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ABSTRACT We have investigated the dynamics of liquid water confined in mesostructured 

porous silica (MCM-41) and periodic mesoporous organosilicas (PMOs) by incoherent quasielastic 

neutron scattering experiments. The effect of tuning the water/surface interaction from hydrophilic 

to more hydrophobic on the water mobility, while keeping the pore size in the range 3.5-4.1 nm, 

was assessed from the comparative study of three PMOs comprising different organic bridging 

units and the purely siliceous MCM-41 case. An extended dynamical range was achieved by 

combining time-of-flight (IN5B) and backscattering (IN16B) quasielastic neutron spectrometers 

providing complementary energy resolutions. Liquid water was studied at regularly spaced 

temperatures ranging from 300 K to 243 K. In all systems, the molecular dynamics could be 

described consistently by the combination of two independent motions resulting from fast local 

motion around the average molecule position and the confined translational jump diffusion of its 

center of mass. All the molecules performed local relaxations, whereas the translational motion of 

a fraction of molecules was frozen on the experimental timescale. This study provides a 

comprehensive microscopic view on the dynamics of liquid water confined in mesopores, with 

distinct surface chemistries, in terms of non-mobile/mobile fraction, self-diffusion coefficient, 

residence time, confining radius, local relaxation time, and their temperature dependence. 

Importantly, it demonstrates that the strength of the water/surface interaction determines the long-

time tail of the dynamics, which we attributed to the translational diffusion of interfacial molecules, 

while the water dynamics in the pore center is barely affected by the interface hydrophilicity. 
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INTRODUCTION 

Liquid water is ubiquitous in nature and plays a central role in many applications related to 

energy and environment. It is noteworthy that in many situations, water is not present as a bulk 

liquid phase, but rather as a thin interfacial film or as a fluid embedded in a micro-/mesoporous 

medium. Interestingly, the specific properties of this nanoconfined situation determine the role 

played by water in many different fields, encompassing the biological activity of proteins,1, 2 

transport through membranes (including biological cells or membranes for proton exchange fuel 

cells or nanofluidics, nanofiltration/desalinization technology)3-6 and environments of geological 

relevance.7-9      

Mesoporous silica has been extensively used as a model system to study the dynamics of liquid 

water in spatially confined geometry.10 Along with other methods such as nuclear magnetic 

resonance (NMR),11-13 dielectric spectroscopy,12, 14 or molecular simulation,15-17 quasielastic 

neutron scattering (QENS) has been widely used because it provides a unique viewpoint on the 

molecular dynamics at the exact space and time scales, which are relevant to nanoconfined liquids 

(i.e. a few 0.1-1 nm, 0.1-10 ns).18-26 In general, these studies have revealed a reduction of the water 

diffusivity compared to the bulk counterpart, which becomes more prominent the smaller the pore 

size is. 

The pioneering studies performed in the mid-90’s used Vycor glass.18 Although the distinction 

between the surface dynamics and that of the in-pore liquid has been addressed by tuning the filling 

fraction, additional difficulty stemmed from the interconnected character of the Vycor porosity. 

The advent of mesostructured porous silica phases, such as MCM-41 and SBA-15, has allowed 

studying liquid water in well-defined geometry in terms of straight and parallel nanochannels with 
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tunable diameter.20, 21 These studies made a distinction between two populations of molecules: the 

water molecules located in the vicinity of the pore walls are immobile or much slower than those 

located in the inner part of the pores. In addition to this bimodal description, the possible existence 

of non-exponential relaxations was also discussed and modelled by stretched exponential functions. 

This approach was intended either to reflect the intrinsic distribution of relaxation times in the 

liquid dynamics or to reveal the spatially heterogeneous nature of confined fluids.19, 21, 22 

While MCM-41 and SBA-15 provided adjustable pore size,20, 26 the evaluation of the effect of 

surface interaction on the water dynamics was limited due to the unchanged chemical composition 

of hydrophilic silicas. This issue was addressed by studies, which aimed at disentangling the 

respective roles of surface interaction and purely geometric effects. Hydrophobic nanopores 

formed by carbon pores,27, 28 hydrophobically modified MCM-41,23 and organosilica phases25 were 

used to weaken the surface/water interaction. The other limiting case of ultra-strong interaction 

was illustrated by the ability of Zr−OH and Al−OH terminated MCM-41 surfaces to immobilize 

water molecules.24 A recent study focused on the surface dynamics of water measured at very low 

coverage fraction of SBA-15 revealed that the non-diffusing fraction of water molecules was 

involved in slow jump processes between sites that are spatially separated by up to 0.4 nm.29 

From the above literature, it seems that the chemical nature of the surface of nanoporous 

materials can be envisioned as a parameter affecting the water dynamics. However, clear-cut 

conclusions from a comparison of the existing studies are limited by the diversity of instrumental 

conditions and fitted models. To better address this issue, the present study considers the interfacial 

mobility of nanoconfined water in the presence of a spatial modulation of the surface/water 

interaction. This confining condition is realized by using a series of periodic mesoporous silicas 

(MCM-41)30, 31 and organosilicas (PMOs).32-34 These ideal host matrices are formed by a regular 
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triangular lattice of parallel and cylindrical channels, conforming a honeycomb structure. The pore 

walls of MCM-41 are uniformly formed by silica units with surface H-bond forming silanol groups, 

serving as a reference hydrophilic matrix. PMOs consist of hydrophobic and (weakly or highly) 

hydrophilic units, which are alternating along the main pore axis. This is achieved by the 

introduction of bridging organic units within the silica framework. The molecular-scale periodicity 

of the arrangement of organic/silica units along the pore axis is demonstrated by (00l) Bragg 

reflections. Together with the hydrophilic reference pure silica MCM-41, three PMOs comprising 

different organic bridging units were studied, as illustrated in Table 1. They contain biphenyl (BP-

PMO), divinyl-benzene (DVB-PMO), and divinyl-aniline (DVA-PMO) organic bridges, 

respectively. The four different matrices present comparable pore diameters with values between 

3.5 and 4.1 nm as detailed in the materials and methods part (Table 1). However, one expects 

variations in their surface polarity and tendency to form H-bonds, as indicated by water 

physisorption and multidimensional solid-state NMR spectroscopy studies.33 Therefore, we can 

study the effect of tuning the water/surface interaction from hydrophilic to more hydrophobic by 

comparing results obtained for DVA-PMO and MCM-41 with respect to DVB-PMO and BP-PMO.  

It was recently demonstrated in a pulsed field gradient (PFG) NMR study that the water transport 

in PMOs actually depends on their chemistry.34 This method probes the molecule displacements in 

the m-range. As a result, the diffusivities were found to be primarily determined by the 

macroscopic textural properties of the mesoporous particles. Although significant for technological 

applications, the determination of long-distance transport leaves unanswered questions about the 

dynamics of water within the pores. 

Quasielastic neutron scattering (QENS) is a unique method to resolve the spatio-temporal 

correlations of water molecule on a timescale ranging from a few picoseconds to a few 
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nanoseconds, and at the nanometer length scale; that is to say a few times smaller than the 

characteristic distances defined by the pore diameter and by the period of modulation of the surface 

interaction. We performed incoherent QENS experiments combining two spectrometers: the high 

flux time-of-flight spectrometer IN5B (ILL, Grenoble) and the high-resolution backscattering 

spectrometer IN16B (ILL, Grenoble), with respective energy resolution (FWHM) 22 eV and 0.75 

eV. In the explored temperature range (243-300 K), our study demonstrates that the dynamics of 

confined liquid water can be interpreted by the coexistence of two populations, comprising frozen 

and mobile molecules on the instrument timescale. We modelled the dynamics of the mobile 

fraction with two independent relaxations, corresponding to local fast motions and translational 

jump diffusion. As such, this model conforms to the latest description adopted for bulk water,35 

that was yet to be applied for confined systems. Thanks to the fine control of the surface chemistry 

of the MCM-41 silica and the three different PMOs, the present work provides a rigorous 

assessment of the relative role of spatial confinement and surface interaction on the dynamics of 

confined water. On the one hand, the translational diffusion of interfacial molecules, which is 

detected in the QENS intensity in the region of small energy transfer, demonstrates a dependence 

on the surface hydrophilicity. On the other hand, despite clear evidence of confinement effects, this 

study also concludes on the limited impact of surface chemistry on the dynamics of water molecules 

located in the center of pores with sizes of 3.5 nm and larger. This conclusion can be reached after 

a fine and systematic comparison of the dynamic parameters of comparable systems studied under 

the same conditions. 
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METHODS 

Samples  

PMO powders were prepared according to the following procedure. NaOH and the 

alkyltrimethylammonium bromide surfactant were dissolved in deionized water. The bis-silylated 

precursors of the form (EtO)3Si− R−Si(OEt)3 (R = organic bridging unit) were added at room 

temperature and the mixtures were stirred for 20 hours. The mixtures were transferred into a 

Teflon-lined steel autoclave and statically heated to 95 °C or 100 °C for 24 h. The resultant 

precipitate was collected by filtration and washed with 200 mL deionized water. After drying at 60 

°C, the powder was extracted with a mixture of ethanol and hydrochloric acid (EtOH:HCl (37 %), 

97:3, v/v) using a Soxhlet extractor. The porosity and the pore structure of the dried materials were 

characterized by powder X-ray diffraction (PXRD) and nitrogen physisorption.34 

In this work, we used three different PMO materials with different bridging groups: biphenyl 

BP-PMO, divinylbenzene DVB-PMO and divinylaniline DVA-PMO (cf. Table 1). The 

mesoporous materials MCM-41 silicates were prepared in our laboratory according to a procedure 

similar to that described elsewhere31 and already used in previous works.36-40 Hexadecyl 

ammonium bromide was used as template to get a mesostructured triangular array of aligned 

channels with pore diameter D = 3.65 nm, as confirmed by nitrogen physisorption, transmission 

electron microscopy (TEM) and neutron diffraction. The structural parameters of all the matrices 

are summarized in Table 1.  
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Table 1. Structural parameters of the mesoporous matrices. 

Name Bridging 

unit name 

Bridging unit Repetition 

distance (nm) 

Pore volume 

(cm3.g-1) 

Pore diameter 

(nm) 

MCM-41 - - - 0.665 3.65 

DVB-PMO Divinyl-

benzene 

 1.18 0.990 4.1 

DVA-PMO Divinyl-

aniline 

 1.18 0.890 3.5 

BP-PMO Biphenyl  1.196 0.537 3.5 

 

All matrices were dried at 120 °C under a primary vacuum. To prepare hydrated matrices, a 

constant amount of mesoporous materials was charged in a flat alumina rectangular cell (1 mm of 

thickness) and placed in a desiccator in the presence of a beaker containing a saturated aqueous 

solution of KCl. The resulting relative humidity (RH) of 86% at 25 °C was above the partial 

pressure of the capillary condensation33 and allowed the complete filling of the pore system. The 

sample was kept in the atmosphere of constant humidity for 24 h to ensure that an equilibrium 

condition is reached. The cells were sealed with an indium wire to avoid water loss and ensure a 

constant hydration level during neutron scattering experiments. The complete filling of the pore 

system was verified by weighting, and the mass was additionally checked after the completion of 

the experiments to confirm the absence of leaks. Differential scanning calorimetry (DSC) 

experiments on water filled samples using the same protocol have confirmed the complete filling 
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of the pores with no bulk excess liquid outside the porous matrix (absence of bulk ice 

crystallization/melting). The onset of crystallization (scanning rate 10 K·min-1) of the confined 

water was located in the range 227-237 K, which also corresponded to the maximum position of 

the melting peak for the different matrices. As a double check, the observation of an additional 

melting peak located at T = 273 K, indicating the presence of a slight excess of water due to pore 

over-filling, was confirmed for samples filled with a RH of 100% (i.e. in the absence of salt in the 

saturated KCl solution).  

QENS experiments  

Quasielastic neutron scattering experiments were carried out using two spectrometers with 

different energy resolutions at the Institut Laue Langevin (ILL, Grenoble, France).41, 42 The disc 

chopper time-of-flight spectrometer IN5B was used with an incident wavelength of 8 Å. In this 

configuration, the resulting energy resolution around the elastic peak is about 22 µeV (FWHM). 

The quasielastic signal retained for the data evaluation covered an energy range (E=ħ) between -

5.0 and 0.7 meV and a Q range between 0.2 and 1.3 Å−1. The high-resolution IN16B spectrometer 

was chosen with unpolished Si (111) monochromator and analyzers in backscattering geometry, 

which corresponds to an incident wavelength of 6.271 Å and results in an energy resolution of 0.75 

µeV. The energy range was ±30 µeV with a Q range between 0.19 and 1.83 Å−1. The background 

chopper of the instrument was run in its high signal-to-noise mode.43 A cryofurnace and an ILL 

orange cryostat, were used on IN16B and IN5B spectrometers in order to regulate the sample 

temperature. The measurements were performed after thermal equilibration at regularly spaced 

temperatures, which were reached sequentially on cooling (300, 278, 258 and 243 K on IN5B, and 

278, 258 and 243 K on IN16B) with dried and water filled samples. 
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Standard data corrections were applied using the packages MANTID44 and LAMP45 provided 

at the ILL. The experimental intensity was corrected for detector efficiency, for the background 

contribution arising from the empty cell and spectrometer, and transformed into the Q and energy 

dependent scattering function S(Q,ω). The fitting of scattering functions S(Q,ω) in the frequency 

domain was carried out using the QENSH program provided by the Laboratoire Léon Brillouin 

(LLB, Saclay, France). 

RESULTS and DISCUSSSION 

Data modelling 

The QENS spectra of confined water in DVB-PMO and MCM-41 are shown in Fig. 1 and Fig. 

2. Qualitatively similar results were obtained for water confined in the other matrices (Fig. S1 and 

Fig. S2). The temperature dependence of the scattering intensity is illustrated in Fig. 1 for the 

selected value of the transfer of momentum Q = 0.8-0.85 Å-1. We observed a quasielastic 

broadening that covered a typical energy range from about 0.1 to 1 meV on IN5B and 30 eV on 

IN16B. Given the dominant contribution from the incoherent scattering cross section of hydrogen 

atoms, this quasielastic signal is attributed to the self-part of the dynamic structure factor S(Q,). 

Thus, it provides information on the single particle dynamics of water molecules. A continuous 

sharpening of the quasielastic peak was observed on decreasing the temperature from 300 K to 243 

K. On a qualitative level, the width of the quasielastic scattering is inversely proportional to the 

typical timescale of motion of particles. Therefore, this sharpening indicates that the water 

dynamics slows down gradually on cooling. The absence of a sharp increase of the elastic signal 

confirms that water remained liquid on the entire studied temperature range. It allows excluding 

the hypothetical presence of water outside the pores and the crystallization of in-pore water, which 
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is in agreement with the DSC results. The Q-dependence of the scattering intensity is illustrated in 

Fig. 2 for IN5B at the temperature T = 278 K. On increasing Q, we observed a significant reduction 

of the intensity contained in the elastic resolution (about a factor of ten) combined with a 

broadening of the quasielastic line. This Q-dependence probably arises from the combination of 

different effects, which are classically observed in QENS studies of liquids. It includes the effect 

of dispersive modes (e.g. translational diffusion) and the modulation of the elastic intensity due to 

vibrations (Debye Waller factor) or local quasielastic relaxations (e.g. rotation, libration), which 

comprise an elastic incoherent structure factor (EISF).  
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FIG. 1. Temperature dependence of the scattering intensity of water confined in DVB-PMO (upper 

panels a, b) and in MCM-41 (lower panels c, d). QENS spectra measured on IN5B at Q = 0.8 Å-1 

(left panels a, c) and on IN16B at Q = 0.85 Å-1 (right panels b, d).  
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FIG. 2. Q-dependence of the scattering intensity measured on IN5B at the temperature T = 278 K 

of water confined in DVB-PMO (left panel a) and in MCM-41 (right panel b). 

All spectra were fitted individually at each Q with a model comprising one elastic component, 

i.e. a Dirac function 𝛿(𝜔), and a quasielastic contribution, which was approximated by a sum of 

Lorentzian functions. Importantly, we did not assume any specific Q-dependence of the 

parameters, and therefore no implicit reference to a theoretical model was made. This reduced the 

possible introduction of bias in the data analysis, as demonstrated in the recent QENS study of bulk 

water.35 The contribution arising from the pore wall atoms was accounted for by adding scattered 

experimental intensity of the empty matrices to the theoretical functions, which were fitted to the 

experimental spectra of the water filled matrices. On IN5B, two Lorentzian functions were needed 

to reproduce the quasielastic lineshape. On IN16B, one Lorentzian function was sufficient. The 

modelled functions were convoluted by the instrument resolution R(Q,) obtained by measuring a 

vanadium sample according to :  

𝐼IN5B(𝑄, 𝜔) = [𝐴0(𝑄)𝛿(𝜔) + 𝐴1(𝑄)𝐿1(𝑄, 𝜔, Γ1) + 𝐴2(𝑄)𝐿2(𝑄, 𝜔, Γ2)]⨂𝑅(𝑄, 𝜔) (1) 

𝐼IN16B(𝑄, 𝜔) = [𝐴0(𝑄)𝛿(𝜔) + 𝐴1(𝑄)𝐿1(𝑄, 𝜔, Γ1)]⨂𝑅(𝑄, 𝜔)   (2) 

where 𝐴𝑖(𝑄) is the intensity of the ith component and  𝐿𝑖 is a Lorentzian function with a 

linewidth HWHM Γ𝑖. The comparison between the fitted functions and the experimental QENS 

spectra acquired on both spectrometers is illustrated in Fig. 3 for water confined in DVB-PMO and 

MCM-41. It confirms the very good agreement between the fitted function (red solid line) and the 

experimental data points (symbol), which match within experimental uncertainties. The additional 

curves shown in Fig. 3 illustrate the decomposition of the total intensity into one elastic and one 

(IN16B) or two (IN5B) quasielastic Lorentzian functions.  
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FIG. 3. QENS spectra (cross symbols) and fitted functions (lines) at the temperature T = 278 K 

of water confined in DVB-PMO (upper panels a, b) and in MCM-41 (lower panels c, d). QENS 

spectra measured on IN5B at Q = 0.8 Å-1 (left panels a, c) and on IN16B at Q = 0.85 Å-1 (right 

panels b, d). 

We assumed that the two Lorentzian functions observed on IN5B reflected the presence of two 

independent dynamics. In the pioneering QENS studies of bulk water, two motions were identified 

and attributed to continuous rotational diffusion and jump-like translation.46, 47 QENS studies on 

bulk 48, 49 and confined water have later adopted this model.18, 20, 25 In some studies, this model was 

also invoked, but because a simplified version of the fitted functional form was considered, the 

reference to rotational diffusion was actually lost.22, 24 The continuous nature of the rotational 
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motion of water molecules has been questioned by experiments and simulations,50, 51 and it was 

also argued that the assumptions underlying this QENS model might not be strictly verified.35 To 

limit any interpretational bias, we first performed a model-free fit of the data. Both the intensity 

and the width of the two Lorentzians were determined independently at each Q. On IN5B, the first 

fit revealed that the linewidth of the second (broadest) Lorentzian Γ2 was barely varying with Q.  

Contrariwise, the sharpest Lorentzian Γ1 was dispersive for both spectrometers. In order to get a 

more robust fit, Γ2 was fixed to its averaged value at each temperature, and the values of all the 

other parameters were refined again. Following the assignment made in recent studies of bulk 

water, we related the broad and sharp components to two distinct dynamics: local motion (L) and 

translational diffusion (T), respectively.35, 52 It is likely that only the slowest one, attributed to 

translation, was actually detected on IN16B. In fact, the broad quasielastic contribution arising 

from local dynamics likely appeared as a vanishing flat background, due to the reduced energy 

range covered by the high-resolution instrument. Therefore, the incoherent dynamic structure 

factor of water writes as: 

𝑆(𝑄, 𝜔) = 𝐾 [𝐴𝑇(𝑄)𝛿(𝜔) + (1 − 𝐴𝑇(𝑄))𝐿𝑇(𝑄, 𝜔, Γ𝑇)]⨂[𝐴𝐿(𝑄)𝛿(𝜔) + (1 −

𝐴𝐿(𝑄)) 𝐿𝐿(𝑄, 𝜔, Γ𝐿)]    (3) 

where K is a scaling factor comprising the attenuation of the scattering intensity due to inelastic 

vibrational modes (Debye-Waller factor). The functions 𝐴𝑇(𝑄) and 𝐴𝐿(𝑄) are the elastic 

incoherent structure factors (EISFs) of the translational and local motions.53 Their respective 

linewidth Γ𝑇  and Γ𝐿 were effectively separable since they differ by a factor of 7-10. These quantities 

were evaluated from the fitted parameters introduced in Eqs. (1) and (2) after straightforward 

calculations, and considering that Γ𝑇 ≪ Γ𝐿 .  
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Local water dynamics 

The experimental EISFs 𝐴𝐿(𝑄) obtained from the fitting of Eq. (3) are illustrated in Fig. 4. They 

present an important elastic contribution, which is above 60% at 300 K and 95% at 243 K on the 

studied Q-range. It demonstrates the non-diffusive (i.e. localized) character of this motion. In the 

classical approach of Teixeira et al.47 this dynamics was described as an isotropic rotation of 

hydrogens around the oxygen atom. The corresponding EISF writes as 𝐴𝑅(𝑄) = [𝑗0(𝑄𝑅𝑅)]2, 

where j0 is the zeroth-order spherical Bessel function and 𝑅𝑅 = 0.98 Å for the O-H bong length.53 

A comparison of the prediction from the classical approach with the EISFs 𝐴𝐿(𝑄) determined 

experimentally for water in MCM-41 is illustrated Fig. 4(a). Only at 300 K, the standard model 

agreed well with the experiments. However, this model was unable to describe the increase of 

intensity observed at lower temperature. Satisfactory fits could still be obtained with the same 

functional form 𝐴𝑅(𝑄), provided that RR was allowed to vary with the temperature. When 

considered as a free fit parameter, the value of RR decreased with decreasing temperature. It reached 

values as small as 0.5 Å, which cannot be related to the O-H bond length anymore. In that sense, 

the model lost its physical meaning. Another approach that maintains the classical interpretation of 

𝐴𝐿(𝑄) consists in adding a supplement Q-independent elastic term to the isotropic rotation function 

𝐴𝑅(𝑄) (i.e. 𝐴𝐿(𝑄) = 𝑝𝛿(𝜔) + (1 − 𝑝)𝐴𝑅(𝑄)). From this viewpoint, it would imply that a fraction 

p of the water molecules does not perform rotation on the instrumental timescale due to 

confinement and interfacial restrictions. At 300 K, such an additional elastic peak was not required 

to best fit the data, meaning that all the molecules were dynamically active. However, this 

alternative model led to a large elastic component at sub-ambient temperature, reaching up to 80% 

at the lowest temperature. It is unlikely that the rotational diffusion would be frozen for such a 

large fraction of molecules, while it would be active and very fast (i.e. about 1-3 ps) for the unfrozen 
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ones. It is also inconsistent with the analysis of the translational diffusion detailed in the next 

section, where much smaller fractions of dynamically frozen molecules were obtained. Our results 

rather suggest that this broad quasielastic line does not strictly correspond to isotropic rotational 

diffusion. This conclusion appears in line with an alternative view proposed by Qvist et al. for bulk 

water.35 This motion was attributed to a local dynamical “intra-basin” relaxation, also observed in 

the water molecules trajectories of Molecular Dynamics (MD) simulations. A comparison is made 

in Fig. 4(a) with the polynomial fit of the bulk water data.35 It is similar to the EISFs that we 

measured at 258 K. A univocal determination of the geometry of this local relaxation is elusive, as 

also discussed for bulk water by Arbe et al.52 However, based on a Debye-Waller factor type of 

analysis, we can conclude on the gradual shrinkage of the mean-squared-amplitude of the local 

motion on decreasing the temperature for confined water. 
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FIG. 4. Elastic incoherent structure factor of the local quasielastic relaxation (symbols) deduced 

from IN5B measurements at four different temperatures of water confined in different matrices (a) 

MCM-41, (b) DVA-PMO, (c) BP-PMO, and (d) DVB-PMO. Two different approaches describing 

the broadest quasielastic relaxation of bulk water are presented for comparison in the panel (a): 

(solid line) model-free EISF of the local relaxation averaged over 6 temperatures in the range 253-

293 K, after Qvist et al.35 and (long dashed line) the EISF of the continuous molecule rotation 

supposed independent on the temperature for the same temperature range after Teixeira et al.47  

Inset of panel (a): sketch of the local motion of water.        

 

On the entire temperature range studied, the relaxation time L attributed to the local motion of 

water varied from 1 to 3 ps. These values are within the range of relaxation times reported for bulk 

water (1 to 3.5 ps) on a slightly reduced temperature range.35 The effect of the matrix can be 

estimated from a comparison of the EISFs measured for water confined in MCM-41 (cf. Fig. 4(a)) 

and the three PMOs (cf. Figs. 4(b-d)). If present, the difference between the EISFs is very small 

and hardly resolved within experimental uncertainties. The temperature dependence of the 

relaxation time of water confined in the four different matrices was also very similar, with an 

averaged value of the activation energy of 10 ± 4 kJ·mol-1. The previous QENS studies of confined 

water were often limited to translational diffusion and results about the fast local dynamics are 

scarcer in the literature. To the best of our knowledge, there exists only one available QENS 

measurement of water confined in a benzene-bridged PMO by Aso et al.25 In this study, the authors 

concluded on a significant slowdown (by a factor of three) of the local dynamics of water confined 

in MCM-41, with respect to those of water confined in the PMO and bulk water. We note that the 

comparison with this PMO’s result was based on an older QENS measurement of water confined 
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in MCM-41,20 which was moreover performed at two different temperatures. On the contrary, our 

conclusions are based on a single study, with measurements performed systematically under the 

same experimental conditions. Under these conditions, our results rather point towards a 

comparable fast local dynamics of water when confined in PMOs or in MCM-41. It is also worth 

mentioning that this conclusion is in line with the pioneering study of water in Vycor, which 

concluded that the fast QENS relaxation denoted as ‘hydrogen-bond lifetime’ was very close to the 

bulk one, both for fully and partly hydrated systems.18      
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Translational water dynamics – neutron time-of-flight study   

The sharpest quasielastic component detected on IN5B was attributed to the translational 

diffusion of the molecules’ center of mass. However, we noticed that this intensity also contained 

a purely elastic component, as illustrated in Fig. 5. The existence of an EISF associated to this 

component, of which the intensity was dependent on both the temperature and the momentum 

transfer Q, is inconsistent with long range translation diffusion. The EISFs were fitted with a model 

that incorporate a fraction p of non-mobile molecules (i.e. dynamically frozen on the timescale of 

the instrument) and a fraction (1-p) of molecules performing restricted translational diffusion in a 

sphere.53, 54  
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FIG. 5. Elastic incoherent structure factor of the first quasielastic relaxation (symbols) deduced 

from IN5B measurements at four different temperatures of water confined in different matrices (a) 

MCM-41, (b) DVA-PMO, (c) BP-PMO, and (d) DVB-PMO. Fits with a model of translation 

diffusion confined in a sphere (lines). Inset of panel (a): sketch of the confined jump diffusion 

motion of water.            

The corresponding expression of 𝐴𝑇(𝑄) is  

𝐴𝑇(𝑄) = 𝑝𝛿(𝜔) + (1 − 𝑝) [
3𝑗1(𝑄𝑅𝑇)

𝑄𝑅𝑇
]

2

     (4) 

where RT is the radius of the confining sphere, p the fraction of non-mobile molecules, and j1 is 

the first-order spherical Bessel function. This model could reproduce the experimental EISFs 

quantitatively, as illustrated by dashed lines in Fig. 5. However, the parameters obtained at the 

lowest temperatures (T = 243 K) presented large uncertainties, which was due to difficulties in 

separating the sharpest quasielastic component from a pure elastic one within the energy resolution 

of IN5B. The two fitted parameters p and RT showed a systematic temperature dependence as can 

be inferred from Fig. 6. A systematic increase of p with decreasing temperature reflects the larger 

number of dynamically frozen molecules on cooling. It is about 10-20% at 300 K, and reaches 

values as large as 40-50% at 243 K. We also noticed a dependence of p on the confining matrix 

(cf. Fig. 6(a)). The smallest value of p was obtained for the purely siliceous matrix MCM-41. It 

corresponds to half the value obtained for BP-PMO that comprises hydrophobic bridging. At first 

sight, this feature appears counterintuitive. Indeed, MCM-41 has a larger surface density of silanol 

groups that may act as adsorbing sites, thus reducing the translational motion of water. On the other 

hand, the barrier of activation related to the molecule jump from one surface site to an adjacent site 

can be reduced when the surface presents a homogeneous distribution of equivalent silica units 
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such as for MCM-41. For PMOs instead, the alternation of hydrophobic and hydrophilic sites might 

interrupt the surface diffusion of water. We believe that this hypothesis needs additional support 

from other methods, such as molecular simulation.  

 

FIG. 6. Variation with the temperature and the confining matrix of the parameters obtained from 

the fit of the EISF of the translational diffusion (from IN5B measurements). (a) Fraction p of 

dynamically frozen water molecules. (b) Radius RT of the sphere confining the translational 

diffusion.  

The radius RT of the sphere confining the translational diffusion of the fraction (1-p) of mobile 

molecules decreases from 9 to 5 Å, during cooling from 300 to 243 K (cf. Fig. 6(b)). The spatial 

restriction of the translational displacements on cooling is similar to the observation made for the 

local dynamics in the previous part in that it is decreasing. The values of RT spanned from one 

quarter to one half of the pore radius. Hence, this confining sphere cannot be strictly identified as 

the pore itself. However, a correlation between RT and Rpore is suggested by the systematically 

larger values of RT for DVB-PMO, which pore size is 15% larger than for the three other matrices 

(cf. Table 1). This indicates a possible link between RT and geometrical aspects of confinement. 

Moreover, the role of surface effects can be invoked. Indeed, the fraction p of non-mobile 
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molecules could be also taken into account as a secondary source of confinement. For simplicity, 

it can be assumed that these molecules are forming a homogeneous layer located at the interface 

with the pore wall. In this case, the radius 𝑅𝑐𝑜𝑟𝑒 of the core region of the pore, where the mobile 

water molecules are located, is 𝑅𝑐𝑜𝑟𝑒 = 𝑅𝑝𝑜𝑟𝑒√(1 − 𝑝). Using the experimental values of p 

and 𝑅𝑝𝑜𝑟𝑒 from Table 1, we obtained that 𝑅𝑐𝑜𝑟𝑒 varies from 19 to 12.5 Å as a function of the matrix 

and the temperature, which is about twice the value of RT. Interestingly, the thickness of the non-

mobile layer (i.e. 𝑒𝑛𝑜𝑛−𝑚𝑜𝑏 = 𝑅𝑝𝑜𝑟𝑒 −  𝑅𝑐𝑜𝑟𝑒) is in the range 1-5 Å, and is maximum at the lowest 

studied temperature 243 K, before crystallization occurs. It compares reasonably with the thickness 

of the non-crystalizing layer (t = 6 Å) evaluated by cryoporometry for water confined in MCM-41 

and SBA-15 porous silicates, 55, 56 as well as with the thickness of the immobile, sticky layer 

inferred from capillary rise experiments for water in hydrophilic silica pores (Vycor).57 
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FIG. 7. Evolutions of the half width at half-maximum T of the sharp Lorentzian as a function 

of Q2 obtained from the fitting of QENS spectra measured on IN5B for water confined in the four 

matrices (a) MCM-41, (b) DVA-PMO, (c) BP-PMO, and (d) DVB-PMO at four temperatures 

(filled symbols). Fit using the jump diffusion model (thin dashed lines). Bulk water experimental 

results at three temperatures, from top to bottom 300 K, 278 K, and 258 K (solid lines) from 

Teixeira et al. 47  

After the discussion of the EISFs, we address now the corresponding quasielastic part, which 

contains dynamical information about the fraction (1-p) of mobile molecules. The linewidth of the 

sharper Lorentzian quasielastic line T found on IN5B is illustrated in Fig. 7, as a function of the 
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squared momentum transfer. The different panels correspond to the four different matrices, and the 

different curves illustrate different temperatures. At intermediate Qs, T increases linearly with Q2, 

which conforms the normal Fick’s law of translational diffusion. However, deviations occur both 

at small and large Qs. When Q tends to zero, T does not really vanish but rather saturates towards 

a finite value, as illustrated in Fig. 8 for MCM-41. This feature can be explained as resulting from 

the confined character of the translational diffusion, which was demonstrated above from the 

analysis of the EISFs. In the frame of the model of confined diffusion in a sphere, it was predicted 

by Volino et al.54 that T should deviate from the Fick law at 𝑄 ≈
3.3

𝑅𝑇
 towards a plateau value 𝑇 =

 
4.33 𝐷𝑇

𝑅𝑇
2 . The measured linewidths are in fair agreement with this prediction, as illustrated in Fig. 8 

by the shaded areas. At large Qs, T bends and tends asymptotically towards a constant value 

denoted 1/0 (Fig. 7). In fact, the Fickian diffusion model assumes a continuous motion process. 

Deviation from this assumption is observed when considering small displacements (i.e. for Q larger 

than the inverse particle distance), where a discontinuous mechanism is related to the finite 

molecular size and the local order in the liquid. The linewidth was modelled by the well-known 

jump-diffusion model, which assumes that the translation motion proceeds by successive 

elementary jumps (thin dashed lines in Fig. 7).53, 58  Between two jumps, the particle remains 

localized for a typical residence time 0 on a molecular site, with a spatial extension limited to the 

amplitude of vibrational modes. Applying the usual assumptions that the jump can be regarded as 

instantaneous with respect to the residence time 0 spent by the particle on a site, and that the jump 

length l is much larger than the spatial extension of each site, the linewidth of the Lorentzian was 

fitted with 

  𝑇(𝑄) =
𝐷𝑇𝑄2

1+𝜏0𝐷𝑇𝑄2      (5) 
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where DT is the diffusion coefficient and 0 the mean residence time.  

 

FIG. 8. Enlarged view of the half width at half-maximum T in the region of small Qs for water 

confined in MCM-41 at the same four temperatures (filled symbols) as shown in Fig. 7(a). Fit using 

the jump diffusion model (thin dashed lines). The level of the low Q limits predicted by the model 

of diffusion inside a sphere are illustrated by shaded areas.54    

These two parameters obtained for the four different matrices are illustrated in Fig. 9 as a function 

of the temperature in Arrhenius coordinates. The bulk values of DT and 0 determined from QENS 

measurements,18, 47 and the diffusion coefficient measured by NMR59 are also added for 

comparison. The values of the diffusion coefficient for the four confined materials are, within about 

10%, in good accordance with those of the bulk water. Deviations observed at high and low 

temperature could indicate that the activation energy is reduced in confinement, although the 

difference remained in the limit of the data accuracy, especially at 243 K as T approaches the 

instrumental resolution limit of IN5B. Significant differences between the confined and bulk water 

were obtained for the residence time 0. It is systematically larger in confinement than in the bulk 

as illustrated in Fig. 9(b). At 300 K, the residence time is three to four times longer in the porous 

matrices. Moreover, the activation energy is smaller in confinement, so that the residence times of 
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the different systems apparently approach the bulk system at lower temperature (243 K). It is worth 

noting that both DT and 0 exhibit a curvature, which indicates a super-Arrhenius character as 

usually observed in supercooled glass-forming liquids.60, 61 This is illustrated in Fig. 9(b) by the fit 

of the residence time with a Vogel-Fulcher-Tammann equation (dashed line). A mean jump length 

l could be estimated by combining the diffusion coefficient and the residence time noting that 𝐷𝑇 =

〈𝑙2〉

6𝜏0
. The obtained values of l were in the typical range from 0.65 to 1.2 Å for all the matrices with 

a systematic reduction when the temperature decreased from 300 to 243 K.     

 

  

FIG. 9. (a) Translational diffusion coefficient DT and (b) residence time 0 of water evaluated from 

the fit of IN5B spectra with a jump-diffusion model for water confined in MCM-41 and three PMOs 

as a function of the inverse temperature. In panel a, the QENS data of bulk water are from Teixeira 

et al.47 (stars) and the NMR diffusion coefficient from Price et al.59 (solid line). VTF fits of the 

residence time (dashed line in panel b).    

 

A comparison with other QENS data obtained from the literature is given in Table 2. These 

experiments have been analyzed differently, and often the EISFs related to the fast local dynamics, 

the confined translation diffusion and the fraction of non-mobile molecules were not available 



28 

 

simultaneously. Also, the temperature range was sometimes limited, which prevented a thorough 

comparison with our results. Bearing in mind these possible limitations, it is, however, possible to 

compare the values of DT and 0 that were obtained from the quasielastic linewidth. Similar 

conclusions can be made from these previous evaluations of DT, which values remain similar or 

marginally smaller than that of the bulk water whenever the pore diameter is larger or equal to 3 

nm. An enhanced slowdown of the translational dynamics is observed for a pore size smaller than 

3 nm (Table 2).   

 

Table 2. Translation diffusion coefficient DT and the residence time 0 of the mobile fraction of 

water molecules derived from the jump diffusion model. The results from the present study are 

compared with those from the literature. 

Temperature 

(K) 

Dt (10-9 m2.s-1) 

0 (ps) 

MCM-

41 

3.6 nm 

DVA-

PMO  

3.5 nm 

BP-

PMO 

3.5 nm  

DVB-

PMO 

4.1 nm 

Bulka Ph-

PMOc 

3 nm 

SBA-15d  

 

6.6 nm 

MCM-

41e  

3.8 nm 

MCM-

41d  

2.9 nm 

MCM-

41d  

2.4 nm  

300 Dt 1.98 1.97 2.01 2.24 2.3b 

(298 K) 

1.7 2.0 1.7 1.5 1.2 

 0 2.9 3.9 4.3 2.8 1.1b 

(298 K) 

2.6 3.3 2.6 5.3 7.3 

278 Dt 1.14 1.20 1.10 1.30 1.30 

 

1.1 

(273 K) 

 0.77 

(273 K) 

  

 0 4.5 6.1 7.2 4.6 2.3 8.7 

(273 K) 

 6.6 

(273 K) 

  

258 Dt 0.56 0.71 0.57 0.64 0.56      

 0 12.0 12.4 17.0 11.0 8.9      

243 Dt 0.26 0.57 0.47 0.32 0.42 

(253 K) 

     

 0 23.7 28.6 66.6 33.9 22.7 

(253 K) 

     

a: data from Teixeira et al.47, b: data from Bellissent-Funel et al.18, c: data from Aso et al.25, d: data from Baum et 

al.26, and e: data from Takahara et al.20 
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Interfacial translational water dynamics - high resolution neutron backscattering study   

In the previous section, the translational dynamics of confined water has been discussed in terms 

of two populations: an interfacial layer of thickness 𝑒𝑛𝑜𝑛−𝑚𝑜𝑏 in the range 1-5 Å, with a highly 

reduced dynamics due to the interaction with the pore surface, and a liquid region at the pore center 

with a ‘bulk-like’ dynamics with moderate slowdown and marginal effect of the pore chemistry. It 

is noteworthy that the interfacial dynamics is likely not frozen on a longer time scale. The fraction 

of molecules named ‘non-mobile’ rather corresponds to the long-time tail of the broad distribution 

of dynamics.61 This simplified bimodal description is widely used to account for the dynamics that 

is slower than the cut-off introduced by the energy resolution of the instrument. To get a better 

insight on the dynamics of the interfacial molecules, which are expected to be more influenced by 

the nature of the water/surface interaction, we have used the higher resolution of the neutron 

backscattering spectrometer IN16B, i.e. 0.75 µeV compared to 22 µeV on IN5B. In the meantime, 

the dynamical range covered on IN16B is much reduced, which means that the broad quasielastic 

intensity shown for IN5B is mostly hidden in the background on IN16B (i.e. the local motion and 

possibly the fastest part of the translation).     
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FIG. 10. Evolutions of the half width at half-maximum T of the Lorentzian as a function of Q2 

obtained from the fitting of QENS spectra measured on IN16B for confined water in the 3 matrices 

(a) MCM-41, (b) DVA-PMO, and (c) DVB-PMO at three temperatures 278 K, 258 K, and 243 K 

(filled symbols). Fits using the jump diffusion model (dashed lines). 

 

Table 3. Comparison of the translation diffusion coefficient DT and the residence time 0 of 

water molecules derived from the jump diffusion model for two different experimental resolutions.  

Temperature 

(K) 

Dt (10-9 m2.s-1) 

0 (ps) 

MCM-41 DVA-PMO  DVB-PMO 

  IN5B IN16B IN5B IN16B IN5B IN16B 

278 Dt 1.14 0.78 1.20 0.72 1.30 1.03 

 0 4.5 22 6.1 27 4.6 23 

258 Dt 0.56 0.34 0.71 0.33 0.64 0.52 

 0 12.0 26 12.4 31 11.0 27 

243 Dt 0.26 0.13 0.57 0.13 0.32 0.17 

 0 23.7 37 28.6 44 33.9 35 

 

The linewidth of the quasielastic intensity measured on IN16B was fitted with a jump-diffusion 

model, as illustrated in Fig. 10. The diffusion coefficients and residences times derived from these 

fits are illustrated in Fig. 11, and also given in Table 3. The diffusion coefficient and the residence 

time of bulk water are added in Fig. 11, which recalls the presentation made in Fig. 9 for IN5B 

results. The diffusion coefficients measured on IN16B are systematically smaller (by a factor of 

1.2 to 2) than those measured on IN5B for the same water filled matrices. Also, the residence times 

are longer. This confirms that the fraction of the water molecules, which was denoted as non-

mobile on IN5B, comprises particles that actually diffuse but much more slowly. We inferred from 

IN5B results that the molecules performing ‘bulk-like’ spatially restricted motions, were located 

in the center of the pore. Accordingly, we relate the sharpest quasielastic contribution observed on 

IN16B to a slower diffusion process, which corresponds to molecules interacting with the interface 
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of water filled matrices. Importantly, the diffusivity of these interfacial water molecules depends 

on the matrix chemistry. The largest reduction of translational mobility is obtained for the two 

hydrophilic matrices (MCM-41 and DVA-PMO), while intermediate values that stand between the 

bulk and the hydrophilic confinement situation are observed for water confined in the more 

hydrophobic matrix (DVB-PMO).  

 

FIG. 11. (a) Translational diffusion coefficient DT and (b) residence time 0 of water evaluated 

from the fit of IN16B spectra with a jump-diffusion model for water confined in MCM-41 and two 

PMOs as a function of the inverse temperature (symbols). In panel a, the NMR diffusion coefficient 

of bulk water from Price et al.59 (solid line). In panel b, the residence time of water confined in the 

same matrices fitted from IN5B spectra (dashed line) and the residence time of bulk water from 

Teixeira et al.47 (solid line) 

 

CONCLUSION 

We performed a systematic QENS study of the dynamics of liquid water confined in mesoporous 

silica (MCM-41) and organosilicas (PMOs) with different surface chemistries in a temperature 
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range spanning from 243 to 300 K. Two high-flux spectrometers with complementary energy 

resolution were combined so as to cover an extended dynamical range. Following recent 

recommendations made for bulk water, a model free analysis of the incoherent dynamic structure 

factor was applied for the first time to confined water. The analysis of IN5B results points towards 

the existence of two distinct dynamics: a fast local motion (typical time varying from 1 to 3 ps), 

which implies all the water molecules and translational diffusion dynamics attributable only to a 

fraction of molecules. The EISF of the former component is consistent with the isotropic rotational 

diffusion of the water molecule at 300 K. However, this interpretation is questioned at lower 

temperature. Based on the concept of intra-basin local relaxation introduced for bulk water, our 

result suggests a reduction of the spatial amplitude of this local motion on cooling. The second 

quasielastic relaxation is attributed to translational diffusion. It concerns only a fraction of mobile 

molecules, which are most probably located at the pore center. Deviations from the Fick’s law at 

large Qs were accounted by the jump-diffusion model and at low Qs by transient spatial restriction 

effects. The obtained values of the diffusion coefficient DT and the residence time 0 indicate a 

‘bulk-like’ behavior. The slowing down of translational diffusion due to confinement is moderate. 

It is within 10% for DT but it is more marked for 0 that is up to four times longer than for bulk 

water. The EISFs demonstrate that the translational diffusion is spatially restricted on the 

instrumental timescale, which differs from bulk water. The radius RT of the sphere confining the 

translational diffusion of the mobile molecules decreases from 9 to 5 Å, during cooling from 300 

to 243 K. It is not strictly related to the pore size itself. We consider that it rather emerges from the 

hindrance due to the surrounding molecules that are influenced by the pore interface. This is 

supported by the increase on cooling of the fraction p of molecules that are dynamically frozen (i.e. 

not diffusing on the timescale of IN5B), and that are most likely located at the interface. It is about 
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10-20% at 300 K, and reaches values as large as 40-50% at 243 K, which corresponds to a thickness 

of the ‘non-mobile’ layer in the range of 1-5 Å. This fraction also varies as a function of the nature 

of the matrix, illustrating the effect of the surface interaction on the dynamics of the interfacial 

layer. Finally, our study using the high-resolution spectrometer (IN16B) demonstrates that 

interfacial molecules are dynamically active on a longer timescale. Their motion could be described 

by a jump-diffusion model as well. However, the corresponding characteristic parameters DT and 

0 demonstrate a significantly slower process than that of the liquid located in the pore center. 

Moreover, the diffusivity of interfacial water molecules shows dependence on the nature of the 

confining matrix. The largest slowdown is obtained for hydrophilic matrices (MCM-41 and DVA-

PMO) with respect to the more hydrophobic one (DVB-PMO). As a whole, this study indicates 

that, on the ps-to-ns timescale and for a pore size of about 3.5 nm, the details of the water/surface 

interaction (i.e. matrix hydrophilicity) hardly affect the generic confinement effects that involve 

the water molecules located in the core of the pore but they are important in determining the 

translational motion of the water molecules located at the interface. 
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DATA AVAILABILITY 

Raw data were generated at the Institut Laue-Langevin (ILL) large scale facility. They will be 

available in the ILL Data Portal at doi:10.5291/ILL-DATA.6-07-34 and doi:10.5291/ILL-

DATA.6-07-45 following an embargo period.41, 42 Derived data supporting the findings of this 

study are available from the corresponding author upon reasonable request. 

SUPPLEMENTARY MATERIAL 

Temperature dependence of the QENS spectra measured on IN5B at Q = 0.8 Å-1 and on IN16B 

at Q = 0.85 Å-1 for water confined in DVA-PMO and in BP-PMO.  

Q-dependence of the QENS spectra measured on IN5B at the temperature T = 278 K for water 

confined in DVA-PMO and in BP-PMO. 
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