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Abstract

In this article we present a 1D single-material conservative remapping method that relies on high accurate
reconstructions: polynomial (P4, P1 with slope limiter) and non-linear hyperbolic tangent (THINC) rep-
resentations. Such remapping procedure is intended to be used pairwise with a cell-centered Lagrangian
scheme along with a rezone strategy to build a so-called indirect Arbitrary-Lagrangian-Eulerian scheme.
Most of practically used Lagrangian schemes are second-order accurate. The goal of this work is to handle
with accuracy contact using THINC reconstructions. At the same time, the smooth part of the solution
is dealt with quartic polynomials, resulting locally in fifth order accurate remapping method. To ensure
robustness, TVD-like reconstructions (P1 with slope limiter) are employed otherwise. A simple feature
tracking algorithm is designed to assign a reconstruction type per cell (P4 , Plim

1 or THINC). This tracking
algorithm is based on the nature of the contact waves which are traveling at the fluid velocity, while the
shocks are compressive and detectable by following a change of cell volumes. Numerical results assess the
behavior of such a remapping method on pure remapping problems of a scalar quantity and in the context of
the full hydrodynamics equations. The associated indirect cell-centered ALE numerical scheme is run and
produces numerical results that are presented to assess the extreme accuracy gained by such a remapping
procedure employing a mix of reconstruction types.

Key words: Remapping, polynomial reconstruction, high accuracy, indirect ALE, interface tracking
THINC reconstruction, hydrodynamics
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1. Introduction

The origins of Lagrangian numerical schemes are probably to be found in classified documents from the
Los Alamos National Laboratory, in New Mexico state in the U.S.A, during World War II and the Manhattan
project where the “calculation of certain time-dependent fluid flows played an important part in the wartime
work of the laboratory” (preface to the first edition of [1]). Indeed, the Lagrangian formulation of the
equations of hydrodynamics has a very old and venerable history. The very first numerical calculations that
resemble modern computer simulations in the numerical issues considered fluid equations in the Lagrangian
frame of reference in 1D [2]. Starting at this epoch, the staggered Lagrangian numerical scheme using
artificial viscosity term became popular and deeply analyzed, see for instance [3, 4, 5, 6, 7] and the recent
review [8]. An alternative to the previous staggered discretizations is to derive a Lagrangian scheme based
on the cell centered Godunov method [9]. A major advance in this direction has been made in [10, 11],
proving viability of cell centered schemes for a vast range of applications, see also [8]. In recent years, the
field of cell centered schemes is under a very active research and many groups contributed to this topic, see
for example[12, 13, 14, 15, 16, 17] for a representative set of examples.

Usually, to extend the robustness and usability of a Lagrangian scheme, it is supplemented with a
rezone/remesh procedure and a conservative remap algorithm to produce a so-called indirect Arbitrary-
Lagrangian-Eulerian method [18, 19, 20, 21, 22, 23, 24]. This technique prevents mesh degenerations in
regions of shear flows by consecutive improvement of the computational mesh during the rezone phase.
A critical part of the indirect ALE algorithm is the remap phase transferring fluid state quantities from
the Lagrangian to the rezoned mesh, which we focus on in this paper. Providing an exhaustive list of
contributors to this field is almost impossible, as this should embrace the key words interpolation techniques,
advection methods, (flux-corrected) transport methods, and remapping in general. However, some very
much related works are to be found in [19, 25, 26, 27, 28, 29, 30]. The readers are urged to refer to the
review made by Benson [19] to have an overview of legacy remapping methods. At first glance, defining a
conservative remapping technique between an old and a new mesh for a single constant variable (say mass),
constant in each cell, seems trivial. First, the exact geometrical intersections between a new cell and the old
mesh are computed. Second, the new mass in the new cell is computed as the sum of all old masses present
in the intersection sub-cells. This straightforward method is unfortunately terribly inaccurate and overly
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diffuses the quantity profile. This has led several authors to reconstruct the underlying function as a piece-
wise linear function [26, 27]. As such, the remapping method is exact for a global linear function and is
considered as second-order accurate. However, the generation of non-physical remapped quantities enforces
the utilization of slope or flux limiters during the reconstruction step. Such slope limiters may not always
be trivial to design even if there exists a vast literature about slope/flux limiters, some of them are now
known after their discoverers (van Leer [31, 32, 33], van Albada [34], Sweby [35], Barth-Jespersen [36],
Venkatakrishnan [37], Koren [38, 39], etc.) or their particularity (minmod [40], superbee [40], monotonized
central [32], etc.). Relatively few attempts have been made to increase the remapping accuracy to more than
second order via high order polynomial reconstructions, for several examples see [41, 42, 43]. Any attempt
has to face the difficulty of designing a ’limiter’ for non-smooth solution. And the notion of limiting
becomes obscur if not contrived for higher order polynomial reconstructions.

Usually, the use of polynomial based reconstruction is rarely questioned even if any type of function
could be employed instead. In the context of designing high accurate Finite Volume schemes some authors
recently associate hyperbolic tangent (THINC) and polynomials as reconstruction basis, see for instance
[44, 45, 46, 47, 48, 49]. Moreover, in the remapping context, the mechanism used to handle discontinuous
solution (contact, shock) systematically adds some artificial numerical dissipation, leading the spreading of
interfaces over several cells: two for shocks, five or more for contacts.

In this work we propose to adapt the reconstruction procedure for instance by using high accurate
polynomials in smooth areas, non-linear hyperbolic tangent function for contact, and limited piece-wise
linear polynomials on irregular area. Then, we have to design an algorithm to detect such zones and have a
high-quality representation of the quantity over various features in the flow.

This paper is a 1D proof of concept: it is intended to design an indirect single-material cell-centered
ALE scheme for which the remapping is able to maintain extremely sharp contact discontinuities, an accu-
rate solution in smooth regions, and an essentially non-oscillatory one close to shocks and steep gradients.
We will design the simplest possible tools in order to show the capability of such an approach and illustrate
the gain brought by the use of high accurate polynomial and non-linear reconstructions in the hydrodynam-
ics context.

The paper is organized as follows. Section 2 will present the basics of classical high accurate remapping
techniques as a conservative interpolation procedure. In section 3, we present the cell-centered Lagrangian
scheme to be coupled with the remap to form an indirect ALE scheme. Then in section 4, we propose partic-
ular improvements based on extending the basis of reconstruction functions with high accurate polynomial
and non-polynomial functions. A procedure intended to track contact and follow shock area is presented
in subsection 4.3, and its operational transplant into a 1D indirect ALE code is described in subsection 4.4.
The following section 5 is devoted to present the numerical results obtained on classical static tests, while
full hydrodynamics test cases are addressed in section 6. A conclusion and perspective section 7 closes this
paper.

2. Abstract high accurate remapping scheme

In order to set up the notation, let us describe the remapping environment for a generic function u
defined on domain Ω. The computational domain is paved with an original mesh O made of I cells, not
necessarily of uniform size ∆xi, i = 1, . . . , I and denoted Ii = [xi+1/2, xi−1/2]:

O =
{

Ii = [xi+1/2, xi−1/2], i = 1, . . . , I
}
. (1)

The cell center is denoted xi = 1
2 (xi+1/2 + xi−1/2). The space variable in O is denoted x and we assume

that an integrable function ϕex(x) is defined on this domain. Moreover, we assume that the function ϕex is
characterized by its mean values over each cell Ii as

ϕi =
1

∆xi

∫
Ii

ϕex(x) dx. (2)
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The vector of all mean values is called the state vector and denoted by ϕO = (ϕ1, . . . , ϕM). The original
mesh O and the state vector ϕO = (ϕ1, . . . , ϕM) emulate the resulting solution after a Lagrangian scheme
has operated.

Next, a target mesh T made of J non-uniform cells called J j, j = 1, . . . , J, is also considered:

T =
{

J j = [x j+1/2, x j−1/2], j = 1, . . . , J
}
. (3)

The number of cells I may be different than J and the location of cells J j may not have any relation with
those of cells Ii, meaning that the old and target mesh may not have any logical relation between each other
apart from the fact that both are paving Ω. The target mesh can be though as the mesh produced by the
rezone strategy of an indirect ALE scheme. Note that the super-mesh (or overlay or exact intersection) of
O and T , called I, is constituted by the intersections of cells

Ki, j = Ii

⋂
J j, i = 1, . . . , I, j = 1, . . . , J, (4)

where Ki, j is empty if Ii and J j do not intersect. Then if one orders the non-empty intersection cells Ki, j and
enumerates them by a single index from k = 1 to K, then we can define the intersection mesh as

I =
{

Kk = [xk+1/2, xk−1/2], k = 1, . . . ,K
}
, (5)

Kk being an intersection cell. We can remark that xk+1/2 and xk−1/2 coincide with either one xi+1/2, xi−1/2 or
x j+1/2, x j−1/2. It is also useful to remark that by construction we have

Ii =

J⋃
j=1

Ii ∩ J j =
⋃

k:Kk∈Ii

Kk, and J j =

I⋃
i=1

Ii ∩ J j =
⋃

k:Kk∈J j

Kk, (6)

so every initial and target cell can be composed from the intersection cells Kk.
The purpose of a conservative remapping scheme consists in transferring the information hold by ϕO

from the original mesh onto the target one. In an indirect ALE context, the remap transfers the state vector
from the Lagrangian mesh onto the rezoned one. In other words, we wish to compute the integral mean
value

ϕ j =
1

∆x j

∫
J j

ϕex(x) dx, (7)

only knowing the mean values ϕi defined on the original mesh. A simple manipulation using (4) and (6)
yields

ϕ j =
1

∆x j

∫
J j

ϕex(x) dx =
1

∆x j

I∑
i=1

∫
Ki, j=Ii∩J j

ϕex(x) dx, (8)

which would produce the exact mean value of ϕex over target cell J j if one would know the exact function
ϕex over cell Ii. Unfortunately we have only access to the mean values in a neighborhood (ϕi−h, . . . , ϕi+h)
with h > 0 to be specified.
In order to design a high accurate remapping scheme, one first needs to design an accurate representation
of the unknown function ϕex only by a clever use of its mean values ϕO. This step is called ’reconstruction’,
and it is denoted in cell Ii as: ϕ̂i(x) ≡ Ri(x), where the reconstruction operator R can be written in an
abstract form for all x in cell Ii as

R :
(

x, Ii, S
p,q
i

)
−→ ϕ̂i(x), (9)
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where Sp,q
i is the stencil associated to cell Ii made of p cells to the left and q cells to the right, that is

S
p,q
i = (ϕi−p, . . . , ϕi+q). Note that p and/or q could be equal to zero for instance if shifted stencils are to be

employed. The operator R is usually working in the simplest space, that is the approximate function space
is the space of polynomials. Even simpler, classical reconstruction procedures only consider piece-wise
polynomial representation of degree d = 1 or d = 2 in cell Ii given p = q = 1. However, in this work we
also use d = 4 polynomial degree with central stencil p = q = 2. The choice of the approximate function
space is referred to as the ’representation space’. In other words, the exact function ϕex(x) is approximated
in cell Ii by ϕ̂i(x), which belongs to a given set of possible representation functions: polynomials P1 , P4 or
exponential, trigonometric functions, etc.
The remap procedure then consists in replacing the exact function ϕex(x) in (8) by its approximation ϕ̂i(x)
in cell Ii as

ϕ j =
1

∆x j

I∑
i=1

∫
Ii∩J j

ϕ̂i(x) dx. (10)

If the reconstructions are more complicated functions, the integrals in the previous equation are approxi-
mated by a G point quadrature rule to get

ϕ j =
1

∆x j

I∑
i=1

∫
Ii∩J j

ϕ̂i(x) dx '
1

∆x j

I∑
i=1

G∑
g=1

wgϕ̂i(xg), (11)

where (wg, xg) are the quadrature weight and the position respectively. In summary, given a target cell J j,
one first identifies the cell Ii such that Ki, j , ∅. Then the reconstruction operator acts on those cells Ii to
get the representation/reconstruction: ϕ̂i. Last, the integration rule is applied to get the final mean value ϕ j

using (11).
Some expected properties of a conservative transfer from the old onto the target mesh are:

1. a local conservation: the mean value represented by ϕi in cell Ii should be scattered in its vicinity,
2. a high accuracy on the smooth parts of the flow,
3. the robustness, and an essentially non-oscillatory behavior, possibly accurate description of disconti-

nuities.

While the first two properties are relatively simple to assure, the last one is more difficult. Indeed the ro-
bustness is usually ensured, but the accurate description of discontinuities is often replaced by an excessive
dissipation to avoid spurious oscillations.

The accuracy of the previous formula is almost entirely linked to the reconstruction procedure Ri, and,
possibly the accuracy of the integral rule. In 1D, there is no mesh intersection error. Moreover, the integra-
tion rule is often, if not always, chosen of high enough accuracy so that the resulting error remains at a lower
level compared to the other errors. Finally, only the representation and reconstruction errors remain. The
representation error is linked to the choice of functions employed to mimic the underlying (unknown) exact
solution, whereas the reconstruction error is linked to the ability to choose the best approximate function
in the representation function space. For instance, the representation space constituted by the high degree
d polynomials is appropriate when the underlying solution is smooth enough and there are good candidate
functions in this space to lower the reconstruction error. However, if ϕex is discontinuous then there is
no good polynomial in this space to cope with the situation, hence leading to a large reconstruction error
due to the fact that the representation space is inappropriate. Therefore the reconstruction error over the
mesh is the sum of the cell reconstruction error made by the specific choice of one of the representative
function. For instance, classical remapping procedures [50, 51, 27, 26, 29, 52] usually employ piece-wise
linear polynomial functions as representation basis. Some more advanced ones use high-order polynomi-
als [41, 42, 43]. Even if polynomial basis is the simplest possibility, any choice of representation basis is
possible and in this work, we consider the polynomials and hyperbolic tangent representation space.
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3. Cell-centered Lagrangian scheme to solve the hydrodynamics system of conservation laws

In the Lagrangian hydrodynamics methods, a computational cell moves with the flow velocity. This en-
sures that there is no mass flux crossing the boundary of the Lagrangian moving cell. Thus, the Lagrangian
methods can capture contact discontinuity sharply in multi-material fluid flows. However, in the Lagrangian
framework, one has to discretize not only the gas dynamics equations but also the vertex motion in order
to move the mesh. The most natural way to solve this problem employs a staggered discretization in which
position, velocity and kinetic energy are centered at points, while density, pressure and internal energy are
within cells. The dissipation of kinetic energy into internal energy through shock waves is ensured by an
artificial viscosity term. Since the seminal works of von Neumann and Richtmyer [3], and Wilkins [4],
many developments have been made in order to improve the accuracy and the robustness of staggered hy-
drodynamics [53, 54, 7, 55]. More specifically, the construction of a compatible staggered discretization
leads to a scheme that conserves total energy in a rigorous manner [6].
An alternative to the staggered discretization is to derive a Lagrangian scheme based on the Godunov
method [9, 10, 11, 56, 57, 58]. In comparison to staggered discretizations, Godunov-type methods ex-
hibit the good property of being naturally conservative, they do not need an artificial viscosity. In the
Godunov-type method approach, all conserved quantities, including momentum, and hence cell velocity
are cell-centered. Consequently, they allow a straightforward implementation of conservative remapping
methods when they are used in the context of an Arbitrary-Lagrangian-Eulerian (ALE) strategy.
In this section we focus on the development of a cell-centered Lagrangian scheme to be used as the en-
gine of a 1D hydrodynamics ALE code. First, we present the governing hydrodynamics equations in a
Lagrangian formalism. Then, the cell-centered Lagrangian scheme from Maire [11, 59, 56, 58] is presented
in its first and second order accurate versions, see also the reviews [8, 24]. A very interesting presentation
of the derivation of Lagrangian equations and schemes can be found in [58]1.

3.1. Governing equations
Let us consider a fluid particle initially located at position X and denote its position at time t by x(X, t).

Here, X denotes the Lagrangian coordinate. If u = u(x, t) denotes the x-component of the fluid velocity,
then the fluid paths are described by the solution of the trajectory equation

dx
dt

= u, x(X, 0) = X. (12)

Here, x stands for the Eulerian coordinate. Expressing the fluid variables in terms of the Eulerian coordinate
and noticing that mass conservation allows us to write dm = ρ0(X)dX = ρ(x(X, t), t)dx, where ρ0 = ρ0(X) >
0 is the initial density. The 1D system of hydrodynamics Euler equations can be written as

ρ
d
dt

(
1
ρ

)
−
∂u
∂x

= 0, (13a)

ρ
d
dt

u +
∂P
∂x

= 0, (13b)

ρ
d
dt

E +
∂

∂x
(Pu) = 0, (13c)

where d
dt = ∂

∂t + u ∂
∂x denotes the material derivative. The specific internal energy ε is defined by ε =

E − 1
2 u2. The thermodynamic closure is given by the equation of state (EOS) P = P(ρ, ε). To ensure

the thermodynamic consistency of the above system with the Second Law of thermodynamics, it must
be completed by the following entropy inequality ρ dη

dt ≥ 0, where η denotes the specific entropy. The
specific entropy is related to the other thermodynamic variables by means of the fundamental Gibbs relation
Tdη = dε + Pd( 1

ρ
), where T denotes the fluid temperature.

1Note that most of this section has been freely inspired by the chapter 4 of [58].
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3.2. Lagrangian scheme
3.2.1. First order discretization

Let Ω = [Xmin, Xmax] be the domain initially filled with the fluid. This domain is partitioned into Nc cells
Ωi = [Xi− 1

2
, Xi+ 1

2
], for 1 ≤ i ≤ Nc. The vertex motion is described by the discretized trajectory equation

d
dt

xi+ 1
2

= ui+ 1
2
, xi+ 1

2
(0) = Xi+ 1

2
, (14)

where ui+ 1
2

denotes the vertex velocity. Let Ii(t) = [xi− 1
2
(t), xi+ 1

2
(t)] denote the Eulerian moving cell, cor-

responding to the Lagrangian cell Ωi in the flow map. Let Φi = ( 1
ρi
, ui, Ei) be the mass averaged values

of ( 1
ρ
, u, E) over the cell Ii(t). We recall that in the Lagrangian framework, the mass mi of the cell Ii(t) is

constant
mi = ρi(t)∆xi(t), ∀t > 0, (15)

where ∆xi = xi+ 1
2
− xi− 1

2
denotes the volume of the cell. Using the transport formula, the integration of (13)

over Ii leads to the following set of evolution equations for the discrete variables Φi = ( 1
ρi
, ui, Ei)

mi
d
dt

(
1
ρi

)
− (ui+ 1

2
− ui− 1

2
) = 0, (16a)

mi
d
dt

ui + Pi+ 1
2
− Pi− 1

2
= 0, (16b)

mi
d
dt

Ei + (Pu)i+ 1
2
− (Pu)i− 1

2
= 0, (16c)

where ui+ 1
2
, Pi+ 1

2
and (Pu)i+ 1

2
are the numerical fluxes at node xi+ 1

2
under the fundamental assumption that

(Pu)i+ 1
2

= Pi+ 1
2
ui+ 1

2
. The fluxes ui+ 1

2
and Pi+ 1

2
are obtained exactly or approximately by solving the Riemann

problem at the cell interface xi+ 1
2

for the left state Φl = ( 1
ρi
, ui, Ei)t and the right state Φr = ( 1

ρi+1
, ui+1, Ei+1)t.

In our case, we choose the acoustic approximate Riemann solver, otherwise called Godunov acoustic solver
[9]. This solver is cheap and versatile since its use only requires the knowledge of the isentropic sound
speed and can handle tabulated equations of state. The acoustic solution of the Riemann problem defined
by states Φl,Φr is given by

u∗ =
zlul + zrur

zl + zr
−

Pr − Pl

zl + zr
, P∗ =

zlPr + zrPl

zl + zr
−

zlzr

zl + zr
(ur − ul) , (17)

where zs is the acoustic impedance, zs = ρsas, with as is the local sound speed.
The first order in time discretization assumes that all fluid variables are cell-centered and known at time
t = tn. Classically we denote them with the superscript n and the time-step ∆t = tn+1 − tn. A standard
forward Euler scheme discretization of system (16) yields

mi

 1
ρn+1

i

−
1
ρn

i

 − ∆t (un
i+ 1

2
− un

i− 1
2
) = 0, (18a)

mi(un+1
i − un

i ) + ∆t (Pn
i+ 1

2
− Pn

i− 1
2
) = 0, (18b)

mi(En+1
i − En

i ) + ∆t (Pn
i+ 1

2
un

i+ 1
2
− Pn

i− 1
2
un

i− 1
2
) = 0, (18c)

where un
i+ 1

2
and Pn

i+ 1
2

are the fluxes at node xi+ 1
2

obtained by solving the Riemann problem for the left state

Φl = ( 1
ρn

i
, un

i , E
n
i )t and the right state Φr = ( 1

ρn
i+1
, un

i+1, E
n
i+1)t.

The previous set of discrete equations (18) leads to a first order accurate scheme both in space and time. In
addition, the vertex motion is simply given by

xn+1
i+ 1

2
= xn

i+ 1
2

+ ∆t un
i+ 1

2
. (19)
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with x0
i+ 1

2
= Xi+ 1

2
, corresponding to the discretization of (14). To complete the Lagrangian phase, we must

evaluate the new specific internal energy, which is done as εn+1
i = En+1

i − 1
2 (un+1

i )2. Finally, using the EOS,
the pressure Pn+1

i = P(ρn+1
i , εn+1

i ), the sound speed an+1
i and the acoustic impedance zn+1

i are computed at
the new time level.
The time step is evaluated following the Courant Friedrich Levy (CFL) stability condition [1]. At time tn,
we compute

∆t = CFL min
i

∆xn
i

an
i
,

where CFL is a strictly positive coefficient and an
i is the sound speed in the cell Ωi. Knowing ∆tn−1, the

evaluation of the next time step ∆tn is performed as follows

∆tn = min(∆t,CM∆tn−1,∆tv), (20)

where CM is a multiplicative coefficient, which allows the time step to increase moderately. Moreover, we

add a criterion on the cell volume variation so that ∆tv is such that |v
n+1
i −vn

i |
vn

i
≤ Cv where Cv is a strict positive

constant less than one and vn
i refers to the cell volume at time tn. For numerical applications, we generally

use CFL = 0.25, CM = 1.01 and Cv = 0.1, such as recommended in [56].

3.2.2. Second order discretization
Here, we summarize the derivation of a high-order extension of the previous scheme [60] using a

predictor-corrector time discretization and Monotonic Upstream-centered Schemes for Conservation Laws
(MUSCL) like spacial reconstructions following the pioneering works of van Leer [33] and Kolgan [61, 62].
Let us assume a piece-wise linear representation of pressure and velocity at time tn, that is, for all x ∈
[xn

i− 1
2
, xn

i+ 1
2
],

ũi(x) = un
i + φu

i (δu)n
i (x − xn

i ), P̃i(x) = Pn
i + φP

i (δP)n
i (x − xn

i ), (21)

where xn
i = 1

2

(
xn

i− 1
2

+ xn
i+ 1

2

)
is the midpoint of cell In

i =

[
xn

i− 1
2
, xn

i+ 1
2

]
, and (δu)n

i and (δP)n
i are the slopes of

velocity and pressure that can be determined using for instance a least squares method considering i−1 and
i + 1 as neighbors. A slope limiter φi is supplemented to reduce the slope value to avoid formation of new
extremal values. There is a vast literature about slope/flux limiters, some of them are now known after their
discoverers (van Leer [31, 32, 33], van Albada [34], Sweby [35], Barth-Jespersen [36], Venkatakrishnan
[37], Koren [38, 39], etc.) or their particularity (minmod [40], superbee [40], monotonized central [32],
etc.). Such classical limiters all rely on a priori information, that is to say the information at tn before the
actual step. It is important to note that their role is twofold: (i) it must detect if some cell reconstructions
will lead to unacceptable values at tn+1, and, in that case, (ii) it must correct the situation in order to ensure
that the final numerical solution is valid.
For instance, when the so called Barth-Jespersen (BJ) limiter is used then the slope of the P1 polynomial
ũi is reduced so that the reconstructed states on the left and right boundaries of cell Ωi are in bounds.
The bounds are defined by the minimal and maximal values of the constant data un

j for j in the direct
neighborhood surrounding Ωi, that is Bn

i = max
j=i±1,i

(un
j ) and bn

i = min
j=i±1,i

(un
j ).

The limiter φu
i is computed such that the following constraints are fulfilled

bn
i ≤ ũi(xn

i−1/2) ≤ Bn
i , and bn

i ≤ ũi(xn
i+1/2) ≤ Bn

i , (22)

likewise for φP. In this work, the Barth-Jespersen [36] or Venkatakrishnan [37] limiter is used.

Then, using these second order limited reconstructions, we can evaluate more accurately the left and
right states at point xn

i+ 1
2

to feed our acoustic Riemann solver with the state values ũi(xn
i± 1

2
), P̃i(xn

i± 1
2
). Recall
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that the acoustic Riemann solver only demands the knowledge of the impedance, zi and zi+1. These can be
in the simplest case considered constant during the time-step and equal to zn

i = ρn
i an

i and zn
i+1 = ρn

i+1an
i+1,

however in practice, modified version described in [63] is used and further supplemented with the left and
right velocity/pressure reconstructed states, recall (17).
The generic high-order Godunov-type cell-centered Lagrangian scheme of second-order in time can be
written under the general form

mi

 1
ρn+1

i

−
1
ρn

i

 − ∆t
(
un+ 1

2

i+ 1
2
− un+ 1

2

i− 1
2

)
= 0, (23)

mi(un+1
i − un

i ) + ∆t
(
Pn+ 1

2

i+ 1
2
− Pn+ 1

2

i− 1
2

)
= 0, (24)

mi(En+1
i − En

i ) + ∆t
(
(Pu)n+ 1

2

i+ 1
2
− (Pu)n+ 1

2

i− 1
2

)
= 0. (25)

supplemented with the discrete grid motion which is governed by the discretized trajectory equation

xn+1
i+ 1

2
= xn

i+ 1
2

+ ∆t un+ 1
2

i+ 1
2
. (26)

Here, un+ 1
2

i+ 1
2

, Pn+ 1
2

i+ 1
2

and (Pu)n+ 1
2

i+ 1
2

are the time-averaged numerical fluxes at node xi+ 1
2

over the time interval

[tn, tn+1]. Several classical techniques are available to estimate these time-averaged numerical fluxes based
on iterations (predictor/corrector scheme, Runke-Kutta scheme, etc.), or more advanced approaches based
on one step integration methods (Generalized Riemann Problem GRP [64, 65, 66, 58, 56], Arbitrary high
order DERivatives ADER [67, 68, 69, 70], etc.). In this work we use the GRP version, see [58, 56] for
details and some analysis of this scheme.
Let us remark, that this nominally second-order cell-centered Lagrangian scheme does not require any
artificial viscosity like term, because the approximate Riemann solver along with the slope limiter provide
some embedded and (usually) sufficient numerical dissipation.

4. High-accurate indirect ALE scheme

In this section, we simply and briefly describe the inter-connection of a Lagrangian scheme with rezone
and remap procedures to produce an indirect ALE scheme. Depending on the chosen rezone strategy, which
determines the target mesh for the remapper, the overall scheme can be either

Lagrangian: if the target mesh is the Lagrangian mesh (no remapping is needed);

Eulerian: as Lagrange+Remap (L+R), if the rezone procedure constantly selects the initial mesh onto
which the remap operates;

ALE: for any other choice of target mesh, assuming that the Lagrangian and rezone meshes pave the same
computational domain.

For the sake of generality, we assume that the rezoning strategy provides a target mesh T that has a priori no
logical connection with O, the Lagrangian/original one. In this section, we first present the classical second-
order accurate remap scheme. Then in the second time we introduce our more accurate version based on
high-order polynomial and hyperbolic tangent (THINC) function reconstructions [44, 45, 46, 47, 48, 49]
supplemented with an interface tracking algorithm.
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4.1. Classical second-order remap scheme: piece-wise linear reconstruction + slope limiter

The indirect ALE scheme starts from cell-centered data at time tn, Φn
i = ( 1

ρn
i
, un

i , E
n
i ), in each cell In

i =[
xn

i− 1
2
, xn

i+ 1
2

]
from the original mesh On.

Lagrangian scheme The nominally second-order Lagrangian scheme determines the time-step ∆t and up-
dates the state and geometrical variables Φn+1

i , xn+1
i+ 1

2
up to time tn+1. During this time-step, the mesh

has moved with the fluid velocity and In+1
i =

[
xn+1

i− 1
2
, xn+1

i+ 1
2

]
for every cell i, and the whole mesh is called

On+1.

Rezone strategy In the second step, the rezone stage, the target mesh T is set. In other words, the rezone
procedure defines x̃n+1

j+ 1
2

for any cell j = 1, . . . , J as being the new point position determining the target

cells Jn+1
j . Therefore, for the remap stage, we indeed consider the intersection of cell Ii ≡ In+1

i and
J j ≡ Jn+1

j which we have called Ki, j ≡ Kk in section 2.

Remapping procedure Then the remap algorithm operates to produce the cell-centered conserved state
variables Φ̃n+1

j in cells Jn+1
j for all j = 1, . . . , J. It uses the cell-centered piece-wise linear limited

reconstructions from the original mesh to enhance the accuracy of the remapping without sacrificing
thou bound preservation property. As a consequence, the mean values are located at the cell-centers
of the target mesh T n+1 at time tn+1.

In the classical second-order remapping, a least-squares procedure fits at best the slope of the piece-wise
linear reconstruction with the mean values in the two neighboring cells of the current one. However, let
us present the polynomial reconstruction in a more general sense. Starting from the mean values ai of a
smooth enough function a(x) over cell Ii of an arbitrary mesh, we define the neighborhood of Ii as the set of
p and q cells to its left and right sides: Sp,q

i = {Ik, k = i − p, · · · , i + q}. With the associated p + q neighbor

mean values, we can define the polynomial of degree m in cell i as âi(x) =

m∑
j=0

â j x j, where m ≤ (p + q).

Usually, we choose p = q. The unknown coefficients â j are further determined to fit âi(x) to the data ak

from the neighborhood Sp,q in the least-squares sense under the constraint of conservation of local mean
value, that is

arg min
âk

∣∣∣∣∣∣ 1
|Ik |

∫
Ik

âi(x) dx − ak

∣∣∣∣∣∣2 , under constraint
1
|Ii|

∫
Ii

âi(x) dx = ai. (27)

This problem has always at least one solution because the number of degrees of freedom is less or equal than
the number of data. Following [71], this over-determined system can be solved by the QR decomposition
with the Householder transformation [72]. We have then defined the operator R of (9) which works for the
set of polynomials of degree m > 0. For instance, for the second-order (linear) reconstruction, we set m = 1.
Once the slope â1 is computed, then a limiter is activated like the one described in the Lagrangian step, see
section 3.2.2. Usually, the Barth and Jespersen slope limiter [36] is coupled with this reconstruction.

4.2. High accurate remapping scheme

In this section, we describe the process combining several reconstruction techniques into one remapping
scheme. In general, any suitable function can be used for the reconstruction in the particular cell. In this
work, we combine quartic polynomials P4 , limited linear function Plim

1 , and the non-polynomial hyperbolic
tangent THINC reconstructions.
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4.2.1. High accuracy P4 : Quartic polynomial reconstruction
Let us define the neighborhood of cell Ii as the set of two neighbor cells to the left and to the right:

S
2,2
i = {Ik, k = i − 2, · · · , i + 2}, that is with m = 2. With the associated stencil of 5 cells and their mean

values ak, we can define the quartic polynomial in cell Ii as âi(x). The unknown coefficients â j are further
determined with the previously described operator R (least-square procedure (27)). Note that a 5th order of
accuracy is obtained if the underlying function is smooth enough. On the contrary, this reconstruction does
oscillate in the case of discontinuous or irregular one. Unfortunately, there exists no agreement on how to
limit high order polynomial reconstructions. As a consequence, such accurate but un-safe reconstruction
will be our preferred choice in most of the domain, where the solution is smooth enough.

4.2.2. Non-oscillatory Plim
1 : Piece-wise linear polynomial reconstruction with slope limiter

By setting m = 1 we can also re-use the linear reconstruction with limiter summarized in section 4.1.
This is a safe choice when the underlying solution is irregular. This will our preferred reconstruction in this
later case.

4.2.3. Interface sharpening THINC : Non-linear hyperbolic tangent reconstruction
For a strictly increasing or decreasing set of mean values ai−1, ai, ai+1, the THINC (Tangent Hyperbola

for INterface Capturing method) [44, 45, 46, 47, 48, 49] function in cell Ii is given by

qi(x) = amin +
[[a]]

2

[
1 + θ tanh β

(
x − xi−1/2

xi+1/2 − xi−1/2
− x̃i

)]
, (28)

where we define the values

amin = min
x∈Ni

(a(x)), amax = max
x∈Ni

(a(x)), [[a]] = amax − amin, θ = sgn(ai+1 − ai−1),

where Ni is the neighborhood in the vicinity of cell Ii. Classically, the min and max value are defined
for Eulerian FV schemes using THINC [48, 49] by amin = min(ai−1, ai+1) and amax = max(ai−1, ai+1) on a
stencil Ni made of two cells. However, in our remapping context, those maximal and minimal values are
evaluated thanks to piece-wise linear limited polynomial reconstructions in cells i − 1 and i + 1, that is

amin = min(̂ai−1(xi−1/2), âi+1(xi+1/2)), amax = max(̂ai−1(xi−1/2), âi+1(xi+1/2)).

This choice provides more smooth reconstruction profile across the cell boundaries, which in practice pre-
vents degeneration of the contact resolution. The parameter β controls the jump thickness and x̃i represents
the relative location of the jump center, see figure 1. It is obtained by enforcing the conservation of the

mean value, ie ai =
1

∆xi

∫
Ii

qi(x) dx. Substituting (28) into this conservation relation leads to a non-linear

equation, which can still be solved analytically. The value of x̃i can be expressed [46] in a unique and
explicit form:

x̃i =
1

2β
ln


exp

(
β

θ
(1 + θ − 2ai)

)
1 − exp

(
β

θ
(1 − θ − 2ai)

)
 . (29)

In other words, this choice of x̃i makes THINC reconstruction (28) a conservative one. Let us remark that
the stencil is reduced to few neighbors which are solely used to determine the bounds amin, amax into which
the THINC function is restricted. Hence a THINC function is ’in-bounds’ by construction. Notice that if
the mean values a are almost flat, so will be such reconstruction. Moreover, if the mean values are not
monotonically increasing or decreasing, then we can not reconstruct a THINC function. Instead we set
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Figure 1: Illustrative examples of THINC functions q parameterized by the jump thickness β computed from cell mean values
(ai−1, ai, ai+1) = (0.1, 0.4, 1.0).

qi(x) = ai for all x. In our remap case we employ β = 15 which makes the THINC function relatively steep,
see figure 1 where we present some illustrative examples of THINC reconstructions starting from cell mean
values (ai−1, ai, ai+1) = (0.1, 0.4, 1.0) for ∆x = 1.
As a summary, the THINC function is a non-linear reconstruction that connects minimum and maximum

values by a hyperbolic tangent. It is designed to be used for cells in which a true discontinuity is located,
such as a contact. In such cells, any high order polynomial reconstruction do oscillate, while the THINC
reconstruction is prone to produce a genuine accurate representation.

4.3. Interface tracking algorithm
We need to determine an algorithm, called ’interface detector’ or ’interface tracking’ which ranks the

cells according to the reconstruction types: THINC, P4 or Plim
1 . Ideally P4 is employed when the solution

is genuinely smooth, Plim
1 when there is a doubt on regularity, for instance in the vicinity of shocks, and,

THINC if the cell contains an interface.
Tracking material interface and contact. A Lagrangian scheme preserves the contacts by construction

when they are located on cell boundaries. These contacts separate two different materials or different states
of the same material. In the hydrodynamics context it usually translates into a jump in density, while
velocity and pressure remain constant. Because of the constant fluid velocity, the left and right cells move
with the same velocity, and, therefore they remain “pure”.
One drawback of the remap stage of an indirect ALE scheme is the mixing of those two states if the pure
cells are not maintained by the rezone mesh on which the remap operates. In our approach, if we track
the cells in which such discontinuities are, then a THINC reconstruction could be used inhere. Although
the same diffusion process will occur because we create a mixed cell, one expects that its magnitude will
be drastically lowered due this more accurate discontinuity representation via THINC. Hence, our tracking
algorithm initially marks the discontinuity y0

i in cell I0
i containing a discontinuity (or the cells surrounding

one). This tracked contact position is updated with the fluid velocity during the Lagrangian steps as

yn+1
i = yn

i + ∆t
(
(1 − αi)u

n+ 1
2

i− 1
2

+ αiu
n+ 1

2

i+ 1
2

)
, αi =

yn
i − xn

i− 1
2

∆xn
i

. (30)

Once a remap stage is called for instance at time tn+1, then the THINC reconstruction is computed in the
old cell In+1

i welcoming a contact. This position is obviously fixed during the remap stage because it is
12



just a conservative interpolation between meshes, therefore we can determine in which rezoned cell J j it is
located. This cell J j (in the new mesh) is the one in which the discontinuity remains for the next successive
Lagrangian steps.

Tracking compression area. A shock wave is typically spread by the Lagrangian scheme over two to
four cells, depending on the embedded numerical viscosity. A second-order remap scheme usually does
not overly degrade nor improve this situation and we do not expect to improve this situation. Therefore,
we want to use piece-wise linear limited reconstructions in the vicinity of compression area. To detect such
area, we rely on a type of artificial viscosity switch from the standard staggered Lagrangian scheme. More
precisely we state that a cell endures a ’high’ compression if its volume evolved during a time-step as:
vn+1

i < κvn
i where 0 < κ < 1 is a user given parameter. Manipulating this equation yields(

un+ 1
2

i+ 1
2
− un+ 1

2

i+ 1
2

)
< (κ − 1)

vn
i

∆t
. (31)

(31) is the detection criteria used to determine if cell Ii is under compression. If so, it demands that a safe
reconstruction is used in its vicinity. The vicinity of cell Ii is defined as the neighborhood made by two cells
to the left and right, for which the P1 reconstruction supplemented with a slope limiter is employed. We
use κ = 0.95 in our simulations, corresponding to 5% cell compression to be detected as shock cell. We are
aware that this compression detector is not unique and far from perfect. However, it is simple and can be
easily replaced by a different shock detector, adjusted for the particular application.

Regular solution. At last, any cell which has not been marked or tracked by the previous algorithm is
considered as a regular one. In these cells, we can achieve the maximal accuracy by using the unlimited
P4 polynomial reconstruction.

Note that all conservative variables are treated alike, that is with the same reconstruction type, should
it be P4 , Plim

1 or THINC, because combining different reconstructions in a single cell typically results in
spurious oscillations due to inconsistent representation of fluid quantities.

4.4. Summary of the indirect ALE scheme

The main steps of the 1D cell-centered indirect ALE scheme with the contact-tracking and shock-
detecting algorithm introduced in section 4.3 are briefly summarized as:

1. Lagrangian scheme:
(a) Compute cell acoustic impedances by the approach suggested in [63].
(b) Perform piece-wise linear reconstruction of velocity and pressure in each cell (21), employing

least-squares and Venkatakrishnan limiter [37].
(c) Using the Riemann solver (17), compute the central state velocity and pressure.
(d) Calculate time step size (20).
(e) By the GRP scheme [64, 65, 66], approximate central state temporal derivatives, and use them

to estimate nodal pressure and velocity at time level tn+ 1
2 .

(f) Update cell density, velocity, and total energy by (23)-(25), and update the nodal positions
by (26).

(g) Update cell volumes and centroids.
(h) Propagate contact positions in the cell, using linear interpolation of nodal velocities at time level

tn+ 1
2 (30).

(i) Compute velocity divergence from nodal velocities at tn+ 1
2 and remember it for the shock detec-

tor (31).
2. Rezone scheme: determine the target mesh T .
3. Remap scheme: all cell-centered conservative values (ρi, (ρu)i, (ρE)i) defined on the original/Lagrangian

mesh are transferred onto the target/rezone mesh
(a) Mark cells by reconstruction type as discussed in section 4.3:
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• if a tracked contact belongs to a cell, mark is as THINC, and mark two layers of neighbors
as Plim

1 ;
• if the shock detector (31) is on, mark the cell as Plim

1 , and again mark also two layers of
neighbors as Plim

1 ;
• mark the rest of the cell as P4 .

(b) From the primitive variables, compute cell-centered density of mass, momentum, and total en-
ergy.

(c) Perform reconstruction of each quantity according to the marker, so different reconstructions
are used in different cells, as discussed in sections 4.2.1-4.2.3. The same reconstruction type is
used for all quantities in a particular cell.

(d) Construct the intersections of Lagrangian and rezoned mesh, and integrate the reconstructions
by a high-order quadrature rule (11).

(e) Compute new cell masses, velocities, and internal energies in a standard way. Use EOS do
compute new pressures needed for the next Lagrangian step.

The described algorithm allows to combine the cell-centered Lagrangian solver with rezoning/remapping
steps, including tracking and detection of problematic cells, allowing to perform different types of recon-
structions in different cells during a single ALE step. In the next section, we will present the numerical
results obtained with this indirect ALE scheme.

5. Numerical experiments for static reconstruction and remap

In this section, we illustrate and test the high accurate reconstruction procedure and remap scheme
for static situations, when we analytically follow or track the static discontinuities through the moving
mesh. The purpose is to test the remapping strategy using mixed reconstructions without using the interface
detector from section 4.3. Then in the next section, for the hydrodynamics test cases, the interface detector
will be used.

5.1. Static reconstruction

In this section we ought to illustrate the reconstruction procedure. Let us consider a domain [−1, 1]
mesh with 5 equidistant cells and a step-like function

ρ(x) =

{
2 if x ≤ xd

1 else (32)

The discontinuity is set at position xd = 0 in the central cell and the exact mean values are ρi=1,2,3,4,5 =

(2, 2, 1.5, 1, 1) using P4 , P1 , Plim
1 and THINC function. The mesh is extended with ghost cells for the

high order polynomial reconstructions. The results are plotted in figure 2. As expected, the polynomial
reconstructions without limiting produce out-of-bounds values, while the use of a slope limiter prevents the
P1 reconstruction from such drawbacks. The last panel presents THINC reconstruction in the central cell
and left/right shifted reconstruction stencils for P4 for the second/fourth cells respectively. As observed,
such mixed reconstruction can nicely reproduce a step-like function. In figure 3, we present the same
reconstructions but with the discontinuity located closer to the cell boundary, at xd = 0.19. The same
conclusion applies.

5.2. Static remap

The classical test case for remapping scheme consists of successive remap steps of a given static profile
under a non uniform mesh motion. It can be found under the name “cyclic remapping” in [26] for instance.
This process starts from an initial 1D uniform grid (Ω = [−1, 1], Np nodes, Nc = Np − 1 cells) on which a
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Figure 2: Static reconstruction problem of a step like function at position xd = 0. Different reconstructions are shown: P1 (a),
Plim

1 (b), P4 (c) and THINC (d). The last panel presents THINC reconstruction in the central cell and left/right shifted stencils for
P4 reconstructions for the second/fourth cells respectively.

“shape” ρ is given by its cell-centered mean values. Then a non-uniform mesh motion is applied for each
time step described by the following formula

xn
i+1/2 = (1 − αn) ξi+1/2 + αn ξ

3
i+1/2, (33)

where ξi = i−1
Np−1 and αn = 1

2 sin
(

4πn
Nmax

)
, and 0 ≤ n ≤ Nmax = 5 Nc is the time-step index. Note that for

iterations n = 0 and n = Nmax, we have αn = 0 and therefore x0
i = xNmax

i , so we end up with the same
initial uniform grid. In each time step, a function ρ defined on the old grid defined by points xn is remapped
onto the new one defined by xn+1. Finally, a comparison between the initial mean values and the final ones
allows to assess the accuracy, robustness and behavior of the remap scheme.
A set of four different smooth and irregular shapes are considered, a Gaussian, a rectangular and triangular
shapes and a parabola, see [73]. In a concise way, the four shape profile [74] is defined as

ρ(x) = 1 +


1 + (G(x, β, z − δ) + G(x, β, z + δ) + 4G(x, β, z))/6 if x ∈ [−0.8,−0.6]
2 if x ∈ [−0.4,−0.2]
2 − |10(x − 0.1)| if x ∈ [0.0, 0.2]
1 + (F(x, α, a − δ) + F(x, α, a + δ) + 4F(x, α, a))/6 if x ∈ [0.4, 0.6]
1 else

(34)

with parameter a = 0.5, z = −0.7, δ = 0.005, α = 10, β = log 2/(36 δ2) and functions F,G defined
as G(x, β, z) = exp(−β(x − z)2), and F(x, α, a) =

√
max(1 − α2(x − a)2, 0). The analytic profile is shown

in figure 4 by the black solid line. We would like to remark that the cyclic remapping test case is not
equivalent to the classical Eulerian test case for which these shapes are traveling with a constant speed across
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Figure 3: Static reconstruction problem of a step like function at position xd = 0.19. Different reconstructions are shown: P1 (a),
Plim

1 (b), P4 (c) and THINC (d). The last panel presents THINC reconstruction in the central cell and left/right shifted stencils for
P4 reconstructions for the second/fourth cells respectively.

a uniform fixed mesh under periodic boundary conditions. Contrarily, here, being a remapping problem,
one accumulates the diffusion errors while the mesh is compressing and expanding non-uniformly. Indeed,
in the case of a cyclic remap with I = 128 cells, the number of cells covering for instance the Gaussian
shape is initially 13, then reduces to 8 and increases up to 21 several times.
We simulate the problem with I = 41, 81, 161, 321, 641, 1281 and 2561 cells. The odd number of cells
is used in order to avoid boundaries of the shapes to be aligned with the mesh nodes. The positions of
the jumps are x = −0.4 and x = −0.2 and the cells into which they belong are treated with the THINC
reconstruction. The cells containing any other discontinuities of the profile, i.e. at locations x = 0, 0.1, 0.2,
0.4 and 0.6, do employ a Plim

1 reconstruction. The remaining cells are treated with P4 possibly with a shifted
stencil to avoid the reconstruction neighborhood to “see” discontinuity.
In figure 4, we present the results obtained with I = 41, 81, 161 and 321 cells. The results show, that the
remap schemes using unlimited polynomial reconstructions suffer from Gibbs like phenomenon (red and
blue symbols). However, the P4 results are truly accurate in all smooth areas, especially for regular extrema
and shapes. The use of a slope limiter with piece-wise linear reconstruction dissipates the oscillations,
and the results are maintained in bounds to the price of excessive diffusion (green symbols) especially on
smooth extrema and jumps. The use of THINC reconstructions supplemented with Plim

1 and P4 (with shifted
stencil) is genuinely improving the quality of the results. There are no spurious oscillations. The THINC
reconstruction captures the jump inside one unique cell, and the P4 reconstructions maintain high accuracy
in smooth areas. The Plim

1 reconstruction also ensures that there is no undershoot, and in most regions, the
results almost coincide with the unlimited P4 ones (blue). With only 41 cells the resolution is extremely
low and spurious effects can be seen, but starting from 81 cells and more, the quality of the remap solution
improves to be close to perfection with I ≥ 161. In figure 5, we present the zooms for four different areas
(for I = 641 cells) to enhance the behavior of each remapping strategy. Next in table 1, we present the
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Figure 4: Cyclic remapping of the four profiles with different numbers of cells: 41 (a), 81 (b), 161 (c) and 321 (d). Different remapping
schemes shown: unlimited P1 (red), unlimited P4 (blue), Plim

1 (green) and P4 supplemented with THINC (purple).

L1 errors computed for the four remapping strategies. We can observe that the unlimited P4 results are
more accurate than the Plim

1 even if oscillations are present. More importantly, our strategy with mixed
reconstruction is able to reduce the error by a factor 10 compared to the most often used reconstruction
(Plim

1 ). It also outperforms the unlimited P4 errors by a factor greater than 5. The L2 errors lead to the same
conclusion, therefore we omit those results.

In this numerical section we have observed that a mix of high order polynomials and limited second
order ones supplemented with THINC reconstructions for jumps drastically improves the results for static
cyclic remapping. These mixed reconstructions are able to associate the accuracy of P4 with the essentially
non-oscillatory behavior of Plim

1 and the perfect discontinuity capturing property of THINC. However, to
obtain these results, we had to analytically track the jump positions along with the irregularity in the profiles.
This discontinuity tracking is feasible for this simple problem, however, this strategy is obviously not viable
for the Euler equations. Therefore, in the next section, we supplement the mixed reconstructions with the
interface detector described in section 4.3.

6. Numerical experiments for the full hydrodynamics equations

In this section, we solve the Euler equations supplemented with a perfect gas equation of state with adi-
abatic constant equal to γ = 7/5. We employ the indirect ALE scheme using the cell-centered Lagrangian
method coupled with remapping of all the conservative quantities. The CFL number is fixed at 0.25, other-
wise it is noticed.
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Figure 5: Cyclic remapping of the four profiles: zooms on four interesting areas are shown for 641 cells. Different remapping schemes
shown: unlimited P1 (red), unlimited P4 (blue), Plim

1 (green) and P4 supplemented with THINC (purple).

We ought to compare the behavior of different remapping strategy implemented within the same framework,
namely:

LAG only uses the cell-centered Lagrangian scheme.

ALE: P0 uses the low order accurate remap (donor cell remap).

ALE: P1 employs unlimited P1 reconstructions without limiting strategy.

ALE: P1+BJ employs P1 reconstruction with Barth-Jespersen slope limiter, and this is the classical ALE
scheme.

ALE: P4 uses unlimited P4 reconstructions.

ALE: P4+THINC uses the mix of P4 , Plim
1 , and THINC reconstructions where appropriate.

We plan to verify numerically that high accurate remapping schemes do generate precise and robust nu-
merical solutions. Notice, that we can not expect to reach a measurable high-order of accuracy with our
ALE scheme because the Lagrangian engine is at most a second-order accurate one. Moreover, we are
mostly interested in solving problems involving shock waves and discontinuities, for which the order of
convergence can not exceed one. However, for a given mesh, some remapping strategy can produce better
accurate results.
The rezone strategy considers the original mesh as the rezone one for most tests, leading to an Eulerian
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Reconstructions used in the remapper
I P1 Plim

1 P4 P4 + THINC Ratio vs Plim
1 Ratio vs P4

41 1.61e-1 1.86e-1 7.83e-2 1.23e-1 1.5 0.6

81 8.36e-2 1.01e-1 5.21e-2 4.25e-2 2.4 1.2

161 5.22e-2 4.41e-2 2.39e-2 7.58e-3 5.8 3.2

321 2.41e-2 2.13e-2 1.11e-2 2.59e-3 8.2 4.3

641 1.21e-2 1.05e-2 5.73e-3 1.05e-3 10.0 5.4

1281 6.32e-3 5.34e-3 3.00e-3 4.65e-4 11.5 6.5

2561 3.50e-3 2.92e-3 1.65e-3 2.33e-4 12.5 7.1

Table 1: L1 errors for the cyclic remapping problem for the remapping strategies corresponding to the numerical results depicted in
figure 4.

regime as Lagrange plus Remap. For the Shu-Osher test, the domain boundary is moving, so mesh smooth-
ing by simple averaging is used as rezoning.

We first consider some ultra classical test cases involving simple waves, Sod [75] and Lax [76] shock
tube problems. Then, more complex interacting wave problems, such as the Collela-Woodward blastwave
[77] and Shu-Osher test [78] are simulated. An overview of the initial data is summarized in table 2. Suc-
cessively refined meshes are considered made of I = 100 K cells with K = 1, 2, 4, 8 to measure and observe
the mesh convergence of the ALE schemes. Moreover, we systematically present space/time figures, where
the cell reconstruction types (THINC for contact and Plim

1 for shocked and unsafe area) are plotted.

Test Left state Right state Interface Time
ρ u p ρ u p in domain tfinal

Sod 1.0 0.0 1.0 0.125 0.0 0.1 x0 = 0.5 ∈ [0 : 1] 0.2

Lax 1.0 0.0 1000.0 1.0 0.0 0.01 x0 = 0.5 ∈ [0 : 1] 0.012

Shu-Osher 3.857143 2.629369 10.33333 1+0.2 sin(5πx) 0 1 x0 = −4 ∈ [−9.5 : 4.5] 0.18

Test Left state Middle state Right state Interface Time
ρ u p ρ u p ρ u p in domain Ω = [0 : 1] tfinal

Collela-Woodward 1.0 0.0 1000.0 1.0 0.0 0.01 1.0 0.0 100 x0 = 0.1, x1 = 0.9 0.038

Table 2: Initial conditions for the 1D Riemann problems and other tests simulated in this paper.

6.1. Sod test case

The Sod problem is a 1D Riemann shock tube with a mild discontinuity [75] generating simple waves.
The exact solution consists in a left moving rarefaction fan, a right moving contact discontinuity and a
shock wave. The domain Ω = [0; 1] is filled with an ideal gas at rest with adiabatic constant γ = 1.4. Two
states are separated by a discontinuity initially located at x = 0.5. The density/pressure on the left side of
the discontinuity are (ρ, p) = (1.0, 1.0) and (0.125, 0.1) on the right side, see table 2. The final time is set to
tfinal = 0.2 and wall type boundary conditions are set. In figure 6, we present the mesh convergence study for
I = 100, 200, 400 and 800 cells for the Lagrangian scheme and ALE with remap strategy P1, P1+BJ, P4 and
P4+THINC. In figures 7 and 8, we present the density profiles only and zooms at contact and shock wave.
The velocity, pressure and specific internal energy profiles for 100 and 400 cells are presented in figure 9.
Recall, that the exact position of the contact discontinuity is xC ' 0.6855 while the shock is located at
xS ' 0.8504. We omit the results produced by P0 reconstruction because they are overly diffusive and
they do not bring any useful information here. The numerical method using mixed reconstruction produces
systematically better results in terms of accuracy and non-oscillatory behavior. The sharpness of the contact
is equivalent to the Lagrangian results, while the shock is free from spurious oscillations and its quality is
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equivalent to P1+BJ or P4. As expected, using P4 remapping for every cell generates spurious oscillations,
though small enough to avoid a code crashing for this mild shock tube.

(a) I = 100 (b) I = 200

(c) I = 400 (d) I = 800

Figure 6: Sod test case: fluid density shown for simulations on 100 (a), 200 (b), 400 (c) and 800 (d) cells.

In table 3, we have gathered the L1, L2 and L∞ errors and their associated rates of convergence for the
ALE scheme with P0 , Plim

1 , P4 and mixed (P4 + THINC) reconstruction types. The analytic solution is
obtained from the analytic Riemann solver described in [76], and the numerical errors are computed in the
integral sense by the same quadrature rule (11). As expected, the rates of convergence are about 1 for any
high accurate remap strategy, with the best errors obtained by the mixed reconstructions. In figure 10, we
plot in log-scale the data from table 3. To illustrate these results, the needed mesh size to reach an L2 error
of about 10−4 is about 159 cells for P4+THINC, 244 for P4, 292 for P1+BJ, more than 2000 for P0, and
223 for the Lagrangian scheme. It means that the gain in terms of mesh size is of the order 1.8 between
our mixed reconstruction approach and the classical second-order + limiter remap strategy. The (c) panel
in figure 10 demonstrates that the discrepancy magnitude is lowest for the new method for all resolutions,
although no convergence in L∞ norm can be expected due to discontinuous solution.

At last, we present the cell reconstruction type for all cells and all time-steps in figure 11. The cell type
is determined by the interface detector. We mark the THINC cells with a red symbol, the P1+BJ cells with
a blue one, and nothing (white symbol) is used for the P4 cells. The time-steps are in y-direction while
the abscissa refers to the cell position. We observe that the interface detector is able to track the contact
discontinuity (surrounded by two P1+BJ cells) and, later the shock wave when it escapes the contact zone.

The Sod shock tube has been used as a sanity check because its relatively weak discontinuity renders this
test easy to simulate. We have observed however that using mixed reconstruction along with the interface
detector drastically improves the resolution of the contact discontinuity: it is indeed now captured in a
single cell.
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(a) I = 100 (b) I = 200

(c) I = 400 (d) I = 800

Figure 7: Sod test case: fluid density shown for simulations on 100 (a), 200 (b), 400 (c) and 800 (d) cells – zoom at contact wave.

6.2. Lax test case

The Lax problem is a shock tube with more severe contact discontinuity and shock wave than Sod [76].
The initial data are gathered in table 2. In figure 12, we present the mesh convergence study for fluid
density. The full view is plotted in the left panels, a zoom at the contact and shock waves in the right panels.
As expected the P4 remapper produces oscillatory results while Plim

1 one can eliminate the oscillations for
the price of an excessive numerical dissipation especially at the contact wave (8 − 10 cells over which the
contact is spread). Contrarily, the mixed reconstruction (P4 , Plim

1 , THINC) is able to capture the contact
inside a single cell, avoiding the numerical oscillations with, however, a spurious effect just after the contact,
resulting from the oscillations generated by the Lagrangian scheme. The shock wave is captured with the
same accuracy by all schemes, that is inside one or two cells. We did not expect any improvement regarding
the shock wave. Figure 13 presents the cell reconstruction types as a function of space and time. Clearly,
the contact discontinuity and the shock wave are tracked appropriately.

In figure 14, we present the L1, L2 and L∞ error plots produces by all schemes. While the Lagrangian
scheme generates the smallest errors, the mixed reconstruction in the remap is the best of the ALE schemes
tested here apart from the smallest mesh size. The order of convergence is about the same for all methods,
that is less than 0.8. If one sets a required level of L2 error at 0.02 then the P1+BJ ALE scheme would
employ about 590 cells while the P4+THINC about 300 (320 for P4). The gain in the number of cells is
about 2.

6.3. Shu-Osher oscillatory test case

This test [78] is a 1D hydrodynamic shock tube for which the downstream flow has a sinusoidal density
fluctuation, see table 2. Due to the fact that the left boundary is a piston, the computational domain shrinks
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(a) I = 100 (b) I = 200

(c) I = 400 (d) I = 800

Figure 8: Sod test case: fluid density shown for simulations on 100 (a), 200 (b), 400 (c) and 800 (d) cells – zoom at shock wave.

in time. As a consequence, the rezone strategy does operate a Laplacian smoothing strategy by averaging
the nodal positions. As such, the simulations are in a true ALE mode, and no more in a Lagrange plus
remap one. Notice that the unlimited P4 remapper is not able to simulate this problem due to oscillations in
internal energy leading to time-step degeneration. Moreover, the P0 remapper produces genuinely diffused
results and we skip those curves. In figure 15, we present the mesh convergence study for the density
variable for the Lagrangian, ALE-P1+BJ and ALE-P4+THINC schemes. A zoom at the oscillatory area
is solely proposed. The right panels present the associated cell reconstruction types as detected by our
interface tracker. As expected, only a contact and a shock wave are captured in their motion. It seems
that the use of P4 reconstructions slightly improves the accuracy of the numerical solution compared to the
classical second-order accurate remapper. For this test case, the contact discontinuity seems to fall in the
unlikely situation where the surrounded cells do not form a strictly increasing or decreasing set of data
for lower-resolution simulations. This implies that the THINC function can not be reconstructed properly,
it degenerates to P0 , and the mean value in this cell is considered instead. Contrarily, for the 800 cell
resolution, the contact zone contains enough cells, the THINC reconstruction can operate appropriately,
and one retrieves a sharp contact, mimicking the Lagrangian results.

6.4. Woodward-Collela blastwave
The Woodward-Collela blastwave is a classical double shock tube where simple waves do interact [77].

The left, middle, and right states are given in table 2. Two shock waves and two contact discontinuities
develop and propagate towards the wall boundary conditions and reflect from them. These initial simple
waves further interact creating a more complex flow pattern.

In figure 16, we present the numerical density obtained by the ALE schemes for the same refined
meshes as previously. Once again, the unlimited P4 remapper can not simulate this problem. Moreover
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(a) I = 100, velocity (b) I = 400, velocity

(c) I = 100, pressure (d) I = 400, pressure

(e) I = 100, specific internal energy (f) I = 400, specific internal energy

Figure 9: Sod test case: fluid quantities shown for 100 cells (left panels) and 400 cells (right panels) – velocity (a-b), pressure (c-d),
and specific internal energy (e-f).
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Figure 10: L1 (a), L2 (b), and L∞ (c) density errors for Sod problem from table 3, produced by the Lagrangian scheme and the ALE
schemes incorporating P0 , Plim

1 , P4 , and mixed (P4 + THINC) reconstructions.

Sod P0 Plim
1

h L1 L2 L∞ R1 R2 R∞ L1 L2 L∞ R1 R2 R∞
100 2.41E-02 1.16E-03 7.87E-02 — — — 9.97E-03 2.77E-04 4.98E-02 — — —

200 1.57E-02 6.81E-04 8.53E-02 0.61 0.77 -0.11 5.45E-03 1.57E-04 6.86E-02 0.87 0.82 -0.46

400 9.85E-03 3.79E-04 8.38E-02 0.68 0.85 0.02 2.74E-03 6.91E-05 6.71E-02 0.99 1.19 0.03

800 6.15E-03 2.27E-04 8.22E-02 0.68 0.74 0.03 1.37E-03 3.24E-05 6.39E-02 1.00 1.09 0.07

Sod P4 P4 + THINC

h L1 L2 L∞ R1 R2 R∞ L1 L2 L∞ R1 R2 R∞
100 8.80E-03 2.33E-04 4.85E-02 — — — 8.44E-03 2.05E-04 3.87E-02 — — —

200 4.72E-03 1.31E-04 7.37E-02 0.90 0.83 -0.61 4.16E-03 6.96E-05 3.43E-02 1.02 1.56 0.17

400 2.33E-03 5.17E-05 6.98E-02 1.02 1.34 0.08 2.03E-03 2.62E-05 3.78E-02 1.04 1.41 -0.14

800 1.14E-03 2.03E-05 6.30E-02 1.03 1.35 0.15 9.88E-04 1.11E-05 4.54E-02 1.03 1.24 -0.26

Table 3: L1, L2, and L∞ density errors and their associates convergence rates for Sod problem for the ALE scheme with P0 , Plim
1 ,

P4 and mixed (P4 + THINC) reconstruction types.

(a) I = 100 (b) I = 200 (c) I = 400

Figure 11: Cell reconstruction type determined by the interface detector as a function of time. Red cells use THINC reconstruction,
blue cells use Plim

1 reconstruction, and white cells use P4 reconstruction. Results are shown for 100 (a), 200 (b) and 400 (c) cells.
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(a) I = 100 (b) I = 100, zoom

(c) I = 200 (d) I = 200, zoom

(e) I = 400 (f) I = 400, zoom

(g) I = 800 (h) I = 800, zoom

Figure 12: Lax test case: fluid density shown on 100 (a-b), 200 (c-d), 400 (e-f) and 800 (g-h) cells. Full view (left panels) and zoom
on the contact and shock waves (right panels) are shown.

25



(a) I = 100 (b) I = 200 (c) I = 400

Figure 13: Lax test case: cell reconstruction types as a function of time. Red cells use THINC reconstruction, blue cells use
Plim

1 reconstruction, and white cells use P4 reconstruction. Results are shown for 100 (a), 200 (b), and 400 (c), cells.
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Figure 14: L1 (a), L2 (b), and L∞ (c) density errors for Lax problem produced by the Lagrangian scheme and ALE schemes incorpo-
rating P0 , Plim

1 , P4 , and mixed (P4 + THINC) reconstructions.

the P0 remapper produces too diffused results and we skip those curves. Therefore, only the classical
Plim

1 and our mixed reconstruction strategy remappers are compared against the Lagrangian scheme solution.
It is clear from these figures that the proposed scheme is significantly improving the treatments of the
contact discontinuities compared to the classical second-order remapping scheme. Indeed, the contacts are
maintained with almost the same quality as in the Lagrangian scheme, that is on one or two cells maximum,
while the classical remapper, like any Eulerian scheme, can not do better than tens of cells, especially for
the first wave on the left. Few tiny spurious features can still be observed in the left low-density area. The
plots of cell reconstruction types (right panels) confirm the fact that the main contact waves and shocks are
appropriately tracked by our algorithm. Notice, that the contacts and shocks are clearly interacting with
each others. Moreover there are supplementary waves created by those interactions, which are not taken
into account by our tracking algorithm as it stands. With a more clever tracking/detecting procedure, we
would certainly be able to improve the results even further, for instance close to the contact at location
x ' 0.76, which is not present in the initial data and develops during the interaction of waves, so it is not
possible to track it properly with our simple algorithm.
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(a) I = 100, density zoom (b) I = 100, reconstruction type

(c) I = 200, density zoom (d) I = 200, reconstruction type

(e) I = 400, density zoom (f) I = 400, reconstruction type

(g) I = 800, density zoom (h) I = 800, reconstruction type

Figure 15: Shu-Osher oscillatory test case: fluid density shown on 100 (a-b), 200 (c-d), 400 (e-f), and 800 (g-h) cells. Zoom on the
central area (left panels) and cell reconstruction types as a function of time (right panels) are shown.
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(a) I = 100, density zoom (b) I = 100, reconstruction type

(c) I = 200, density zoom (d) I = 200, reconstruction type

(e) I = 400, density zoom (f) I = 400, reconstruction type

(g) I = 800, density zoom (h) I = 800, reconstruction type

Figure 16: Woodward-Collela blastwave test case: fluid density shown on 100 (a-b), 200 (c-d), 400 (e-f), and 800 (g-h) cells. Zoom
on the central area (left panels) and cell reconstruction types as a function of time (right panels) are shown.
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7. Conclusions and perspectives

In this paper, we have presented a 1D proof of concept for the mixed use of polynomial and non-
polynomial THINC reconstructions within a conservative remap procedure of an indirect cell-centered
ALE scheme (Lagrange+Rezone+Remap). The use of hyperbolic tangent THINC reconstructions allow
us to better represent discontinuous solutions, such as interfaces or contact discontinuity. For safe regular
zones we employ quartic polynomial reconstructions resulting in fifth-order accurate remap, while for un-
safe zones we use the classical second order accurate remap employing linear reconstruction supplemented
with Barth-Jespersen slope limiter. Tracking the discontinuities is therefore mandatory in out approach.
Contact discontinuities are moving with the fluid velocity. Therefore, they are initially marked and further
tracked with the Lagrangian piece-wise linear approximation of the fluid velocity. In the cells where those
markers are present, we perform a THINC reconstruction. Their neighbors are reconstructed with a limited
linear polynomial. Concerning shock waves, we rely on a sort of compression switch by stating that if the
volume of the Lagrangian cell is enduring a ’large’ compression then the situation is not safe and limited
linear polynomial must be employed for this cell and its two neighbors. All other cells employ a fifth-order
accurate unlimited polynomial reconstruction.
The associated cell-centered ALE scheme therefore employs a second-order accurate cell-centered La-
grangian solver, a simple rezone strategy, and a remapping procedure for which the reconstruction if chosen
between P4 , Plim

1 or THINC, depending on a tracking algorithm.
We have then presented the indirect ALE scheme solving the 1D advection equation and the 1D hydrody-
namics system of conservation laws. In all these situations, maintaining sharp contact discontinuities is the
main goal of our approach.
This remap procedure has been tested on pure reconstruction and static remap situations, and some clas-
sical 1D hydrodynamics ones (Sod, Lax, Shu-Osher and Woodward-Collela). The numerical results have
been compared to the ones produces by standard piece-wise linear reconstructions supplemented with a
slope limiter. The results are genuinely promising. Indeed, it is observed that the THINC reconstructions
sharpen the discontinuous profiles without degrading the other regions. For instance, the contact discon-
tinuity is maintained within one cell while at least four cells are usually needed with classical schemes.
The P4 reconstructions, on the other hand, allow to maintain good accuracy, and the Plim

1 assures an essen-
tially non-oscillatory behavior. Obviously, our new ALE scheme is more computationally expensive than
the classical second-order one but the improvement in terms of accuracy does compensate. Of course, the
Lagrangian scheme being only second-order, we can not expect more than a second-order ALE scheme.
However it does not imply that the overall accuracy of the numerical results can not be improved, and, we
have shown that such a mixed reconstruction approach can genuinely ameliorate the situation. This work
was intended to show that the drawbacks brought by the remap stage, such as dissipation of contacts and
interfaces, could be truly mitigated by an appropriate choice of reconstruction types. This 1D proof of
concept is the first step in this direction.
In the future, we plan to test the full approach in 2D Cartesian geometry for structured and unstructured
mesh. Moreover, we plan to improve the tracking algorithm to allow the appearance of contact or inter-
face after some wave interactions. Also extending the tracking algorithm to make it work with the THINC
reconstruction to multi-dimension may be a an interesting challenge.
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