va,Vb,Vc ), with
Va = −Vb ≡ V on the quartet line and Sc is grounded at Vc = 0. The
loop in Sc terminates at the contact points Sc1 and Sc2 on the 2D metal
used to describe the sheet of graphene gated away from the Dirac
points in the Harvard group experiment [4]. The loop is threaded by
the magnetic flux �.

in Refs. [18,19], so as to sweep the (ϕa, ϕb) Brillouin zone of
the superconducting phases. Experiments related to the theo-
retical proposal on topology [18,19] were attempted recently
[20–22].

Coming back to the Harvard group experiment [4], the
emergence of a quartet anomaly in four-terminal configura-
tions naturally raises the question of making the theory of
the quartets with four terminals, instead of three terminals as
in the previous theoretical [5–12] and experimental [13,14]
investigations. In this sequence of papers I (current paper), II
[23], and III [24], the (Sa, Sb, Sc1 , Sc2 ) four-terminal device is
biased at (Va,Vb,Vc,Vc), where Vc = 0 is the reference voltage
of the grounded Sc containing a loop threaded by the magnetic
flux � and terminated by Sc1 and Sc2 (see Fig. 1). Our strategy
in this series of papers is to develop a theory that is intended
to interpret the following unexpected features reported by the
Harvard group [4]:

(i) A quartet Josephson anomaly appears on the Va + Vb =
0 quartet line, once one of the elements of the conductance
matrix is plotted in color as a function of the (Va,Vb) voltages
[4]. This is compatible with the theoretical prediction of the
quartets for three superconducting terminals [5,6], and with
the previous Grenoble [13] and Weizmann Institute [14] group
experiments.

(ii) In addition, the four-terminal Harvard group experi-
ment [4] demonstrates oscillations of the quartet current as
a function of the reduced flux �/�0 in the loop.

(iii) An “inversion” appears [4] in a low bias voltage win-
dow if the experimental data for the amplitude of the quartet
anomaly are plotted as a function of �/�0. Namely, the
quartet anomaly is stronger at �/�0 = 1/2 than at �/�0 =
0 even if superconductivity should naively be stronger at
�/�0 = 0 than at �/�0 = 1/2. The present paper (paper I)
addresses a theoretical description of “inversion in Ic(�/�0)
between �/�0 = 0 and �/�0 = 1/2” on the basis of
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perturbation theory in the tunnel amplitudes within the sim-
plest V = 0+ adiabatic limit. In addition, the model is
generalized beyond the perturbative and adiabatic regimes.

(iv) Gating away from the Dirac point in the Harvard group
experiment [4] favors π -periodicity of Ic(�/�0) with respect
to 2π -periodicity. The present paper turns out to be compati-
ble with this observation.

(v) A small voltage scale V∗ emerges [4] in the bias voltage
V -dependence of the quartet signal. Paper II [23] addresses
how inversion is produced by increasing the bias voltage V
on the quartet line, in the simple situation of a 0D quantum
dot. Paper III [24] addresses whether a “Floquet mechanism”
similar to that of paper II [23] can extrapolate to the 2D metal
of paper I, in connection with answering the question of why
the voltage V∗ for the inversion is much smaller than the gap
in the Harvard group experiment [4].

In short, the progression between the three papers is about
different levels of the modeling: The present paper (paper I)
starts from the four-terminal split quartets (4TSQs) treated
in perturbation in the tunnel amplitudes and in the V = 0+
adiabatic limit with a 2D metal. Paper I also addresses how
the nonstandard four-terminal quartets can be generalized to
arbitrary device parameters. Paper II [23] addresses the full
Floquet theory at finite bias voltage for a zero-dimensional
(0D) quantum dot, i.e., how the Floquet spectra and popula-
tions can produce inversion in Ic(�/�0) between �/�0 = 0
and �/�0 = 1/2. Paper III [24] combines the present paper
I and paper II [23], by addressing finite bias voltage for a 2D
metal of paper I within physically motivated approximations.

The results of the present paper, which are not presented as
theoretical support in the experimental Harvard group paper
[4], are the following:

(i) Rigorous microscopic calculation for the sign and the
amplitude of the critical currents through a 2D metal within
perturbation theory in the tunnel amplitudes and in the adia-
batic limit, taking disorder in the superconducting leads in the
dirty limit into account.

(ii) Physically motivated approximations for addressing the
nonstandard 4TSQ at arbitrary interface transparencies and
finite bias voltage.

In this paper, we propose a simple model for the Harvard
group experiment [4] (see Secs. III, IV, V, VI, and VII), and
next the model is analyzed in connection with this experiment
(see Secs. VIII, IX, and X).

The detailed structure of the present paper is as follows.
Section II summarizes the three papers of the series. The
model and the methods are presented in Secs. III and IV,
respectively. The three-terminal 3TQ and the four-terminal
4TSQ current-phase relations are next calculated from per-
turbation theory in the tunnel amplitudes combined to the
adiabatic limit; see Sec. V. Section VI deals with the inter-
ference between the three-terminal 3TQ and the four-terminal
4TSQ. The importance of two space dimensions is pointed
out in Sec. VII, in connection with the 2D quantum wake.
Section VIII shows that “relative shift of π between the three-
terminal 3TQ and the four-terminal 4TSQ” implies “inversion
in the critical current Ic(�/�0) between the reduced flux
values �/�0 = 0 and �/�0 = 1/2.” The consequence of the
model for the gate voltage dependence of the magnetic field
oscillations is discussed in Sec. IX in connection with the

Harvard group’s experimental paper [4]. Section X discusses
arbitrary interface transparencies and finite bias voltage within
the proposed approximations. A summary and final remarks
are provided in Sec. XI.

II. THE THREE PAPERS OF THE SERIES

In this section, we present an overview of the three papers
of the series. Specifically, the following items (A), (B), and
(C) detail which features of the Harvard group experiment
[4] will be addressed and explained in which paper, i.e., the
present paper I or papers II [23] or III [24].

(A) The present paper (paper I) starts with the simplest
predictive approach, i.e., perturbation theory in the interface
transparencies in the adiabatic limit where (Sa, Sb, Sc1 , Sc2 )
are biased at (V,−V, 0, 0) on the quartet line, with V = 0+.
In the context of Cooper pair splitting in a three-terminal
normal metal–superconductor–normal metal (NSN) device, a
similar perturbative approach [25,26] turned out to usefully
uncover the important elementary processes of “elastic co-
tunneling” [25,26] and “crossed Andreev reflection” [25–27].
Concerning the four-terminal Josephson junction in Fig. 1,
the following perturbative calculations reveal the 3TQ [5,6]
interfering with the nonstandard 4TSQ.

More precisely, perturbation theory and the adiabatic limit
lead to the three processes that are shown in Fig. 2:

(a) The three-terminal 3TQ1, 3TQ2 in which two pairs
(from Sa and from Sb biased at ±V , respectively) exchange
partners and recombine as two outgoing pairs transmitted at
the same contact with Sc1 for the 3TQ1 (or at the contact with
Sc2 for the 3TQ2); see Figs. 2(a), 2(d) and 2(e).

(b) The four-terminal statistical fluctuations of the split
quartets (4TFSQs) take one pair from Sa and another one from
Sb biased at ±V , respectively. Both of them split and recom-
bine as one pair transmitted into Sc1 and another one into Sc2 ;
see Figs. 2(b) and 2(f). The 4TFSQs contribute solely to small
sample-to-sample statistical fluctuations of the supercurrent.

(c) The four-terminal split quartets (4TSQs) exchange a
quasiparticle between two pairs taken from Sa and Sb biased at
±V , respectively. The 4TSQs realize a “four-terminal quartet
beam splitter,” namely, they take two pairs from Sa and Sb,
make their wave-function overlap, and transmit a pair into Sc1

and another one into Sc2 in the outgoing state; see Figs. 2(c)
and 2(f). Contrary to the 4TFSQs of the previous item (b), the
four-terminal 4TSQs turn out to be robust against averaging
their critical current in the presence of multichannel contacts.

It is demonstrated that the three-terminal 3TQ1, 3TQ2 [see
the above item (a)] and the four-terminal 4TSQ [the above
item (c)] are π - and 0-shifted, respectively, due to the minus
sign in the wave function of a Cooper pair for the former,
and to the additional exchange of two quasiparticles via the
quantum wake for the latter. The critical current is larger at
�/�0 = 1/2 than at �/�0 = 0, i.e., the model of this paper
produces the inversion between �/�0 = 0 and �/�0 = 1/2,
which is also obtained in the Harvard group experiment [4].

In addition, an approximation on disorder is imple-
mented to address general values of the parameters, i.e.,
finite bias voltage on the quartet line and arbitrary interface
transparencies.
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FIG. 2. Artist view of the microscopic processes: The three-terminal quartets [3TQ1, panels (a) and (d)], the 3TQ2 [panel (e)], the four-
terminal statistical fluctuations of the split quartet current [4TFSQ, panels (b) and (f)], and the four-terminal split quartets [4TSQ, panels (c) and
(f)]. The two pairs taken from Sa and Sb biased at ±V exchange partners according to the “intermediate state” represented schematically in
panels (a), (b), and (c) for the three-terminal 3TQ1 and the four-terminal 4TFSQ and 4TSQ, respectively. Two Cooper pairs are transmitted
together into Sc1 [3TQ1 in panels (a) and (d)] or into Sc,2 [3TQ2 in panel (e)]. Alternatively, a single Cooper pair is transmitted into Sc1 and
another one into Sc2 by the four-terminal 4TFSQ in panels (b) and (f), and by the 4TSQ in panels (c) and (f). A four-particle resonance is
produced for the 3TQ and the 4TFSQ in panels (a) and (b), i.e., the two Cooper pairs from Sa and Sb recombine after exchanging partners. The
4TSQs in panel (c) involve interchanging a quasiparticle “surfing” on the quantum wake between the Sc,1 and Sc,2 contacts, from two Cooper
pairs originating from Sa and Sb. The microscopic mechanism is different for the 3TQ and the 4TFSQ [panels (a) and (b)], or for the 4TSQ
[panel (c)].

Now, we provide items (B) and (C) summarizing the goals
of papers II [23] and III [24] of this series, in connection with
explaining the Harvard group experiment [4]:

(B) We propose in the next paper (paper II [23]) a “Flo-
quet level and population mechanism” by which an inversion
between �/�0 = 0 and �/�0 = 1/2 is produced by tuning
the bias voltage V on the quartet line. Most of the description
in paper II [23] is based on a simplified 0D quantum dot
configuration supporting a single level at zero energy. Paper II
[23] relies on a combination of analytical theory and extensive
numerical calculations. An interesting link is established in
paper II [23], which relates the inversion in the critical current
between �/�0 = 0 and �/�0 = 1/2 to repulsion between
the Floquet levels as a function of the bias voltage V on the
quartet line. Robustness of the inversion is established with
respect to crossing over from weak to strong Landau-Zener
tunneling by changing the couplings between the dot and the
superconducting leads, and with respect to introducing several
energy levels in a multilevel quantum dot. It turns out that the
complementary “Floquet mechanism” of paper II [23] for the
inversion tuned by the voltage V is different in nature from
what is proposed here in paper I.

(C) The last paper of the series (paper III [24]) “merges”
the present paper I and paper II [23] into an approximation
scheme for the effect of bias voltage within the model pro-
posed here in paper I. A link is established to the proximity
effect, taking the specificities of the three- and four-terminal
3TQ and 4TSQ through a 2D metal into account. To il-
lustrate this point, let us consider a two-terminal normal
metal–superconductor (NS) Andreev interferometer contain-
ing a loop in its N part. Electrons with charge −e from N are
Andreev-reflected as holes with charge e, and a Cooper with

charge −2e is transmitted into S. Doubling the charge for the
quartet mechanism, a pair of electronlike quasiparticles with
charge −2e can be reflected as a pair of holelike quasiparti-
cles with charge 2e while two Coopers with charge −4e are
transmitted into Sc. We investigate in paper III [24] whether
this can produce inversion in the critical current on the quartet
line between �/�0 = 0 and �/�0 = 1/2 [for instance in
connection with Fig. 3(c) in Ref. [28]]. In addition, we obtain
the emergence of a small energy scale that is compatible with
the observation [4] of a small voltage scale V∗ in the variations
of the critical current with bias voltage V .

The above items (A), (B), and (C) summarize the main
motivations for investigating the three complementary mech-
anisms of the present paper I, and papers II [23] and III [24].

III. THE MODEL

This section presents the model used in this first paper
of the series. The Hamiltonians are provided in Sec. III A.
The voltage biasing conditions are given in Sec. III B. The
critical current on the quartet line is defined in Sec. III C, in
connection with making the link between our calculations and
the Harvard group experiment [4].

A. The Hamiltonians

The assumptions of the model are presented in this subsec-
tion. The essential features of the Harvard group experiment
[4] are listed in Sec. III A 1. The Hamiltonians are presented
next: first the BCS Hamiltonian of the superconducting leads
(see Sec. III A 2), next the Hamiltonian of the 2D metal
used to model the sheet of graphene (see Sec. III A 3), and
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FIG. 3. The four-terminal superconducting device: Panel (a) shows a schematic top view of the Harvard group device [4], with four
superconducting terminals Sa, Sb, Sc,1, and Sc,2 evaporated on top of the sheet of graphene that is in the (x, y) plane of the figure. The grounded
loop connecting Sc,1 to Sc,2 is not shown in panel (a). Panel (b) shows cuts in the (x, z) plane along the dashed lines in panel (a). Panel (c) shows
in the (x, y) plane a schematic top view of the geometry considered in this paper, with superconducting contacts having radius r0, which can be
smaller or larger than the zero-energy dirty-limit BCS coherence length. The separation between the superconducting contacts is R0/x0 along
the x-axis, R0/y0 along the y axis, and R0/z0 along the diagonals. The superconducting leads Sa and Sb are biased at ±V , while Sc,1 and Sc,2

belong to the same superconducting loop defined in Sc which is grounded at Vc = 0 and contains a loop pierced by flux �; see Fig. 1.

finally the term of the Hamiltonian describing the contacts
between the 2D metal and the superconducting leads (see
Sec. III A 4).

1. The essential ingredients

We start by presenting the ingredients of the Harvard group
experiment [4] that are important to our theoretical descrip-
tion. The model relies on the following facts:

(i) The superconductors are connected on a 2D metal that
consists of graphene gated away from the Dirac point; see
Figs. 1 and 3.

(ii) The experiment involves four terminals instead of three
as in the previous theoretical [5–12] and experimental [13,14]
papers; see Figs. 1 and 3.

The discussion starts with two limiting cases for the device
parameters:

(a) The limit of low-transparency interfaces between the
2D metal and the superconducting leads.

(b) The V = 0+ adiabatic limit with voltage-biasing on the
quartet line.

The theory is next generalized to arbitrary interface trans-
parencies and finite bias voltage within a physically motivated
approximation regarding disorder.

The assumptions about the geometry are illustrated in
Fig. 3. Panels (a) and (b) show the geometry of the Harvard
group experiment [4], with four superconducting contacts Sa,
Sb, Sc,1, and Sc,2 evaporated on top of the sheet of graphene.
Panel (a) shows the top view of the experimental configura-
tion in the plane of the (x, y)-coordinates. Panel (b) shows
the side views in the (x, z)-plane, i.e., cuts along the dashed
lines in panel (a). Figure 3(c) represents the (x, y)-plane top
view of the model considered in this paper, in which four
superconducting leads Sa, Sb, Sc,1, and Sc,2 form contacts of
radius r0 on the 2D metal, where r0 can be smaller or larger
than the zero-energy dirty-limit BCS coherence length. The
separation between the contacts in Fig. 3(c) corresponds to the
parameters R0/x0 and R0/y0 along the x- and y-axis directions,
respectively, and to R0/z0 along the diagonals.

2. BCS Hamiltonian of the superconducting leads

Now, we present the standard BCS Hamiltonian of each
superconducting lead taken individually. In zero flux �/�0 =
0, all superconducting leads are described by

HBCS = −W
∑
〈i, j〉

∑
σ=↑,↓

(c+
i,σ c j,σ + c+

j,σ ci,σ ) (8)

−�
∑

i

(eiϕc+
i,↑c+

i,↓ + e−iϕci,↓ci,↑), (9)

where the summation
∑

〈i, j〉 runs over the pairs of nearest
neighbors on a 3D tight-binding cubic lattice while

∑
i runs

over the tight-binding sites. The notation σ =↑,↓ stands for
the spin. The first term in Eq. (8) is the kinetic energy. The
second term given by Eq. (9) is the BCS mean field pairing
with superconducting gap �. The macroscopic superconduct-
ing phase variable is generically denoted by ϕ in Eq. (9), and
it takes the values ϕa, ϕb, ϕc,1, or ϕc,2 according to which of
the superconducting leads Sa, Sb, Sc,1, or Sc,2 is considered.

A magnetic field in the loop is taken into account in the
following gauge:

ϕc, 1 = ϕc − �

2
, (10)

ϕc, 2 = ϕc + �

2
, (11)

with a phase gradient along the loop Sc terminated by Sc1 and
Sc2 , which is supposed to have a large perimeter compared to
the superconducting coherence length.

3. Hamiltonian of the 2D metal

Now the 2D metal Hamiltonian is presented (see the yellow
region in Fig. 1):

H2D metal = −W
∑
〈i, j〉

∑
σ=↑,↓

(c+
i,σ c j,σ + c+

j,σ ci,σ ), (12)

where the summation
∑

〈i, j〉 runs over pairs of neighbors on a
2D tight-binding lattice.
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In the following calculations, the 2D metal is considered to
be infinite in the x- and y-axis directions, which is compatible
with the large sheet of graphene used in the Harvard group
experiment [4], having a typical dimension ∼10 μm.

We simply take the continuum limit for a 2D Fermi gas
with a circular Fermi surface, parametrized by the single
Fermi wave vector kF and the bandwidth W . The assumption
of a circular Fermi surface can be realized approximately from
the generic tight-binding Hamiltonians given by Eq. (12) at
low or high filling, and it provides a useful phenomenological
basis for describing a sheet of graphene gated away from the
Dirac point, with a minimal number of parameters and only
two essential ingredients: spin-1/2 fermions and 2D.

In spite of its simplicity, it turns out that this circular Fermi
surface 2D Fermi gas Hamiltonian will be well suited for
addressing how the gate voltage on the sheet of graphene
in the Harvard group experiment [4] couples to the signal
on the quartet line. Approaching the Dirac points with gate
voltage could be interesting for future experiments, which
would require taking into account the additional ingredient of
the full dispersion relation of graphene, including the Dirac
cones.

4. Tunneling between the superconductors and the 2D metal

Now, we present the tunnel Hamiltonian between the
2D metal and each of the superconducting leads SN among
{Sa, Sb, Sc1 , Sc2}. This coupling Hamiltonian consists of hop-
ping between both sides of the junction:

HT, N = −JN

∑
〈iN , jN 〉

∑
σ=↑,↓

(c+
jN ,σ ciN ,σ + c+

iN ,σ c jN ,σ ), (13)

where the summation
∑

〈iN , jN 〉 runs over the pairs of sites on
both sides of the interfaces.

The notations used throughout the paper for labeling the
interfaces between the 2D metal and the four Sa, Sb, Sc,1, and
Sc,2 superconducting leads are the following: We denote by ap,
bp, c1,p, and c2,p the tight-binding sites on the superconducting
side of the contacts, and by αp, βp, γc1,p, and γc2,p their
counterpart on the 2D metal.

B. Voltage biasing conditions

The voltage biasing conditions are made explicit in this
subsection. The four-terminal (Sa, Sb, Sc1 , Sc2 ) device in Fig. 1
is voltage-biased on the quartet line at (Va,Vb,Vc,Vc), with
Va = −Vb ≡ V and Vc = 0. We implement the V = 0+ adia-
batic limit combined to perturbation theory in {JN } in Secs. V,
VI, VII C, VIII, and IX; see Eq. (13) for JN . In addition, Sec. X
addresses the more general conditions of finite bias voltage
V on the quartet line and arbitrary interface transparencies,

within the physically motivated approximation for disorder
introduced in Sec. IV D.

C. A relevant physical quantity

In this subsection, we present the definition of the critical
current on the quartet line. This quantity is measured in the
Harvard group experiment [4], and it is evaluated theoretically
in all three papers in the series. The “critical current on the
quartet line” Ic(V,�/�0) is called “the critical current” for
short:

Ic(V,�/�0) = maxϕq, 3T IS (ϕq, 3T ,V,�/�0), (14)

where Ic(V,�/�0) is gauge-invariant, and the quartet phase
ϕq, 3T -sensitive IS (ϕq, 3T ,V,�/�0) can be calculated in any
gauge. This is why it is legitimate to use the specific gauge
given by Eqs. (10) and (11).

IV. THE METHODS

This section introduces the methods used in this paper.
The calculation of the currents is presented in Sec. IV A.
Section IV B deals with their perturbative expansion in the
tunnel amplitudes. Superconducting diffusion modes are next
introduced in Sec. IV C. Section IV D presents the approxi-
mations on disorder that will be used in Sec. X to address
arbitrary interface transparencies and finite bias voltage on the
quartet line.

A. Calculation of the current

This subsection explains the method to evaluate the cur-
rents from the Keldysh Green’s functions. Section IV A 1
presents the bare Green’s functions in the absence of the
tunnel coupling between the different leads. The Dyson equa-
tions are next presented in Sec. IV A 2. Section IV A 3 deals
with how the current is expressed with the Keldysh Green’s
function. The transport formula is next specialized to the
equilibrium and adiabatic limits in Sec. IV A 4.

1. Bare Green’s functions

In this subsection, we present the Green’s functions in the
absence of the tunnel coupling between the different parts
of the circuit, i.e., the bare Green’s functions with JN = 0 in
Eq. (13).

The two-component Bogoliubov–de Gennes wave func-
tions for spin-up electrons and spin-down holes yield the
2 × 2 matrix advanced (or retarded) Green’s function describ-
ing propagation between the tight-binding sites x1 and x2 at
times t1 and t2:

ĝA
x1,x2

(t1, t2) = −iθ (t1 − t2)

(〈{cx1,↑(t1), c+
x2,↑(t2)}〉 〈{cx1,↑(t1), cx2,↓(t2)}〉

〈{c+
x1,↓(t1), c+

x2,↑(t2)}〉 〈{c+
x1,↓(t1), cx2,↓(t2)}〉

)
, (15)

where {A, B} = AB + BA is an anticommutator between the fermionic creation or annihilation operators A and B. Equation (15)
is useful in connection with the Dyson equations, and it can be used to address the time-periodic dynamics underlying the
emergence of a dc-current of quartets [5,6], as well as arbitrary device parameters (i.e., arbitrary interface transparencies and
finite bias voltage on the quartet line).
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Considering the 2D metal [see the Hamiltonian given by
Eq. (12), taken at low or high filling] and Fourier transforming
from the time variables t1 and t2 to frequency ω, Eqs. (A8)
and (A9) in Appendix A imply the following limiting long-
distance behavior of the Green’s function for kF R � 1:

gA,(1,1)
2D metal(R, ω) = gA,(2,2)

2D metal(R, ω) (16)

� i

W
√

kF R
cos

(
kF R − π

4

)
, (17)

gR,(1,1)
2D metal(R, ω) = gR,(2,2)

2D metal(R, ω) (18)

� − i

W
√

kF R
cos

(
kF R − π

4

)
, (19)

where the (1,1) and (2,2) labels in the superscript denote the
Nambu “spin-up electron” and “spin-down hole” components,
respectively. The notation R = |x1 − x2| stands for the sepa-
ration between x1 and x2 in real space. Equations (16)–(19)
assume that the separations R0/x0, R0/y0, and R0/z0 between
the contacts are small compared to the zero-energy ballistic-
limit coherence length given by Eq. (5); see Fig. 3 for the
notations R0/x0, R0/y0, and R0/z0. Taking the short-junction
limit �R/vF  1 amounts to substituting the electron and
hole wave vectors k = ke and k = kh in Eqs. (16) and (17)
and Eqs. (18) and (19), respectively, with the Fermi wave
vector kF , without accounting for their different energy-ω
dependence ke,h = kF ± ω/vF .

A sanity check of Eqs. (16)–(19) is provided in Sec. I of
the Supplemental Material [29] for a double junction between
a 2D normal metal and 3D normal leads. In particular, it is
mentioned at the end of Sec. I in the Supplemental Material
[29] that Eqs. (16)–(19) imply the magnetic proximity effect
at a 2D metal–3D ferromagnet interface, namely that magne-
tization is induced in the 2D metal.

Considering now the superconducting leads [see the
Hamiltonian given by Eqs. (8) and (9)], the ballistic nonlocal
Green’s function of the 3D superconductor SN with gap � and
phase ϕN is the following:

ĝA
x1,x2

(ω)

= 1

W

1

kF R
exp

{(
− |x1 − x2|

ξball(ω − iη)

)}

×
[

sin(kF R)√
�2 − (ω − iη)2

(−(ω − iη) �eiϕN

�e−iϕN −(ω − iη)

)

+ cos(kF R)

(−1 0
0 1

)]}
. (20)

The Dynes parameter η  � is viewed as a requirement for
making the difference between the “advanced” and “retarded”
Green’s functions, or as a phenomenological parameter to
capture the experimental linewidth broadening and relaxation
in superconductors [10,30–33]. In addition, the ballistic-limit
BCS coherence length appearing in Eq. (20) is given by

ξball(ω − iη) = h̄vF√
�2 − (ω − iη)2

, (21)

which goes to Eq. (5) if ω − iη → 0.
At equilibrium, i.e., if V = 0, the hopping amplitude ĴN

between the 2D metal and the superconducting lead SN is

given by the diagonal 2 × 2 Nambu matrix

ĴN =
(

JN 0

0 −JN

)
. (22)

2. Dyson equations at equilibrium

Now, we consider JN �= 0 in Eq. (22) and start with equi-
librium conditions, i.e., all leads are grounded at V = 0 and
the superconductors are phase-biased. All parts of the circuit
then have identical chemical potential taken as the energy
reference.

The fully dressed advanced and retarded Green’s functions
ĜA and ĜR describe the 2D metal connected by finite hopping
amplitudes {ĴN } to the superconducting leads. Their values are
obtained from the Dyson equations, which take the following
form in a compact notation:

ĜA,R = ĝA,R + ĝA,R ⊗ Ĵ ⊗ ĜA,R, (23)

where the symbol ⊗ is a convolution over time variables
[such as the time variables t1 and t2 in Eq. (15)] which
becomes a simple product after Fourier transforming to the
frequency/energy ω. A summation over all possible tight-
binding sites between the 2D metal and the superconducting
leads is carried out according to

ĜA,R
αr ,βs

(ω) = ĝA,R
αr ,βs

(ω) +
∑
γp

ĝA,R
αr ,γp

(ω)Ĵγp,cpĜ
A,R
cp,βs

(ω) (24)

= ĝA,R
αr ,βs

(ω) +
∑
γp,γq

ĝA,R
αr ,γp

(ω)Ĵγp,cp ĝ
A,R
cp,cq

(ω)Ĵcq,γq ĜA,R
γq,βs

(ω),

(25)

where a closed set of linear equations is obtained at second
order for {ĜA,R

αr ,βs
} in Eq. (25).

3. Finite bias voltage on the quartet line

Finite bias voltage V �= 0 on the quartet line implies a
single Josephson frequency 2eV/h̄ for the considered four-
terminal Josephson junction biased at opposite voltages; see
Sec. IV A 3. The periodic time dynamics is encoded in the
Nambu tunnel amplitudes between the 2D metal and the su-
perconducting leads {SN }: Eq. (22) is replaced by

ĴN (t ) =
(

JN exp(ieVNt/h̄) 0
0 −JN exp(−ieVNt/h̄)

)
, (26)

where VN is the voltage VN = 0, ±V at which superconduct-
ing lead SN is biased. At finite voltage V , and after Fourier
transforming from time t to frequency ω, the “advanced”
and “retarded” Green’s functions in Eqs. (23)–(25) become
infinite matrices having labels in the extended space of the
harmonics of the Josephson frequency, in addition to being
matrices in Nambu.

The fully dressed Keldysh Green’s function takes the form
[34,35]

Ĝ+,− = (Î + ĜR ⊗ Ĵ ) ⊗ ĝ+,− ⊗ (Î + Ĵ ⊗ ĜA). (27)

The “bare” Keldysh Green’s function is given by

ĝ+,−(ω) = nF (ω)[ĝA(ω) − ĝR(ω)], (28)
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where nF (ω) is the Fermi-Dirac distribution function, which
reduces to the step function nF (ω) = θ (−ω) in the limit of
zero temperature.

The current Iα→a flowing from the 2D metal to the super-
conducting lead Sa at the α − a contact is given by [34,35]

−Iα→a = e

h̄

∑
p

∫
dω

{[
Ĵap,αpĜ

+,−
αp,ap

]
(1,1)/(0,0)(ω) (29)

−[
Ĵap,αpĜ

+,−
αp,ap

]
(2,2)/(0,0)(ω) (30)

−[
Ĵαp,apĜ

+,−
ap,αp

]
(1,1)/(0,0)(ω) (31)

+[
Ĵαp,apĜ

+,−
ap,αp

]
(2,2)/(0,0)(ω)

}
, (32)

where “(1,1)” or “(2,2)” in the first pair of labels correspond
to the Nambu components, as in the above equations. The
notation (n, m) = (0, 0) in the second pair of labels denotes
the static dc-component in the extended space of the harmon-
ics of the Josephson frequency (neV/h̄, meV/h̄). The variable
p in Eqs. (29)–(32) runs over the tight-binding sites at the
interface between the 2D metal and the superconductors; see
Fig. 3 for the geometry of the contacts. Equations (27)–(32)
are the starting point of the demonstration of the generalized
Ambegaokar-Baratoff formula at finite bias voltage V on the
quartet line; see the forthcoming Sec. X B 1.

4. Specializing to equilibrium and the adiabatic limit

Now, we come back to the equilibrium limit V = 0. The
Keldysh Green’s function given by Eq. (27) simplifies as

G+,−
eq (ω) = nF (ω)[ĜA(ω) − ĜR(ω)]. (33)

Inserting Eq. (33) into Eqs. (29)–(32) for the current as a
function of Ĝ+,− leads to the equilibrium current though the
multichannel “α, a” contact:

−Iα→a,eq = e

h̄

∑
p

∫
dωnF (ω)

× {[
Ĵap,αp

(
ĜA

αp,ap
− ĜR

αp,ap

)]
(1,1)

(ω) (34)

−[
Ĵap,αp

(
ĜA

αp,ap
− ĜR

αp,ap

)]
(2,2)

(ω) (35)

−[
Ĵαp,ap

(
ĜA

ap,αp
− ĜR

ap,αp

)]
(1,1)

(ω) (36)

+[
Ĵαp,ap

(
ĜA

ap,αp
− ĜR

ap,αp

)]
(2,2)

(ω)
}
, (37)

where αp and ap label the tight-binding sites on the 2D metal
and superconducting sides, respectively. Equations (34)–(37)
are the starting point of the perturbative expansion of the
current in powers of J0/W ; see the forthcoming Sec. V.

The matrices Ĵ [defined by Eq. (22)] and Ĝ [defined by
Eq. (23)] appearing in Eqs. (34)–(37) are 2 × 2 in Nambu,
and the “(1,1)” or “(2,2)” Nambu component of their product
is evaluated according to the labels in the subscript.

The equilibrium current Iα→a,eq given by Eqs. (34)–(37)
depends on all superconducting phase variables ϕa, ϕb, ϕc1 ,
and ϕc2 . Gauge invariance implies that

Iα→a,eq = Iα→a
(
ϕa + α, ϕb + α, ϕc1 + α, ϕc2 + α

)
(38)

is independent of α because a global superconducting phase
is not measurable.

At finite bias voltage V on the quartet line, the phase vari-
ables are given by ϕa = ϕ(0)

a + ψ , ϕb = ϕ(0)
a − ψ , ϕc1 = ϕ(0)

c1
,

and ϕc2 = ϕ(0)
c2

, where ψ = 2eV t is linear in the time variable
t . Assuming in addition adiabatic voltage biasing at V = 0+
leads to slow time dependence of the variable ψ . Then, the
adiabatic-limit current is obtained by averaging Eq. (38) over
ψ :

Iα→a,adiab =
∫

dψ

2π

Iα→a
(
ϕ(0)

a + ψ + α, ϕ
(0)
b − ψ + α, ϕ(0)

c1
+ α, ϕ(0)

c2
+ α

)
.

(39)

Energy conservation puts the constraint that, on the quartet
line, Iα→a,adiab in Eq. (39) depends only on the gauge-invariant
quartet phase variable ϕq, 3T = ϕ(0)

a + ϕ
(0)
b − 2ϕ(0)

c ≡ ϕa +
ϕb − 2ϕc. Gauge invariance implies that the current Iα→a,adiab

is independent of α, similarly to the previous Eq. (38) corre-
sponding to equilibrium with V = 0.

B. Perturbative expansion of the adiabatic current

This subsection presents how the Dyson Eq. (23) is used in
the forthcoming Sec. V to produce a systematic expansion of
the current in powers of the tunnel amplitudes {JN } between
the 2D metal and the superconductors {SN }. Iterating Eq. (23)
produces the series

G = g (40)

+ g ⊗ J ⊗ g (41)

+ g ⊗ J ⊗ g ⊗ J ⊗ g (42)

+ g ⊗ J ⊗ g ⊗ J ⊗ g ⊗ J ⊗ g (43)

+ g ⊗ J ⊗ g ⊗ J ⊗ g ⊗ J ⊗ g ⊗ J ⊗ g (44)

+ g ⊗ J ⊗ g ⊗ J ⊗ g ⊗ J ⊗ g ⊗ J ⊗ g ⊗ J ⊗ g (45)

+ g ⊗ J ⊗ g ⊗ J ⊗ g ⊗ J ⊗ g ⊗ J ⊗ g ⊗ J ⊗ g ⊗ J ⊗ g

(46)

+ · · · , (47)

which is inserted into Eqs. (34)–(37) for the equilibrium
current.

At each order J2ma
a J2mb

b J
2mc1
c1 J

2mc2
c2 in the tunnel amplitudes

{JN }, the expansion given by Eqs. (40)–(47) produces a finite
number of “closed loop diagrams” contributing to the dc-
current, where ma, mb, mc1 , and mc2 are four positive integers.

As seen from Eqs. (34)–(37) and from Eqs. (40)–(47), this
diagrammatic expansion has a simple structure, due to the fact
that all terms in the Hamiltonian are quadratic; see Eqs. (8),
(9), (12), and (13). The diagrams consist of alternations be-
tween the following:

(i) The tunnel amplitudes in and out of the 2D metal; see
Eq. (22).
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FIG. 4. Structure of the diagrammatic series: The “superconduct-
ing diffusion modes” are made of pairs of nonlocal Green’s functions
in the superconducting leads denoted by S1,...,S4 in the figure, which
are among {Sa, Sb, Sc,1, Sc,2}. The nonlocal superconducting modes
connect the “nodes” corresponding to the dashed circled area. The
nodes contain dressing by higher-order tunneling processes tak-
ing place locally between the 2D metal and the superconductors,
and nonlocal transmission through the 2D metal. Panels (a), (b),
and (c) show the “diffuson-like diagrams” with superconducting
diffusion modes formed of Green’s functions oriented in opposite
directions. Panel (c) shows a “weak-localization-like diagram” with
the same orientation for the pairs of the nonlocal superconducting
Green’s function.

(ii) Propagation through the 2D metal [see Eqs. (16)–(19)]
or through one of the superconducting leads [see Eq. (20)].

Some of the relevant diagrams are shown schematically in
the forthcoming Figs. 4, 5, 6, 7, and 8.

The equilibrium current is obtained as a series of diagrams
that are labeled by the four positive integers (ma, mb, mc1 , mc2 )
mentioned above. Assuming identical tunnel amplitudes J0 ≡
Ja = Jb = Jc1 = Jc2 for all contacts produces the prefac-
tor (J0)m, with m = ma + mb + mc1 + mc2 . For instance, the
three-terminal 3TQ1, 3TQ2 appear at the order m = 8; see the
forthcoming Sec. V A. The four-terminal 4FTSQ and 4TSQ
appear at the orders m = 8 and m = 12, respectively; see the
forthcoming Secs. V B and V C.

Each Green’s function propagating through any su-
perconducting lead SN is within the electron-electron,
hole-hole, electron-hole, or hole-electron Nambu channel.
Each electron-hole or hole-electron conversion produces
exp (±iϕN ), where ϕN is the macroscopic phase variable of
the superconductor SN (which is among {Sa, Sb, Sc1 , Sc2}). To
each diagram is thus associated the overall factor

exp
[
i
(
naϕa + nbϕb + nc1ϕc1 + nc2ϕc2

)]
, (48)

where (na, nb, nc1 , nc2 ) are four (positive or negative) integers
counting the number and the sign of the electron-hole or
hole-electron conversions in the leads {Sa, Sb, Sc1 , Sc2}, re-
spectively, within a given quantum process.

FIG. 5. The lowest-order three-terminal 3TQ1, 3TQ2 diagrams
in a real-space representation [in panels (a) and (b), respectively]:
Two pairs are taken from (Sa, Sb) biased at (V, −V ). After making
a quartet from taking the square of the wave function of a pair, the
two outgoing Cooper pairs are transmitted into the grounded Sc1 for
the 3TQ1 [panel (a)] or into Sc2 for the 3TQ2 [panel (b)]. The 3TQ1

and 3TQ2 current-phase relations are given by Eqs. (66) and (67),
respectively.

Voltage biasing at Va = −Vb ≡ V on the quartet line (see
Sec. III B) implies a constraint on (na, nb, nc,1, nc,2) coming
from conservation of energy between the following:

(i) The energy naeVa of the na pairs taken from Sa, and the
energy nbeVb of the nb pairs taken from Sb.

FIG. 6. Diffuson and energy pictures for the three-terminal 3TQ1

and for one of the contributions to the four-terminal 4TSQ: Panels
(a) and (b) represent the three-terminal 3TQ1 in the diffuson and
in the energy pictures, respectively. Panels (c) and (d) show similar
representations for the four-terminal 4TSQ. The sequence of spin-
up electron (e) and spin-down hole (h) Nambu labels is indicated
in panels (a) and (c). The highlighted section of the four-terminal
4TSQ diagram in panel (d) shows long-range propagation over the
mesoscopic phase coherence length lϕ in between Sc1 and Sc2 . The
process on panels (c) and (d) is proportional to x0 y2

0; see Eq. (84).
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FIG. 7. The diagram encoding the four-terminal statistical fluc-
tuations of the split quartets (4TFSQ) transmits one Cooper pair into
Sc1 and another one into Sc2 . The four-terminal 4TFSQ diagrams
encode a statistical fluctuation of the ϕq, 3T -sensitive current, which
does not scale with the number of channels. (This is because the
Green’s functions cannot be gathered in a pairwise manner in this
diagram). The four-terminal 4TFSQ current-phase relation is given
by Eq. (71).

(ii) The energy (nc1 + nc2 )eVc = 0 of the nc1 + nc2 pairs
transmitted into Sc1 and Sc2 , which are both grounded at
Vc = 0.

Energy conservation on the quartet line implies naeVa +
nbeVb = 0 and thus na = nb.

In addition, gauge invariance puts the constraint na + nb +
nc,1 + nc,2 = 0, which is compatible with Eqs. (38) and (39)
being independent of α.

FIG. 8. Two of the four-terminal split quartet diagrams (4TSQs):
Contrary to the previous four-terminal 4TFSQ diagram (see Fig. 7),
these four-terminal 4TSQ diagrams yield a critical current that is
not a small statistical fluctuation. On the contrary, the four-terminal
4TSQ current scales with the number of channels because the
Green’s functions are gathered in a pairwise manner on this figure.
The process on panels (a) and (b) are proportional to x0 y2

0 and x0 z2
0

respectively; see Eq. (84).

C. The superconducting diffusion modes

Now, we discuss the importance of disorder in the super-
conductors that are supposed to be in the dirty limit, i.e., the
elastic mean free path le is much shorter than the ballistic-
limit coherence length ξball(0) given by Eq. (5). This realistic
assumption puts severe constraints on the diagrammatic per-
turbation theory: The nonlocal Green’s functions are gathered
in a pairwise manner in a real-space representation, even those
crossing the ballistic 2D metal. In addition, small disorder
in the 2D metal in the form of nonmagnetic impurities helps
gather the Green’s function in a pairwise manner. It is likely
that the 4TSQs are robust against introducing a small concen-
tration of nonmagnetic impurities in the 2D metal, assuming
a localization length that is larger than the separation between
the contacts. Clarifying this issue in future work requires
understanding the fate of the quantum wake in the presence
of disorder; see Sec. VII for the quantum wake in the absence
of disorder.

Considering a superconductor in the dirty limit, the
disorder-averaged single-particle Nambu Green’s function os-
cillates with the Fermi wave vector kF [see Eq. (20)], and
its envelope decays exponentially over the elastic mean free
path [36]. This puts a constraint of locality on the “unpaired”
single-particle Green’s function at each superconducting
lead SN .

Second, the superconducting diffusion modes are defined
as pairs of single-particle Green’s functions that scatter to-
gether on the same realization of the disorder. The range of
the superconducting diffusion modes reaches the dirty-limit
coherence length at subgap energies, which is much larger
than the elastic mean free path for a superconductor such as
aluminum in the dirty limit.

The calculation of the superconducting diffusion modes in
the dirty limit generalizes Ref. [37]; see Appendix B. The
superconducting diffusion modes have four Nambu labels
(τ1, τ2, τ3, τ4) attached to them; see Appendix B. The result-
ing 24 = 16 terms are provided by Eqs. (B48)–(B54). They
take the following form in the ladder approximation:∫

dk
(2π )3

gτ1,τ2 (k, ω)gτ3,τ4 (k + q, ω)

= 1

16πW

1

2
√

|�|2 − (ω − iη)2 + Dq2

× F (τ3,τ4 )
(τ1,τ2 )

(
ω − iη

|�| , ϕN

)
, (49)

where k and q are the wave vectors, D = v2
F τ/3 is the diffu-

sion constant with τ the elastic scattering time, and ϕN is the
superconducting phase variable of the superconducting lead
SN . The function F (τ3,τ4 )

(τ1,τ2 ) appearing in Eq. (49) is deduced from
Eqs. (B48)–(B54) in Appendix B, for instance

F (1,2)
(1,2)

(
ω − iη

|�| , ϕN

)
= |�|2

|�|2 − (ω − iη)2
exp (2iϕN ), (50)

F (1,2)
(1,1)

(
ω − iη

|�| , ϕN

)
= (ω − iη)|�|

|�|2 − (ω − iη)2
exp (iϕN ). (51)

The g(1,2)g(1,2) superconducting diffusion mode in
Eq. (50) is relevant to the three-terminal 3TQ1, 3TQ2.
Conversely, g(1,1)g(1,2) given by Eq. (51) is relevant
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to the four-terminal 4TSQ, as well as to the normal
metal–superconductor–superconductor double interface
considered in Ref. [38]. Equations (50) and (51) are deduced
from the corresponding Eqs. (B50) and (B53) in Appendix B.

Fourier transforming Eq. (49) from the wave vector q to
the real-space coordinate R leads to

gτ1,τ2 gτ3,τ4 (R, ω)

= c

W 2

(
ξdirty(ω − iη)

le

)

× F (τ3,τ4 )
(τ1,τ2 )

(
ω − iη

|�| , ϕN

)
exp

(
− R

ξdirty(ω − iη)

)
, (52)

where c is a constant of order unity, and

ξdirty(ω) ∼
√

leξball(ω) (53)

denotes the superconducting coherence length in the dirty
limit.

Next, we integrate Eq. (52) over the separation R = |x1 −
x2| between the tight-binding sites x1 and x2 at the interface.
We distinguish between the following two situations:

(i) If r0 � ξdirty(0), then

〈〈
gτ1,τ2 gτ3,τ4

〉〉 � c′

2W 2

ξdirty(ω − iη)

le
F (τ3,τ4 )

(τ1,τ2 )

(
ω − iη

|�| , ϕN

)
,

(54)

where the contact radius r0 is shown in Fig. 3(c), ξdirty(ω) is
given by Eq. (53), c′ is a constant of order unity, and 〈〈· · · 〉〉
stands for summation of gτ1,τ2 gτ3,τ4 over the separation R in
Eq. (52).

(ii) Conversely, the assumption r0 � ξdirty(0) leads to

〈〈
gτ1,τ2 gτ3,τ4

〉〉 � d ′

2W 2

r0

le
F (τ3,τ4 )

(τ1,τ2 )

(
ω − iη

|�| , ϕN

)
, (55)

where d ′ is another constant of order unity.
The scaling in Eqs. (54) and (55) is linear in the dirty-limit

coherence length or in the radius r0 of the contact. This is
consistent with the observation that the intersection between
the 2D Brownian surfaces (resulting from scattering on dis-
order in the superconducting lead SN ) and the 2D interfaces
generically forms a 1D object.

D. Approximation on disorder for finite bias voltage
and arbitrary interface transparencies

Now, we present a technical introduction to the calcula-
tions of the forthcoming Sec. X about the interplay between
disorder in the superconducting leads, arbitrary interface
transparencies, and finite bias voltage V on the quartet line.
We start with what we coin “model I” consisting of the four-
terminal device in Figs. 1 and 3 with superconductors in the
dirty limit connected to the 2D metal by clean interfaces; see
the tunnel Hamiltonian given by Eq. (13).

Within this model I, we consider expansion of the
current as the closed-loop diagrams mentioned above in
Sec. IV B. After forming the superconducting diffusion modes
of Sec. IV C, these diagrams consist of the elements shown in
Fig. 4:

(i) The “superconducting diffusion modes” are pairs of
nonlocal superconducting Green’s functions propagating to-
gether in the superconductors over the dirty-limit coherence
length given by Eq. (53).

(ii) The superconducting diffusion modes of item (i) bridge
between the “nodes” shown by the dashed circles in Fig. 4.
The nodes contain dressing by processes taking place locally
between the 2D metal and the superconductors or nonlocal
transmission through the 2D metal.

We consider now “model II” as the approximation to
“model I”; see the following Hamiltonian for tunneling be-
tween the 2D metal and the superconductors within model II:

HT, N, eff = −
∑
〈i, j〉

∑
σ=↑,↓

(Ji→ jc
+
j,σ ci,σ + Jj→ic

+
i,σ c j,σ ), (56)

where the summation
∑

〈i, j〉 runs over the pairs of sites on
both sides of the contacts. The amplitude for hopping from
i (in the 2D metal layer) to j (the corresponding site in the
superconducting lead) is a complex number with a random
phase:

Ji→ j = J0 exp (iψi→ j ), (57)

Jj→i = J0 exp (iψ j→i ), (58)

where ψi→ j = −ψ j→i, and ψi→ j is uniformly distributed in
between 0 and 2π . The variables ψi→ j and ψk→l are uncor-
related if i, j �= k, l . Equations (57) and (58) automatically
imply 〈〈(Ji→ j )2〉〉 = 0, which produces a vanishingly small
value for the weak-localization-like diagrams [39] that in-
tersect the interface with only two Green’s functions. These
weak-localization-like diagrams would not be washed out if
disorder were introduced in the amplitudes |Ji→ j | = |Jj→i|
instead of the random phases ψi→ j = −ψ j→i in Eqs. (57)
and (58).

However, the weak-localization-like diagrams that inter-
sect the interfaces with four Green’s functions at the same
tight-binding site are not washed out by the random ψi→ j

in Eqs. (57) and (58). This is because 〈〈|Ji→ j |4〉〉 �= 0 can

be written as 〈〈(Ji→ j )2(Ji→ j )
2〉〉, where the terms (Ji→ j )2 and

(Ji→ j )
2

match both ends of a weak-localization-like loop.
Now, we provide two additional remarks:
(i) Equations (B48)–(B54) and (C1)–(C7) in the dirty and

ballistic limits, respectively, have the same dependence on
energy-ω, apart from different prefactors; see Appendixes B
and C, respectively.

(ii) The opposite signs of the 〈〈g(1,1)g(1,2)〉〉 modes in the
dirty and ballistic limits (see Sec. C 2 of Appendix C) are not
relevant to the four-terminal 4TSQ, because the 〈〈g(1,1)g(1,2)〉〉
modes come in pairs within each 4TSQ diagram. Their prod-
uct has thus necessarily a positive sign.

Based on these remarks on the structure of perturbation
theory in the presence of superconductors in the dirty limit, we
propose now “model III,” which is practically implemented in
the forthcoming calculations of Sec. X and includes the same
weak-localization-like diagrams as model I, such as those in
Fig. 4. Model III makes use of the nondisordered interfaces of
model I combined to the ballistic limit Green’s functions of
model II.
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Specifically, in model III, the interfaces are described by
Eq. (13), and now the {kF Rk,l} oscillations at the scale of the
Fermi wave vector are averaged out in the expression of the
critical currents, where Rk,l denotes the separation between
pairs of tight-binding sites at the four interfaces within each
part of the circuit; see Eqs. (16)–(19) and (20).

These arguments show that replacing model I by model
III can be considered as being legitimate as a physically
motivated approximation to simulate disorder in the supercon-
ductors, i.e., to gather the superconducting Green’s functions
in a pairwise manner. Model III is used in the forthcoming
Sec. X in the absence of other known method to address
the interplay between disorder averaging, arbitrary interface
transparencies, and finite bias voltage on the quartet line,
taking also the 2D metal into account. Now, we proceed with
presenting our results.

V. CURRENT-PHASE RELATIONS
OF THE THREE-TERMINAL 3TQ

AND THE FOUR-TERMINAL 4TSQ

In this section, we present a simple model for the micro-
scopic processes contributing to the ϕq, 3T -sensitive current
on the quartet line. The gauge is given by Eqs. (10) and
(11), and we calculate the currents in perturbation in the
tunnel amplitudes and in the adiabatic limit. Section V A deals
with the three-terminal quartets (3TQ1) at the order (J0/W )8;
see Fig. 2(d). Similarly, the 3TQ2 at the order (J0/W )8 are
shown in Fig. 2(e). Section V B describes the “four-terminal
statistical fluctuations of the split quartets” (4TFSQs) at the

order (J0/W )8; see Fig. 2(f). Section V C presents the four-
terminal split quartets (4TSQs) at the order (J0/W )12; see
Fig. 2(f).

We microscopically calculate the current-phase relations:
(i) Equations (66) and (67) for the three-terminal 3TQ1 and

the 3TQ2.
(ii) Equation (71) for the four-terminal 4TFSQs.
(iii) Equations (83) and (84) for the four-terminal 4TSQs

with multichannel contacts.
These perturbative expansions nontrivially show that the

three-terminal 3TQ1, 3TQ2 current-phase relations are π -
shifted and the four-terminal 4TSQs are 0-shifted if the
contact geometry is such that r0 � le, where r0 is shown in
Fig. 3(c).

A. Three-terminal quartets (3TQ1 and 3TQ2)

1. Microscopic calculation of the three-terminal 3TQ1, 3TQ2

critical currents

Now, we consider the three-terminal 3TQ1, 3TQ2 of
Refs. [5,6] (see also Fig. 5), and we evaluate them at the order
(J0/W )8 in perturbation in the tunnel amplitudes for the 2D
metal, which is relevant to the Harvard group experiment [4].
The three-terminal 3TQ1, 3TQ2 transmit four fermions into
the same superconducting lead, i.e., into Sc, 1 for the 3TQ1
[see Fig. 5(a)] or into Sc, 2 for the 3TQ2 [see Fig. 5(b)].

The first term [Ĵa,αĜA
α,a]

(1,1)
in the equilibrium current

given by Eq. (34) takes the following form, at the lowest order
m = 8 in an expansion in (J0/W )m and in the adiabatic limit:

J0
〈〈

GA,(−1,−1,2,0)
[8],Sc,1,(α,a),(1,1)

〉〉 = J8
0

〈〈
gA,(1,1)

α,γc1
gA,(1,2)

c1,c1
gA,(2,2)

γc1 ,β gA,(2,1)
b,b gA,(1,1)

β,γc1
gA,(1,2)

c1,c1
gA,(2,2)

γc1 ,α gA,(2,1)
a,a

〉〉
(59)

= J8
0

〈〈
gA,(2,1)

a,a

〉〉〈〈
gA,(2,1)

b,b

〉〉〈〈(
gA,(1,2)

c1,c1

)2〉〉〈〈
gA,(1,1)

α,γc1
gA,(2,2)

γc1 ,α

〉〉〈〈
gA,(1,1)

β,γc1
gA,(2,2)

γc1 ,β

〉〉
(60)

= c1/2

8

(
J0

W

)8 Rc1

le

1

kF Rα,γc,1

1

kF Rβ,γc,1

�4

[�2 − (ω − iη)2]2 exp
[
i
( − ϕa − ϕb + 2ϕc1

)]
, (61)

where (−1,−1, 2, 0) in the left-hand side superscript refers
to the signs in the right-hand side exp [i(−ϕa − ϕb + 2ϕc1 )]
combination. The notation (1,1) in the subscript is the same
as in the preceding Sec. IV, i.e., it stands for the “electron-
electron” Nambu component.

In agreement with the diagrams in Figs. 6(a) and 6(b), the
(1, 1,−2, 0) combination yielding exp [i(ϕa + ϕb − 2ϕc1 )]
is vanishingly small at the order (J0/W )8 if the (1,1)
electron-electron component is evaluated. Conversely,
the (2,2) hole-hole component of the (−1,−1, 2, 0)
exp [i(−ϕa − ϕb + 2ϕc1 )] combination is vanishingly small at
the order (J0/W )8.

The positive sign of Eq. (61) originates from the product
of the two 〈〈gA,(1,1)

α,γc1
gA,(2,2)

γc1 ,α 〉〉 and 〈〈gA,(1,1)
β,γc1

gA,(2,2)
γc1 ,β 〉〉 transmission

modes through the 2D metal, which both take negative values
because they originate from taking the square of the pure
imaginary complex number; see Eqs. (16) and (17).

The 1/8 coefficient in Eq. (61) originates from the follow-
ing terms:

(i) Each of the 2D metal transmission modes
〈〈gA,(1,1)

α,γc1
gA,(2,2)

γc1 ,α 〉〉 and 〈〈gA,(1,1)
β,γc1

gA,(2,2)
γc1 ,β 〉〉 yields a

〈〈 cos2(kF R)〉〉 = 1/2 factor; see Eqs. (16) and (17).
(ii) A 1/2 coefficient is related by convention to the super-

conducting diffusion mode 〈〈(gA,(1,2)
c1,c1

)2〉〉, which is taken to be
dominated by nonlocal propagation over the dirty-limit coher-
ence length on the Sc,1 side of the 2D metal-Sc,1 interface; see
Eqs. (54) and (55).

Integrating the spectral current given by Eq. (61) over
energy ω produces a positive sign because the residue at
ω = −� is positive; see Eqs. (D1)–(D3) in Appendix D 1. In
the limit of zero temperature, the above Eqs. (59)–(61) and
Eqs. (D1)–(D3) in Appendix D 1 lead to∫ 0

−∞
J0

〈〈
GA,(−1,−1,2,0)

[8],Sc,1,(α,a),(1,1)

〉〉
(ω)dω

= iπc′
1/2�

32

(
J0

W

)8 √
Scontact

le

y0z0

(kF R0)2

× exp
[
i
( − ϕa − ϕb + 2ϕc1

)]
. (62)
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Evaluating similarly all terms in Eqs. (34)–(37) leads to

Iα→a,eq = Ic, 3TQ1
sin ϕq, 3T, 1, (63)

where

ϕq, 3T, 1 = ϕa + ϕb − 2ϕc1 . (64)

The SQ1 critical current Ic, 3TQ1
is negative, i.e., it is π -shifted:

Ic, 3TQ1
= −ec′

1/2π�

4h̄

(
J0

W

)8 √
Scontact

le

y0z0

(kF R0)2
. (65)

Finally, we define the remaining variables appearing in
Eqs. (61)–(65).

The coefficients c1/2 and c′
1/2 are positive and of order

unity.
The dimensionless parameters y0 and z0 in Eqs. (62)–(65)

depend on the shape of the four-terminal device, still within
the short junction limit assumption; see Sec. III A 1 for a dis-
cussion of the short-junction limit and Fig. 3 for the definition
of y0 and z0.

The 1/kF Rα,γc,1 and 1/kF Rβ,γc,1 terms in Eq. (61) origi-
nate from ballistic propagation through the 2D metal; see
Eqs. (16)–(19).

In connection with Sec. IV C, we assumed small area
Scontact = πR2

c,1 for the circular contact between the 2D metal
and the superconducting lead Sc,1, such that Rc,1 � ξdirty(0),
where the dirty-limit coherence length is given by Eq. (53)
and the geometry is shown schematically in Fig. 3(c). The
assumption Rc,1 � ξdirty(0) yields the Rc,1/le ∼ √

Scontact/le
scaling in Eqs. (61), (62), and (65); see also the discussion in
the preceding Sec. IV C.

2. Discussion

The following current-phase-flux relations are deduced
from Eq. (63) in the gauge given by Eqs. (10) and (11):

I3TQ1
(ϕq, 3T ,�) = Ic, 3TQ1

sin [ϕq, 3T + �], (66)

I3TQ2
(ϕq, 3T ,�) = Ic, 3TQ2

sin [ϕq, 3T − �], (67)

where Eqs. (66) and (67) correspond to the three-terminal
3TQ1, 3TQ2, respectively. The phase variable entering
Eq. (66) is ϕq, 3T, 1 ≡ ϕa + ϕb − 2ϕc1 ≡ ϕq, 3T + � and that
entering Eq. (67) is ϕq, 3T, 2 ≡ ϕa + ϕb − 2ϕc2 ≡ ϕq, 3T − �,
where ϕc1 and ϕc2 are given by Eqs. (10) and (11), and ϕq, 3T

is given by Eq. (6).
Figures 6(a) and 6(b) show two representations of the

three-terminal 3TQ1:
(i) Figure 6(a) shows a representation resembling the “dif-

fusons” in the theory of disordered conductors.
(ii) Figure 6(b) shows energy on the y-axis, with respect to

the chemical potential of the grounded Sc; see also Refs. [5,6].
In addition, an intuitive argument for the π -shift in the

three-terminal 3TQ1, 3TQ2 current-phase relations Eqs. (63)–
(67) is the following [7]:

The two Cooper pairs of the quartets imply taking the
square of the single-pair wave function

1√
2

(c+
a,↑c+

b,↓ − c+
a,↓c+

b,↑) (68)

according to

1
2 (c+

a,↑c+
b,↓ − c+

a,↓c+
b,↑)2. (69)

Equation (69) takes the form of the opposite of a pair of pair:

(69) = −(c+
a,↑c+

a,↓)(c+
b,↑c+

b,↓). (70)

The minus sign appearing on the right-hand side of Eq. (70) is
consistent with the π -shifted critical current in Eq. (65), which
receives interpretation of macroscopic manifestation for the
internal structure of a Cooper pair, i.e., the orbital and spin
symmetries.

B. The four-terminal statistical fluctuations
of the split quartet current

Before discussing in the next Sec. V C the four-terminal
4TSQ at the order (J0/W )12, we mention now a simpler
“baby-4TSQ” at the order (J0/W )8; see Fig. 7. The critical
current of this order-(J0/W )8 process is small, and it fluctuates
around zero value. The reason is that the four one-particle
Green’s functions crossing the 2D metal in Fig. 7 cannot be
gathered in a pairwise manner if the four contacts with the
superconducting leads Sa, Sb, Sc,1, and Sc,2 make between
them a distance that is much larger than the Fermi wavelength
λF . The current associated with the four-terminal 4TFSQ of
order (J0/W )8 in Fig. 7 is given by

I4TFSQ(ϕq, 4T ) = Ic, 4TFSQ sin ϕq, 4T , (71)

where

ϕq, 4T = ϕa + ϕb − ϕc,1 − ϕc,2. (72)

Equations (10) and (11) imply ϕq, 4T = ϕq, 3T , where ϕq, 3T

is given by Eq. (6). Overall, multichannel averaging pro-
duces a vanishingly small critical current for the four-terminal
4TFSQ: 〈〈Ic, 4TFSQ〉〉 = 0.

C. Four-terminal split quartets

Now, we consider the four-terminal 4TSQ yielding a
nonvanishingly small value for critical current with multi-
channel interfaces. Two types of diagrams appear at the order
(J0/W )12, after a first selection has been operated with respect
to gathering the nonlocal Green’s functions through the 2D
metal in a pairwise manner:

(i) The diagrams containing products of three Nambu
Green’s functions within the same superconducting lead: Their
critical current is of order

√
Scontact/le; see the forthcoming

Sec. V C 1 and Sec. II A in the Supplemental Material [29].
(ii) The remaining diagrams provide the leading-order

Scontact/l2
e contribution to the critical current; see the forth-

coming Sec. V C 2 and Sec. II B in the Supplemental Material
[29].

1. The four-terminal 4TSQ current at the orders
(J0/W )12 and

√
Scontact/le

We provide now the microscopic calculation for the contri-
butions to Ja,αGA

α,a at the orders (J0/W )12 and
√

Scontact/le.
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The four terms given below in Eqs. (73)–(76) correspond to the following possibilities:
(i) The (1,1) “electron-electron” or the (2,2) “hole-hole” components of Ja,αGA

α,a.
(ii) The exp [±i(+ϕa + ϕb − ϕc,1 − ϕc,2)] factors for the (1, 1,−1,−1) or (−1,−1, 1, 1) labels, respectively.
We obtain the following:

J0
〈〈

GA,(1,1,−1,−1)
[12],(α,a),(1,1),(1)

〉〉
total(ω) = c′

1/2

8

(
J0

W

)12 √
Scontact

le

x0y0z0

(kF R0)3

�6

[�2 − (ω − iη)2]3 exp
[
i
(
ϕa + ϕb − ϕc1 − ϕc2

)]
, (73)

J0
〈〈

GA,(−1,−1,1,1)
[12],(α,a),(1,1),(1)

〉〉
total(ω) = 5c′

1/2

8

(
J0

W

)12 √
Scontact

le

x0y0z0

(kF R0)3

�6

[�2 − (ω − iη)2]3 exp
[
i
( − ϕa − ϕb + ϕc1 + ϕc2

)]
, (74)

J0
〈〈

GA,(1,1,−1,−1)
[12],(α,a),(2,2),(1)

〉〉
total(ω) = 5c′

1/2

8

(
J0

W

)12 √
Scontact

le

x0y0z0

(kF R0)3

�6

[�2 − (ω − iη)2]3 exp
[
i
(
ϕa + ϕb − ϕc1 − ϕc2

)]
, (75)

J0
〈〈

GA,(−1,−1,1,1)
[12],(α,a),(2,2),(1)

〉〉
total(ω) = c′

1/2

8

(
J0

W

)12 √
Scontact

le

x0y0z0

(kF R0)3

�6

[�2 − (ω − iη)2]3 exp
[
i
( − ϕa − ϕb + ϕc1 + ϕc2

)]
. (76)

The microscopic process contributing to the (−1,−1, 1, 1)
terms given by Eqs. (74) and (76) is listed in Sec. II A of
the Supplemental Material [29]. Specifically, Eq. (74) is the
sum of Eqs. (10)–(39) in the Supplemental Material [29] and
Eq. (76) is the sum of Eqs. (41)–(46), also in the Supplemental
Material [29].

The overall positive sign of Eqs. (73)–(76) originates from
the product of four negative contributions:

(i) A minus sign is associated with each of the three trans-
mission modes through the 2D metal.

(ii) Another minus sign is due to averaging the product
of three superconducting Green’s functions; see Eqs. (D9)–
(D13) in Appendix D 4.

In addition, the exp [i(−ϕa − ϕb + ϕc1 + ϕc2 )] factor in
Eqs. (74) and (76) produces a “(1,1)” electron-electron
Nambu component 5/8 coefficient in Eq. (74), which is
larger than the “(2,2)” hole-hole component 1/8 coefficient
in Eq. (76). This is compatible with the observation that the
“(2,2)” component associated with the (−1,−1, 2, 0) combi-
nation is vanishingly small for the three-terminal 3TQ1; see
the above Sec. V A.

In addition, the residue of the pole at ω = −� is positive;
see Eqs. (D4)–(D6) in Appendix D 2 concerning the integral
over the energy ω.

Overall, Eqs. (29)–(32) and (73)–(76) lead to the following
current-phase relation for the 4TSQ at the orders (J0/W )12

and
√

Scontact/le:

I (1)
α→a,eq = I (1)

c, 4TSQ sin ϕq, 4T , (77)

where ϕq, 4T ≡ ϕa + ϕb − ϕc,1 − ϕc,2 ≡ ϕq, 3T , as for the
4TFSQ; see Eqs. (71) and (72).

The critical current I (1)
c, 4TSQ appearing in Eq. (77) is nega-

tive, i.e., it is π -shifted:

I (1)
c, 4TSQ = −3ec′

1/2π�

4h̄

(
J0

W

)12 √
Scontact

le

x0y0z0

(kF R0)3
. (78)

2. The four-terminal 4TSQ current at the orders (J0/W )12

and Scontact/l2
e

Next, we calculate the four-terminal 4TSQ critical current
at the orders (J0/W )12 and Scontact/l2

e . Again, we separate the
“electron-electron” from the “hole-hole” Nambu components,
and the exp [±i(+ϕa + ϕb − ϕc,1 − ϕc,2)] sensitivity on the
superconducting phase variables:

J0
〈〈

GA,(1,1,−1,−1)
[12],(α,a),(1,1),(2)

〉〉
total(ω) = − c′

1

32

(
J0

W

)12 Scontact

l2
e

y0z2
0 + y2

0z0 + x0z2
0 + x0y2

0

(kF R0)3

(ω − iη)2�4

[�2 − (ω − iη)2]3 ei(ϕa+ϕb−ϕc1 −ϕc2 ), (79)

J0
〈〈

GA,(−1,−1,1,1)
[12],(α,a),(1,1),(2)

〉〉
total(ω) = −5c′

1

32

(
J0

W

)12 Scontact

l2
e

y0z2
0 + y2

0z0 + x0z2
0 + x0y2

0

(kF R0)3

(ω − iη)2�4

[�2 − (ω − iη)2]3 ei(−ϕa−ϕb+ϕc1 +ϕc2 ), (80)

J0
〈〈

GA,(1,1,−1,−1)
[12],(α,a),(2,2),(2)

〉〉
total(ω) = −5c′

1

32

(
J0

W

)12 Scontact

l2
e

y0z2
0 + y2

0z0 + x0z2
0 + x0y2

0

(kF R0)3

(ω − iη)2�4

[�2 − (ω − iη)2]3 ei(ϕa+ϕb−ϕc1 −ϕc2 ), (81)

J0
〈〈

GA,(−1,−1,1,1)
[12],(α,a),(2,2),(2)

〉〉
total(ω) = − c′

1

32

(
J0

W

)12 Scontact

l2
e

y0z2
0 + y2

0z0 + x0z2
0 + x0y2

0

(kF R0)3

(ω − iη)2�4

[�2 − (ω − iη)2]3 ei(−ϕa−ϕb+ϕc1 +ϕc2 ). (82)

Equation (80) is the sum of Eqs. (48)–(107) in Sec. II B of
the Supplemental Material [29]. Equation (82) is the sum of
Eqs. (109)–(120) in the Supplemental Material [29].

The minus sign in Eqs. (79)–(82) is due to the product of
three (negative) transmission modes through the 2D metal.

In addition, the exp [i(−ϕa − ϕb + ϕc1 + ϕc2 )] combina-
tion yields the 5/32 coefficient for the “(1,1)” component,
which is larger than 1/32 for the “(2,2)” component; see
Eqs. (80) and (82), respectively. This is compatible with the
discussion following the above Eqs. (73)–(76).
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A (positive) residue is taken into account in the integral
over energy; see Eqs. (D7) and (D8) in Appendix D 3.

It is deduced that Eqs. (34)–(37) and Eqs. (79)–(82) lead to
the following contribution to the equilibrium current Iα→a,eq

at the orders (J0/W )12 and Scontact/l2
e :

I (2)
α→a,eq = I (2)

c, 4TSQ sin ϕq, 4T , (83)

where ϕq, 4T is given by Eq. (72) and the critical current I (2)
c, 4TSQ

is positive, i.e., it is 0-shifted:

I (2)
c, 4TSQ = 3ec′

1�

16h̄

(
J0

W

)12 Scontact

l2
e

y0z2
0 + y2

0z0 + x0z2
0 + x0y2

0

(kF R0)3
.

(84)

3. Discussion

Two of the four-terminal 4TSQ diagrams appearing at the
orders (J0/W )12 and Scontact/l2

e are shown in Figs. 8(a) and
8(b). The diffuson and the energy representations in Figs. 6(c)
and 6(d), respectively, illustrate that the four-terminal 4TSQ
of orders (J0/W )12 and Scontact/l2

e involve the product of two
superconducting diffusion modes of the 〈〈g(1,1)g(1,2)〉〉-type.
For instance, the superconducting diffusion modes propagat-
ing in Sc,1 or in Sc,2 in Figs. 8(a) and 8(b) correspond to the
x0y2

0 or x0z2
0 contributions to Eqs. (79)–(82), respectively [see

also Eq. (84)].
The 0-shifted four-terminal 4TSQ current [see Eqs. (83)

and (84)] is interpreted as the intermediate state

c+
Sc1 ,↑c+

Sc1 ,↓c+
Sc2 ,↑c+

Sc2 ,↓ (85)

made with two Cooper pairs from Sa and Sb biased at
±V . Anticommuting the (Sc1 ,↑) and the (Sc2 ,↑) partners
in Eq. (85) leads to a minus sign, which implies 0-shift for
the four-terminal 4TSQ current-phase relation [see Eqs. (83)
and (84)] in comparison with the previous π -shift of the
three-terminal 3TQ1 and 3TQ2 [see Eqs. (63)–(65)]. Indeed,
the three-terminal 3TQ1 and 3TQ2 do not contain the addi-
tional two-fermion exchange of the 4TSQ, which is made
possible by the 2D quantum wake; see the forthcoming
Sec. VII.

VI. INTERFERENCE BETWEEN THE THREE-TERMINAL
3TQ1, 3TQ2 AND THE FOUR-TERMINAL 4TSQ

We proceed by further considering that, in the gauge given
by Eqs. (10) and (11), the ϕq, 3T -sensitive critical current
is the result of an interference between the three-terminal
3TQ1, 3TQ2 (see Sec. V A), and the four-terminal 4TSQ (see
Sec. V C):

Ic(�/�0) = maxϕq, 3T [I3TQ1
(ϕq, 3T ,�)

+ I3TQ2
(ϕq, 3T ,�) + I4TSQ(ϕq, 3T )]. (86)

The contact areas Scontact are considered to be large com-
pared to (le)2, i.e., Scontact � l2

e . This realistic assumption
yields |I (1)

c, 4TSQ|  I (2)
c, 4TSQ. The four-terminal 4TSQ critical

current is approximated as I4TSQ(ϕq, 3T ) � I (2)
c, 4TSQ. The result-

ing current-phase relation

I4TSQ(ϕq, 3T ) � I (2)
c, 4TSQ sin ϕq, 3T (87)

is independent of the value of the magnetic flux �; see the
expression of ϕq, 3T given by Eq. (6) and I (2)

c, 4TSQ in Eq. (84).
Equation (86) is 2π -periodic in �, while the previous

maxϕq, 3T [I3TQ1
(ϕq, 3T ,�) + I3TQ2

(ϕq, 3T ,�)] was π -periodic.
More specifically, specializing to �/�0 = 0 and to

�/�0 = 1/2 leads to

Ic(0) = ∣∣Ic, 3TQ1
+ Ic, 3TQ2

+ Ic, 4TSQ

∣∣, (88)

which is different from

Ic(1/2) = ∣∣Ic, 3TQ1
+ Ic, 3TQ2

− Ic, 4TSQ

∣∣. (89)

VII. WHY THE FOUR-TERMINAL 4TSQ APPEAR
ONLY IN TWO DIMENSIONS

The preceding Sec. V presented the calculation (in per-
turbation in J0/W and in the adiabatic limit V = 0+) of the
sign and the amplitude of the π -shifted three-terminal 3TQ1,
3TQ2, and the 0-shifted four-terminal 4TSQ critical currents.
We proceed further by discussing why the four-terminal 4TSQ
yields a vanishingly small current if a 1D or 3D metal is used
instead of the 2D metal such as graphene gated away from the
Dirac point in the Harvard group experiment [4].

We establish a link between Eqs. (16)–(19) for the Green’s
function of a ballistic 2D metal, and the general theory of the
“wake” in the solution of the even-dimensional wave equa-
tion, starting in Sec. VII A with the classical wave equation.
The 2D quantum wake in nanoscale electronic devices is
considered in Sec. VII B. Synchronizing two Josephson junc-
tions with quasiparticles “surfing” on the 2D quantum wake
is discussed in Sec. VII C, in connection with the features
of the four-terminal 4TSQ diagram; see one of the 4TSQ
diagrams in Fig. 6(d). A summary of this Sec. VII is presented
in Sec. VII D.

At this point, we also make reference to a very recent un-
published work [40] about the production of quantum wakes
with ultracold atoms.

A. The wake effect in the classical wave equation

Volterra was the first to understand that the solutions of the
wave equation are drastically different in even or odd space
dimension. Let us assume that an excitation is produced at a
given location and time. A detector is at a distance R from
the location of the excitation. In all cases, the signal reaches
R after the time delay t0 = R/v, where v is the speed of
wave propagation. In odd dimensions (such as in one or three
dimensions), the detected signal consists of the sharp pulse
associated with the wavefront. But in even dimension (such
as in two dimensions), the detected signal oscillates long after
the time delay t0. This “classical wake” appears in even space
dimensions but not in odd dimensions, and it agrees with the
common sense idea regarding a boat propagating on a calm
sea.
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B. The 2D quantum wake in meso- or nanoscale devices

The signal at the detector mentioned above results from
a convolution of the initial excitation with the D-dimensional
Green’s functions. It turns out that Green’s functions are at the
heart of the calculation of the electronic transport properties in
meso- or nanoscale devices.

The normal-state Green’s function at a distance R is a plane
wave in one dimension:

gA
1D, (1,1)(R, ω) ∼ exp(ikR), (90)

where k is the wave vector at the considered energy ω, and
“(1,1)” refers to the “spin-up electron” Nambu component.
The 3D Green’s function is also a plane wave:

gA
3D, (1,1)(R, ω) ∼ exp(ikR)

kR
, (91)

which is normalized by the factor kR arising from probability
conservation. In two dimensions, the Green’s function is a
Bessel function that behaves like

gA
2D, (1,1)(R, ω) ∼ i

cos(kR − π/4)√
kR

(92)

at large R � 1/k; see the above Eq. (16) and Appendix A for
the demonstration of Eqs. (16) and (92).

C. Synchronizing two Josephson junctions
by the 2D quantum wake

The difference between the 1D or 3D exp(ikR) oscillations
in Eqs. (90) and (91), and the 2D cos(kR − π/4) oscillations
in Eq. (92), is now discussed in connection with synchronizing
two Josephson junctions.

Specifically, we focus on the highlighted section of the
four-terminal 4TSQ diagram in Fig. 6(d), which involves
taking the square of the advanced Green’s function accord-
ing to [gA

(1,1)(R)]2. Multichannel interfaces are simulated by

averaging [gA
(1,1)(R)]2 over R around the value R0 such that

λF  R0 � lϕ . Averaging over the separation R between Sc,1

and Sc,2 in an interval of width �R ∼ 2π/k around R = R0

yields

〈〈[
gA

1D, (1,1)(R)
]2〉〉 = 0, (93)

〈〈[
gA

2D, (1,1)(R)
]2〉〉 � − 1

2W 2kF R0
, (94)〈〈[

gA
3D, (1,1)(R)

]2〉〉 = 0. (95)

Equations (93)–(95) are deduced from Eqs. (90), (16), and
(91), respectively. These Eqs. (93)–(95) imply short range
coupling over λF if a 1D or a 3D metal is used instead of a
3D metal, which is in agreement with the general theory of
the 2D wake mentioned above.

To summarize, it is only in 2D that the 4TSQ diagrams
in Figs. 6(c) and 6(d) are nonvanishingly small, due to the
nonvanishingly small 〈〈[gA

(1,1)(R)]2〉〉 �= 0 connecting Sc1 and
Sc2 in Fig. 6(d), and physically encoding the exchange of a
quasiparticle via the 2D quantum wake.

D. Summary of this section

The microscopic theory of the four-terminal 4TSQ was
discussed:

(i) The four-terminal 4TSQs are specific to 2D, and they
are related to the quantum limit of the wake in the even-
dimensional wave equation.

(ii) The four-terminal 4TSQs realize quantum mechanical
synchronization between Josephson junctions by coherently
exchanging a quasiparticle between them. The quasiparticle
that is exchanged propagates on the 2D quantum wake.

(iii) The four-terminal 4TSQs couple the Andreev bound
states of the two Josephson junctions in the simple limit of
equilibrium with bias voltage V = 0, and in the adiabatic
limit with V = 0+ on the quartet line; see also the remarks
on the long-range coupling of the four-terminal 4TSQ in the
concluding Sec. XI C.

Finally, we note that the four-terminal 4TSQs do not
contribute to the current in the previous Grenoble group ex-
periment [13]. In this experiment, the intermediate region
connecting the superconducting leads consists of an evapo-
rated “T-shaped” Copper lead which is 3D, as opposed to
the atomically thin 2D sheet of graphene used in the Har-
vard group experiment [4]. The 2D quantum wake is also
not expected to play a role in the Weizmann Institute group
experiment [14] made with a semiconducting nanowire.

VIII. INVERSION BETWEEN �/�0 = 0 AND �/�0 = 1/2

In this section, we show that the relative shift of π between
the three-terminal 3TQ1, 3TQ2, and the four-terminal 4TSQ
obtained in the above Sec. V implies the emergence of the in-
version Ic(0) < Ic(1/2) between �/�0 = 0 and �/�0 = 1/2
in the reduced flux �/�0 dependence of the critical current
Ic(�/�0) given by Eqs. (86) and (87).

In addition, we address the reverse question of the infor-
mation that is deduced from “Observation of inversion in
Ic(�/�0) between �/�0 = 0 and �/�0 = 1/2,” regarding
the sign of the three-terminal 3TQ1, 3TQ2, and the four-
terminal 4TSQ current-phase relations.

The assumptions about the 0- and π -shifted current-phase
relations are presented in Sec. VIII A. The reasoning is pre-
sented in Sec. VIII B. The consequences for the Harvard group
experiment are provided in Sec. VIII C.

A. The assumptions

This subsection is based on the following assumptions:
(i) We have information about the �/�0-sensitivity of the

critical current Ic, more specifically about whether Ic(0) is
smaller or larger than Ic(1/2).

(ii) The signs of the three-terminal 3TQ1, 3TQ2, and the
four-terminal 4TSQ critical currents are left as free parame-
ters, while they interfere according to the preceding Eq. (86).

B. General statements

Let us now assume that inversion Ic(0) < Ic(1/2) be-
tween �/�0 = 0 and �/�0 = 1/2 is observed. Combining
Eqs. (88) and (89) with Eq. (121) in Sec. III of the
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Supplemental Material [29] yields the following “logical
chain”:

Ic(0) < Ic(1/2) (96)

⇐⇒ ∣∣Ic, 3TQ1
+ Ic, 3TQ2

+ Ic, 4TSQ

∣∣ (97)

<
∣∣Ic, 3TQ1

+ Ic, 3TQ2
− Ic, 4TSQ

∣∣
⇐⇒ Ic, 3TQ1

+ Ic, 3TQ2
and Ic, 4TSQ (98)

have opposite signs.

C. Conclusion on the Harvard group experiment [4]

In this subsection, we present the consequences for the
Harvard group experiment [4].

As is mentioned above, perturbation theory in the tunnel
amplitudes J0/W combined with the adiabatic limit V = 0+
imply the π -shifted three-terminal 3TQ1, 3TQ2, and 0-shifted
four-terminal 4TSQ; see Sec. V. Given that Eq. (98) implies
Eq. (96), we conclude that perturbation theory and the adia-
batic limit imply “inversion in the critical current Ic(�/�0)
between �/�0 = 0 and �/�0 = 1/2,” i.e., Ic(0) < Ic(1/2).

Conversely, “experimental evidence for inversion” implies
“Evidence that the three-terminal 3TQ1, 3TQ2 are π -shifted

and the four-terminal 4TSQ are 0-shifted,”
or, alternatively,
“Evidence for 0-shifted 3TQ1, 3TQ2, and π -shifted 4TSQ.
No information is gained about which of the three-terminal

3TQ1, 3TQ2, or the four-terminal 4TSQ is π -shifted, the other
being 0-shifted.

IX. GATE VOLTAGE DEPENDENCE OF THE MAGNETIC
FIELD OSCILLATIONS

A. Notations for the phenomenological model

The previous calculations are summarized in the following
phenomenological form of the critical current-flux � relation:

Jc(�/�0) = J (0)
c maxϕq, 3T

{
α3TQ1

sin(ϕq, 3T + �)

+α3TQ2
sin (ϕq, 3T − �) + α4TSQ sin ϕq, 3T

}
,

(99)

which is deduced from the previous Eq. (86).
The factorized scaling parameter J (0)

c is positive and it has
dimension of a critical current. The dimensionless parameters
α3TQ1

, α3TQ2
, and α4TSQ characterize the relative weights and

signs of the three-terminal 3TQ1, 3TQ2 and the four-terminal
4TSQ critical currents.

The perturbative calculations presented in the above Sec. V
lead to α3TQ1

< 0, α3TQ2
< 0, and to α4TSQ > 0. Following the

previous Sec. VIII, we assume more generally that the three-
terminal α3TQ1

, α3TQ2
and the four-terminal α4TSQ can have

arbitrary positive or negative relative signs.
General positive or negative signs of α3TQ1

, α3TQ2
, and

α4TSQ could be relevant to higher transparency of the con-
tacts between the 2D metal and the superconducting leads.
However, it has not yet been examined whether increasing
the contact transparency via the parameter J0/W can produce
change of sign in these coefficients.

B. Analogy with interferometric detection of the π-shift [41]

Now, we mention a connection between the following:
(i) The SQUID containing a 0 and a π -junction which was

realized experimentally in Ref. [41].
(ii) The relative π -shift between the three-terminal 3TQ1,

3TQ2 and the four-terminal 4TSQ.
More specifically,
(i) Half-period shift of the critical current magnetic oscil-

lations is observed in Ref. [41] with a SQUID containing a
π -shifted and a 0-shifted Josephson junction, in comparison
with a SQUID containing two 0-shifted Josephson junctions.

(ii) Half-period shift in the critical current of the four-
terminal Josephson junction shown in Figs. 1 and 3 is
produced in our theory when changing “relative shift of π be-
tween the three-terminal 3TQ1, 3TQ2” and the four-terminal
4TSQ into “relative shift of 0.”

C. Gate voltage dependence of the critical current magnetic
oscillations in the perturbative limit

Figures 9 and 10 show in panels (a1)–(e1) the magnetic
oscillations of the critical current given by Eq. (99), and their
Fourier coefficients Hn are shown in panels (a2)–(e2):

Hn =
∫

d�

2π
cos

(
2πn�

�0

)
Jc

(
�

�0

)
, (100)

where Jc(�/�0) is given by Eq. (99). The parameters
α3TSQ1

= α3TSQ2
= −1 used in Figs. 9 and 10 have the

meaning of the π -shifted three-terminal 3TQ1, 3TQ2 criti-
cal currents deduced from perturbation theory in J0/W ; see
Sec. V.

The parameter α4TSQ � 0 is used in Fig. 9, thus with
relative π -shift between the three-terminal 3TQ1, 3TQ2 and
the four-terminal 4TSQ: α4TSQ = 0 [panels (a1) and (a2)],
α4TSQ = 0.5 [panels (b1) and (b2)], α4TSQ = 1 [panels (c1)
and (c2)], α4TSQ = 1.5 [panels (d1) and (d2)], and to α4TSQ =
2 [panels (e1) and (e2)].

Figure 10 shows the corresponding data with α4TSQ � 0,
i.e., with a 0-shift between the three-terminal 3TQ1, 3TQ2
and the four-terminal 4TSQ: α4TSQ = 0 [panels (a1) and (a2)],
α4TSQ = −0.5 [panels (b1) and (b2)], α4TSQ = −1 [panels
(c1) and (c2)], α4TSQ = −1.5 [panels (d1) and (d2)], and to
α4TSQ = −2 [panels (e1) and (e2)].

Figures 9(a1)–9(e1) and 10(a1)–10(e1) illustrate the logi-
cal chain of Eqs. (96)–(98): Figures 9(a1)–9(e1) with relative
π -shift between the three-terminal 3TQ1, 3TQ2, and the
four-terminal 4TSQ reveal the inversion Jc(0) < Jc(1/2) be-
tween Jc(�/�0) at �/�0 = 0 and �/�0 = 1/2. Conversely,
Figs. 10(a1)–10(e1) with relative 0-shift feature the nonin-
verted behavior Jc(0) > Jc(1/2).

In addition, Figs. 9 and 10 are deduced from each other by a
half-period shift of �/2π on the x-axis, which is in agreement
with the analogous SQUID containing a 0- and a π -shifted
Josephson junction; see Ref. [41] and the preceding Sec. IX B.

Gating the 2D metal away from the center of the band has
the effect of increasing the density of states, which increases
J0/W and favors the four-terminal 4TSQ over the three-
terminal 3TQ1, 3TQ2, because they appear in perturbation at
the different orders (J0/W )8 and (J0/W )12, respectively; see
Sec. V.
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FIG. 9. Critical current-flux relations [panels (a1)–(e1)] and the corresponding Fourier coefficients [panels (a2)–(e2)]: The parameters
α3TQ1 = α3TQ2 = −1 are used, and α4TSQ = 0, 0.5, 1, 1.5, 2 in panels (a1)–(a2), (b1)–(b2), (c1)–(c2), (d1)–(d2), and (e1)–(e2), respectively.
The opposite signs of α3TQ1 < 0, α3TQ2 < 0 and α4TSQ � 0 correspond to relative shift of π between the three-terminal 3TQ1, 3TQ2 and the
four-terminal 4TSQ. This relative π -shift is the result of lowest-order perturbation theory in the tunnel amplitudes; see Sec. V.

0

2

4

6
(a1)

-0.2
-0.1
0
0.1
0.2
0.3(a2)

0

2

4

6
(b1)

-0.2
-0.1
0
0.1
0.2
0.3(b2)

0

2

4

6
(c1)

J c
(Φ

/Φ
0)

/J
c(0

)

-0.2
-0.1
0
0.1
0.2
0.3(c2)

H
n

0

2

4

6
(d1)

-0.2
-0.1
0
0.1
0.2
0.3(d2)

0

2

4

6

0 0.2 0.4 0.6 0.8

(e1)

Φ/Φ0

0 2 4 6 8 10

-0.2
-0.1
0
0.1
0.2
0.3(e2)

n

FIG. 10. Critical current-flux relations [panel (a1)–(e1)] and the corresponding Fourier coefficients [panels (a2)–(e2)]: The parameters
α3TQ1 = α3TQ2 = −1 are used, and α4TSQ = 0, −0.5, −1, −1.5, −2 in panels (a1)–(a2), (b1)–(b2), (c1)–(c2), (d1)–(d2), and (e1)–(e2),
respectively. The signs of α3TQ1 < 0, α3TQ2 < 0, and α4TSQ � 0 correspond to relative 0-shift between the three-terminal 3TQ1, 3TQ2, and
the four-terminal 4TSQ.
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It is deduced from Figs. 9(a2)–9(e2) and 10(a2)–10(e2)
that tuning gate voltage away from the Dirac point increases
|H1| and reduces H2 [where H1 and H2 are defined as the n =
1, 2 in Eq. (100)], which favors the �0 harmonics over the
2�0 one. Figures 9 and 10 reveal in addition the expected neg-
ative H1 < 0 for relative π -shift between the three-terminal
3TQ1, 3TQ2, and the four-terminal 4TSQ, and H1 > 0 for a
relative 0-shift, which is in agreement with the perturbative
calculations of Sec. V.

We conclude this section by emphasizing that our theory
is in qualitative agreement with the Harvard group’s exper-
imental data [4] regarding the gate voltage dependence of
the critical current magnetic oscillations on the quartet line.
Figures 9 and 10 are related to Fig. 3 in the recent work of the
Harvard group [4].

X. GENERALIZATION TO ARBITRARY INTERFACE
TRANSPARENCIES AND FINITE BIAS VOLTAGE

The three-terminal 3TQ1, 3TQ2 transmit an even number
of Cooper pairs into Sc1 or Sc2 while the four-terminal 4TSQs
transmit an odd number of Cooper pairs. This characterization
based on the parity of the number of Cooper pairs transmitted
into Sc,1 or Sc,2 is now generalized in the following section to
arbitrary interface transparencies and finite bias voltage.

Given the arguments of Sec. IV D, we replace the “real-
istic model I of clean interfaces and superconductors in the
dirty limit” by the “physically motivated approximation of the
model III,” i.e., clean interfaces and superconductors in the
ballistic limit, and averaging over {kF Rk,l}.

We start in Sec. X A by demonstrating the generalized
Ambegaokar-Baratoff formula in the V = 0+ adiabatic limit
at arbitrary interface transparencies. Section X B generalizes
this argument to finite voltage V on the quartet line, instead
of the previous V = 0+ adiabatic limit. Discussion of the
Harvard group experiment [4] is presented in Secs. X A 2 and
X B 2.

A. Generalized Ambegaokar-Baratoff formula in the V = 0+

adiabatic limit

We start in this subsection with the V = 0+ adiabatic limit.
Subsection X A 1 demonstrates the generalized Ambegaokar-
Baratoff formula for the quartet current-flux relation; see the
forthcoming Eq. (105). Section X A 2 presents experimental
consequences.

1. Demonstration of the generalized Ambegaokar-Baratoff
formula at V = 0+

Now, we calculate the quartet current in the V = 0+ adi-
abatic limit, for arbitrary interface transparencies, and within
the model III presented in the above Sec. IV D.

The first term Ja,αĜA
α,a appearing in Eq. (34) on the quartet

line is written as

Ja,αĜA
α,a =

∑
n

∑
ma,mb,mc1 ,mc2

X
(ma,mb,mc1 ,mc2 ),A
n

× J2ma
a J2mb

b J
2mc1
c1 J

2mc2
c2 exp (inϕq, 3T ). (101)

Conversely, Ja,αĜR
α,a involving the retarded Green’s function

takes the form

Ja,αĜR
α,a =

∑
n

∑
ma,mb,mc1 ,mc2

X
(ma,mb,mc1 ,mc2 ),R
n

× J2ma
a J2mb

b J
2mc1
c1 J

2mc2
c2 exp (inϕq, 3T ). (102)

The bare Green’s functions [i.e., Eqs. (16)–(19) and (20)] are
used to produce a relation between the “advanced” and the
“retarded” Green’s functions by taking the complex conju-
gate and changing the sign of the superconducting phases.
This symmetry is then generalized to the fully dressed
advanced and retarded Green’s functions by making use
of the Dyson Eq. (23). The resulting ĜA(ω, R0, ψF , ϕN ) =
[ĜR(ω, R0, ψF ,−ϕN )]

∗
leads to

X
(ma,mb,mc1 ,mc2 ),R
n = [

X
(ma,mb,mc1 ,mc2 ),A
n

]∗
. (103)

Thus,

Ja,αĜA
α,a − Ja,αĜR

α,a

= 2i
∑

n

∑
ma,mb,mc1 ,mc2

Im
[
X

(ma,mb,mc1 ,mc2 ),R
n

]

× J2ma
a J2mb

b J
2mc1
c1 J

2mc2
c2 exp (inϕq, 3T ), (104)

where the variable n stands for n ≡ na = nb; see the notations
in Eq. (48). Equations (34)–(37) imply the following decom-
position of the critical current in the V = 0+ adiabatic limit
on the quartet line:

I ′
c(�/�0) = maxϕc

∑
n,p

X (2n, p)

× sin

[
(2n − p)

(
ϕc − �

2

)
+ p

(
ϕc + �

2

)]
,

(105)

where the quartet phase is expressed in the gauge given
by Eqs. (10) and (11). Equation (104) shows that the co-
efficients X (2n, p) appearing in the Ambegaokar-Baratoff
formula Eq. (105) are real-valued. A number n of Cooper pairs
is taken from the superconducting lead Sa biased at Va = +V ,
and n other pairs are taken from Sb biased at Vb = −V . The
integer p in Eq. (105) denotes the partition between the p pairs
transmitted into Sc2 contact and the remaining 2n − p pairs
transmitted into Sc1 .

2. Experimental consequences

In this subsection, we proceed further with the same as-
sumptions as in the preceding Sec. X A 1, and we establish a
link between the following:

(i) The emergence of different values for the critical current
at fluxes �/�0 = 0 and �/�0 = 1/2 [i.e., Ic(0) �= Ic(1/2)].

(ii) Evidence for interference between quantum processes
transmitting even or odd numbers of Cooper pairs into Sc1

or Sc2 .
Specifically, we make the change of variables ϕc → ϕc +

�/2 in Eq. (105), which is equivalent to changing the gauge
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from Eqs. (10) and (11) to ϕc1 = ϕc and ϕc2 = ϕc + �:

I ′
c(�/�0) = maxϕc

∑
n,p

X (2n, p) sin [(2n−p)ϕc+p(ϕc + �)].

(106)
Equation (106) simplifies as

I ′
c(�/�0) = maxϕc

∑
n,p

X (2n, p) sin [2nϕc + p�]. (107)

It is deduced that

I ′
c(0) = maxϕc

∑
n,p

X (2n, p) sin [2nϕc], (108)

I ′
c(1/2) = maxϕc

∑
n,p

X (2n, p)(−)p sin [2nϕc]. (109)

Separating the terms with p even or odd according to

Yeven(ϕc) =
∑
p even

∑
n

X (2n, p) sin [2nϕc], (110)

Yodd(ϕc) =
∑
p odd

∑
n

X (2n, p) sin [2nϕc], (111)

leads to

I ′
c(0) = maxϕc [Yeven(ϕc) + Yodd(ϕc)], (112)

I ′
c(1/2) = maxϕc [Yeven(ϕc) − Yodd(ϕc)]. (113)

The following logical link is deduced within the assump-
tions mentioned above:

“Experimental observation for different values of the
critical current between reduced fluxes �/�0 = 0 and
�/�0 = 1/2 at arbitrary transparency” [i.e., I ′

c(0) �= I ′
c(1/2)

in Eqs. (112) and (113)]
is equivalent to
“Evidence for interference between processes transmitting

even or odd number of Cooper pairs into Sc1 and Sc2 .”

B. Generalization to finite bias voltage on the quartet line

Now, we generalize to finite bias voltage V and arbitrary
interface transparencies. Disorder is treated within the model
III introduced in Sec. IV D.

Specifically, we show in Sec. X B 1 that the Ambegaokar-
Baratoff formula Eq. (105) holds at finite V within our
treatment. Consequences for the proposed interpretation of the
Harvard group experiment are discussed in Sec. X B 2.

1. Demonstration of the Ambegaokar-Baratoff formula at finite
bias voltage

Now, at finite bias voltage V on the quartet line, we show
that the currents transmitted at the Sc,1 or Sc,2 contacts take
the form of the generalized Ambegaokar-Baratoff formula
Eq. (105), where the coefficients X (2n, p) appearing in the
V = 0+ Eq. (105) are replaced by their values X (2n, p, eV/�)
at finite bias voltage V .

The Keldysh Green’s function given by Eq. (27) is written
as Ĝ+,− = Ĝ+,−

A + Ĝ+,−
B , where the “quasiequilibrium” and

the “nonequilibrium” Ĝ+,−
A and Ĝ+,−

B are given by

Ĝ+,−
A = n̂F ĜA − ĜRn̂F , (114)

Ĝ+,−
B = ĜR[Ĵ n̂F − n̂F Ĵ]ĜA, (115)

respectively. The matrices appearing in Eqs. (114) and (115)
are now defined both in Nambu and in the infinite set of har-
monics of the Josephson frequencies. In the following, we use
the notations ϕ̌ = (ϕa, ϕb, ϕc,1, ϕc,2) for the superconducting
phases and ň = (na, nb, nc,1, nc,2) for labeling the multiples of
the voltage frequency eV/h̄. The ň vector belongs to the set Sň

of quadruplets, which fulfill the constraints

na + nb + nc,1 + nc,2 = 0, (116)

na = nb; (117)

see the discussion following Eq. (48).
We start with the quasiequilibrium contribution IA deduced

from Eqs. (29)–(32):

−IA ≡ −IA,γc1 →c1

= e

h̄

∑
p

∫
dω

{[
Ĵc1,p,γc1,p

Ĝ+,−
A,γc1,p ,c1,p

]
(1,1)/(0,0)

× (ω, ϕ̌, {ψF,k,l},V ) (118)

−[
Ĵc1,p,γc1,p

Ĝ+,−
A,γc1,p ,c1,p

]
(2,2)/(0,0)(ω, ϕ̌, {ψF,k,l},V ) (119)

−[
Ĵγc1,p ,c1,pĜ

+,−
A,c1,p,γc1,p

]
(1,1)/(0,0)(ω, ϕ̌, {ψF,k,l

}
,V ) (120)

+[Ĵγc1,p ,c1,pĜ
+,−
A,c1,p,γc1,p

](2,2)/(0,0)(ω, ϕ̌, {ψF,k,l},V )
}
, (121)

where Ĝ+,−
A is given by Eq. (114). The notation {ψF,k,l} stands

for the phases oscillating at the scale of the Fermi wavelength
in a multichannel configuration, as they appear in the 2D metal
and superconductor Green’s functions; see Eqs. (16)–(19) and
(20), respectively. Namely, ψF,k,l = kF Rk,l − π/4 for the 2D
metal [see Eqs. (16)–(19)], and ψF,k,l = kF Rk,l for the ballistic
3D superconductors [see Eq. (20)].

The Dyson Eq. (23) implies that the fully dressed advanced
and retarded Green’s functions take the following form:

ĜA(ω, ϕ̌, {ψF,k,l},V ) =
∑
ň∈Sň

ĜA
ň (ω, {ψF,k,l},V )eiň·ϕ̌ , (122)

ĜR(ω, ϕ̌, {kF Rk,l}) =
∑
ň∈Sň

ĜR
ň (ω, {ψF,k,l})eiň·ϕ̌ . (123)

To relate ĜA
ň to ĜR

ň in Eqs. (122) and (123), we note that the
bare Green’s functions given by Eqs. (16)–(19) and (20) are
such that

T̂NambuĝA,R(ω, ϕ̌, {ψF,k,l},V ) = ĝA,R(ω,−ϕ̌, {−ψF,k,l},−V ),

(124)

where the transformation T̂Nambu exchanges the “1” and “2”
Nambu components for “spin-up electron” and “spin-down
hole,” respectively. The Dyson equation given by Eq. (23)
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yields

T̂NambuĴa,γc1
ĜA,R

γc1 ,c1
(ω, ϕ̌, {ψF,k,l},V )

= Ĵa,γc1
ĜA,R

γc1 ,c1
(ω,−ϕ̌, {−ψF,k,l},−V ). (125)

Combining Eq. (114) with Eq. (125) leads to

∑
p

∫
dωnF (ω)

{〈〈
Ĵc1,p,γc1,p

ĜA
γc1,p ,c1,p

(ω, {ψF,k,l},V, ϕ̌)
〉〉

(1,1)

− 〈〈
Ĵc1,p,γc1,p

ĜA
γc1,p ,c1,p

(ω, {ψF,k,l},−V, ϕ̌})
〉〉

(2,2)

}
= 2i

∑
p

∫
dωnF (ω)

∑
ň∈Sň〈〈

Ĵc1,p,γc1,p
Im

[
GA

γc1,p ,c1,p,ň(ω, {ψF,k,l},V )
]〉〉

(1,1) sin (ň · ϕ̌).

(126)

Within the considered model III, averaging over disorder is
mimicked by integrating over the phases {ψF,k,l} in the [0, 2π ]
interval. The terms that are odd in kF Rk,l do not contribute to
this integral, and thus〈〈

Ĵc1,p,γc1,p
ĜA

γc1,p ,c1,p
(ω, ϕ̌, {ψF,k,l},V )

〉〉
(1,1)

= 〈〈
Ĵc1,p,γc1,p

ĜA
γc1,p ,c1,p

(ω,−ϕ̌, {ψF,k,l},−V )
〉〉

(2,2) (127)

is independent of whether ĜA
γc1,p ,c1,p

(ω,−ϕ̌, {ψF,k,l},V ) or

ĜA
γc1,p ,c1,p

(ω,−ϕ̌, {−ψF,k,l},V ) is averaged over {ψF,k,l}. In

addition, the calculation is specific to the “quartet current” Iq,
which is even if the voltage V changes sign.

The subtracted “retarded” terms are deduced from the “ad-
vanced” ones by taking the complex conjugate and changing ϕ̌

into −ϕ̌; see Sec. X A 1. We deduce the following expression
of 〈〈Iq,A〉〉:

〈〈Iq,A〉〉 = 2e

h̄

∑
p

∫
dωnF (ω)

∑
ň∈Sň

×Im
〈〈

Jc1,p,γc1,p
GA

ň,γc1,p ,c1,p
(ω, {ψF,k,l},V )

〉〉
sin (ň · ϕ̌)

+(V → −V ), (128)

which takes the form of the Ambegaokar-Baratoff formula
Eq. (105) for Iq,A(V ) = [IA(V ) + IA(−V )]/2.

Now, Eqs. (29)–(32) and Eq. (115) yield the following
“nonequilibrium” contribution IB to the current:

−IB ≡ −IB,γc1 →c1=
e

h̄

∑
p

∫
dω

{[
Ĵc1,p,γc1,p

Ĝ+,−
B,γc1,p ,c1,p

]
(1,1)/(0,0)

× (ω, ϕ̌, {ψF,k,l},V ) (129)

−[
Ĵc1,p,γc1,p

Ĝ+,−
B,γc1,p ,c1,p

]
(2,2)/(0,0)(ω, ϕ̌, {ψF,k,l},V ) (130)

−[
Ĵγc1,p ,c1,pĜ

+,−
B,c1,p,γc1,p

]
(1,1)/(0,0)(ω, ϕ̌, {ψF,k,l},V ) (131)

+[
Ĵγc1,p ,c1,pĜ

+,−
B,c1,p,γc1,p

]
(2,2)/(0,0)(ω, ϕ̌, {ψF,k,l},V )

}
, (132)

where Ĝ+,−
B is given by Eq. (115).

We make use of the transformation TNambu given by
Eq. (124) to obtain[

Ĵc1,p,γc1,p
Ĝ+,−

B,γc1,p ,c1,p

]
(1,1)/(0,0)(ω, ϕ̌, {ψF,k,l},V )

−[
Ĵc1,p,γc1,p

Ĝ+,−
B,γc1,p ,c1,p

]
(2,2)/(0,0)(ω, ϕ̌, {ψF,k,l},−V )

= 2i
∑
ň∈Sň

[
Ĵc1,p,γc1,p

Ĝ+,−
B,γc1,p ,c1,p,ň

]
(1,1)/(0,0)(ω, ϕ̌, {ψF,k,l},V )

× sin (ň · ϕ̌). (133)

Now, we note that Ĵ† = Ĵ combined with

[ĝA,R(ω, ϕ̌, {ψF,k,l},V )]† = ĝR,A(ω, ϕ̌, {ψF,k,l},V ) (134)

and with the Dyson Eq. (23) leads to (ĜA,R)
† = ĜR,A. Con-

versely, combining with Eq. (115) yields (Ĝ+,−
B )

† = Ĝ+,−
B .

We deduce that 〈〈Iq,B〉〉 takes the following form of the
Ambegaokar-Baratoff formula:

〈〈Iq,B〉〉 = 2e

h̄

∑
p

∫
dωnF (ω)

∑
ň∈Sň

×Im
〈〈
Jc1,p,γc1,p

G+,−
B,ň,γc1,p ,c1,p

(ω, {ψF,k,l},V )
〉〉

sin (ň · ϕ̌)

+ (V → −V ), (135)

where Iq,B(V ) = [IB(V ) + IB(−V )]/2.
It is concluded that both Eq. (128) for the “quasiequi-

librium quartet current” 〈〈Iq,A〉〉 entering or exiting Sc,1 and
Eq. (135) for the “nonequilibrium quartet current” 〈〈Iq,B〉〉
take the form of the “generalized Ambegaokar-Baratoff for-
mula” Eq. (105) where the coefficients X (2n, p) acquire a
dependence on the voltage V .

2. Conclusion on the Harvard group experiment [4]

It is deduced that the assumption of arbitrary interface
transparencies and finite bias voltage V , combined with mim-
icking disorder in the superconducting leads by averaging
over {kF Rk,l}, leads to the following statement:

“Experimental evidence for I ′
c(0) �= I ′

c(1/2)” implies “Evi-
dence for transmission of an odd number of Cooper pairs into
Sc1 or Sc2 .”

This statement implies “Evidence for microscopic pro-
cesses containing an odd number of electron-hole or hole-
electron conversions in lead Sc,1.”

Going one step further, we note that multiple quartet
superconducting diffusion modes of the 〈〈g(1,2)g(1,2)〉〉 type
in Eqs. (49) and (50) necessarily imply even numbers of
electron-hole or hole-electron conversions. Thus, the require-
ment of an odd number of electron-hole or hole-electron
conversions in lead Sc,1 implies that at least one 〈〈g(1,1)g(1,2)〉〉
mode of the 4TSQ-type is involved in the corresponding dia-
gram; see Eqs. (49) and (51).

This argument relies on gathering the nonlocal Green’s
functions in a pairwise manner. It would break down for local-
ized contacts such that r0 � le, because the unpaired “local”
electron-hole conversions would have to be taken into account
on the same footing as the pairs of nonlocal Green’s functions.

245435-21



RÉGIS MÉLIN PHYSICAL REVIEW B 102, 245435 (2020)

The paper is concluded with the following remark regard-
ing the Harvard group experiment [4]:

“Experimental evidence for different values of the critical
currents between �/�0 = 0 and �/�0 = 1/2,” i.e., I ′

c(0) �=
I ′
c(1/2)

implies
“Evidence for the four-terminal 4TSQ.”
This statement holds for arbitrary device parameters, and

it was demonstrated within the physically motivated approxi-
mation of the model III discussed in the above Sec. IV D.

XI. CONCLUSIONS

Now, we provide a summary of the paper in Sec. XI A,
specific conclusions on the Harvard group experiment in
Sec. XI B, and final remarks and outlook in Sec. XI C.

A. Summary of the paper

In this paper, we provided a possible mechanism for the
inversion in the critical current Ic(�/�0) on the quartet line
in a four-terminal Josephson junction (see Figs. 1 and 3), in
connection with the recent Harvard group experiment [4].

The Harvard group experiment [4] uses graphene gated
away from the Dirac point, which was modeled as a simple
2D metal with a circular Fermi surface. We took the two
dimensions of the graphene sheet into account while ignoring
the effects related to the Dirac cones.

Specifically, we calculated microscopically the Josephson
relations from lowest-order perturbation theory in the tun-
nel amplitudes, assuming in addition the adiabatic limit. We
found that the three- and four-terminal quartet channels inter-
fere with each other in the critical current on the quartet line.
The “standard” three-terminal 3TQ1 transmit two pairs into
Sc,1 and the three-terminal 3TQ2 transmit two pairs into Sc,2.
The nonstandard four-terminal 4TSQs transmit two Coopers
in the same quantum process but in a split manner, i.e., one
pair into Sc,1 and the other one into Sc,2.

We found that the four-terminal 4TSQs do not contribute to
the dc-current if a 1D or a 3D metal and multichannel contacts
are used instead of the considered 2D metal. The importance
of 2D is related to the general properties of the solutions of
the wave equation, which imply a wake in even dimension
(such as 2D) but not in odd dimension (such as 1D or 3D). We
demonstrated that the “2D quantum wake” can synchronize
two Josephson junctions by the exchange of a quasiparticle
at the Sc1 and Sc2 contacts, yielding a nonvanishingly small
four-terminal 4TSQ critical current.

We demonstrated that, with a 2D metal, lowest-order
perturbation theory and the adiabatic limit produce π - and
0-shifted current-phase relations for the three-terminal 3TQ1,
3TQ2 and for the four-terminal 4TSQ, respectively. This
implies inversion Ic(0) < Ic(1/2) between the critical cur-
rents Ic(0) and Ic(1/2) at fluxes �/�0 = 0 and �/�0 = 1/2,
respectively. In turn, experimental evidence for inversion im-
plies (π, 0) or (0, π ) shifts for the three-terminal 3TQ1, 3TQ2,
and the four-terminal 4TSQ, respectively. This type of ex-
periment cannot determine which of the three-terminal 3TQ1,
3TQ2, or the four-terminal 4TSQ is π -shifted, the other being
0-shifted.

We proposed an analogy with experiments on a SQUID
containing π - and 0-shifted Josephson junctions [41]. In this
analogy with Ref. [41], the π - and 0-shifted three-terminal
3TQ1, 3TQ2, and the four-terminal 4TSQ play the role of the
π - or 0-shifted two-terminal Josephson junctions inserted in
the SQUID loop, respectively.

In addition, the perturbative calculation predicts that the
relative weight of the three-terminal 3TQ1, 3TQ2, and the
four-terminal 4TSQ changes with gate voltage on the 2D
metal, in a way that is compatible with the experimental data
of the Harvard group [4].

We also generalized our theory to arbitrary interface trans-
parencies and finite bias voltage V on the quartet line. This
generalization was based on the even or odd parity of the
number of Cooper pairs transmitted into Sc,1 or Sc,2 by the
three-terminal 3TQ1, 3TQ2, and the four-terminal 4TSQ.

We treated the ingredients of “arbitrary interface trans-
parencies” and “finite bias voltage” within a physically
motivated approximation for disorder. The current entering or
exiting Sc,1 takes the form of the generalized Ambegaokar-
Baratoff relation from which we could infer that the 4TSQs
imply different values for critical current Ic(�/�0) at
�/�0 = 0 and �/�0 = 1/2. We argued within this frame-
work of physically motivated approximation that “Ic(0) �=
Ic(1/2)” implies “evidence for the nonstandard four-terminal
4TSQ.”

B. Specific conclusion on the Harvard group experiment [4]

To summarize, our theory teaches the following on the
Harvard group experimental data [4]:

(i) Perturbation theory in the tunnel amplitudes combined
with the V = 0+ adiabatic limit produces the “inversion in
Ic(�/�0) between �/�0 = 0 and �/�0 = 1/2” which is
observed in the Harvard group experiment [4].

(ii) The calculated gate voltage dependence of the critical
current oscillations as a function of magnetic field is compat-
ible with the Harvard group experimental results [4].

(iii) We argued that “experimental evidence for Ic(0) �=
Ic(1/2)” implies “evidence for the four-terminal 4TSQ.” Thus,
our model implies that the Harvard group experiment [4] is
evidence for the four-terminal 4TSQ.

C. Final remarks and outlook

The four-terminal 4TSQs shown in Figs. 6(c) and 6(d) and
in Fig. 8 are robust against taking the long junction limit
R0/x0 � lϕ along the x-axis direction, where lϕ is the meso-
scopic phase coherence length of the 2D metal. It is assumed
in addition that the device remains short along the y-direction,
i.e., R0/y0 � ξdirty(0). The device geometry is shown in Fig. 3.

More precisely, the nonlocal 〈〈g(1,1)g(1,1)〉〉 mode connects
Sc,1 and Sc,2 through the 2D metal by the quantum wake; see
the highlighted section of the four-terminal 4TSQ diagram
in Fig. 6(d). Equation (16) provides the expression of each
one-particle Green’s function g(1,1) entering the 〈〈g(1,1)g(1,1)〉〉
mode through the 2D metal. Both nonlocal g(1,1) are in the
“electron-electron” channel and they are both evaluated at the
same wave vector ke = kF + ω/vF . Thus, 〈〈g(1,1)g(1,1)〉〉 is not
washed out by multichannel averaging if the energy ω is larger
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than the Thouless energy h̄vF /R associated with the separa-
tion R between the contacts. This is why the four-terminal
4TSQ critical current given by the diagram in Fig. 8(d) re-
mains large as long as the device dimension R0/x0 along the
x-axis is in the mesoscopic domain, i.e., R0/x0 � lϕ .

In addition, the V = 0 limit of phase-biased superconduc-
tors (instead of the V = 0+ adiabatic limit of a voltage-biased
device) also involves long-distance coupling between the An-
dreev bound states associated with each pair of Josephson
junctions sharing a 2D metal as a common weak link, accord-
ing to R0/x0 � lϕ mentioned above in the geometry in Fig. 3.

These arguments show that the four-terminal 4TSQs con-
stitute a nonstandard “mesoscopic” channel of quantum
coherent synchronization, which operates in between the
quartets at the smallest scale and the early 1980s synchroniza-
tion of macroscopic Josephson circuits [42,43]. An interesting
complementary point of view is to approach this mesoscopic
regime from the classical limit, i.e., to incorporate quantum
fluctuation in the classical circuit models.

We also note that comparing Eq. (65) for the three-terminal
3TQ1 critical current Ic, 3TQ1

to Eq. (84) for the four-terminal
4TSQ critical current I (2)

c, 4TSQ leads to the following order of
magnitude for their ratio:

K =
∣∣∣∣∣ I (2)

c, 4TSQ

Ic, 3TQ1

∣∣∣∣∣ ≈
(

J0

W

)4 √
Scontact

le
. (136)

It was assumed implicitly in this paper that perturbation theory
is converging, which implies K < 1. Paper III of the series
[24] will address resummations of the perturbative expansions
if the diffusion modes proliferate for K > 1.

Finally, we point out that, in the presence of Coulomb in-
teractions, the charging energy is larger for the three-terminal
3TQ1 and 3TQ2 (involving four fermions in Sc,1 or four
fermions in Sc,2) than for the four-terminal 4TSQ (involving
one pair in Sc,1 and another one in Sc,2). Thus, static Coulomb
interactions favor the nonstandard four-terminal 4TSQ over
the three-terminal 3TQ1, 3TQ2. It would be interesting to
address dynamical Coulomb blockade [44] for the device in
Figs. 1 and 3.
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APPENDIX A: GREEN’S FUNCTION OF A 2D METAL

We start this Appendix with the Fourier transform of the
Green’s function between two tight-binding sites separated by
distance R:

gA,(1,1)/(2,2)(R, ω)

=
∫ π

−π

dθ

∫ +∞

0

kdk

(2π )2
exp (ikR cos θ )gA,(1,1)/(2,2)(k, ω),

(A1)

where

gA,(1,1)(k, ω) = 1

ω − ξk − iη
, (A2)

gA,(2,2)(k, ω) = 1

ω + ξk − iη
, (A3)

with ξk the kinetic energy of the 2D plane-wave state k with
respect to the chemical potential μ = h̄2k2

F /2m, and where
kF and m are the Fermi wave vector and the band mass,
respectively. The superscripts “(1,1)” or “(2,2)” in Eqs. (A1)–
(A3) refer to propagation in the electron-electron or hole-hole
channels, respectively.

Equation (A1) is written as

gA(R, ω) =
∫ +∞

0

kdk

(2π )

J0(kR)

ω − εξk − iη
, (A4)

where the Bessel function

J0(x) = 1

2π

∫ π

−π

exp (ix cos θ )dθ (A5)

was introduced in Eq. (A4). The parameter ε takes the values
ε = ±1 for the (1,1) and (2,2) components, respectively. We
consider a pole at

k ≡ k0 � kF + ε(ω − iη)

vF
(A6)

and the residue is evaluated according to

ω − εξk0+δk − iη � − h̄2

2m
εk0δk � −εvF k0δk. (A7)

Considering in addition that sgn(Imk0) = −ε and using con-
tour integration in the complex k plane leads to

gA,(1,1)(R) = gA,(2,2)(R) = i

W
J0(kF R), (A8)

gR,(1,1)(R) = gR,(2,2)(R) = − i

W
J0(kF R), (A9)

where the limit ωR/vF � 1 is considered. Noting that ω

has a typical order of magnitude set by the supercon-
ducting gap, the condition ωR/vF � 1 yields the short
junction limit R � ξball(0) for each pair of superconductor–2D
metal–superconductor Josephson junction, where the ballis-
tic superconducting coherence length is given by Eqs. (5)
and (21).

Equations (A8) and (A9) lead to Eqs. (16)–(19) if the
realistic condition 2π/kF  R � ξball(0) is fulfilled on the
separation R.
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APPENDIX B: SUPERCONDUCTING DIFFUSION MODES
IN THE DIRTY LIMIT

The goal of this Appendix is to treat disorder in the super-
conducting leads of the considered four-terminal device. The
calculations are based on Ref. [37].

Averaging the one-particle Green’s functions over disorder
in the Born approximation is summarized in Appendix B 1.
Appendix B 2 presents the calculation of the disorder-
averaged superconducting modes in the dirty limit.

The superconducting modes are formed with products of
Nambu Green’s functions scattering together on the same
configuration of disorder; see Sec. IV C.

Now, the superconducting diffusion modes are calculated
in the ladder approximation.

1. One-particle Green’s function averaged over disorder

We start with the expression of the average over disorder
of the one-particle Green’s functions [36].

Using the notations of Ref. [37], the average superconduct-
ing Green’s function takes the following form in the Born
approximation:

ĝA,R(ξk, ω) =
ˆNk(ω)

Dk(ω)
, (B1)

with
ˆNk(ω) = ω ∓ iη + ξkτ̂3 + �τ̂1, (B2)

Dk(ω) = (ω ∓ iη)2 − �
2 − ξ 2

k , (B3)

where ω and k refer to the energy and wave vector, respec-
tively. The notations ω, �, and s(ω) stand for

ω = ω

(
1 + 1

s(ω)τ

)
, (B4)

� = �

(
1 + 1

s(ω)τ

)
, (B5)

s2(ω) = �2 − ω2. (B6)

2. Product of two Green’s functions averaged over disorder

Now, we evaluate the average over disorder of the product
of two Nambu Green’s functions. An intermediate result on
two integrals is presented in Appendix B 2 a. The resumma-
tion of the ladders is presented in Appendix B 2 b.

a. Intermediate result on evaluation of useful integrals

Following Ref. [37], we evaluate the following integrals at
energy |ω| < � within the gap:

I A,A
α (q, ω) (B7)

= v2
∫

dk
(2π )3

τ̂3ĝA(ξk, ω)τ̂α ĝA(ξk+q, ω)τ̂3,

I A,R
α (q, ω) = v2

∫
dk

(2π )3
τ̂3ĝA(ξk, ω)τ̂α ĝR(ξk+q, ω)τ̂3,

(B8)

where τ̂α are the 2 × 2 Pauli matrices.

The first step of the calculation is to combine the relation∫
dk

(2π )3
= 1

8π2

∫ 1

−1
du

∫ +∞

−∞
k2dk exp(ikRu) (B9)

to contour integration for the integral over k.
The poles of ĝA(ξk, ω) are given by the solutions of

DA
k (ω) = 0 at k = k0, namely

ξ 2
k0

= ω2 − �
2 − 2iηω = 0. (B10)

A branch-cut along the ω < 0 axis leads to

ξ
(ε)
k0

(ω) = iε

√
�

2 − ω2, (B11)

with

ε = sgn(−ηω). (B12)

The solutions of Eq. (B11) for k0 > 0 or k0 < 0 are given
by

k(ε,ε′ )
0 (ω) = ε′

(
kF + iεs(ω)

h̄vF

)
, (B13)

with ε′ = ±.
No reason is advocated for why a constraint holds be-

tween Re[k0(ω)] and Im[k0(ω)]. Instead, the four solutions
are relevant to a double interface, i.e., those with exponential
growth or decay along the positive or negative directions of
propagation. For instance, the four waves are involved in
the solution of the Bogoliubov–de Gennes equations within
the Blonder-Tinkham-Klapwijk approach [45] for a normal
metal–superconductor–normal metal double junction [46],
with separation between the contacts comparable to the su-
perconducting coherence length. Thus, the four wave vectors
k(ε,ε′ )

0 in Eq. (B13) are taken into account in the following,
where ε and ε′ are free to take the values ε = ± and ε′ = ±.

To obtain the residue, we evaluate Dk(ω) for k =
k(ε,ε′ )

0 (ω) + δk in the limit δk → 0:

Dk0+δk (ω) � −2
h̄2

m
k(ε,ε′ )

0 (ω)ξ (ε)
k0

(ω)δk. (B14)

Next, we expand Dk0+q(ω) according to

Dk0+q(ω) � − h̄2

m
k(ε,ε′ )

0 (ω)qu

{
2ξ

(ε)
k0

(ω) + h̄2

m
k(ε,ε′ )

0 (ω)qu

}

(B15)

and we expand ˆNk0+q(ω) according to

ˆNk0+q(ω) � ˆNk0 (ω) + qu

(
h̄2k(ε,ε′ )

0 (ω)

m
τ̂3

)
. (B16)

Evaluating the contribution proportional to qu in Eq. (B16)
leads to a term that is subleading in the limit of a dirty super-
conductor, i.e., if the elastic scattering time is much smaller
than h̄/�.

Contour integration leads to the dominant contribu-
tion of the pole at k(ε,ε′ )

0 (ω) in ĝA(ξk, ω) in Eqs. (B7)
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and (B8):

I A,A
α (q, ω, τ̂α ) = I A,R

α (q, ω, τ̂α ) = iεε′v2

4π

∫ 1

−1
du

∑
ε,ε′=±

τ̂3
(
ω + ξ

(ε)
k0

τ̂3 + �τ̂1
)
τ̂α

(
ω + ξ̃

(ε)
k0

τ̂3 + �τ̂1
)
τ̂3(−2h̄2k(ε,ε′ )

0 (ω)
m

)2(
1 + h̄2k(ε,ε′ )

0 (ω)qu

2mξ
(ε)
k0

)
qu

, (B17)

to which is added the “u → −u” contribution from the
pole k1 of ĝA,R(ξk+q, ω) in Eqs. (B7) and (B8), defined as
DA

k1+q(ω) = 0.

Selecting ξ̃
(ε)
k0

= (ξ (ε)
k0

)
∗

in Eq. (B17) involves the product
mentioned above of “forward-moving exponentially decay”
and “backward-moving exponentially growth,” which leads to

I A,A
α (q, ω, τ̂α ) = I A,R

α (q, ω, τ̂α ). (B18)

This identity is compatible with the real-valued ĝA
x1,x2

(ω) =
ĝR

x1,x2
(ω) if |ω| < � and η = 0+; see Eq. (20). Namely, the

real-space Dyson equations used to describe scattering on dis-
order take real values, which is compatible with the preceding
Eq. (B18) obtained from integration over the wave vector k.

The next step is to evaluate the numerator of Eq. (B17)
for all Pauli matrices τ̂α . We separate between the following
contributions:

(ω + isτ̂3 + �τ̂1)τ̂α (ω − isτ̂3 + �τ̂1) = X̂ (1) + X̂ (2), (B19)

with

X̂ (1)(τ̂α ) = (ω + �τ̂1)τ̂α (ω + �τ̂1) + s2τ̂3τ̂α τ̂3, (B20)

X̂ (2)(τ̂α ) = is[τ̂3τ̂α (ω + �τ̂1) − (ω + �τ̂1)τ̂3τ̂α]. (B21)

A straightforward calculation leads to

X̂ (1)(Î ) = 2�
2
Î + 2ω�τ̂1, (B22)

X̂ (1)(τ̂1) = 2ω�Î + 2ω2τ̂1, (B23)

X̂ (1)(τ̂3) = 0, (B24)

X̂ (1)(τ̂3τ̂1) = −2(�
2 − ω2)τ̂3τ̂1. (B25)

Expanding Eq. (B17) to order u2 and integrating over the
variable u leads to the following contributions to Eq. (B17):

I A,A,(1)(q, ω, Î ) = I A,R,(1)(q, ω, Î )

= A [�
2
Î − ω�τ̂1], (B26)

I A,A,(1)(q, ω, τ̂1) = I A,R,(1)(q, ω, τ̂1)

= A [ω�Î − ω2τ̂1], (B27)

I A,A,(1)(q, ω, τ̂3) = I A,R,(1)(q, ω, τ̂3)

= 0, (B28)

I A,A,(1)(q, ω, τ̂3τ̂1) = I A,R,(1)(q, ω, τ̂3τ̂1)

= −A (�
2 − ω2)τ̂3τ̂1, (B29)

with

A = k3
F

16π [s(ω)]3εF

[
1 − v2

F q2

12[s(ω)]2

]
. (B30)

The notation s(ω) in Eq. (B30) stands for [s(ω)]2 = �
2 − ω2,

where ω and � are given by Eqs. (B4) and (B5), respectively.

b. Summing the 2 × 2 matrix geometric series
in the ladder approximation

Iterating Eqs. (B26) and (B27) to form the first “rungs” of
the superconducting diffusion modes in the ladder approxima-
tion yields

I A,A,(1)(q, ω,I A,A,(1)(q, ω, Î ))

= A [�
2 − ω2]I A,A,(1)(q, ω, Î ), (B31)

I A,A,(1)(q, ω,I A,A,(1)(q, ω, τ̂1))

= A [�
2 − ω2]I A,A,(1)(q, ω, τ̂1), (B32)

where A is given by Eq. (B30).
We find the following at the next order:

I A,A,(1)(q, ω,I A,A,(1)(q, ω,I A,A,(1)(q, ω, Î )))

= [A [�
2 − ω2]]2I A,A,(1)(q, ω, Î ), (B33)

I A,A,(1)(q, ω,I A,A,(1)(q, ω, τ̂1))

= [A [�
2 − ω2]]2I A,A,(1)(q, ω, τ̂1). (B34)

Summing all terms to infinite order leads to the disorder-
averaged superconducting diffusion modes:

ĝÎ ĝ(q, ω) = 1

16πW

1

2
√

�2 − ω + Dq2

× �2 Î + ω�τ̂1

�2 − ω2
, (B35)

ĝτ̂1ĝ(q, ω) = 1

16πW

1

2
√

�2 − ω2 + Dq2

× ω�Î − ω2τ̂1

�2 − ω2
, (B36)

ĝτ̂3ĝ(q, ω) = 0, (B37)

|ĝτ̂3τ̂1ĝ(q, ω)|  |ĝÎ ĝ(q, ω)|, (B38)

|ĝτ̂3τ̂1ĝ(q, ω)|  |ĝτ̂1ĝ(q, ω)|, (B39)

where the diffusion constant is D = v2
F τ/3.

Expanding the Nambu components of Eq. (B36) leads to

[ĝÎ ĝ(q, ω)](1,1) = ĝ(1,1)ĝ(1,1)(q, ω) + ĝ(1,2)ĝ(2,1)(q, ω),

(B40)

[ĝÎ ĝ(q, ω)](1,2) = ĝ(1,1)ĝ(1,2)(q, ω) + ĝ(1,2)ĝ(2,2)(q, ω),

(B41)

[ĝÎ ĝ(q, ω)](1,1) = ĝ(2,1)ĝ(1,1)(q, ω) + ĝ(2,2)ĝ(2,1)(q, ω),

(B42)
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[ĝÎ ĝ(q, ω)](1,2) = ĝ(2,1)ĝ(1,2)(q, ω) + ĝ(2,2)ĝ(2,2)(q, ω).

(B43)

Similarly, expanding the Nambu components of Eq. (B36)
leads to

[ĝτ̂1ĝ](1,1)(q, ω) = ĝ(1,1)ĝ(2,1)(q, ω) + ĝ(1,2)ĝ(1,1)(q, ω),

(B44)

[ĝτ̂1ĝ](1,2)(q, ω) = ĝ(1,1)ĝ(2,2)(q, ω) + ĝ(1,2)ĝ(1,2)(q, ω),

(B45)

[ĝτ̂1ĝ](1,1)(q, ω) = ĝ(2,1)ĝ(2,1)(q, ω) + ĝ(2,2)ĝ(1,1)(q, ω),

(B46)

[ĝτ̂1ĝ](1,2)(q, ω) = ĝ(2,1)ĝ(2,2)(q, ω) + ĝ(2,2)ĝ(1,2)(q, ω).

(B47)

Combining Eqs. (B35)–(B39) and Eqs. (B40)–(B43) with
Eqs. (B44)–(B47), and then replacing Eqs. (B38) and (B39)
by ĝτ̂3τ̂1ĝ(q, ω) = 0 yields

g(1,1)g(1,1)(q, ω) = g(2,2)g(2,2)(q, ω)

= 1

16πW

1

2
√

|�|2 − ω + Dq2

|�|2
|�|2 − ω2

,

(B48)

g(1,2)g(2,1)(q, ω) = g(2,1)g(1,2)(q, ω)

= 1

16πW

1

2
√

|�|2 − ω + Dq2

|�|2
|�|2 − ω2

,

(B49)

where Eqs. (B48) and (B49) are relevant to elastic
cotunneling (EC) [25,26] and crossed Andreev reflec-
tion (CAR) [25–27] in a three-terminal normal metal–
superconductor–normal metal device, with contacts separated
by distance comparable to the superconducting coherence
length.

Equations (B35)–(B39), (B40)–(B43), and (B44)–(B47)
yield

g(1,2)g(1,2)(q, ω)

= 1

16πW

1

2
√

|�|2 − ω + Dq2

|�|2 exp (2iϕN )

|�|2 − ω2
, (B50)

g(2,1)g(2,1)(q, ω)

= 1

16πW

1

2
√

|�|2 − ω + Dq2

|�|2 exp (−2iϕN )

|�|2 − ω2
, (B51)

where ϕN is the macroscopic phase variable of the consid-
ered superconductor SN . Equation (B50) is relevant to double
crossed Andreev reflection [5,6] and to the three-terminal

3TQ1, 3TQ2 in the presence of biasing at opposite voltages,
with distance between the interfaces approximately set by the
superconducting coherence length.

Equations (B35)–(B39), (B40)–(B43) and (B44)–(B47)
imply

g(1,1)g(2,2)(q, ω) = g(2,2)g(1,1)(q, ω)

= 1

16πW

1

2
√

|�|2 − ω + Dq2

2ω2 − |�|2
|�|2 − ω2

,

(B52)

which is relevant to double elastic cotunneling [5] (dEC) in a
three-terminal Josephson junction biased at identical voltages.

Finally, the following superconducting diffusion modes
are relevant to the four-terminal 4TSQ that is the subject
of this paper, and it is also relevant to the normal metal–
superconductor–superconductor double junction of Ref. [38]:

g(1,1)g(1,2)(q, ω) = g(2,2)g(1,2)(q, ω)

= g(1,2)g(1,1)(q, ω) = g(1,2)g(2,2)(q, ω)

= 1

16πW

1

2
√

|�|2− ω + Dq2

ω|�| exp (iϕN )

|�|2 − ω2

(B53)

and

g(2,2)g(2,1)(q, ω) = g(1,1)g(2,1)(q, ω)

= g(2,1)g(2,2)(q, ω) = g(2,1)g(1,1)(q, ω)

= 1

16πW

1

2
√

|�|2 − ω + Dq2

×ω|�| exp (−iϕN )

|�|2 − ω2
. (B54)

Equations (50) and (51) in Sec. IV C are deduced from
Eqs. (B50) and (B53), respectively.

APPENDIX C: THE BALLISTIC LIMIT

This Appendix addresses the limit of ballistic supercon-
ducting leads, which is relevant to the model III introduced in
Sec. IV D.

The expression of the ballistic superconducting diffusion
modes is provided in Appendix C 1. Appendix C 2 provides an
explanation for different signs in the dirty and ballistic limits
of 〈〈g(1,1)g(1,2)〉〉.

1. Expression of the superconducting modes
of a ballistic superconductor

Now, we provide the expression of the ballistic super-
conducting modes propagating in the superconducting lead
SN with phase ϕN on the basis of averaging over kF R1 the
product of Nambu superconducting Green’s functions given
in Eq. (20):

gA
(1,1)(Rα,β, ω)gA

(1,1)(Rβ,α, ω) = gA
(2,2)(Rα,β, ω)gA

(2,2)(Rβ,α, ω) = 1

2W 2(kF R1)2

�2

�2 − ω2
exp

(
− 2R1

ξball(ω)

)
, (C1)

gA
(1,2)(Rα,β, ω)gA

(2,1)(Rβ,α, ω) = gA
(2,1)(Rα,β, ω)gA

(2,1)(Rβ,α, ω) = 1

2W 2(kF R1)2

�2

�2 − ω2
exp

(
− 2R1

ξball(ω)

)
, (C2)
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gA
(1,2)(Rα,β, ω)gA

(1,2)(Rβ,α, ω) = 1

2W 2(kF R1)2

�2

�2 − ω2
exp

(
− 2R1

ξball(ω)

)
exp (2iϕN ), (C3)

gA
(2,1)(Rα,β, ω)gA

(2,1)(Rβ,α, ω) = 1

2W 2(kF R1)2

�2

�2 − ω2
exp

(
− 2R1

ξball(ω)

)
exp (−2iϕN ), (C4)

gA
(1,1)(Rα,β, ω)gA

(2,2)(Rβ,α, ω) = gA
(2,2)(Rα,β, ω)gA

(1,1)(Rβ,α, ω) = 1

2W 2(kF R1)2

2ω2 − �2

�2 − ω2
exp

(
− 2R1

ξball(ω)

)
, (C5)

gA
(1,1)(Rα,β, ω)gA

(1,2)(Rβ,α, ω) = gA
(2,2)(Rα,β, ω)gA

(1,2)(Rβ,α, ω) = gA
(1,2)(Rα,β, ω)gA

(1,1)(Rβ,α, ω) = gA
(1,2)(Rα,β, ω)gA

(1,2)(Rβ,α, ω)

= 1

2W 2(kF R1)2

−ω�

�2 − ω2
exp

(
− 2R1

ξball(ω)

)
exp (iϕN ), (C6)

gA
(1,1)(Rα,β, ω)gA

(2,1)(Rβ,α, ω) = gA
(2,2)(Rα,β, ω)gA

(2,1)(Rβ,α, ω) = gA
(2,1)(Rα,β, ω)gA

(1,1)(Rβ,α, ω) = gA
(2,1)(Rα,β, ω)gA

(2,1)(Rβ,α, ω)

= 1

2W 2(kF R1)2

−ω�

�2 − ω2
exp

(
− 2R1

ξball(ω)

)
exp (−iϕN ), (C7)

where R1 ≡ Rα,β = Rβ,α denotes the separation between the
tight-binding sites α and β. The overline in Eqs. (C1)–(C7)
denotes averaging over the kF R1 oscillations in the supercon-
ducting Green’s function, and the 1/2 coefficient appearing
in front of Eqs. (C1)–(C7) originates from cos2(kF R1) =
sin2(kF R1) = 1/2; see the ballistic-limit superconducting
Green’s function given by Eq. (20).

Equations (C1) and (C2) for elastic cotunneling (EC)
[25,26] and crossed Andreev reflection (CAR) [25–27] in the
ballistic limit are associated with Eqs. (B48) and (B49) in the
dirty limit, respectively. Equations (C3) and (C4) for the quar-
tets [5,6] correspond to Eqs. (B50) and (B51). Equation (C5)
for double elastic cotunneling (dEC) [5] is associated with
Eqs. (B52). Equations (C6) and (C7), which are relevant to the
four-terminal 4TSQ and to a normal metal–superconductor–
superconductor double junction [38], have Eqs. (B53) and
(B54) as their dirty-limit analog.

2. Discussion of the opposite signs of Eqs. (B53) and (B54)
and Eqs. (C6) and (C7)

The 〈〈g(1,1)g(1,2)〉〉 mode relevant to the four-terminal
4TSQ is found to have opposite signs in the dirty and bal-
listic limits; see Eqs. (B53) and (B54) in the dirty limit and
Eqs. (C6) and (C7) in the ballistic limit, respectively. We
provide now an explanation for the different signs appearing
in the dirty and ballistic limits.

Specifically, we mimic the disorder scattering potential v

[see Eqs. (B7) and (B8)] by a tunnel barrier. Namely, we
replace an SaIS0ISb double junction (where I is an insulator)
by an SaIS1IS2ISb triple junction, where S1 and S2 are two
ballistic superconductors separated by an insulating tunnel
barrier.

We start with the simple 〈〈g(1,1)g(1,2)〉〉 four-terminal 4TSQ
diagram in an SaIS0ISb double junction; see Fig. 11(a):

DA,(0) = 〈〈
J (1,1)

a,α gA,(1,1)
α,β J (1,1)

β,b gA,(1,2)
b,b J (2,2)

b,β gA,(2,1)
β,α J (1,1)

α,a gA,(1,1)
a,a

〉〉
(C8)

= −J4
0

〈〈
gA,(1,1)

a,a

〉〉〈〈
gA,(1,2)

b,b

〉〉〈〈
gA,(1,1)

α,β gA,(2,1)
β,α

〉〉
. (C9)

Thus, DA,(0) in Eqs. (C8) and (C9) is given by

DA,(0) = −J4
0

〈〈
gA,(1,1)

a,a

〉〉〈〈
gA,(1,2)

b,b

〉〉
Aα,γ , (C10)

where Eq. (C7) was written as

〈〈
gA,(1,1)

α,γ gA,(2,1)
γ ,α

〉〉 = −Aα,γ

(ω − iη)|�|
|�|2 − (ω − iη)2

exp (−iϕc),

(C11)

and the “geometrical” prefactor Aα,γ is given by

Aα,γ = 1

2W 2

1

(kF Rα,γ )2
exp

(
− 2Rα,γ

ξball(ω − iη)

)
. (C12)

FIG. 11. Panel (a) shows the 〈〈g(1,1)g(1,2)〉〉 mode at lowest order
in the tunnel amplitudes in an SaIS0ISb double junction [DA,(0) term
in Eq. (C8)]. Panels (b) and (c) show schematically the DA,(1) and
DA,(2) terms in an SaIS1IS2ISb triple junction; see Eqs. (C13) and
(C14) and Eqs. (C15) and (C16), respectively.
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Now, we consider an SaIS1IS2ISb triple junction and start with the diagrams DA,(1) and DA,(2) appearing at the lowest order
(J0/W )6 in the tunnel amplitudes; see Figs. 11(b) and 11(c), respectively:

DA,(1) = 〈〈
J (1,1)

a,α gA,(1,1)
α,γ J (1,1)

γ ,δ gA,(1,1)
δ,β J (1,1)

β,b gA,(1,2)
b,b J (2,2)

b,β gA,(2,2)
β,δ J (2,2)

δ,γ gA,(2,1)
γ ,α J (1,1)

α,a gA,(1,1)
a,a

〉〉
(C13)

= J12
0

〈〈
gA,(1,1)

a,a

〉〉〈〈
gA,(1,2)

b,b

〉〉〈〈
gA,(1,1)

α,γ gA,(2,1)
γ ,α

〉〉〈〈
gA,(1,1)

δ,β gA,(2,2)
β,δ

〉〉
(C14)

and

DA,(2) = 〈〈
J (1,1)

a,α gA,(1,1)
α,γ J (1,1)

γ ,δ gA,(1,1)
δ,β J (1,1)

β,b gA,(1,2)
b,b J (2,2)

b,β gA,(2,1)
β,δ J (1,1)

δ,γ gA,(1,1)
γ ,α J (1,1)

α,a gA,(1,1)
a,a

〉〉
(C15)

= J12
0

〈〈
gA,(1,1)

a,a

〉〉〈〈
gA,(1,2)

b,b

〉〉〈〈
gA,(1,1)

α,γ gA,(1,1)
γ ,α

〉〉〈〈
gA,(1,1)

δ,β gA,(2,1)
β,δ

〉〉
. (C16)

Equation (C5) leads to

〈〈
gA,(1,1)

δ,β gA,(2,2)
β,δ

〉〉 = Aβ,δ

2(ω − iη)2 − |�|2
|�|2 − (ω − iη)2

.

(C17)

We deduce the following:

DA,(0) = −B
(ω − iη)2|�|2

[|�|2 − (ω − iη)2]2 , (C18)

DA,(1) = C
(ω − iη)2|�|2[2(ω − iη)2 − |�|2]

[|�|2 − (ω − iη)2]3 , (C19)

DA,(2) = C
(ω − iη)2|�|4

[|�|2 − (ω − iη)2]3 , (C20)

where B and C have the same sign. Thus,

DA,(1) + DA,(2) = 2C (ω − iη)4|�|2
[|�|2 − (ω − iη)2]3 (C21)

has a sign that is opposite to that of DA
0 .

It is concluded that a change of sign appears in
〈〈g(1,1)g(1,2)〉〉 between the following situations:

(i) Equation (C18) for DA,(0) in an SLIS0ISR double ballis-
tic tunnel junction.

(ii) Equation (C21) for DA,(1) + DA,(2) in an SaIS1IS2ISb

triple ballistic tunnel junction.
This resolves the apparent paradox that emerged between

the preceding calculations of the 〈〈g(1,1)g(1,2)〉〉 mode:
(iii) Equations (C6) and (C7) for 〈〈g(1,1)g(1,2)〉〉 in the bal-

listic limit.
(iv) Equations (B53) and (B54) for impurity scattering the

〈〈g(1,1)g(1,2)〉〉 superconducting diffusion mode at the order v2.

APPENDIX D: DETAILS ON THE CALCULATION
OF THE CURRENT-PHASE RELATIONS

1. Demonstration of Eq. (65) for Ic, 3TQ1

We evaluate the following integral:

I1 =
∫ 0

−∞

�4

[�2 − (ω − iη)2]2 dω. (D1)

We expand according to ω − iη = −� + ε. Assuming |ε| 
� leads to

�4

[�2 − (ω − iη)2]2 � �2

4ε2
+ �

8ε
+ · · · . (D2)

If η  �, contour integration yields

I1 = iπ�

4
. (D3)

Equation (D3) is used in Sec. V A to deduce the quartet
current-phase relations Eqs. (63)–(65) from Eq. (62).

2. Demonstration of Eq. (78) for I(1)
c, 4TSQ

Now, we evaluate

I2 =
∫ 0

−∞

�6

[�2 − (ω − iη)2]3 dω. (D4)

Expanding around ω − iη = −� + ε with |ε|  � leads to

�6

[�2 − (ω − iη)2]3 � �3

8ε3
+ 3�2

16ε2
+ 3�

16ε
+ · · · . (D5)

The residue of the simple pole is 3�/16. Contour integration
yields

I2 = 3iπ�

8
(D6)

if η  �. Equation (D6) is used in Sec. V C 1 to deduce the
four-terminal 4TSQ current-phase relations Eqs. (77) and (78)
from Eq. (76).

3. Demonstration of Eq. (84) for I(2)
c, 4TSQ

The integral

I3 =
∫ 0

−∞

(ω − iη)2�4

[�2 − (ω − iη)2]3 dω (D7)

is equal to

I3 = I2 (D8)

if η  �, where I2 is given by Eq. (D6). The leading-order
four-terminal 4TSQ current-phase relations Eqs. (83) and (84)
are deduced from Eq. (82) by making use of Eqs. (D7) and
(D8); see Sec. V C 2.

4. Averaging the product of three superconducting
Green’s functions

The average over disorder of the product of three Green’s
functions

C3 = 〈〈g(1,1)g(1,2)g(2,2)〉〉 (D9)
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appears in the expression of the four-terminal 4TSQ at
the orders (J0/W )12 and

√
Scontact/le; see Eqs. (9)–(46) in

Sec. II A of the Supplemental Material [29].
Each of the three Green’s function appearing in Eq. (D9)

can propagate locally or nonlocally within the superconduct-
ing lead SN having superconducting phase variable ϕN .

The Wick theorem leads to
C3 = 〈〈g(1,1)g(1,2)〉〉〈〈g(2,2)〉〉 + 〈〈g(1,1)g(2,2)〉〉〈〈g(1,2)〉〉

+ 〈〈g(1,1)〉〉〈〈g(1,2)g(2,2)〉〉, (D10)

where Eqs. (B4) and (B5) imply the following for the local
Green’s functions of the disordered superconductor SN :

〈〈g(1,1)〉〉 = 〈〈g(2,2)〉〉 = 1

W

−(ω − iη)√
|�|2 − (ω − iη)2

, (D11)

〈〈g(1,2)〉〉 = = 1

W

|�|√
|�|2 − (ω − iη)2

exp (iϕN ). (D12)

Combining with the energy dependence of Eqs. (B52) and
(B53) implies the minus sign in

C3 ∼ − �3

W 2[|�|2 − (ω − iη)2]3/2 exp (iϕN ), (D13)

which is taken into account in the four-terminal 4TSQ critical
current at the orders (J0/W )12 and

√
Scontact/le; see Eq. (78) in

the main body of the paper and Sec. II A in the Supplemental
Material [29].
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